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ON HUH’S CONJECTURES FOR THE POLAR DEGREE

DIRK SIERSMA, JOSEPH STEENBRINK, AND MIHAI TIBĂR

Abstract. We prove a precise version of a general conjecture on the polar degree stated
by June Huh. We confirm Huh’s conjectural list of all projective hypersurfaces with
isolated singularities and polar degree equal to 2.

1. Introduction

Let f ∈ C[x0, . . . , xn], n ≥ 2, be a homogeneous polynomial of degree d ≥ 2 and
V := {f = 0} ⊂ Pn. The polar degree of f is defined as the topological degree of the
gradient mapping

(1) grad f : Pn \ Sing V → Pn.

It only depends on the reduced structure of V and thus can be denoted by pol(V ). This
fact has been conjectured by Dolgachev [Do] and proved by Dimca and Papadima [DP]
as a consequence of the following interpretation:

(2) pol(V ) = rankHn−1(V \H)

where H ⊂ Pn is a general hyperplane. More than 160 years ago, Otto Hesse had claimed
[Hes1, Hes2] that pol(V ) = 0 if and only if the hypersurface V is a cone1, but this has
been disproved by a nice example due to Gordan and Noether [GN], see [Huh] for a
discussion of this example and other remarks. More recently Dolgachev [Do] considered
hypersurfaces with pol(V ) = 1 (so-called homaloidal) and classified such plane curves, cf
the list below, see also [Di, FM]. We refer to [Huh] for some recent papers about various
questions around the polar degree.

In this note we focus on the polar degree of hypersurfaces with isolated singularities.
The formula:

(3) pol(V ) = (d− 1)n −
∑

p∈Sing V

µ(V, p)

proved by Dimca and Papadima [DP] in terms of the degree d and the Milnor numbers
of V at its singular points, implies in particular that the quadratic hypersurface is the
only smooth V which is homaloidal. In order to bound pol(V ) from below, Huh [Huh]
used the theory of slicing by pencils with isolated singularities in the axis introduced and
developed in [Ti]. He found a key inequality in a more general setting relating pol(V )
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to the sectional Milnor number µ〈n−2〉(V, p) of any chosen singular point p ∈ Sing V of
a hypersurface V with isolated singularities and2 pol(V ) > 0, that we shall call Huh’s
inequality :

(4) pol(V ) ≥ µ〈n−2〉(V, p).

With this bound at hand, Huh could prove Dimca and Papadima’s [DP] conjectural list
of all homaloidal hypersurfaces with isolated singularities [Huh, Theorem 4]:

A projective hypersurface V ⊂ Pn with only isolated singularities has polar degree 1 if
and only if it is one of the following, after a linear change of homogeneous coordinates:

(i) (n ≥ 2, d = 2) a smooth quadric:

f = x2
0 + · · ·+ x2

n = 0.

(ii) (n = 2, d = 3) the union of three non-concurrent lines:

f = x0x1x2 = 0, (3A1).

(iii) (n = 2, d = 3) the union of a smooth conic and one of its tangents:

f = x0(x
2
1 + x0x2) = 0, (A3).

This list contains the plane curves found by Dolgachev [Do].

June Huh conjectured a general finiteness principle for projective hypersurfaces with
isolated singularities and fixed polar number pol(V ) = k. In case k = 2, he conjectured
that such hypersurfaces are only those in the following list:

Conjecture 1.1. [Huh, Conjecture 20] A projective hypersurface V ⊂ Pn with only iso-
lated singularities has polar degree 2 if and only if it is one of the following, after a linear
change of homogeneous coordinates:

(a) (n = 3, d = 3) a normal cubic surface containing a single line:

f = x0x
2
1 + x1x

2
2 + x1x

2
3 + x3

2 = 0, (E6).

(b) (n = 3, d = 3) a normal cubic surface containing two lines:

f = x0x1x2 + x0x
2
3 + x3

1 = 0, (A5, A1).

(c) (n = 3, d = 3) a normal cubic surface containing three lines and three binodes:

f = x0x1x2 + x3
3 = 0, (A2, A2, A2).

(d) (n = 2, d = 5) two smooth conics meeting at a single point and their common
tangent:

f = x0(x
2
1 + x0x2)(x

2
1 + x0x2 + x2

0) = 0, (J2,4).

(e) (n = 2, d = 4) two smooth conics meeting at a single point:

f = (x2
1 + x0x2)(x

2
1 + x0x2 + x2

0) = 0, (A7).

(f) (n = 2, d = 4) a smooth conic, a tangent and a line passing through the
tangency point:

f = x0(x0 + x1)(x
2
1 + x0x2) = 0, (D6, A1).

2it is explicitly stated in loc.cit. that the inequality does not apply to V which is a cone with apex at
p; indeed, being a cone implies pol(V ) = 0.
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(g) (n = 2, d = 4) a smooth conic and two tangent lines:

f = x0x2(x
2
1 + x0x2) = 0, (A1, A3, A3).

(h) (n = 2, d = 4) three concurrent lines and a line not meeting the center point:

f = x0x1x2(x0 + x1) = 0, (D4, A1, A1, A1).

(i) (n = 2, d = 4) a cuspidal cubic and its tangent at the cusp:

f = x0(x
3
1 + x2

0x2) = 0, (E7).

(j) (n = 2, d = 4) a cuspidal cubic and its tangent at the smooth flex point:

f = x2(x
3
1 + x2

0x2) = 0, (A2, A5).

(k) (n = 2, d = 3) a cuspidal cubic:

f = x3
1 + x2

0x2 = 0, (A2).

(l) (n = 2, d = 3) a smooth conic and a secant line:

f = x1(x
2
1 + x0x2) = 0, (A1, A1).

Huh showed his conjecture for plane curves, cubic and quartic surfaces [Huh]. Fasarella
and Medeiros [FM] classified plane curves with pol(V ) = 2 as a consequence of formula
(2) and the computation of Euler characteristics.

We first prove Huh’s conjecture for pol(V ) = 2, then Huh’s finiteness conjecture for
pol(V ) = k. More precisely:

Theorem 1.2. The hypersurfaces V ∈ Pn with isolated singularities and of polar degree
2 are only those in Huh’s list.

In particular there are no such hypersurfaces for n > 3.

The main idea is to consider the affine hypersurface V \H , for some general hyperplane
H not passing through any singularity, and to deform it into the cone Vn,d \H defined by
fn,d := xd

1 + · · · + xd
n = 0. This induces an embedding of the direct sums of the Milnor

lattices of the singularities of V into the Milnor lattice of the isolated singularity of fn,d.
We apply to this deformation the semicontinuity of the spectrum proved by Varchenko
[Va] and Steenbrink [St3] (Section 3).

June Huh formulated the following general principle for any k > 2:

Conjecture 1.3. [Huh, page 1545] There is no projective hypersurface V ⊂ Pn of polar
degree k with only isolated singular points, for sufficiently large n and d = deg V .

We answer positively to Huh’s general conjecture in the following precise way:

Theorem 1.4 (Finiteness Theorem). For any integer k ≥ 2, let Kk denote the set of pairs
of integers (n, d) with n ≥ 2 and d ≥ 3, such that there exists a projective hypersurface V
in Pn of degree d with isolated singularities and pol(V ) = k.

Then Kk is finite for any k ≥ 2.
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By Theorem 1.2 we are showing that K2 = {(2, 3), (2, 4), (2, 5), (3, 3)} and that this is a
sharp equality. To prove Theorem 1.4 for k ≥ 3, we show that any (n, d) ∈ Kk satisfies the
inequalities n < max(k, 5 + log2 k) by Theorem 4.1, and d < max{2 + ℓn,k, (n+ ℓn,k)(k +

2)/(n− 1)} by Theorem 4.5, where ℓn,k := min
{

ℓ ∈ N
∣

∣

(

n+ℓ

n

)

> k
}

.

2. Spectrum and the semicontinuity argument

We recall here the properties of the spectrum that we shall use in the proofs.

2.1. Properties. Let X be a complex manifold of dimension n and f : X → C a
holomorphic function. Let x ∈ X be an isolated critical point of f with Milnor fi-
bre Xf,x. The group H̃n−1(Xf,x) is free abelian of finite rank equal to the Milnor
number µ(f, x). Let T denote the monodromy operator and let Ts be its semisim-

ple part. Then H̃n−1(Xf,x) underlies a mixed Hodge structure with Hodge filtration

F • = (0 ⊂ F n−1 ⊂ F n−2 ⊂ · · · ⊂ F 0 = H̃n−1(Xf,x,C)), preserved by Ts. By the
monodromy theorem, the eigenvalues of Ts are roots of unity.

The spectrum Sp(f, x) is an element of the group ring Z[Q]:

Sp(f, x) =
∑

α

nα(α)

a finite sum with nα ∈ N. Here nα is defined as the multiplicity of exp(−2πiα) as an
eigenvalue of Ts acting on F p/F p+1, where p = ⌊n − 1 − α⌋. The spectrum has the
following properties.

Range: nα 6= 0 ⇒ −1 < α < n− 1.
Symmetry: If α + β = n − 2 then nα = nβ. See [AGV, Corollary to Lemma 13.14] for

these two properties.
Stability: If g : X × C is defined by g(z, t) = f(z) + t2, and x ∈ X with Sp(f, x) =

∑

α nα(α), then Sp(g, (x, 0)) =
∑

α nα(α+ 1
2
). See [AGV, Corollary 1 to Theorem

13.7].
µ-constant deformation invariance: The spectrum is constant in any deformation of

isolated hypersurface singularity germs with constant Milnor number, see [St3].
Semicontinuity: Let (Y0, 0), where Y0 := {g = 0} ⊂ Cn, be the germ of a hypersurface

with isolated singularity. Let gs be a good representative of a deformation of g
such that Ys := {gs = 0} has isolated singular points Sing(Ys) = {p1, . . . , pr} which
tend to the origin 0 when s → 0. Let gi : (C

n, pi) → (C, 0) be a local equation for
Ys at pi, for i = 1, . . . , r. Then for each a ∈ R one has:

r
∑

i=1

deg]a,a+1[ Sp(gi, pi) ≤ deg]a,a+1[ Sp(g, 0)

in case we have a deformation of lower weight of a quasi-homogeneous function
germ g, and

r
∑

i=1

deg]a,a+1] Sp(gi, pi) ≤ deg]a,a+1] Sp(g, 0)

in general.



POLAR DEGREE AND HUH’S CONJECTURES 5

Here for anyA ⊂ R the function degA : Z[Q] → Z is defined by degA(
∑

α nα(α)) :=
∑

α∈A nα. The first inequality is a special case of a result of Varchenko [Va], and
the second inequality follows from [St3, Theorem 2.4].

2.2. Deformation to fn,d. Let H := {x0 = 0} ⊂ Pn be a generic hyperplane with
respect to our hypersurface V := {f = 0} and write f = fd + x0fd−1 + · · ·+ xd

0f0 where
fi ∈ C[x1, . . . , xn] is homogeneous of degree i. We consider the 1-parameter family of
polynomials gs(1, x1, · · · , xn) := fd + sfd−1 + · · · + sdf0 on Cn = Pn \ H , see e.g. [Br].
Then fd is a general homogeneous polynomial which, as germ at the origin 0 ∈ Cn, is
topological equivalent to the polynomial fn,d :=

∑n

i=1 x
d
i .

Therefore the family gs describes a deformation of lower weight of g1 = f|Cn to g0 =
fd, hence a deformation from the hypersurface V \ H to the hypersurface {fd = 0},
which is topological equivalent to the hypersurface {fn,d = 0}. We may thus apply the
semicontinuity of the spectrum and, if the local singularities (V, pi) of V are defined by
fi = 0, we get:

(5)

r
∑

i=1

deg]a,a+1[ Sp(fi, pi) ≤ deg]a,a+1[ Sp(fn,d, 0)

and

(6)
r

∑

i=1

deg]a,a+1] Sp(fi, pi) ≤ deg]a,a+1] Sp(fn,d, 0).

2.3. Spectra of special singularities. As Huh showed in [Huh, Lemma 19] by using
his bound (4) and Arnold’s classification results [AGV], the singularities which may occur
on a projective hypersurface of dimension n − 1 of polar degree 1 or 2 are within the
following list:

type equation Milnor number

Ak with k ≥ 1 xk+1
1 + qn−1 k

Dk with k ≥ 4 x2
1x2 + xk−1

2 + qn−2 k
E6k with k ≥ 1 x3

1 + x3k+1
2 + qn−2 6k

E6k+1 with k ≥ 1 x3
1 + x1x

2k+1
2 + qn−2 6k + 1

E6k+2 with k ≥ 1 x3
1 + x3k+2

2 + qn−2 6k + 2
Jk,i with k ≥ 2, i ≥ 0 x3

1 + x2
1x

k
2 + x3k+i

2 + qn−2 6k − 2 + i

where qn−1−j := x2
j+2 + · · · + x2

n, and in each case we have exhibited one of the possible
equations in the µ-class of the singularity. Note that all types except Jk,i with i > 0 are
represented by a weighted homogeneous function. It was shown in [St1, Example 5.11] for
f ∈ C[x1, x2] with an isolated singular point at 0 and weighted homogeneous with weights
w1 and w2, that:

∑

nαt
α+1 =

tw1 − t

1− tw1

·
tw2 − t

1− tw2

The weights are as follows:
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Type Ak Dk E6r E6r+1 E6r+2 Jk,0

w1
1

k+1
k−2
2k−2

1
3

1
3

1
3

1
3

w2
1
2

1
k−1

1
3r+1

2
6r+3

1
3r+2

1
3k

and the spectra of the corresponding curve singularities are:

Ak

∑k

j=1

(

−1
2
+ j

k+1

)

Dk (0) +
∑k−1

j=1

(

−1
2
+ 2j−1

2k−2

)

E6k

∑3k
j=1

(

−2
3
+ j

3k+1

)

+
∑3k

j=1

(

−1
3
+ j

3k+1

)

E6k+1 (0) +
∑2

i=1

∑3k
j=1

(

− i
3
+ 2j

6k+3

)

E6k+2

∑3k+1
j=1

(

−2
3
+ j

3k+2

)

+
∑3k+1

j=1

(

−1
3
+ j

3k+2

)

Jk,0

∑3k−1
j=1

(

−2
3
+ j

3k

)

+
∑3k−1

j=1

(

−1
3
+ j

3k

)

.

If i > 0 then the singularity Jk,i is still nondegenerate with respect to its Newton
diagram, so its spectrum can be computed as in [St1, Sect. 5.15]. See also [AGV, Sect.
13.3.4]. To describe the result, we only list the negative spectral numbers (again in the
case of the corresponding curve singularities). These numbers occur in two groups, those
from the first group having denominator 3k and those from the second having denominator
6k + 2i. The numerators occurring depend on the parities of k and i. The numerators of
the first group are:

k even −2k + 1,−2k + 2, . . . ,−3k/2,−k + 1,−k + 2, . . . ,−1
k odd −2k + 1,−2k + 2, . . . , (−3k − 1)/2,−k + 1,−k + 2, . . . ,−1

and the numerators of the second group are the integers ℓ in the interval (−(3k + i), 0)
with the same parity as i.

Observe that the spectral numbers in the second group are all greater than −1
2
.

2.4. Spectrum of fn,d. The singularity fn,d =
∑n

i=1 x
d
i has Milnor number (d− 1)n and

spectrum
∑

k∈Z uk(
k
d
), where:

uk = ♯{(a1, . . . , an) ∈ Nn | 1 ≤ aj ≤ d− 1 and
∑

j

aj = k + d}.

3. Hypersurfaces of polar degree 2

Theorem 3.1. There is no projective hypersurface V ⊂ Pn with isolated singularities, of
polar degree pol(V ) = 2, and dimension and degree at least three (i.e. n ≥ 4 and d ≥ 3).

Proof. Suppose that there exists a hypersurface V ⊂ Pn with isolated singularities of
degree d and polar degree 2. By [Huh, Lemma 19] we know that the singularities of V
are of type A,D,E, J∗,∗. It follows that the singularity fn,d deforms to those singularities
in one fibre, whose Milnor numbers add up to (d − 1)n − 2, which is just two less than
the Milnor number of fn,d. The singularity fn,d has as its two smallest spectral numbers
−1 + n

d
with multiplicity 1, and −1 + n+1

d
with multiplicity n.
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Lemma 3.2. Suppose d ≥ 3 and n ≥ 3. Then either n = 3 and d ≤ 4, or d = 3 and
4 ≤ n ≤ 5.

Proof. All singularities of type A,D,E, J∗,∗ in dimension n − 1 have a smallest spectral
number which is greater than −2

3
+ n−2

2
= n−1

2
− 7

6
. Suppose that the second spectral

number n+1
d

− 1 of fn,d is smaller or equal to tn := n−1
2

− 7
6
. As this spectral number has

multiplicity equal to n, it follows that deg]−∞,tn] Sp(fn,d) ≥ n + 1. Therefore:

deg]tn,∞[ Sp(fn,d) < (d− 1)n − n− 1 < (d− 1)n − 2 =
∑

i

deg]tn,∞[ Sp(fi, pi)

since n ≥ 2, and the last equality is due to our assumption pol(V ) = 2. This contradicts
the semicontinuity of the spectrum (6).

So the second spectral number n+1
d

− 1 of fn,d must be greater than n−1
2

− 7
6
. But from

n+1
d

− 1 > n−1
2

− 7
6
it follows that (3(n− 1)− 1)(d− 2) < 14.

If n = 3, this implies d ≤ 4. If n ≥ 4, this implies that 3(n− 1)− 1 > 8, so d = 3 is the
only solution, and therefore 3(n− 1)− 1 < 14, thus n ≤ 5. �

We continue the proof of Theorem 3.1 with the remaining cases after the reduction by
Lemma 3.2.

The case n = 5, d = 3. The spectrum of f5,3 is
(

2
3

)

+5 (1)+10
(

4
3

)

+10
(

5
3

)

+5 (2)+
(

7
3

)

,
therefore its degree with respect to the open interval ]1, 2[ is 20. For our cubic fourfold V
with finite singular set {p1, . . . , ps} and pol(V ) = 2 we have

∑

i µ(V, pi) = 25 − 2 = 30.
The semicontinuity of the spectrum requires that

∑

i deg]1,2[ Sp(fi, pi) ≤ 20, thus using
the symmetry of the spectrum with respect to 3/2 we get:

∑

i

deg]−∞,1] Sp(fi, pi) ≥
1

2
(30− 20) = 5.

But the semicontinuity also gives:
∑

i

deg]−∞,1[ Sp(fi, pi) ≤ deg]−∞,1[ Sp(f5,3) = 1.

It follows that the spectral number 1 in
∑

i Sp(fi, pi) occurs with multiplicity n1 ≥ 4. One
checks easily that there do not exist singularities in our list satisfying

∑

i µ(fi, pi) ≤ 30
and n1 ≥ 4. Indeed, the only singularities from our list which have a spectral number
equal to 1 are J2,0 and J4,0, with Milnor numbers 10 and 22, respectively, thus the total
multiplicity n1 cannot be more than 3.

The case n = 4, d = 3. The spectrum of f4,3 is
(

1
3

)

+ 4
(

2
3

)

+ 6 (1) + 4
(

4
3

)

+
(

5
3

)

. For all
curve singularity germs g in our table one checks that their smallest spectral number is
greater than −2

3
and

deg]−∞,− 1

3
] Sp(g, 0) ≤ µ(g, 0)/4.

Hence for a cubic threefold V of polar degree 2 with singular set {p1, . . . , ps}, considering
the shift of +1 of the spectral numbers, we have:

∑

i

deg]−∞, 2
3
] Sp(fi, pi) ≤

∑

i

µ(fi, pi)/4 =
7

2
.



8 DIRK SIERSMA, JOSEPH STEENBRINK, AND MIHAI TIBĂR

Using that the smallest spectral number of each possible singularity (fi, pi) is greater than
1
3
, and hence by symmetry the greatest spectral number is smaller than 5

3
, we then get:

∑

i

deg] 2
3
, 5
3
[ Sp(fi, pi) =

∑

i

deg] 2
3
,∞[ Sp(fi, pi) ≥ 14−

7

2
> 10

whereas deg] 2
3
, 5
3
[ Sp(f4,3) = 10. This contradicts the semicontinuity of the spectrum.

�

3.1. Proof of Theorem 1.2. By the above Theorem 3.1 and Lemma 3.2 we have reduced
the proof of Theorem 1.2 to the cases n ≤ 3 and d ≤ 4. The projective surfaces of degree
d = 3 have been classified by Bruce and Wall [BW] and, as noticed by Huh [Huh, proof
of Prop. 21], the case pol(V ) = 2 can be extracted and yields a part of Huh’s list.

The proof for quartic surfaces is also due to Huh [Huh, proof of Prop. 21], it is nontrivial
and it uses a whole bunch of classical results. An alternate proof can be made by using
semicontinuity.

The case n = 2 of plane curves with pol(V ) = d has been treated in [FM], as we have
mentioned in the Introduction, and yields the corresponding part of Huh’s list.

Let us remark also that the case d = 2 and general n is excluded from the list since
pol(V ) can be at most 1, by formula (3).

This completes the proof of our Theorem 1.2.

4. Huh’s general conjecture: proof of Theorem 1.4

For polar degree k > 2 we are able to find bounds for the dimension n− 1 and degree
d of V . Our Theorem 1.4 answers Huh’s Conjecture 1.3 in the more concrete terms of
Theorem 4.1 and 4.5 below.

4.1. Corank and spectrum.

Theorem 4.1. Let k ≥ 3. There is no projective hypersurface V ⊂ Pn of polar degree k
with only isolated singular points, for n ≥ max{k, 5 + 3 log2 k} and degree d ≥ 3.

Proof. Let {p1, . . . , ps} be the set of singular points of a projective hypersurface V of Pn

of polar degree k ≥ 3. By [Huh, Theorem 2], one has k ≥ µ(n−2)(V, pi). This is the Milnor
number of the slice germ (V ∩H, pi) for some general hyperplane H through pi. If fi is a
local equation of V at pi, then the restriction fi|H is a local equation for (V ∩H, pi).

Let us denote ri := corank fi|H , where 0 ≤ ri ≤ n− 1. We first show:

Lemma 4.2. For any i ∈ {1, . . . , s}, we have:

(a) ri ≤ log2 k.
(b) The smallest spectral number α1,i of the hypersurface singularity (V, pi) is bounded

from below by n−ri−3
2

.

Proof. We shall use the following two standard facts concerning the corank. Let h :
(Cm, 0) → (C, 0) be some function germ with isolated singularity.
(1). If r = corankh then h = g(x1, . . . , xr)+x2

r+1+ · · ·+x2
m with ord0 g ≥ 3 and therefore

(by using the Sebastiani-Thom formula) we get µ(h) = µ(g) ≥ µ(x3
1 + · · ·+ x3

r) = 2r.
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(2). If the restriction h|{x1=0} has isolated singularity and has corank p, then corank h ≤

p+ 1. Indeed one has h|{x1=0} = ĥ(x2, . . . , xp+1) + x2
p+2 + · · ·+ x2

m and thus

h = x1h1(x1, . . . , xp+1) + x1h2(xp+2, . . . , xm) + x2
p+2 + · · ·+ x2

m is right-equivalent, modulo

m
3, to x1h̃1(x1, . . . , xp+1)+x2

p+2+ · · ·+x2
m where x1h̃1(x1, . . . , xp+1) is either of order ≥ 3

or it is the sum of x2
1 and some function of order ≥ 3.

(a). Using fact (1), we get that the Milnor number µ(fi|H , pi) is bounded from below by
2ri. Then, from the above inequalities, we get:

ri ≤ log2 µ
(n−2)(V, pi) ≤ log2 k.

(b). By fact (2), after slicing with any hyperplane such that the local singularity is still
an isolated singularity of the function restricted to the slice, the corank can drop by at
most one. We thus have:

corank fi ≤ ri + 1 ≤ 1 + log2 µ
(n−2)(V, pi) ≤ 1 + log2 k.

Therefore we may write in some well chosen system of local coordinates:

fi(x1, . . . , xn) = g(x1, . . . , xri+1) + x2
ri+2 + · · ·+ x2

n,

where g ∈ m3 is a germ of a function in ri + 1 variables with trivial 2-jet. By using the
properties of the spectrum, we get that the spectrum of g is in the interval ] − 1, ri[ and
that by adding n − ri − 1 squares to g, since the spectrum shifts by +1

2
for each square,

the spectrum of fi is in the interval:
]

−1 +
n− ri − 1

2
, ri +

n− ri − 1

2

[

.

and we have n− ri − 1 > 0 for any i, since ri ≤ log2 k ≤ log2 n < n− 1 by our hypotheses
n ≥ k ≥ 3. �

If the second spectral number of fn,d, which is n+1
d

−1 and has multiplicity n, is smaller

than β := mini
n−ri−3

2
, then:

deg[β,∞[ Sp(fn,d) ≤ (d− 1)n − n− 1.

On the other hand we have:

deg[β,∞[

∑

i

Sp(fi, pi) =
∑

i

µ(fi,pi) = (d− 1)n − k.

By the semicontinuity of the spectrum we get:

(d− 1)n − k ≤ (d− 1)n − n− 1,

or n + 1 ≤ k, which contradicts the hypothesis n ≥ k.
We therefore must have −1 + n+1

d
≥ β, and since ri ≤ log2 k for any i, we get β ≥

n−log2 k−3
2

. This amounts to the inequality:

d ≤
2(n+ 1)

n− 1− log2 k
.

Since the last fraction is less than 3 if n > 5 + 3 log2 k, our proof of Theorem 4.1 is
complete. �
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4.2. An upper bound for the degree d. The first spectral number of g at the point x
will be denoted by α1(g, x). We continue to use the notation fn,d for a generic homogeneous
polynomial of degree d in n variables, which is deformation-equivalent to

∑n

i=1 x
d
i .

Lemma 4.3. Let pol(V ) = k ≥ 2, where V = {f = 0} ⊂ Pn has isolated singularities.
Then:

α1(f, p) > −1 +
n− 1

k + 2
for any p ∈ Sing V := {p1, . . . , ps}.

Proof. One has Huh’s inequality [Huh, Theorem 2]: µ(n−2)(V, pi) ≤ k, for any i. In the
notations of the proof of Theorem 4.1, this amounts to µ(fi|H, pi) ≤ k, where H is some
general hyperplane through pi. We consider the composition of fi|H with the translate of

the point pi at the origin and denote the result by f̃i|H . It follows that the function germ

f̃i|H is k + 1-determined, which means that it is deformation-equivalent to its (k + 1)-jet

gi := jk+1(f̃i|H), which is a polynomial of degree k + 1. We then apply the spectrum
semi-continuity to the deformation:

hi := sgi + (1− s)fn−1,k+2

and get α1(fi|H , pi) = α1(gi, 0) ≥ α1(fn−1,k+2, 0) = −1+ n−1
k+2

. By the next Lemma 4.4 one
has α1(fi|H, pi) < α1(fi|, pi), and our claim follows by chaining these inequalities. �

Lemma 4.4. Let h : (Cn, 0) → (C, 0) be an isolated hypersurface singularity with smallest
spectral number α1. Let H be a general hyperplane through 0 in Cn and let α′

1 be the
smallest spectral number of the restriction h|H . Then α1 > α′

1.

Proof. Since h is finitely determined, we may assume without loss of generality that h is
a polynomial, that H is defined by z1 = 0 and that

h(z1, . . . , zn) =

N−1
∑

m=0

zm1 hm(z2, . . . , zn) + zN1

with deg hm ≤ N −m and N ≫ 1. Then by:

ht(z1, . . . , zn) :=

N−1
∑

m=0

(tz1)
mhm(z2, . . . , zn) + zN1

we obtain h as a deformation of the singularity zN1 + h0(z2, . . . , zn). By the Thom-
Sebastiani theorem for the spectrum, this singularity has its smallest spectral number
equal to α′

1+
1
N

and by the semicontinuity of the spectrum we get: α1 ≥ α′
1+

1
N

> α′
1. �

Let n, k ≥ 2 be fixed. Let vj denote the multiplicity of the (j + 1)st spectral number
−1 + n+j

d
of the germ fn,d, for some d ≥ 2. In particular v0 = 1 and v1 = n. In general

these numbers depend both on n and d. However, for j ≤ d− 2 we have vj =
(

n+j−1
n−1

)

, see
the general formula for the spectrum of fn,d in §2.4. We define

(7) ℓn,k := min

{

ℓ ∈ N

∣

∣

∣

∣

(

n+ ℓ

n

)

> k

}

.
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The following estimation of the upper bound for the degree d completes now the proof
of Theorem 1.4:

Theorem 4.5. Let n, k ≥ 2. Any hypersurface V ⊂ Pn with isolated singularities and
pol(V ) = k has degree

d < max{2 + ℓn,k, (n+ ℓn,k)(k + 2)/(n− 1)}.

Proof. In case d ≥ 2 + ℓn,k, by the definition (7), the expression for vj given above, and

by taking into account the identity
∑ℓ

j=0

(

n+j−1
n−1

)

=
(

n+ℓ

n

)

for any ℓ ≥ 0, we have:

(8)

ℓn,k
∑

j=0

vj =

(

n + ℓn,k
n

)

> k.

Let us then denote γn,k := −1 + n−1
k+2

. We will show that γn,k < −1 +
n+ℓn,k

d
, as follows.

Assume by contradiction that γn,k ≥ −1+
n+ℓn,k

d
. Since V has singular points p1, . . . , ps

with total Milnor number µ =
∑s

i=1 µi, by Lemma 4.3 we get:

deg]γn,k,∞[

∑

i

Sp(fi, pi) = µ = (d− 1)n − k.

On the other hand, by our assumption we have:

deg]γn,k ,∞[ Sp(fn,d) ≤ (d− 1)n − (1 + v1 + . . .+ vℓn,k
).

Applying the semicontinuity of the spectrum we get the inequality:

(d− 1)n − k ≤ (d− 1)n − (1 + v1 + . . .+ vℓn,k
)

which contradicts (8).

We have thus shown γn,k < −1 +
n+ℓn,k

d
. This amounts to the inequality d < (n +

ℓn,k)(k + 2)/(n− 1), which concludes the proof of our theorem. �
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