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A NOTE ON A SMOOTH PROJECTIVE SURFACE WITH PICARD NUMBER 2

SICHEN LI

ABSTRACT. We characterize the integral Zariski decomposition of a smooth projective sur-

face with Picard number 2 to partially solve a problem of B. Harbourne, P. Pokora, and H.

Tutaj-Gasinska [Electron. Res. Announc. Math. Sci. 22 (2015), 103–108].

1. INTRODUCTION

In this note we work over the field C of complex numbers. By a negative curve on a

surface we will always mean a reduced, irreducible curve with negative self-intersection.

By a (-k)-curve, we mean a negative curve C with C2 = −k < 0.

The bounded negativity conjecture is one of the most intriguing problems in the theory of

projective surfaces and can be formulated as follows.

Conjecture 1.1. [B.etc.13, Conjecture 1.1] For each smooth complex projective surface X

there exists a number b(X) ≥ 0 such that C2 ≥ −b(X) for every negative curve C ⊆ X .

Let us say that a smooth projective surface X has

b(X) > 0

if there is at least one negative curve on X .

In [BPS17], T. Bauer, P. Pokora and D. Schmitz established the following theorem.

Theorem 1.2. [BPS17, Theorem] For a smooth projective surface X over an algebraically

closed field the following two statements are equivalent:

(1) X has bounded Zariski denominators.

(2) X satisfies Conjecture 1.1.

Let us say that a smooth projective surface X has

d(X) = 1
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if every pseudo-effective divisor D (cf. [Laz04, Definition 2.2.25]) on X has an integral

Zariski decomposition (cf. Definition 2.2). An interesting criterion for surfaces to have

bounded Zariski denominators was given in [BPS17] as follows.

Proposition 1.3. [HPT15, Proprostion 1.2] Let X be a smooth projective surface such that

for every curve C one has C2 ≥ −1. Then d(X) = 1.

The above proposition introduces a converse question:

Question 1.4. [HPT15, Question] Let X be a smooth projective surface with d(X) = 1. Is

every negative curve then a (-1)-curve?

In [HPT15], the authors disproved Question 1.4 by giving a K3 surface X with d(X) = 1,

Picard number ρ(X) = 2 and two (-2)-rational curves (cf. Claim 2.12). However, for a

smooth projective surface X with |∆(X)| = 1, sometimes the answer for Question 1.4 is

affirmative, where ∆(X) is the determinant of the intersection form on the Néron-Severi

lattice of X . They end by giving the following problem.

Problem 1.5. [HPT15, Problem 2.3] Classify all algebraic surfaces with d(X) = 1.

To solve Problem 1.5 partially, for the case when ρ(X) = 2, we give our main theorem as

follows.

Theorem 1.6. Let X be a smooth projective surface with Picard number 2. If b(X) > 0 and

d(X) = 1, then the following statements hold.

(1) X has at most two negative curves.

(2) If X has two negative curves, then X must be one of the following types: K3 surface,

surface of general type, or one point blow-up of either an abelian surface or a K3

surface with Picard number 1.

(3) For every negative curve C and every another curve D on X , the intersection num-

ber, (C ·D) is divisible by the self-intersection number C2, i.e. , C2|(C ·D).

(4) If the Kodaira dimension κ(X) = −∞, then X is a ruled surface with invariant

e = 1 or one point blow up of P2.

(5) If κ(X) = 0 and the canonical divisor KX is nef, then X is a K3 surface admitting

an intersection form on the Néron-Severi lattice of X which is
(

a b

b −2

)

where a ∈
{

0,−2
}

and b+ a ∈ 2Z>0.

(6) If κ(X) = 1, then X has exactly one negative curve C and every singular fibre is

irreducible. In particular, if every fibre is of type mI0, then the genus g(C) ≥ 2.

Here, mI0 is one type in Kodaira’s table of singular fibres (cf. [BHPV04, V.7. Table

3]).
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It is well-known that the following SHGH conjecture implies Nagata’s conjecture (cf.

[Nag59, p.772]), which is motivated by Hilbert’s 14-th problem.

Conjecture 1.7. (cf. [C.etc.13, Conjectures 1.1, 2.3]) Let X be a composite of blow-ups

of P2 at points p1, · · · , pn in very general position. Then, every negative curve on X is a

(-1)-rational curve.

Finally, we note two corresponding results of Conjecture 1.7 as follows.

Proposition 1.8. (cf. [BPS17, Theorems 2.2, 2.3]) Let X be a composite of blow-ups of P2

at n distinct points. Then, b(X) = 1 if and only if d(X) = 1.

Here, a smooth projective surface X has b(X) = 1 if every negative curve C on X is a

(-1)-curve. By Proposition 1.8 and Lemma 2.3, we obtain the following result.

Proposition 1.9. Let X be a composite of blow-ups of P2 at points p1, · · · , pn in very general

position. If there is a negative curve C and another curve D on X such that the intersection

matrix of C and D is not negative definite and C2 ∤ (C ·D), then Conjecture 1.7 fails.

2. THE PROOF OF THEOREM 1.6

In this section, we divide our proof of Theorem 1.6 into some steps.

Notation 2.1. [Fuj79, 1.6] Let C1, · · · , Cq be prime divisors. By V (C1, · · · , Cq) we de-

note the Q-vector space of Q-divisors generated by C1, · · · , Cq. I(C1, · · · , Cq) denotes the

quadratic form on V (C1, · · · , Cq) defined by the self-intersection number.

Definition 2.2. (Fujita-Zariski decomposition [Zar62, Fuj79]) Let X be a smooth projective

surface and D a pseudo-effective divisor on X . Then D can be written uniquely as a sum

D = P +N

of Q-divisors such that

(1) P is nef;

(2) N =
∑q

i=1
aiCi is effective with I(C1, · · · , Cq) negative definite if N 6= 0;

(3) P · Ci = 0 for every component Ci of N .

In particular, X is said to satisfy d(X) = 1 if every pseudo-effective divisor D has an

integral Zariski decomposition D = P +N , i.e. , P and N are integral divisors.

Lemma 2.3. Let X be a smooth projective surface with b(X) > 0 and d(X) = 1. Suppose

I(C1, C2) is not negative definite. Then, for every negative curve C1 and every another curve

C2, C
2
1 |(C1 · C2).

Proof. Let D(m1, m2) := m1C1 + m2C2 with m1, m2 > 0. If D(m1, m2) · C1 < 0 and

D(m1, m2)·C2 < 0, then by [Fuj79, Lemma 1.10], I(C1, C2) is negative definite. Therefore,

D(m1, m2) · C1 < 0 implies that D(m1, m2) · C2 ≥ 0.
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If C1 · C2 = 0, then C2
1 |(C1 · C2), where C2

2 ≥ 0. Hence, we have completed the proof.

Now suppose C1·C2 > 0. Then, there are infinitely many coprime positive integer number

pairs (m1, m2) such that

D(m1, m2) · C1 < 0, i.e.,
m2

m1

<
−C2

1

(C1 · C2)
,

since there are infinitely many prime integers. Therefore, we have the following Zariski

decomposition:

D(m1, m2) = m2(
(C1 · C2)

−C2
1

C1 + C2) + (m1 −m2

(C1 · C2)

−C2
1

)C1.

Note that −C2
1 has only finitely many prime divisors, there exists a positive integer m2 such

that (m2,−C2
1 ) = 1. Since d(X) = 1, D(m1, m2) has an integral Zariski decomposition.

Hence, C2
1 |(C1 · C2). �

By Lemma 2.3, we can answer the following question in some sense which was posed in

[B.etc.13].

Question 2.4. [B.etc.13, Question 4.5] Is there for each g > 1 a surface X with infinitely

many (−1)-curves of genus g?

Proposition 2.5. Let f : X −→ B be a relatively minimal elliptic fibration of a smooth

projective surface X with the Kodaira dimension κ(X) = 2 over a smooth base curve B of

genus g ≥ 2. If d(X) = 1 and X has infinitely many sections, then X has infinitely many

(-1)-curves of genus g ≥ 2 and q(X) = pg(X). Here, q(X) is the irregularity of X , pg(X)

is the geometric genus of X .

Proof. Since there exists a section C on X , X has no multiple fibres. In this case, by the

well-known result of Kodaira (cf. [BHPV04, Corollary V.12.3]), KX is a sum of a specific

choice of 2g(B)− 2 + χ(OX) fibres of the elliptic fibration. By [Bea96, Theorem X.4] and

the adjunction formula, −C2 = χ(OX) > 0. If d(X) = 1, then applying Lemma 2.3 to

C2 = a fibre, we obtain C2 = −1 and q(X) = pg(X). �

Proposition 2.6. Every smooth projective surface with Picard number 2 satisfies Conjec-

ture 1.1.

Indeed, Proposition 2.6 follows from the following claim immediately.

Claim 2.7. If C1, C2 are two negative curves on a smooth projective surface X with ρ(X) =

2, then

NE(X) = R≥0[C1] +R≥0[C2]

and Ci (i = 1, 2) are the only two negative curves.
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Proof. By [KM98, Lemma 1.22], C1, C2 are both extremal curves in the closed Mori cone

NE(X) which has only two extremal rays since ρ(X) = 2. Thus, the first part of Claim 2.7

follows. Moreover, if C3 is another negative curve (except for C1, C2), then the class [C3]

is also extremal. Since ρ(X) = 2, C3 ≡ aiCi for i = 1 or 2 with ai ∈ Q+. Thus,

0 ≤ Ci · C3 = aiC
2
i < 0, a contradiction. �

By Lemma 2.3, for the case when ρ(X) = 2, we have the following result.

Claim 2.8. Let X be a smooth projective surface with ρ(X) = 2. If b(X) > 0 and d(X) = 1,

then for every negative curve C and every another curve D on X , C2|(C ·D).

It is well-known that the smooth projective surfaces satisfy the minimal model conjecture

(cf. [KM98, BCHM10]) as follows.

Lemma 2.9. Let X be a smooth projective surface. If the canonical divisor KX is pseudo-

effective, then the Kodaira dimension κ(X) ≥ 0.

Claim 2.10. Let X be a smooth projective surface with ρ(X) = 2. If κ(X) = −∞, b(X) >

0 and d(X) = 1, then X is a ruled surface with invariant e = 1 or one point blow-up of P2.

Proof. Let S be a relatively minimal model of X . A smooth projective surface S is relatively

minimal if it has no (-1)-rational curves. By the classification of relatively minimal surfaces

(cf. [Har77, BHPV04, KM98]), it must be one of the following cases: a surface with nef

canonical divisor, a ruled surface or P2. Since κ(X) = −∞, by Lemma 2.9, KS is not nef.

Therefore, S is either a ruled surface or P2. As a result, ρ(X) = 2 implies that X is either a

ruled surface or one point blow-up of P2.

Now supposeX is ruled. Let π : X −→ C be a ruled surface over a curve C with invariant

e, let C0 ⊆ X be a suitable section, and let f be a fibre. Then, we have the following ( cf.

[Har77, Propositions V.2.3 and V.2.9]):

Pic X ≃ ZC0 ⊕ π∗Pic C,C0 · f = 1, f 2 = 0, C2

0 = −e.

Let D = aC0 + bf be a curve on X . By [Har77, Proposition V.2.20], D2 < 0 if and only if

D = C0 and e > 0. Since d(X) = 1, applying Claim 2.8 to a fibre f , we obtain e = 1. �

Claim 2.11. Let X be a smooth projective surface with ρ(X) = 2. If X has two negative

curves, then X must be one of the following types: K3 surface, surface of general type, or

one point blow-up of either an abelian surface or a K3 surface with Picard number 1.

Proof. Suppose X has two negative curves C1, C2. By Claim 2.10, if κ(X) = −∞, then X

has at most one negative curve. Thus, κ(X) ≥ 0, i.e., there exists a positive integral number

m such that h0(X,OX(mKX)) ≥ 0. Therefore, KX is a Q-effective divisor. As a result, by

Claim 2.7, we have the following result:

KX ∈ NE(X) = R≥0[C1] +R≥0[C2], i.e., KX ≡ a1C1 + a2C2, a1, a2 ≥ 0.

Hence, we have three cases as follows.
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(1) a1, a2 > 0. Then KX is an interior point of NE(X), and by [Iit82, Lemma 10.5] or

[Laz04, Theorem 2.2.26], KX is big. Thus, X is a surface of general type.

(2) a1 = a2 = 0. Then KX ≡ 0, i.e., X is minimal. By Enriques Kodaira classification

(cf. [Har77, Theorem V.6.3]), X has the following cases: K3 surface, Enriques

surface, abelian surface, hyperelliptic surface, where in the latter two cases, X has

no any rational curves. By the genus formula, every negative curve C on X is a (-2)-

rational curve. As a result, X is either a K3 surface or an Enrique surface. Moreover,

since an Enriques surface X has ρ(X) = 10 by [BHPV04, Proposition VIII.15.2],

X is a K3 surface.

(3) a1 > 0, a2 = 0. Then KX ≡ a1C1. Since KX is a Q-effective divisor, there exists an

effective divisor D such that KX ∼Q D. Therefore, we can find an effective divisor

D′ 6= C1 such that

a′1C1 +D′ = D ≡ a1C1,

where a′1 ≥ 0, and D′ and C1 have no common components. Then, D′ ≡ (a1 −

a′1)C1.

If a1 = a′1,then KX ∼Q a1C1 with a1 > 0. By the genus formula, C1 is a (-1)-

rational curve. In this case, κ(X) = κ(X,C) = 0. By Castelnuovo’s contractibility

criterion (cf. [Har77, Theorem V.5.7] or [Bea96, Thereom II.17]), X is a one point

blow-up of either an abelian surface or a K3 surface with Picard number 1.

If a1 > a′1, then D′ · C1 = (a1 − a′1)C
2
1 < 0, a contradiction.

If a1 < a′1, on the one hand D′ + (a′1 − a1)C1 ≡ 0 with a′1 − a1 ≥ 0; on the other

hand, there is an ample divisor H on X such that (D′+(a′1− a1)C1) ·H = 0. Since

the restriction of an ample divisor to a curve is still ample, D′ + (a′1 − a1)C1 = 0,

i.e., D = a1C1, a1 = a′1, a contradiction.

�

Theorem A of [HPT15] is a special case of the following Claim 2.12.

Claim 2.12. Let X be a smooth projective surface with ρ(X) = 2. If κ(X) = 0, b(X) >

0, d(X) = 1 and KX is nef, then X is a K3 surface admitting the intersection form on the

Néron-Severi lattice of X, which is
(

a b

b −2

)

where a ∈
{

0,−2
}

and b+ a ∈ 2Z>0.

Proof. Since κ(X) = 0 and KX is nef, KX ≡ 0. By the genus formula, every negative curve

on X is a (-2)-rational curve. Note that abelian surfaces and hyperelliptic surfaces have no

rational curves. Then by [Har77, Theorem V.6.3] and [BHPV04, Proposition VIII.15.2], we

know that X is a K3 surface. In [Kov94], the author showed that NE(X) = R≥0[C1] +

R≥0[C2], where either C2
1 = C2

2 = −2 or C2
1 = 0 and C2

2 = −2. Since d(X) = 1,
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applying Claim 2.8 to a negative curve Ci, C
2
i |(C1 · C2). By the Hodge index theorem,

(C1 · C2)
2 − C2

1 · C2
2 > 0. Finally, the desired result holds by using [Kov94, Corollary

1.4]. �

The following lemma is well known.

Lemma 2.13. [BHPV04, Proposition III.11.4] Let p : X −→ B be an elliptic fibration from

a smooth projective surface X to a curve B. If every fibre is of type mI0, then c2(X) = 0.

Claim 2.14. Let X be a smooth projective surface with ρ(X) = 2. If κ(X) = 1 and

b(X) > 0, then X has exactly one negative curve C and every singular fibre is irreducible.

In particular, if every fibre is of type mI0, then g(C) ≥ 2.

Proof. Since κ(X) = 1, ρ(X) = 2 and κ(X) is a birational invariant, KX is nef. By [Bea96,

Proposition IX.2], we have K2
X = 0 and there is a surjective morphism p : X −→ B over

a smooth curve B, whose general fibre F is an elliptic curve. Suppose F =
∑r

i=1
miCi

with mi ∈ Z>0, r ≥ 2 is a singular fibre. Then by Zariski’s Lemma (cf. [BHPV04, Lemma

III.8.2]),

(F −m1C1)
2 < 0, C2

1 < 0.

Therefore, X has at least two negative curves, a contradiction (cf. Claim 2.10). As a result,

every singular fibre is irreducible and X has exactly one negative curve C since b(X) > 0.

Moreover, if every fibre is of type mI0, then by Lemma 2.13, we have c2(X) = 0. Hence,

by [B.etc.13, Theorem 2.4], we have the following inequality:

0 < −C2 ≤ 2g(C)− 2.

Thus, g(C) ≥ 2. �

Proof of Theorem 1.6. By Claims 2.7, 2.8, 2.10 to 2.12 and 2.14, we have completed the

proof of Theorem 1.6. �

We end by asking the following two questions.

Question 2.15. Is there a positive constant l such that b(X) ≤ l for any smooth projective

surface X with ρ(X) = 2 and d(X) = 1 ?

Question 2.16. Let X be a smooth projective surface with Picard number ρ(X) ≥ 3 and

d(X) = 1. Take some negative curves C1, · · · , Ck with k ≥ 2 on X such that I(C1, · · · , Ck)

is negative definite. Is the determinant det(Ci · Cj)1≤i,j≤k equal to (−1)k ?
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