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MOTIVIC VOLUMES OF FIBERS OF TROPICALIZATION

JEREMY USATINE

Abstract. Let T be an algebraic torus over an algebraically closed field, let
X be a smooth closed subvariety of a T -toric variety such that U = X ∩ T is
not empty, and let L (X) be the arc scheme of X. We define a tropicalization
map on L (X) \ L (X \ U), the set of arcs of X that do not factor through
X \ U . We show that each fiber of this tropicalization map is a constructible
subset of L (X) and therefore has a motivic volume. We prove that if U has
a compactification with simple normal crossing boundary, then the generating
function for these motivic volumes is rational, and we express this rational
function in terms of certain lattice maps constructed in Hacking, Keel, and
Tevelev’s theory of geometric tropicalization. We explain how this result, in
particular, gives a formula for Denef and Loeser’s motivic zeta function of a
polynomial. To further understand this formula, we also determine precisely
which lattice maps arise in the construction of geometric tropicalization.

1. Introduction and Statements of Main Results

Let k be an algebraically closed field, let T be an algebraic torus over k with
character lattice M , and let X be a smooth closed subvariety of a T -toric variety
such that U = X ∩ T 6= ∅. Let L (X) be the arc scheme of X . In this paper, we
define a tropicalization map

trop : L (X) \L (X \ U)→M∨

on the subset of arcs that do not factor through X \U . We show that the fibers of
this tropicalization map are constructible subsets of L (X), and thus in the sense
of Kontsevich’s theory of motivic integration [12], each of these fibers trop−1(w)
has a well defined motivic volume µX(trop−1(w)).

We then prove a formula for these motivic volumes, Theorems 1.6 and 1.9, ex-
pressing the multivariable generating function

∑

w∈M∨

µX(trop−1(w))xw

as a rational function in terms of the theory of geometric tropicalization, as in-
troduced by Hacking, Keel, and Tevelev in [10]. With the motivation of further
understanding this formula for these motivic volumes, we also study certain prop-
erties of geometric tropicalization, proving Theorems 1.12 and 1.14, which we hope
will also be of independent interest in tropical geometry.

Before stating the main results of this paper, we present the following family
of examples, which demonstrate that these fibers of tropicalization can be used
to compute the motivic zeta function of a polynomial, an invariant introduced by
Denef and Loeser in [7].
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Example 1.1. Let f ∈ k[x1, . . . , xn] be a nonzero polynomial. Then by definition,
the motivic zeta function of f is the series

Zf (s) =

∫

L (An)

sordfdµAn =

∞∑

ℓ=0

µAn(ord−1
f (ℓ))sℓ ∈MAnJsK,

where MAn is the ring obtained by inverting the class of A1
An in the Grothendieck

ring of An-varieties. Set T = Gn+1
m , consider An+1 as a T -toric variety, set X →֒

An+1 to be the graph of the function f : An → A1, and set U = X ∩ T . Give MX

the topology induced by the dimension filtration. We will see by Theorem 1.6 that
the generating function

∑

w∈Zn+1

µX(trop−1(w))xw =
∑

w∈Z
n+1
≥0

µX(trop−1(w))xw ∈MXJxK

is in fact an element of the subring MX〈x〉 ⊂ MXJxK consisting of series whose
coefficients converge to 0 as w→∞. Thus there is a well defined map

ϕ : MX〈x〉 → M̂XJsK : x(w1,...,wn+1) 7→ swn+1 ,

where M̂X is the completion of MX . Then because L (X \U) is a negligible subset

of L (X), the image of Zf(s) in M̂XJsK is equal to

ϕ

( ∑

w∈Zn+1

µX(trop−1(w))xw

)
.

We will see in Example 1.10 that, in particular, our main results can be used to give
a complete list of candidate poles for Zf (s) in terms of geometric tropicalization.

A major open problem in this subject is the motivic monodromy conjecture.
Introduced by Denef and Loeser in [7], the motivic monodromy conjecture predicts
that, when k = C, the roots of the Bernstein polynomial of f give a complete list
of candidate poles for the zeta function Zf (s). Therefore, there has been much in-
terest in developing methods for computing candidate poles for Zf (s). One setting
in which toric methods have proven fruitful for understanding these zeta functions
has been in the case where f is non-degenerate with respect to its Newton poly-
hedron. In this non-degenerate setting, Denef and Hoornaert gave a formula for
the p-adic zeta function [6], and Bories and Veys [3] and Guibert [9] gave mo-
tivic versions of this formula. Bultot and Nicaise also reproved Guibert’s formula
by proving a formula, in terms of log-smooth models, for a related motivic zeta
function [4]. Nicaise, Payne, and Schroeter have also studied, in [14] and [15],
connections between tropical geometry and Hrushovski and Kazhdan’s theory of
motivic integration of semi-algebraic sets.

1.1. Statements of Main Results. Throughout this paper, k will be an alge-
braically closed field, and by variety, we will mean an integral scheme that is finite
type and separated over k. All toroidal embeddings in this paper will have nor-
mal boundary components. Using the terminology in [11], these are the toroidal
embeddings without self-intersection.

For any finite type k-scheme X , we let L (X) denote the arc scheme of X , we
let K0(VarX) denote the Grothendieck ring of finite type X-schemes, we let MX

denote the ring obtained from K0(VarX) by inverting the class of A1
X , we let L

denote the class of A1
X in MX , for any finite type X-scheme Y we let [Y ] denote
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the class of Y in MX , and we endow MX with the topology given by the dimension
filtration. If X is a smooth variety, we let µX be the motivic measure that assigns
a volume in MX to each constructible subset of L (X).

Definition 1.2. Let T be an algebraic torus over k with character lattice M and
let X be a smooth closed subvariety of a T -toric variety such that U = X ∩ T 6= ∅.
Let x ∈ L (X) \ L (X \ U) be a point with residue field k′. Then x is an arc
Spec(k′JtK) → X whose generic point η : Spec(k′((t))) → X factors through U .
Then let trop(x) ∈M∨ be defined so that for any u ∈M ,

〈u, trop(x)〉 = val(χu|U (η)),

where χu is the character on T corresponding to u and val : k′((t)) → Z is the
valuation given by order of vanishing of t. This defines a tropicalization map

trop : L (X) \L (X \ U)→M∨.

Before stating our main results, we need to define a technical condition that can
be satisfied by a simple normal crossing compactification of a very affine variety.

Definition 1.3. Let T be an algebraic torus with character latticeM , let N =M∨,
let U →֒ T be a smooth closed subvariety, let U ⊂ X be an open immersion into a
smooth complete variety X such that X \U is a simple normal crossing divisor, and
let C(X \U) be the set of irreducible components of X \U . For each S ⊂ C(X \U),
let ϕS : ZS → N be the map of lattices such that for each D ∈ S, the standard
basis vector of ZS associated to D is sent to valD |M ∈ N .

(a) We say that U ⊂ X has immersive geometric tropicalization with respect to
U →֒ T if for each S ⊂ C(X \ U) such that

⋂
D∈S D 6= ∅, the map ϕS

R
: RS →

NR is injective.
(b) Let σ be a cone in N . Then we say that U ⊂ X has σ-compatible geometric

tropicalization with respect to U →֒ T if for each S ⊂ C(X \ U) such that⋂
D∈S D 6= ∅, the cone (ϕS

R
)−1(σ) ∩RS

≥0 is a face of RS
≥0.

(c) Let ∆ be a fan in N . Then we say that U ⊂ X has ∆-compatible geometric
tropicalization with respect to U →֒ T if U ⊂ X has σ-compatible geometric
tropicalization with respect to U →֒ T for each σ ∈ ∆.

We will see that when U ⊂ X has ∆-compatible geometric tropicalization with
respect to U →֒ T , the closed immersion U →֒ T can be extended to a proper
map from an open subset of X to the T -toric variety defined by ∆. We will use
this proper map and the motivic change of variables formula to prove Theorem
1.6 below which, in particular, gives a formula for the motivic volumes of fibers of
tropicalization. As we will describe below, if in addition, U ⊂ X has immersive
geometric tropicalization with respect to U →֒ T , then the combinatorics of this
formula will take a simpler form.

Remark 1.4. In the above definition and elsewhere in this paper, we let valD |M
denote the map M → Z given by pulling back characters to the rational function
field of U and then applying the valuation associated to the divisor D.

Remark 1.5. Throughout this paper, by a cone (resp. fan) in a lattice N , we
mean a rational polyhedral cone (resp. fan) in NR, and unless explicitly stated
otherwise, we always assume cones in N are pointed and that fans in N consist of
pointed cones.
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We now state a result, which in particular, gives a formula for motivic volumes
of fibers of tropicalization in terms of geometric tropicalization.

Theorem 1.6. Let T be an algebraic torus with character lattice M , let N =M∨,
let ∆ be a fan in N , let X be a smooth closed subvariety of the T -toric variety defined

by ∆, and assume U = X ∩ T is nonempty. Let U ⊂ X̃ be an open immersion into

a smooth complete variety X̃ such that X̃ \ U is a simple normal crossing divisor

and such that U ⊂ X̃ has ∆-compatible geometric tropicalization with respect to

U →֒ T . Let C(X̃ \ U) be the set of irreducible components of X̃ \ U .

Then there exists an assignment of nonnegative integersmD to each D ∈ C(X̃\U)

and an assignment of finite type X-schemes YS to each S ⊂ C(X̃ \U) such that the
following holds.

(a) For each S ⊂ C(X̃ \ U) such that
⋂

D∈S D 6= ∅, the cone

pos(valD |M |D ∈ S)

is a rational pointed cone in NR. Furthermore, the rational function

∏

D∈S

L−(mD+1)xvalD |M

1− L−(mD+1)xvalD |M

is a well defined element of the ring MX〈pos(valD |M |D ∈ S) ∩N〉.

(b) For each S ⊂ C(X̃ \ U) such that there exists D ∈ S with valD |M /∈ |∆|,

YS = ∅.

(c) For each w ∈ N , the set trop−1(w) is a constructible subset of L (X), and

µX(trop−1(w)) = L− dimX
∑

S⊂C(X̃\U)⋂
D∈S D 6=∅

(L− 1)|S|[YS ]FS(w) ∈MX ,

where the FS(w) ∈MX are such that

∑

w∈N

FS(w)x
w =

∏

D∈S

L−(mD+1)xvalD |M

1− L−(mD+1)xvalD |M
,

i.e. the FS(w) are the coefficients of the power series expansion of the rational
function in part (a).

Remark 1.7. We clarify the notation MX〈pos(valD |M |D ∈ S) ∩N〉 used above.
If σ is a rational pointed cone in NR, then for any ring A, there is a well defined
power series ring

AJσ ∩NK =

{ ∑

w∈σ∩N

awx
w

}
.

If A has a topology, we let A〈σ ∩N〉 denote the subring of AJσ ∩NK consisting of
series whose coefficients aw converge to 0 as w →∞.

Remark 1.8. See Theorem 4.2 in Section 4 for a more explicit description of the
integers mD and the schemes YS that appear in the statement of Theorem 1.6.

In the proof of Theorem 4.2(a), we will give another combinatorial description
for the FS(w) that appear in the statement of Theorem 1.6. This combinatorial
description will be in terms of a sum over points of ZS

>0 that map to w. In particular,



MOTIVIC VOLUMES OF FIBERS OF TROPICALIZATION 5

when U ⊂ X̃ has immersive geometric tropicalization with respect to U →֒ T , there
will be at most one term in this sum.

Our next result shows that any simple normal crossing compactification can be
modified to obtain one that satisfies the compatibility condition in the hypotheses
of Theorem 1.6. In particular, when k has characteristic 0, we always have a formula
of the above form for the volumes of fibers of tropicalization.

Theorem 1.9. Let T be an algebraic torus with co-character lattice N , let ∆ be a
fan in N , and let U →֒ T be a smooth closed subvariety.

(a) If U ⊂ X is an open immersion into a smooth complete variety X such that X \
U is a simple normal crossing divisor, then there exists a toroidal modification

(U ⊂ X̃) → (U ⊂ X) such that X̃ is smooth and complete and such that

U ⊂ X̃ has ∆-compatible geometric tropicalization with respect to U →֒ T .
Furthermore, if U ⊂ X has immersive geometric tropicalization with respect to

U →֒ T , then so does U ⊂ X̃.

(b) If the characteristic of k is 0, there exists an open immersion U ⊂ X̃ into a

smooth complete variety X̃ such that X̃ \U is a simple normal crossing divisor

and such that U ⊂ X̃ has ∆-compatible geometric tropicalization with respect
to U →֒ T .

Equipped with these results, we return to Example 1.1.

Example 1.10. Suppose that k has characteristic 0, and let f, T,X, U be as in
Example 1.1. Then An+1 is the T -toric variety defined by the positive orthant

Rn+1
≥0 . By Theorem 1.9, there exists an open immersion U ⊂ X̃ into a smooth

complete variety X̃ such that X̃ \ U is a simple normal crossing divisor and such

that U ⊂ X̃ has Rn+1
≥0 -compatible geometric tropicalization with respect to U →֒ T .

Then by Theorem 1.6, using the notation in the statement of that theorem, the
generating function ∑

w∈Zn+1

µX(trop−1(w))xw

is equal to the rational function

L− dimX
∑

S⊂C(X̃\U)⋂
D∈S D 6=∅

(L− 1)|S|[YS ]
∏

D∈S

L−(mD+1)xvalD |M

1− L−(mD+1)xvalD |M
∈MX〈x〉.

Thus by the discussion in Example 1.1, the image of the zeta function Zf (s) in

M̂XJsK is equal to the rational function

L− dimX
∑

S⊂C(X̃\U)⋂
D∈S D 6=∅

(L− 1)|S|[YS ]
∏

D∈S

L−(mD+1)ϕ(xvalD |M )

1− L−(mD+1)ϕ(xvalD |M )
∈ M̂XJsK,

where ϕ(x(w1,...,wn+1)) = swn+1. Note that to prove Theorem 1.6 in Section 4, we

will use X̃ to construct a log resolution of the pair (X,X \ U), and the formula
above for the image of Zf (s) is the usual formula one gets for the motivic zeta
function from this log resolution.

In the next example, we explain how one can use Tevelev’s theory of tropical
compactifications [16] and Theorem 1.6 to recover a formula for the motivic zeta
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function of a polynomial that is non-degenerate with respect to its Newton polyhe-
dron.

Example 1.11. Keep all notation as in Example 1.10, but also assume that f
is non-degenerate with respect to its Newton polyhedron. Then U is schön in
T . Let ∆1 be any fan in Zn+1 supported on Trop(U), let Σ be any complete
fan in Zn+1 containing Rn+1

≥0 , and let ∆2 = {σ ∩ σ′ |σ ∈ ∆1, σ
′ ∈ Σ} be the

common refinement of ∆1 and Σ. Let ∆ be a unimodular subdivision of ∆2, and
let X(∆) be the T -toric variety defined by ∆. Then one can check, using the
theory of tropical compactifications, that the closure of U in X(∆) is a simple
normal crossing compactification of U , and one can check that by construction
of ∆, this compactification has Rn+1

≥0 -compatible geometric tropicalization with

respect to U →֒ T . Thus we may choose X̃ to be the closure of U in X(∆). In
this special setting, one can explicitly calculate the integers mD in terms of the
Newton polyhedron of f and the lattice point valD |M . One can also write each
class (L − 1)|S|[YS ] as the class of an initial degeneration of U . Having done this,

one can write the resulting formula for the image of Zf (s) in M̂XJsK in a way that
does not depend on the choices of ∆1,Σ, or ∆.

We see that the combinatorics of the formula in Theorem 1.6 depend on the
geometric tropicalization maps denoted by ϕS in Definition 1.3. We thus study
these maps. As a first result in this direction, we classify which maps of lattices
can arise as ϕS . We show that up to embedding the codomain into a larger lattice,
the maps of the form ϕS are precisely the lattice maps whose induced map on the
positive orthant is proper as a map of topological spaces. This is true even when
we restrict ourselves to very affine varieties embedded in their intrinsic torus.

Theorem 1.12. (a) Let T be an algebraic torus with character lattice M , let N =
M∨, let U →֒ T be a smooth closed subvariety, let U ⊂ X be an open immersion
into a smooth variety X such that X \ U is a simple normal crossing divisor,
and let C(X \ U) be the set of irreducible components of X \ U . For each
S ⊂ C(X \ U), let ϕS : ZS → N be the map of lattices such that for each
D ∈ S, the standard basis vector of ZS associated to D is sent to valD |M ∈ N .

If S ⊂ C(X\U) is such that
⋂

D∈S D 6= ∅, then the map ϕS
R
|RS

≥0
: RS

≥0 → NR

is proper as a map of topological spaces.
(b) Let L be a lattice, let m ∈ Z>0, let ϕ : Zm → L be a map of lattices such that

ϕR|Rm
≥0

: Rm
≥0 → LR

is proper as a map of topological spaces, and let X be a smooth projective variety
of dimension at least max(m, 2).

Then there exists an open subvariety U ⊂ X, a collection {D1, . . . , Dm} of
irreducible components of X \ U , a closed immersion U →֒ T into an algebraic
torus with co-character lattice N , and a map of lattices ψ : L→ N such that
(i) X \ U is a simple normal crossing divisor,
(ii) D1 ∩ · · · ∩Dm 6= ∅,
(iii) ψ induces an isomorphism of L onto a saturated sublattice of N ,
(iv) and ψ ◦ ϕ : Zm → N is the map sending the jth standard basis vector of

Zm to valDj
|M , where M = N∨.
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Furthermore, if X has Picard rank at least m, then U , D1, . . . , Dm, U →֒ T ,
and ψ can be chosen so that M = OU (U)×/k× and U →֒ T is induced by a
section M → OU (U)× of OU (U)× →M .

Remark 1.13. If U is a very affine variety, the algebraic torus T with character
lattice M = OU (U)×/k×, often called the intrinsic torus of U , and the closed
immersions U →֒ T induced by sections M → OU (U)× of OU (U)× → M are
intrinsically defined from the variety U . We thus think of Theorem 1.12(b) as
saying something intrinsic about the embedding U ⊂ X . More precisely, Theorem
1.12(b) describes how much information about boundary divisors can be lost after
restricting their valuations to the rational functions that are units on U . The fact
that U →֒ T can be chosen to be one of these intrinsic embeddings is also important
in the proof of Theorem 1.14(a) below.

In attempting to prove Theorem 1.12(b), one might begin with a very affine
variety U embedded in an algebraic torus T ′ and then proceed by taking monomial
maps from T ′ to other algebraic tori. But such a method would not allow one to
guarantee that the resulting embedding is one of the intrinsic embeddings into T ,
and thus would not say something intrinsic about U ⊂ X .

Finally, we study when the geometric tropicalization maps are injective, or in
the terminology of Definition 1.3, we study when compactifications have immersive
geometric tropicalization. We show that the existence of a compactification with
immersive geometric tropicalization is more general than a very affine variety being
schön, in the sense of Tevelev [16], but also that not all very affine varieties have a
compactification with immersive geometric tropicalization.

Theorem 1.14. (a) There exists a very affine surface U such that for all closed
immersions U →֒ T into an algebraic torus and for all open immersions U ⊂ X
into a smooth complete variety X such that X \U is a simple normal crossing
divisor, we have that U ⊂ X does not have immersive geometric tropicalization
with respect to U →֒ T .

(b) Let X be a smooth projective variety of dimension at least 2. Then there exists
a very affine open subvariety U ⊂ X such that X \ U is a simple normal
crossing divisor and such that if T is the algebraic torus with character lattice
M = OU (U)×/k× and U →֒ T is a closed immersion induced by a section
M → OU (U)× of OU (U)× → M , then U is not schön in T , and U ⊂ X has
immersive geometric tropicalization with respect to U →֒ T .

Remark 1.15. Let U be a very affine variety of dimension at least 2, and let
U ⊂ X be an open immersion into a smooth variety such that X \ U is a simple
normal crossing divisor. Given a closed immersion U into an algebraic torus T ,
it is easy to find simple normal crossing compactifications of U that do not have
immersive geometric tropicalization with respect to U →֒ T . For example, one may
blow-up a point that lies on only one boundary divisor ofX . But this method would
not guarantee that all simple normal crossing compactifications of U do not have
immersive geometric tropicalization with respect to U →֒ T . By using Theorem
1.12(b), we can take a reverse approach, instead constructing the desired very affine
variety U by starting with its compactification. In Section 7, we apply this idea to
a non-ruled minimal surface to prove Theorem 1.14(a).
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2. Preliminaries

We set notation and recall some facts about motivic integration, the topology of
Berkovich analytic spaces and tropicalization, and geometric tropicalization.

2.1. Motivic Integration. For further detail on the motivic integration results in
this sub-section, we refer to the book [5].

For any finite type k-scheme X , the Grothendieck ring of finite type X-schemes
will be denoted by K0(VarX), the ring obtained by inverting the Lefschetz class
in K0(VarX) will be denoted by MX , the image of the Lefschetz class in MX will
be denoted by L, and if Y is a finite type X-scheme, the class of Y in MX will be
denoted by [Y ]. We will endow MX with the topology induced by the dimension
filtration. If g : X ′ → X is a morphism of finite type k-schemes, there is ring
homomorphism g∗ : MX → MX′ , given by base change, and there is an additive
group homomorphism g! : MX′ →MX , given by composition with g, that satisfies
a projection formula with g∗.

For any finite type k-scheme X , the nth jet scheme of X will be denoted by
Ln(X), the truncation morphisms will be denoted by θmn : Lm(X) → Ln(X),
the arc scheme of X will be denoted by L (X) = lim←−n

Ln(X), and the morphisms

L (X) → Ln(X) will be denoted by θn. The following theorem is a direct con-
sequence of a more general result, due to Bhatt [2, Theorem 1.1], on points of X
valued over ideal-adically complete rings.

Theorem 2.1 (Bhatt). Let X be a finite type k-scheme. Then L (X) represents
the functor taking any k-algebra A to the set of k-morphisms from Spec(AJtK) to X,
and under this identification, each morphism θn : L (X)→ Ln(X) is the truncation
morphism.

If X is a smooth variety, µX will denote its associated motivic measure, which
assigns to each constructible subset of L (X) a volume in MX . Note that we are
using the notion of constructible subsets of a not necessarily noetherian scheme.
In the case of the scheme L (X), constructible subsets coincide with the subsets of
the form θ−1

n (C) for some constructible subset C ⊂ Ln(X). For this reason, the
constructible subsets of L (X) are also called cylinders.

Definition 2.2. Let C be a constructible subset of L (X) and α : C → Z be a
function such that for each n ∈ Z, the fiber α−1(n) is a constructible subset of C.
Then the motivic integral of α is∫

C

L−αdµX =
∑

n∈Z

µX(α−1(n))L−n ∈MX .

Note that, by the quasi-compactness of the constructible topology, α only takes
finitely many values, so the above sum is finite.

If g : X ′ → X is a morphism of smooth varieties, the jacobian ideal of g is a
locally principal ideal on X ′, and its associated order function on the arc scheme
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of X ′ will be denoted by ordjacg : L (X ′)→ Z≥0 ∪ {∞}. We will use the following
version of the motivic change of variables formula, which is a special case of Theorem
1.2.5 in Chapter 5 of [5].

Theorem 2.3 (Motivic Change of Variables Formula). Let g : X ′ → X be a
morphism of smooth varieties, let C be a constructible subset of L (X) and C′ be
a constructible subset of L (X ′), and let α : C → Z be a function such that each
α−1(n) is a constructible subset of C. Assume that for each field extension k′ of k,
L (g) induces a bijection between the k′ points of C′ and the k′ points of C, and

assume that C′ ∩ ordjac−1
g (∞) = ∅. Then

• the function β = α ◦L (g) + ordjacg : C′ → Z is a function such that each

β−1(n) is a constructible subset of C′,
• and ∫

C

L−αdµX = g!

∫

C′

(g∗L)−βdµX′ ∈MX .

We will also use the following well known elementary fact about motivic volumes,
see for example Lemma 1.2.2 in Chapter 6 of [5].

Proposition 2.4. Let X be a smooth variety, let U ⊂ X be an open subvariety
such that X \ U is a simple normal crossing divisor, let C(X \ U) be the collection
of irreducible components of X \U , and for each D ∈ C(X \U), let ID be the ideal
sheaf of D in X.

Let n = (nD)D ∈ Z
C(X\U)
≥0 , set

A = {x ∈ L (X) | ordID
(x) = nD for all D ∈ C(X \ U)},

set

S = {D ∈ C(X \ U) |nD > 0},

and set

Y =

( ⋂

D∈S

D

)
\


 ⋃

E∈C(X\U)\S

E




considered as a scheme over X by inclusion.
Then A is a constructible subset of L (X), and

µX(A) = L− dimX(L− 1)|S|L−
∑

D∈S nD [Y ] ∈MX .

2.2. Berkovich Spaces and Tropicalization. If X is a finite type k-scheme,
Xan will denote the underlying topological space of the Berkovich analytification
of X over the trivially valued field k, as defined in [1]. As a set, Xan is the disjoint
union, over all points x′ ∈ X , of the set of valuations on k(x′) that extend the trivial
valuation on k. For each valuation x ∈ Xan of k(x′) and f a regular function in a
neighborhood of x′ in X , we will let val(f(x)) ∈ R∪{∞} denote the value obtained
by evaluating the image of f in k(x′) at the valuation x. The topology on Xan is
the coarsest topology such that for each affine open U ⊂ X with coordinate ring A
and f ∈ A, the set Uan is open and the function Uan → R ∪ {∞} : x 7→ val(f(x))
is continuous.

If R is a rank 1 valuation ring, then any map Spec(R) → X gives a valuation
on k(x′), where x′ is the image of the generic point of Spec(R). The subset of
Xan consisting of such valuations, as we vary over valuation rings R and maps
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Spec(R)→ X , is denoted by Xi. Thus for each x ∈ Xi, we can refer to its generic
point and special point.

This construction is functorial, so if g : X → Y is a morphism of finite type k-
schemes, we get a continuous map gan : Xan → Y an. The next proposition follows
from Propositions 3.1.3, 3.1.5, 3.4.1, 3.4.6 and 3.4.7 in [1].

Proposition 2.5 (Berkovich). If g : X → Y is a morphism of finite type k-
schemes, then g is separated (resp. proper) if and only if gan is separated (resp.
proper) as a map of topological spaces.

Let U ⊂ X be a toroidal embedding without self-intersection, and let C(X \ U)
be the set of irreducible components of X \ U . We will consider the stratification
of X given by the components of

( ⋂

D∈S

D

)
\


 ⋃

E∈C(X\U)\S

E




for each S ⊂ C(X \ U). For each stratum Y of the toroidal embedding, let Star Y
denote the open set

StarY =
⋃

strata Z such that Y ⊂ Z

Z,

letMY be the group of Cartier divisors on Star Y that are supported on Star Y \U ,
let NY = (MY )∨, and let σY ⊂ NY

R
be the cone consisting of elements that are

nonnegative on all effective divisors in MY . Let Σ = (|Σ|, (σY ,MY )Y ) be the cone
complex with integral structure associated to U ⊂ X , as defined in [11].

For each stratum Y , we have a map tropStarY : Uan ∩ (StarY )i → σY defined
so that for each Cartier divisor m ∈MY and each x ∈ Uan ∩ (Star Y )i,

〈m, tropStarY (x)〉 = val(f(x)),

where f is a local equation for m in a neighborhood of the special point of x. It is
easy to check that this definition is independent of the choice of local equation f .
These maps glue to give a continuous, surjective, and proper map

tropX : Uan ∩Xi → |Σ|.

Now let T be an algebraic torus with co-character lattice N . We also have a
continuous, surjective, and proper tropicalization map

trop : T an → NR,

defined so that for all u ∈M and x ∈ T an,

〈u, trop(x)〉 = val(χu(x)).

2.3. Geometric Tropicalization. Let U ⊂ X be a toroidal embedding without
self-intersection, and let Σ = (|Σ|, (σY ,MY )Y ) be the cone complex with integral
structure associated to U ⊂ X , as above.

Let T be an algebraic torus with character lattice M , let N = M∨, and let
g : U → T be a morphism. For each stratum Y of the toroidal embedding, there is
a morphism of lattices M →MY : u 7→ div(g∗(χu)). This gives a map σY → NR,
and we glue these maps to get a geometric tropicalization map

gtrop : |Σ| → NR.
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It is clear from the definitions that

trop ◦gan|Uan∩Xi = gtrop ◦ tropX : Uan ∩Xi → NR.

We will use the following elementary proposition.

Proposition 2.6. Suppose that X is smooth and that g : U → T is a closed
immersion. Let C(X \ U) be the set of irreducible components of X \ U , let S ⊂
C(X \ U), let

YS =

( ⋂

D∈S

D

)
\


 ⋃

E∈C(X\U)\S

E


 ,

and let ϕS : ZS → N be the map of lattices such that for each D ∈ S, the standard
basis vector of ZS associated to D is sent to valD |M ∈ N . Then if

⋂
D∈S D 6= ∅,

(a) YS is nonempty,

(b) and if Y is a component of YS , there exists an isomorphism ψ : NY ∼
−→ ZS

identifying σY with RS
≥0 and identifying the map gtrop |σY with ϕS

R
|RS

≥0
.

Proof. (a) Because
⋂

D∈S D 6= ∅ and X \U is a simple normal crossing divisor, YS
is nonempty.

(b) Because X is smooth, the set of Cartier divisors {D ∩ StarY |D ∈ S} forms a
basis forMY . Let {vD |D ∈ S} be its dual basis. Let ψ : NY → ZS be the map
of lattices sending each vD to the standard basis vector of ZS corresponding
to D ∈ S. Then ψ is an isomorphism, and it identifies ϕS

R
|RS

≥0
with the map

gtrop |σY .
�

The notion of geometric tropicalization, in the case where g is a closed immer-
sion and U ⊂ X is a compactification with simple normal crossing boundary, was
introduced by Hacking, Keel, and Tevelev in [10]. In [13], Luxton and Qu observed
that geometric tropicalization could also be defined when U ⊂ X is a toroidal
embedding without self-intersection.

3. Geometric Tropicalization of Toroidal Embeddings

Let U ⊂ X be a toroidal embedding without self-intersection. For each locally
closed stratum Y of the toroidal embedding, letMY be the group of Cartier divisors
on StarY that are supported on Star Y \U , let NY = (MY )∨, and let σY ⊂ NY

R
be

the cone consisting of elements that are nonnegative on all effective divisors inMY .
Let Σ = (|Σ|, (σY ,MY )Y ) be the cone complex with integral structure associated
to U ⊂ X .

Let T be an algebraic torus with character lattice M , let N = M∨, and let
g : U → T be a morphism. As discussed in the preliminaries, we have tropicalization
maps gtrop : |Σ| → NR, tropX : Uan ∩Xi → |Σ|, and trop : T an → NR.

In this section we study how the geometric tropicalization map is related to
extending the map g as well as the properness of g. In particular we will prove
Theorem 1.12(a).

We first prove the following lemma.

Lemma 3.1. For each stratum Y of X, we have

trop−1
X (σY ) = Uan ∩ (StarY )i.
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Proof. Suppose that x ∈ trop−1
X (σY ) and suppose that Z is the stratum containing

the special point of x. Then x ∈ (StarZ)i and for each nonzero effective m ∈MZ ,

〈m, tropStarZ(x)〉 > 0,

so tropX(x) is in the interior of σZ . Thus σY ∩ σZ is a union of faces of σZ that
intersects the interior of σZ , so σZ ⊂ σY . Therefore StarZ ⊂ Star Y and we have
that x ∈ Uan ∩ (Star Y )i. �

We now prove a proposition about extending the map g. We will use this propo-
sition in Section 4 to prove Theorem 1.6.

Proposition 3.2. Let ∆ be a fan in NR, and let X(∆) be its associated T -toric
variety. Let Σ∆ be the sub-complex of Σ consisting of cones σY in Σ for which there
exists a cone σ ∈ ∆ such that gtrop(σY ) ⊂ σ, and let X∆ be the open subvariety of
X given by the inclusion of Σ∆ into Σ.

(a) The map g : U → T can be extended to a map g∆ : X∆ → X(∆).
(b) If the map g∆ is proper, then |Σ∆| = gtrop−1(|∆|).
(c) If X is complete and |Σ∆| = gtrop−1(|∆|), then the map g∆ is proper.

Proof. (a) Let σY be a cone in Σ∆, let σ ∈ ∆ such that gtrop(σY ) ⊂ σ, and let
X(σ) be its associated affine T -toric variety. The condition gtrop(σY ) ⊂ σ
guarantees that for all u ∈ σ∨ ∩M , the rational function g∗(χu) is regular on
StarY , so the map g : U → T extends to a map StarY → X(σ) ⊂ X(∆).
These maps glue to give

g∆ : X∆ → X(∆).

(b) Suppose that g∆ is proper. Let x ∈ Uan∩Xi such that tropX(x) ∈ gtrop−1(|∆|).
Then gan(x) ∈ T an∩X(∆)i. Thus because g∆ is proper, x ∈ Uan∩Xi

∆. There-
fore

tropX(x) ∈ |Σ∆|.

The surjectivity of tropX gives that

|Σ∆| = gtrop−1(|∆|).

(c) Suppose that X is complete and |Σ∆| = gtrop−1(|∆|). Let x ∈ Uan such that
gan(x) ∈ T an ∩X(∆)i. Because X is complete, x ∈ Uan ∩Xi. Then

gtrop(tropX(x)) = trop(gan(x)) ∈ |∆|,

so
tropX(x) ∈ gtrop−1(|∆|) = |Σ∆|.

Then by Lemma 3.1, there exists a stratum Y such that σY is a cone in Σ∆

and x ∈ Uan ∩ (Star Y )i, so

x ∈ Uan ∩Xi
∆.

Thus g∆ is proper by the valuative criterion.
�

We now prove the following statement, from which Theorem 1.12(a) will follow.

Proposition 3.3. (a) If X is complete and gtrop : |Σ| → NR is proper as a map
of topological spaces, then g : U → T is proper.

(b) If g : U → T is proper, then gtrop : |Σ| → NR is proper as a map of topological
spaces.
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Proof. (a) Suppose that X is complete and gtrop : |Σ| → NR is proper. Because
X is complete, Uan ∩Xi = Uan, so

trop ◦gan = gtrop ◦ tropX : Uan → NR.

Then because tropX and gtrop are proper, we have that trop ◦gan is proper, so
because trop is separated, we have that gan is proper. Therefore g is proper.

(b) Suppose that g : U → T is proper. Then trop ◦gan is proper. Because Uan∩Xi

is closed in Uan, we have that gtrop ◦ tropX = trop ◦gan|Uan∩Xi is proper. Then
because tropX is surjective, this implies that gtrop is proper.

�

We now prove the following corollary, which is a restatement of Theorem 1.12(a).

Corollary 3.4. Suppose that X is smooth and that g : U → T is a closed immer-
sion.

Let S be a collection of irreducible components of X \ U , and let ϕS : ZS → N
be the map of lattices such that for each D ∈ S, the standard basis vector of ZS

associated to D is sent to valD |M ∈ N .
Then if

⋂
D∈S D 6= ∅, the map ϕS

R
|RS

≥0
: RS

≥0 → NR is proper as a map of

topological spaces.

Proof. This follows from Propositions 2.6 and 3.3(b). �

4. Volumes of Fibers and Geometric Tropicalization

In this section, we will prove Theorem 1.6.
Let T be an algebraic torus with character lattice M , let N = M∨, let ∆ be

a fan in N , and let X(∆) be its associated T -toric variety. Let X →֒ X(∆) be a

smooth closed subvariety such that U = X ∩T is nonempty, let U ⊂ X̃ be an open

immersion into a complete smooth variety X̃ such that X̃ \ U is a simple normal

crossing divisor and such that U ⊂ X̃ has ∆-compatible geometric tropicalization
with respect to U →֒ T .

Let C(X̃ \ U) be the set of irreducible components of X̃ \ U , and set

X̃∆ = X̃ \
⋂

σ∈∆

⋃

D∈C(X̃\U)
valD |M /∈σ

D.

Note that for each D ∈ C(X̃ \ U), we have that valD |M ∈ |∆| if and only if

D ∩ X̃∆ 6= ∅.
We first observe the following.

Proposition 4.1. The inclusion of U into X extends to a proper map X̃∆ → X.

Proof. This follows from Proposition 3.2 parts (a) and (c) and the proof of Propo-
sition 2.6. �

Now for each D ∈ C(X̃ \ U) such that valD |M ∈ |∆|, set mD ∈ Z≥0 to be the

multiplicity of the relative jacobian ideal of X̃∆ → X at the divisor D ∩ X̃∆. For

each D ∈ C(X̃ \ U) such that valD |M /∈ |∆|, set mD = 0.
In the remainder of this section, we will prove the following theorem, which

implies Theorem 1.6.
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Theorem 4.2. (a) For each S ⊂ C(X̃ \ U) such that
⋂

D∈S D 6= ∅, the cone

pos(valD |M |D ∈ S)

is a rational pointed cone in NR. Furthermore, the rational function

∏

D∈S

L−(mD+1)xvalD |M

1− L−(mD+1)xvalD |M

is a well defined element of the ring MX〈pos(valD |M |D ∈ S) ∩N〉.
(b) For each w ∈ N , the set trop−1(w) is a constructible subset of L (X), and

µX(trop−1(w)) = L− dimX
∑

S⊂C(X̃\U)⋂
D∈S D∩X̃∆ 6=∅

(L− 1)|S|[YS ]FS(w) ∈MX ,

where for each S ⊂ C(X̃ \ U) such that
⋂

D∈S D ∩ X̃∆ 6= ∅,

YS =

(
X̃∆ ∩

⋂

D∈S

D

)
\


 ⋃

E∈C(X̃\U)\S

E




is a scheme over X by restriction of the map X̃∆ → X, and the FS(w) ∈MX

are such that
∑

w∈N

FS(w)x
w =

∏

D∈S

L−(mD+1)xvalD |M

1− L−(mD+1)xvalD |M
,

i.e. the FS(w) are the coefficients of the power series expansion of the rational
function in part (a).

We now prove Theorem 4.2(a).

Proof of Theorem 4.2(a). Let S ⊂ C(X̃ \ U) such that
⋂

D∈S D 6= ∅, and let ϕS :

ZS → N be the map of lattices such that for each D ∈ S, the standard basis vector
of ZS associated to D is sent to valD |M ∈ N .

By Theorem 1.12(a), proved previously in Section 3, the map ϕS
R
|RS

≥0
: RS

≥0 →

NR is proper as a map of topological spaces. Therefore the cone

pos(valD |M |D ∈ S) = ϕS
R
(RS

≥0)

is pointed, and it is clearly rational. Thus we only need to show that the rational
function ∏

D∈S

L−(mD+1)xvalD |M

1− L−(mD+1)xvalD |M

is a well defined element of the ring MX〈pos(valD |M |D ∈ S) ∩N〉.
For each w ∈ N , set

FS(w) =
∑

n=(nD)D∈S∈Z
S
>0

ϕS(n)=w

L−
∑

D∈S nD(mD+1).

By the properness of ϕS
R
|RS

≥0
, the sum defining FS(w) is finite, so it is a well defined

element of MX . It is also straightforward to check that

∏

D∈S

L−(mD+1)xvalD |M

1− L−(mD+1)xvalD |M
=
∑

w∈N

FS(w)x
w ,
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and because each mD ≥ 0,
∑

w∈N

FS(w)x
w ∈MX〈pos(valD |M |D ∈ S) ∩N〉.

�

Let trop : L (X) \ L (X \ U) → N be the tropicalization map defined in the
introduction. We will now prove the first part of Theorem 4.2(b).

Proposition 4.3. For each w ∈ N , the set trop−1(w) is a constructible subset of
L (X).

Proof. If w /∈ |∆|, then trop−1(w) = ∅. Therefore we may assume there exists
σ ∈ ∆ such that w ∈ σ. Let X(σ) be its associated affine T -toric variety, and let
Xσ = X ∩X(σ).

For any u ∈ σ∨ ∩M and x ∈ trop−1(w) with generic point η,

val(χu|U (η)) = 〈u,w〉 ≥ 0,

so
trop−1(w) ⊂ L (Xσ).

Then it is not difficult to check that if S ⊂ M is any set of semigroup generators
for σ∨ ∩M ,

trop−1(w) =
⋂

u∈S

[
θ−1
〈u,w〉−1

(
L〈u,w〉−1(V (χu|Xσ

))
)
\ θ−1

〈u,w〉

(
L〈u,w〉(V (χu|Xσ

))
)]
,

where each V (χu|Xσ
) is the hypersurface of Xσ cut out by χu|Xσ

, and by any
possible appearance of θ−1

−1 (L−1(V (χu|Xσ
))), we actually mean θ−1

0 (Xσ). Also,
each V (χu|Xσ

)→ X is a closed immersion followed by an open immersion, so for any
n ∈ Z≥0, the set Ln(V (χu|Xσ

)) is a constructible subset of Ln(X). Therefore by
taking S to be finite, we see that trop−1(w) is a constructible subset of L (X). �

The remainder of this section is dedicated to finishing the proof of Theorem
4.2(b).

Let g : X̃∆ → X be the proper morphism extending the inclusion of U into X .
Set

C∆ = {D ∈ C(X̃ \ U) |D ∩ X̃∆ 6= ∅} ⊂ C(X̃ \ U),

and for each D ∈ C∆, let ID,∆ be the ideal sheaf of D ∩ X̃∆ in X̃∆.

For each n = (nD)D ∈ ZC∆

≥0, set

An = {x ∈ L (X̃∆) | ordID,∆(x) = nD for all D ∈ C∆},

and note that ⋃

n∈Z
C∆
≥0

An = L (X̃∆) \L (X̃∆ \ U).

Lemma 4.4. For all n = (nD)D ∈ ZC∆

≥0 and x ∈ An,

ordjacg(x) =
∑

D∈C∆

nDmD,

and
trop(L (g)(x)) =

∑

D∈C∆

nD valD |M .
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Proof. By definition of An and each mD,

ordjacg(x) =
∑

D∈C∆

nDmD.

Now let S = {D ∈ C∆ |nD > 0}, and let Y be the component of
(
X̃∆ ∩

⋂
D∈S D

)
\

(⋃
E∈C(X̃\U)\S E

)
such that θ0(x) ∈ Y . Then considering U ⊂ X̃∆ as a toroidal

embedding, letMY be the group of Cartier divisors on StarY supported on StarY \
U , let NY = (MY )∨ and let σY ⊂ NY

R
be the cone of elements that are nonnegative

on the effective divisors inMY . We have a map tropStarY : L (Star Y )\L (Star Y \
U)→ σY defined so that for each Cartier divisorm ∈MY and each y ∈ L (Star Y )\
L (Star Y \ U),

〈m, tropStarY (y)〉 = ordf (y),

where f is a local equation for m in a neighborhood of θ0(y). Let {vD}D∈S be the
basis of NY that is dual to the basis {D ∩ StarY }D∈S of MY . Then it is easy to
check that

gtrop ◦ tropStarY = trop ◦L (g)|L (StarY )\L (StarY \U),

that

tropStarY (x) =
∑

D∈S

nDvD,

and for D ∈ S,
gtrop(vD) = valD |M .

Therefore

trop(L (g)(x)) =
∑

D∈S

nD valD |M .

�

For each w ∈ N , set

Bw =
⋃

n=(nD)D∈Z
C∆
≥0∑

D∈C∆
nD valD |M=w

An.

Lemma 4.5. For each w ∈ N and each field extension k′ of k, the map L (g)
induces a bijection between the k′ points of Bw and the k′ points of trop−1(w).

Proof. Because g : X̃∆ → X is proper and restricts to the identity on U , we have

that L (g) induces a bijection between the k′ points of L (X̃∆) \L (X̃∆ \ U) and
the k′ points of L (X) \L (X \ U). Thus we are done by Lemma 4.4. �

For any S ⊂ C∆, identify ZS with the subgroup of ZC∆ generated by the standard
basis vectors associated to each D ∈ S.

Lemma 4.6. For any w ∈ N ,

Bw =
⋃

S⊂C(X̃\U)⋂
D∈S D∩X̃∆ 6=∅




⋃

n=(nD)D∈Z
S
>0∑

D∈S nD valD |M=w

An


 ,

and the right hand side is a finite disjoint union.
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Proof. Let S ⊂ C∆. For any n ∈ ZS
>0 and any x ∈ An,

θ0(x) ∈
⋂

D∈S

D ∩ X̃∆.

Thus if
⋂

D∈S D ∩ X̃∆ = ∅ and n ∈ ZS
>0, then An = ∅. This proves the desired

equality of sets above.
By the definition of the An, the union above is clearly disjoint. It is finite by

Theorem 1.12(a). �

For each S ⊂ C(X̃ \ U), set

Y ∆
S =

(
X̃∆ ∩

⋂

D∈S

D

)
\


 ⋃

E∈C(X̃\U)\S

E




considered as a scheme over X̃∆ by the inclusion map.

Lemma 4.7. Let S ⊂ C∆. Then for any n = (nD)D ∈ ZS
>0, the set An is a

constructible subset of L (X̃∆) and

µX̃∆
(An) = g∗

(
L− dimX(L− 1)|S|L−

∑
D∈S nD

)
[Y ∆

S ] ∈MX̃∆
.

Proof. This follows from Proposition 2.4, noting that g∗(L) is the class of A1
X̃∆

in

MX̃∆
and that dimX = dim X̃∆. �

For each S ⊂ C(X̃ \ U) such that
⋂

D∈S D ∩ X̃∆ 6= ∅, set YS to be Y ∆
S but

considered as a scheme over X using g : X̃∆ → X , and for each w ∈ N , set

FS(w) =
∑

n=(nD)D∈Z
S
>0∑

D∈S nD valD |M=w

L−
∑

D∈S nD(mD+1).

Note that as in the proof of Theorem 4.2(a), the sum defining FS(w) is finite, so it
is a well defined element of MX . Also

∑

w∈N

FS(w)x
w =

∏

D∈S

L−(mD+1)xvalD |M

1− L−(mD+1)xvalD |M
.

We now complete the proof of Theorem 4.2(b).

Proposition 4.8. For each w ∈ N ,

µX(trop−1(w)) = L− dimX
∑

S⊂C(X̃\U)⋂
D∈S D∩X̃∆ 6=∅

(L− 1)|S|[YS ]FS(w) ∈MX .

Proof. Note that the sums that will appear in this proof are all finite by Theorem
1.12(a). Let w ∈ N . By Lemmas 4.6 and 4.7, Bw is a constructible subset of

L (X̃∆). Thus by Lemma 4.5 and the change of variables formula,

µX(trop−1(w)) = g!

∫

Bw

(g∗L)− ordjacgdµX̃∆
.
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By Lemmas 4.4 and 4.6

g!

∫

Bw

(g∗L)− ordjacgdµX̃∆
=

∑

S⊂C(X̃\U)⋂
D∈S D∩X̃∆ 6=∅




∑

n=(nD)D∈Z
S
>0∑

D∈S nD valD |M=w

g!

(
(g∗L)−

∑
D∈S nDmDµX̃∆

(An)
)

 .

By Lemma 4.7 and the projection formula, for each S ⊂ C(X̃ \ U) such that⋂
D∈S D ∩ X̃∆ 6= ∅,

∑

n=(nD)D∈Z
S
>0∑

D∈S nD valD |M=w

g!

(
(g∗L)−

∑
D∈S nDmDµX̃∆

(An)
)
=

∑

n=(nD)D∈Z
S
>0∑

D∈S nD valD |M=w

L− dimX(L− 1)|S|L−
∑

D∈S nD(mD+1)[YS ]

which by construction is equal to

L− dimX(L− 1)|S|[YS ]FS(w).

Therefore,

µX(trop−1(w)) = L− dimX
∑

S⊂C(X̃\U)⋂
D∈S D∩X̃∆ 6=∅

(L − 1)|S|[YS ]FS(w).

�

5. ∆-Compatibility of a Cone Complex

In this section, we will prove Theorem 1.9. We begin by defining a combinatorial
analog of Definition 1.3.

Definition 5.1. Let Σ = (|Σ|, (σα,Mα)α) be a cone complex with integral struc-
ture, and for each index α, let Nα = (Mα)∨. Let N be a lattice and let ϕ : |Σ| →
NR be a map such that for each index α, the restriction ϕ|σα : σα → NR is induced
by a map of lattices Nα → N .

We say that Σ has immersive geometric tropicalization with respect to ϕ if for
each index α, the map ϕ|σα : σα → NR is injective.

Let σ be a cone in N . Then we say Σ has σ-compatible geometric tropicalization
with respect to ϕ if for each index α, the cone ϕ−1(σ) ∩ σα is a face of σα.

Let ∆ be a fan in N . Then we say that Σ has ∆-compatible geometric tropi-
calization with respect to ϕ if Σ has σ-compatible geometric tropicalization with
respect to ϕ for each σ ∈ ∆.

Remark 5.2. Let T be an algebraic torus with co-character lattice N , let ∆ be
a fan in N , let U →֒ T be a smooth closed subvariety, let U ⊂ X be an open
immersion into a smooth complete variety X such that X \ U is a simple normal
crossing divisor, and let Σ be the cone complex with integral structure associated
to the toroidal embedding U ⊂ X .
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Then by Proposition 2.6, U ⊂ X has immersive geometric tropicalization with
respect to U →֒ T if and only if Σ has immersive geometric tropicalization with
respect to gtrop. Similarly, U ⊂ X has ∆-compatible geometric tropicalization
with respect to U →֒ T if and only if Σ has ∆-compatible geometric tropicalization
with respect to gtrop.

5.1. Some Lemmas on Polyhedral Cones. In this subsection, we will prove
some lemmas that will be used in the remainder of Section 5. Let N be a lattice.
Note that we will use � to denote the partial relation of inclusion of a face into a
cone, and we will use ∧ to denote the operation of taking common refinement of
fans.

We first recall the following well known result, see for example [8, III. Theorem
2.8].

Theorem 5.3. Let ∆ be a fan in N . Then there exists a fan ∆ in N such that
|∆| = NR and ∆ ⊂ ∆.

We will now prove two elementary lemmas.

Lemma 5.4. Let γ, γ′ be not necessarily pointed cones in N with γ′ ⊂ γ, and let
ν � γ. Then

γ′ ∩ ν � γ′.

Proof. Let u ∈ γ∨ be such that ν = γ ∩ u⊥. Then because u ∈ (γ′)∨,

γ′ ∩ ν = γ′ ∩ (γ ∩ u⊥) = γ′ ∩ u⊥ � γ′.

�

Lemma 5.5. Let γ be a cone in N and ν1, . . . , νr � γ such that ν =
⋃r

i=1 νi is a
polyhedral cone in NR. Then

ν � γ.

Proof. Let v1, v2 ∈ γ. Because ν is a polyhedral cone in NR, we only need to show
that if v1+v2 ∈ ν then v1, v2 ∈ ν. This holds because ν is a union of faces of γ. �

For the remainder of this subsection, let σ be a cone in N , let τ be a not
necessarily pointed cone in N , and let ∆ be a fan in N such that |∆| ⊂ σ and such
that for each η ∈ ∆,

η ∩ τ � η.

We will devote the remainder of this subsection to proving the following technical
lemma.

Lemma 5.6. There exists a fan Σ in N such that |Σ| = σ, ∆ ⊂ Σ, and for each
σ′ ∈ Σ,

σ′ ∩ τ � σ′.

First we fix some notation. Fix a fan ∆ in N such that |∆| = NR and ∆ ⊂ ∆.
Let Θ = ∆ ∧ Faces(τ) be the common refinement of ∆ and Faces(τ). Note that
because each cone in ∆ is pointed, so is each cone in Θ. Thus Θ is a fan in N with
|Θ| = τ .

Lemma 5.7. The collection Θ ∪∆ is a fan in N .
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Proof. Let γ ∈ ∆, γ′ � τ , and η ∈ ∆. We need to show that (γ ∩ γ′) ∩ η is a
common face of γ ∩ γ′ and η.

By Lemma 5.4,

γ′ ∩ η = (η ∩ τ) ∩ γ′ � η ∩ τ.

Thus by the hypotheses on ∆,

γ′ ∩ η � η ∩ τ � η,

so γ′ ∩ η ∈ ∆ ⊂ ∆. Thus

(γ ∩ γ′) ∩ η � γ′ ∩ η � η.

Similarly, (γ ∩ γ′) ∩ η � γ, so by Lemma 5.4,

(γ ∩ γ′) ∩ η = (γ ∩ γ′) ∩ ((γ ∩ γ′) ∩ η) � γ ∩ γ′,

and we are done. �

Now fix a fan Θ in N such that |Θ| = NR and Θ∪∆ ⊂ Θ. Set ∆̃ = ∆∧Faces(σ)

and Σ = Θ ∧ ∆̃.

Lemma 5.8. For any σ′ ∈ Σ and ν ∈ Θ,

σ′ ∩ ν � σ′.

Proof. Let γ ∈ Θ, γ′ ∈ ∆̃ be such that σ′ = γ ∩ γ′. Then γ ∩ ν ∈ Θ so

σ′ ∩ ν = (γ ∩ γ′) ∩ ν = (γ ∩ ν) ∩ γ′ ∈ Σ.

Thus

σ′ ∩ ν = (σ′ ∩ ν) ∩ σ′ � σ′.

�

We now finish the proof of Lemma 5.6.

Proof. By construction

|Σ| = σ.

Let η ∈ ∆. Then η = η ∩ σ ∈ ∆̃ and η ∈ Θ, so

η = η ∩ η ∈ Σ.

Therefore,

∆ ⊂ Σ.

Let σ′ ∈ Σ. Then by Lemmas 5.5 and 5.8,

σ′ ∩ τ =
⋃

ν∈Θ

σ′ ∩ ν � σ′.

�
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5.2. ∆-Compatible Subdivision. Let Σ = (|Σ|, (σα,Mα)α) be a cone complex
with integral structure, and for each index α, let Nα = (Mα)∨. Let N be a lattice,
let ∆ be a fan in N , and let ϕ : |Σ| → NR be a map such that for each index α,
the restriction ϕ|σα : σα → NR is induced by a map of lattices Nα → N .

Lemma 5.9. If σ is a cone in N , Σ′ is a subdivision of Σ, and Σ has σ-compatible
geometric tropicalization with respect to ϕ, then Σ′ has σ-compatible geometric trop-
icalization with respect to ϕ.

Proof. This follows from Lemma 5.4. �

We now prove the combinatorial analog of Theorem 1.9.

Proposition 5.10. There exists a unimodular subdivision Σ̃ of Σ such that Σ̃ has
∆-compatible geometric tropicalization with respect to ϕ.

Proof. Let σ ∈ ∆. We will first show that there exists a subdivision Σ′ of Σ such
that Σ′ has σ-compatible geometric tropicalization with respect to ϕ.

Assume that there exists a subdivision Σ′
ℓ−1 = (|Σ′

ℓ−1|, (η
β , Lβ)β) of the ℓ − 1

skeleton of Σ such that for each index β, the cone ϕ−1(σ)∩ ηβ is a face of ηβ . Now
suppose that σα is a cone in Σ that is ℓ dimensional. Then by Lemma 5.5, the
restriction Σ′

ℓ−1|σα is a fan in Nα. Then by Lemma 5.6, there exists a fan Σα in

Nα such that |Σα| = σα, Σ′
ℓ−1|σα ⊂ Σα, and for each σ′ ∈ Σα, the cone ϕ−1(σ)∩σ′

is a face of σ′. Repeating this for all ℓ dimensional cones σα in Σ, we see there
exists a subdivision Σ′

ℓ = (|Σ′
ℓ|, (η

β , Lβ)β) of the ℓ skeleton of Σ such that for each
index β, the cone ϕ−1(σ) ∩ ηβ is a face of ηβ . Thus by induction on ℓ, there exists
a subdivision Σ′ of Σ such that Σ′ has σ-compatible geometric tropicalization with
respect to ϕ.

Now by Lemma 5.9, repeating the above for all σ ∈ ∆, there exists a subdivision
Σ′′ of Σ such that Σ′′ has ∆-compatible geometric tropicalization with respect
to ϕ. Now again by Lemma 5.9, using toroidal resolution of singularities, there

exists a unimodular subdivision Σ̃ of Σ such that Σ̃ has ∆-compatible geometric
tropicalization with respect to ϕ. �

5.3. ∆-Compatible Modification. We now complete the proof of Theorem 1.9.

Proof. (a) This follows from Remark 5.2 and Proposition 5.10.
(b) By resolution of singularities, there exists an open immersion U ⊂ X into a

smooth complete variety X such that X \U is a simple normal crossing divisor.
Therefore the result follows from part (a).

�

6. Geometric Tropicalization with a Given Map of Lattices

In this section, we will prove Theorem 1.12(b).
Let L be a lattice, let m ∈ Z>0, let ϕ : Zm → L be such that

ϕR|Rm
≥0

: Rm
≥0 → LR

is proper as a map of topological spaces, and let X be a smooth projective variety
of dimension at least max(m, 2).

Set Lϕ = ϕR(Rm) ∩ L ⊂ L.

Lemma 6.1. ϕR(Rm
≥0) is contained in a unimodular cone in Lϕ.
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Proof. Because ϕR|Rm
≥0

is proper, ϕR(Rm
≥0) is a pointed cone in Lϕ

R
and therefore

is contained in a unimodular cone in Lϕ. �

Now let v1, . . . , vn be a basis for Lϕ such that ϕR(Rm
≥0) ⊂ pos(v1, . . . , vn), and

let v1, . . . , vn, v
′
1, . . . , v

′
n′ be a basis for L.

Let e1, . . . , em be the standard basis for Zm, and let (aij)i∈{1,...,n},j∈{1,...,m} be
such that for each j ∈ {1, . . . ,m},

ϕ(ej) =

n∑

i=1

aijvi.

Lemma 6.2. (a) For each i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, we have aij ∈ Z≥0.
(b) For each j ∈ {1, . . . ,m}, there exists some i ∈ {1, . . . , n} such that aij 6= 0.
(c) The matrix (aij)ij has linearly independent rows.

Proof. (a) This follows from the fact that ϕR(Rm
≥0) ⊂ pos(v1, . . . , vn).

(b) This follows from the properness of ϕR|Rm
≥0
, which in particular implies that

each ϕ(ej) 6= 0.
(c) This follows from the fact that ϕR surjects onto Lϕ

R
.

�

Let L′1, . . . ,L
′
m be very ample line bundles on X such that for all ℓ′ ∈ Z>0, the

line bundles (L′1)
⊗ℓ′ , . . . , (L′m)⊗ℓ′ are distinct from each other.

Remark 6.3. For example, if L is a very ample line bundle, for each j ∈ {1, . . . ,m},
we can set L′j = L

⊗j , or if the Picard rank of X is at leastm, we can let L′1, . . . ,L
′
m

be very ample line bundles that are independent in Pic(X).

Lemma 6.4. There exists ℓ′ ∈ Z>0 such that

dimH0




m⊗

j=1

((L′j)
⊗ℓ′)⊗a1j


− 2 ≥ n′.

Proof. By Lemma 6.2(c), there exists some j ∈ {1, . . . ,m} such that a1j 6= 0. Thus
by Lemma 6.2(a), the line bundle E ′1 =

⊗m
j=1(L

′
j)

⊗a1j is very ample, and thus there

exists ℓ′ ∈ Z>0 such that

dimH0




m⊗

j=1

((L′j)
⊗ℓ′)⊗a1j


− 2 = dimH0((E ′1)

⊗ℓ′)− 2 ≥ n′.

�

Now let ℓ′ be as in Lemma 6.4, and for each j ∈ {1, . . . ,m}, set

Lj = (L′j)
⊗ℓ′ .

By Bertini’s theorem, there exist f1, . . . , fm such that for each j ∈ {1, . . . ,m}, we
have that fj ∈ H0(Lj) and div fj = Dj is smooth and irreducible, and D1+· · ·+Dm

is a simple normal crossing divisor. For each i ∈ {1, . . . , n}, set

Ei =
m⊗

j=1

L
⊗aij

j , si =

m⊗

j=1

f
⊗aij

j ∈ H0(Ei), ri = dimH0(Ei)− 1.
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Note that by our choice of ℓ′, we have that

r1 − 1 ≥ n′.

Lemma 6.5. For each i ∈ {1, . . . , n}, the line bundle Ei is very ample.

Proof. For each i, by Lemma 6.2(a) and Lemma 6.2(c), each aij ≥ 0 and for some
j ∈ {1, . . . ,m}, we have that aij 6= 0. Thus Ei is very ample. �

Now by Bertini’s theorem, there exists (s
(ℓ)
i )i∈{1,...,n},ℓ∈{1,...,ri} such that

• each s
(ℓ)
i ∈ H0(Ei) and each div s

(ℓ)
i = E

(ℓ)
i is smooth and irreducible,

• D1 + · · ·+Dm +
∑n

i=1

∑ri
ℓ=1E

(ℓ)
i is a simple normal crossing divisor,

• and si, s
(1)
i , . . . , s

(ri)
i is a basis for H0(Ei) for each i ∈ {1, . . . , n}.

For each i ∈ {1, . . . , n}, let xi, x
(1)
i , . . . , x

(ri)
i be homogeneous coordinates for Pri

with corresponding hyperplanes Hi, H
(1)
i , . . . , H

(ri)
i and let X →֒ Pri be the closed

immersion such that xi, x
(1)
i , . . . , x

(ri)
i pull back to si, s

(1)
i , . . . , s

(ri)
i , respectively.

Set

P =

n∏

i=1

Pri ,

and let each πi : P → Pri be the ith projection. Let X →֒ P be the closed
immersion induced by {X →֒ Pri}i. Set

T = P \

(
n⋃

i=1

π−1
i (Hi) ∪ π

−1
i (H

(1)
i ) ∪ · · · ∪ π−1

i (H
(ri)
i )

)

and

U = X ∩ T ⊂ X.

Let M be the character lattice of the algebraic torus T , and let N = M∨. For

each i ∈ {1, . . . , n}, let wi, w
(1)
i , . . . , w

(ri)
i ∈ N be the first lattice points of the rays

corresponding to π−1
i (Hi), π

−1
i (H

(1)
i ), . . . , π−1

i (H
(ri)
i ), respectively.

Let ψ : L→ N be defined by ψ(vi) = wi for each i ∈ {1, . . . , n} and ψ(v′i′ ) = w
(i′)
1

for each i′ ∈ {1, . . . , n′}.

Lemma 6.6. (a) For each i ∈ {1, . . . , n}, ℓ ∈ {1, . . . , ri}, we have the scheme
theoretic intersections

X ∩ π−1
i (Hi) = div si =

m∑

j=1

aijDj,

and

X ∩ π−1
i (H

(ℓ)
i ) = div s

(ℓ)
i = E

(ℓ)
i .

(b) For each j ∈ {1, . . . ,m},

valDj
|M =

n∑

i=1

aijwi,

and for each i ∈ {1, . . . , n}, ℓ ∈ {1, . . . , ri},

val
E

(ℓ)
i

|M = w
(ℓ)
i .

Proof. This follows from the construction of the map X →֒ P. �
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We now prove parts (i)-(iv) of Theorem 1.12(b).

Proof. (i) By Lemmas 6.2(b) and 6.6(a),

X \ U = D1 + · · ·+Dm +
n∑

i=1

ri∑

ℓ=1

E
(ℓ)
i .

(ii) Because L1, . . . ,Lm are very ample and X has dimension at least m,

D1 ∩ · · · ∩Dm 6= ∅.

(iii) Because r1−1 ≥ n′, the vectors w1, . . . , wn, w
(1)
1 , . . . , w

(n′)
1 are the first lattice

points of the rays generating a cone in the fan defining P as a T -toric variety.

Thus because P is smooth, we have that w1, . . . , wn, w
(1)
1 , . . . , w

(n′)
1 can be

completed to a basis for N , so the result follows.
(iv) By Lemma 6.6(b), for each j ∈ {1, . . . ,m},

(ψ ◦ ϕ)(ej) = ψ

(
n∑

i=1

aijvi

)

=
n∑

i=1

aijwi

= valDj
|M .

�

The remainder of Theorem 1.12(b) follows from the next two propositions.

Proposition 6.7. The map M → OU (U)×/k× induced by U →֒ T is injective.

Proof. Let u ∈ M such that χu|U ∈ k×. Considering χu as a rational function on
P, write

div(χu) =

n∑

i=1

hiπ
−1
i (Hi) +

n∑

i=1

ri∑

ℓ=1

h
(ℓ)
i π−1

i (H
(ℓ)
i ).

Then by Lemma 6.6(a),

0 = div(χu|X) =

m∑

j=1

(
n∑

i=1

hiaij

)
Dj +

n∑

i=1

ri∑

ℓ=1

h
(ℓ)
i E

(ℓ)
i .

Thus for all j ∈ {1, . . . ,m},
n∑

i=1

hiaij = 0,

and for all i ∈ {1, . . . , n}, ℓ ∈ {1, . . . , ri},

h
(ℓ)
i = 0.

Then by Lemma 6.2(c), for all i ∈ {1, . . . , n},

hi = 0.

Therefore div(χu) = 0, so χu ∈ OP(P)× = k× and thus u = 0. �

Proposition 6.8. If L′1, . . . ,L
′
m are independent in Pic(X), then the map M →

OU (U)×/k× induced by U →֒ T is surjective.
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Proof. Let g ∈ OU (U)×. Considering g as a rational function on X , write

div g = d1D1 + · · ·+ dmDm +

n∑

i=1

ri∑

ℓ=1

e
(ℓ)
i E

(ℓ)
i .

Then

OX
∼= OX(d1D1 + · · ·+ dmDm +

n∑

i=1

ri∑

ℓ=1

e
(ℓ)
i E

(ℓ)
i )

∼=

m⊗

j=1

L
⊗dj+

∑n
i=1

(∑ri
ℓ=1 e

(ℓ)
i

)
aij

j .

Then because L1, . . . ,Ln are independent in Pic(X), for each j ∈ {1, . . . ,m},

dj +

n∑

i=1

(
ri∑

ℓ=1

e
(ℓ)
i

)
aij = 0.

Now consider the divisor on P

H =

n∑

i=1

(
−

ri∑

ℓ=1

e
(ℓ)
i

)
π−1
i (Hi) +

n∑

i=1

ri∑

ℓ=1

e
(ℓ)
i π−1

i (H
(ℓ)
i ).

Then

OP(H) ∼=

n⊗

i=1

(π∗
iOPri (1))⊗−

∑ri
ℓ=1 e

(ℓ)
i

+
∑ri

ℓ=1 e
(ℓ)
i ∼= OP.

Thus there exists u ∈M such that div(χu) = H . By Lemma 6.6(a)

div(χu|X) =

m∑

j=1

(
−

n∑

i=1

(
ri∑

ℓ=1

e
(ℓ)
i

)
aij

)
Dj +

n∑

i=1

ri∑

ℓ=1

e
(ℓ)
i E

(ℓ)
i

= d1D1 + · · ·+ dmDm +

n∑

i=1

ri∑

ℓ=1

e
(ℓ)
i E

(ℓ)
i

= div g.

Thus χu|U and g have the same image inOU (U)×/k×, so the mapM → OU (U)×/k×

is surjective. �

7. Immersive Geometric Tropicalization

7.1. Surfaces without Immersive Geometric Tropicalization. In this sub-
section, we will prove Theorem 1.14(a).

Lemma 7.1. Let X be a smooth projective surface, let U ⊂ X be a very affine
open subvariety such that X \U is a simple normal crossing divisor, let U →֒ T be
a closed immersion into an algebraic torus, and let π : X ′ → X be the blow-up of
X at a point in X \ U .

If U ⊂ X does not have immersive geometric tropicalization with respect to
U →֒ T , then U ⊂ X ′ does not have immersive geometric tropicalization with
respect to U →֒ T .
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Proof. Let M be the character lattice of T , let D1, . . . , Dm be the irreducible com-
ponents of X \U , let p ∈ X \U be the center of π : X ′ → X , let D′

1, . . . , D
′
m be the

strict transforms of D1, . . . , Dm, respectively, and let E be the exceptional divisor
of π : X ′ → X .

By Theorem 1.12(a), valDj
|M 6= 0 for all j ∈ {1, . . . ,m}, so because U ⊂ X does

not have immersive geometric tropicalization with respect to U →֒ T , there exist
i 6= j ∈ {1, . . . ,m} such that Di ∩ Dj 6= ∅ and valDi

|M and valDj
|M are linearly

dependent.
If p /∈ Di∩Dj , thenD

′
i∩D

′
j 6= ∅ and valD′

i
|M and valD′

j
|M are linearly dependent.

If p ∈ Di∩Dj , then D
′
i∩E 6= ∅ and valD′

i
|M and valE |M are linearly dependent. In

either case, U ⊂ X ′ does not have immersive geometric tropicalization with respect
to U →֒ T . �

Lemma 7.2. Let X be a smooth projective surface, let U ⊂ X be a very affine
open subvariety such that X \U is a simple normal crossing divisor, let U →֒ T be

a closed immersion into an algebraic torus, and let U ⊂ X̃ be an open immersion

into a smooth projective surface such that X̃ \U is a simple normal crossing divisor.
If X is a non-ruled minimal surface and U ⊂ X does not have immersive geo-

metric tropicalization with respect to U →֒ T , then U ⊂ X̃ does not have immersive
geometric tropicalization with respect to U →֒ T .

Proof. By Lemma 7.1, it suffices to show the existence of a map π : X̃ → X such
that π restricts to the identity on U and such that π is isomorphic to a sequence
of point blow-ups.

There exists π′ : X̃ → X ′ such that X ′ is a minimal surface and π′ is a sequence
of point blow-ups. Let U ′ ⊂ U be a nonempty open subvariety such that π′|U ′ :
U ′ → π′(U ′) is an isomorphism. Let b : X ′ → X be the birational map defined by
the morphism π′(U ′) → X obtained by composing (π′|U ′)−1 : π′(U ′) → U ′ with
the inclusion U ′ ⊂ X . Then because X ′ and X are non-ruled minimal surfaces, b
is an isomorphism X ′ ∼

−→ X . Set

π = b ◦ π′ : X̃ → X.

Then π restricts to the identity on U and is isomorphic to a sequence of point
blow-ups, and we are done. �

We now complete the proof of Theorem 1.14(a).

Proof. Let X ′ be a non-ruled minimal surface with Picard rank at least 2. For
example, we can take X ′ to be the Fermat Quartic. Set m = 2, L = Z, and
ϕ : Zm → L to be the map of lattices taking both standard basis vectors to 1 ∈ Z.
Then ϕR|Rm

≥0
: Rm

≥0 → LR is proper as a map of topological spaces, so by Theorem

1.12(b), there exists an open subvariety U ⊂ X ′ and a closed immersion U →֒ T ′

into an algebraic torus such that X ′ \ U is a simple normal crossing divisor and
U ⊂ X ′ does not have immersive geometric tropicalization with respect to U →֒ T ′.
Furthermore, because X ′ has Picard rank at least 2, we can choose U and U →֒ T ′

so that T ′ has character lattice OU (U)×/k× and U →֒ T ′ is induced by a section
OU (U)×/k× → OU (U)× of OU (U)× → OU (U)×/k×.

Now let U →֒ T be a closed immersion into an algebraic torus and U ⊂ X be
an open immersion into a smooth complete variety X such that X \ U is a simple
normal crossing divisor. Then there exists a monomial morphism T ′ → T whose
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restriction to U is the closed immersion U →֒ T . Therefore, U ⊂ X does not have
immersive geometric tropicalization with respect to U →֒ T if U ⊂ X does not have
immersive geometric tropicalization with respect to U →֒ T ′. But the latter holds
by Lemma 7.2. �

7.2. Immersive Geometric Tropicalization of Non-Schön Varieties. In this
sub-section, we will prove Theorem 1.14(b). First we recall a well known fact, which
is straightforward to prove.

Proposition 7.3. Let T be an algebraic torus, let U →֒ T be a closed subvariety,
let X(∆) be a T -toric variety, let X be the closure of U in X(∆), and let

m : T ×X → X(∆)

be the multiplication map. If Y is a torus orbit of X(∆) and y ∈ Y (k), then

m−1(y) ∼= GdimT−dimY
m × (X ∩ Y ),

where X ∩ Y is a scheme-theoretic intersection.

Let X be a smooth projective variety of dimension at least 2. Let L be a very
ample line bundle on X . By Bertini’s theorem, there exists f ∈ H0(L) such that
div f = D is smooth and irreducible. Set

E = L⊗2, s = f⊗2 ∈ H0(E), r = dimH0(E)− 1.

By Bertini’s theorem, there exists (s(ℓ))ℓ∈{1,...,r} such that

• each div s(ℓ) = E(ℓ) is smooth and irreducible,
• D + E(1) + · · ·+ E(r) is a simple normal crossing divisor,
• and s, s(1), . . . , s(r) is a basis for H0(E).

Let x, x(1), . . . , x(r) be homogeneous coordinates for Pr with corresponding hy-
perplanes H,H(1), . . . , H(r) and let X →֒ Pr be the closed immersion such that
x, x(1), . . . x(r) pull back to s, s(1), . . . , s(r), respectively. Set

T = Pr \
(
H ∪H(1) ∪ · · · ∪H(r)

)

and

U = X ∩ T ⊂ X.

Let M be the character lattice of the algebraic torus T , and let N = M∨. Let
w,w(1), . . . , w(r) ∈ N be the first lattice points of the rays corresponding to the
hyperplanes H,H(1), . . . , H(r), respectively.

Lemma 7.4. (a) We have the scheme theoretic intersections

X ∩H = div s = 2D

and for each ℓ ∈ {1, . . . , r},

X ∩H(ℓ) = div s(ℓ) = E(ℓ).

(b) We have

valD |M = 2w,

and for each ℓ ∈ {1, . . . , r},

valE(ℓ) |M = w(ℓ).

Proof. This follows from the construction of the map X →֒ Pr. �
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Proposition 7.5. X \ U is a simple normal crossing divisor and U ⊂ X has
immersive geometric tropicalization with respect to U →֒ T .

Proof. By Lemma 7.4(a),

X \ U = D + E(1) + · · ·+ E(r),

so it is a simple normal crossing divisor. The remainder of the proposition fol-
lows from Lemma 7.4(b) and the fact that any strict subset of the lattice points
{w,w(1), . . . , w(r)} forms part of a basis for N . �

Proposition 7.6. The map M → OU (U)×/k× induced by U →֒ T is an isomor-
phism.

Proof. By setting m = 1, L = Z, and ϕ : Zm → L to be multiplication by 2, we
see that the construction of U →֒ T is a special case of the construction used in
the proof of Theorem 1.12(b). Thus the result follows from Propositions 6.7 and
6.8. �

The following proposition completes the proof of Theorem 1.14(b).

Proposition 7.7. U is not schön in T .

Proof. Let C(X \ U) be the set of irreducible components of X \ U . For each
collection S ⊂ C(X \ U), set

σS = pos(valE |M |E ∈ S) ⊂ NR,

and set

∆ = {σS | S ⊂ C(X \ U),
⋂

E∈S

E 6= ∅}.

Then by Lemma 7.4(b), ∆ is a sub-fan of the unimodular fan defining Pr as a
T -toric variety. Let X(∆) ⊂ Pr be the T -toric variety defined by ∆.

We first show that ∆ is a tropical fan for U giving X ⊂ X(∆) as a tropical
compactification of U . By construction, X is the closure of U in X(∆). Now
consider the multiplication map

m : T ×X → X(∆).

We need to show that m is flat and surjective. By construction of ∆, the fact that
D + E(1) + · · · + E(r) is a simple normal crossing divisor, and Lemma 7.4(a) and
Proposition 7.3, the fibers of m are nonempty and equidimensional. Thus because
T ×X and X(∆) are smooth, this implies that m is flat and surjective.

But again by Lemma 7.4(a) and Proposition 7.3, m has a non-reduced fiber and
thus is not smooth. Therefore U is not schön in T . �
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