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Kolmogorov widths on the sphere via eigenvalue estimates for

Hölderian integral operators

T. Jordão ∗ & V. A. Menegatto

Approximation processes in the reproducing kernel Hilbert space associated to a con-

tinuous kernel on the unit sphere Sm in the Euclidean space R
m+1 are known to de-

pend upon the Mercer’s expansion of the compact and self-adjoint L2(Sm)-operator

associated to the kernel. The estimation of the Kolmogorov n-th width of the unit

ball of the reproducing kernel Hilbert space in L2(Sm) and the identification of the

so-called optimal subspace usually suffice. These Kolmogorov widths can be computed

through the eigenvalues of the integral operator associated to the kernel. This paper

provides sharp upper bounds for the Kolmogorov widths in the case in which the

kernel satisfies an abstract Hölder condition. In particular, we follow the opposite

direction usually considered in the literature, that is, we estimate the widths from

decay rates for the sequence of eigenvalues of the integral operator.

1 Introduction

Let us start with some background material. We will endow the unit sphere Sm, m ≥ 2, of Rm+1

with its usual geodesic distance and write σm to denote the induced Lebesgue measure on Sm and

ωm its volume. If K : Sm × Sm → R is a symmetric and positive definite kernel on Sm, write

(H(K), ‖ · ‖H) to denote the unique separable Hilbert space of functions f : Sm → R where K

is a reproducing kernel. If K is continuous, the space H(K) is embeddable in the usual space

L2(Sm) := L2(Sm, σm). Indeed, this follows from

∫

Sm

K(x, x)dσm(x) < ∞,

and the inequality

‖f‖2 ≤
[

1

ωm

∫

Sm

K(x, x)dσm(x)

]1/2

‖f‖H, f ∈ H(K).

By the way, we will write ‖ · ‖p, 1 ≤ p ≤ ∞, to the denote the p-norm in the usual space Lp(Sm) :=

Lp(Sm, σm).

Under the setting in the previous paragraph, the integral operator K : L2(Sm) → L2(Sm) given

by

K(f) =

∫

Sm

K(x, y)f(y)dσm(y), f ∈ L2(Sm), (1.1)
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is well-defined, compact, and self-adjoint. Its range is a dense subset of H(K) and, in addition,

〈f, g〉L2(Sm) = 〈f, g〉H(K), f ∈ H(K), g ∈ L2(Sm).

Since a version of the classical Mercer’s Theorem hold, the integral operator K is positive and has

a countable set of positive eigenvalues, say, λ1 ≥ λ2 ≥ · · · > 0, with respective eigenfunctions

ϕ1, ϕ2, . . ., that is,

Kϕi = λiφi, i = 1, 2, . . . .

The set {ϕi : i = 1, 2, . . .} is orthonormal in L2(Sm) and orthogonal in H(K). Further,

K(x, y) =
∞
∑

i=1

λiϕi(x)ϕi(y), x, y ∈ Sm, (1.2)

where the sum is absolutely and uniformly convergent. Since ‖ϕi‖2H(K) = λ−1
i , i = 1, 2, . . ., it follows

that the set {
√
λi ϕi : i = 1, 2, . . .} is an orthonormal basis of H(K). Throughout, we will write

Ωn := span {
√

λi ϕi : i = 1, . . . , n}, n = 1, 2, . . . .

This is the point at which we may say a little bit about widths of Kolmorogov (see [15] and

other references quoted there). The Kolmogorov n-width of a subset A of a Hilbert space H is the

quantity dn(A;H) that measures how n-dimensional subspaces of H can approximate A. In other

words, it is defined as

dn(A;H) := inf
Vn⊂H

sup
f∈A

inf
fn∈Vn

‖f − fn‖H , (1.3)

where the first infimum is taken over all n-dimensional subspaces Vn ofH. If the infimum is attained,

that is,

dn(A;H) = sup
f∈A

inf
fn∈Vn

‖f − fn‖H

for some n-dimensional subspace V of H, then V is called an optimal subspace. The characterization

of optimal subspaces and either the computation or estimation of the widths are the highlight

problems in this regard and, usually, the case in which A is the closed unit ball in H receives most

of the attention.

Returning to the spherical setting we previously introduced and letting S be the unit sphere in

H(K), a result in [18] (see also [15, Chapter 6]) reveals that

dn(S;L
2(Sm)) = inf

Vn⊂L2(Sm)
sup
f∈S

‖f −Qn(f)‖2 =
√

λn+1,

in which Qn(f) is the projector of f onto Vn in L2(Sm), that is,

Qn(f) =

n
∑

i=1

〈f, hi〉L2(Sm)hi, f ∈ L2(Sm),

where {h1, h2, . . . , hn} is an L2(Sm)-orthonormal basis of Vn. In addition, Ωn turns out to be

the unique optimal subspace. In particular, the analysis of the Mercer’s representation for K has

extreme relevancy in the understanding of the approximation processes in H(K) which are dictated

by the Kolmogorov widths.

2



If we replace the projector Qn with the projector Pn of Vn onto H(K), but keep the approxi-

mations in the L2(Sm) norm, a result in [17] ratifies that

dn(S;L
2(Sm)) = inf

Vn⊂H(K)
sup
f∈S

‖f − Pn(f)‖2.

Further, the optimality of Ωn remains for this alternative definition of the Kolmogorov n-with, that

is,

dn(S;L
2(Sm)) = sup

f∈S

∥

∥

∥

∥

∥

f −
n
∑

i=1

〈f, gi〉L2(Sm)gi

∥

∥

∥

∥

∥

2

.

where {g1, g2, . . . , gn} is an H(K)-orthonormal basis of Ωn.

In this paper, we will provide sharp estimates for the Kolmogorov n-with dn(S;L
2(Sm)) de-

scribed above under the assumption that the kernel K satisfies an abstract Hölder condition. In

Section 2, we introduce notation until the point we are able to introduce the Hölder condition to

be used in the paper which is defined through convolutions with parameterized family of measures.

We provide a few examples frequently used as concrete realizations for the Hölder condition and

also include a Gaussian-like kernel that satisfies one of the exemplified realizations. In Section 3,

we introduce a family of approximating operators and provide reasonable conditions in order that

these operators be uniformly bounded and have finite rank. The operators are used to estimate the

eigenvalues of the Hölderian integral operators K in Section 4, which lead to sharp estimates for

dn(S;L
2(Sm)). Section 5 contains a concrete case that exemplifies our achievements.

2 Convolution with measures and the Hölder condition

In this section, we introduce more notation and briefly discuss the Hölder condition we intend to

make use of.

Let Mρ(S
m) be the set of finite regular measures on Sm which are invariant under the group

of rotations of Sm fixing a pole ρ. It becomes a Banach space under the norm

|µ|(Sm) = sup

{

1

ωm

∣

∣

∣

∣

∫

Sm

fdµ

∣

∣

∣

∣

: f ∈ L1(Sm, µ); ‖f‖1 ≤ 1

}

,

where |µ| is the total variation of µ. If x ∈ Sm, Oρ
x will denote a rotation of Sm such that Oρ

x(x) = ρ.

That being said, we define ϕx : Mρ(S
m) → Mρ(S

m) by the formula

ϕx(µ) := µ ◦ Oρ
x, µ ∈ Mρ(S

m).

The notations above agree with those in [2, 7].

Next we introduce the notion of isotropy for kernels. A kernel K : Sm × Sm → R is isotropic

whenever there is a function Ki : [−1, 1] −→ R (the isotropic part of K) so that

K(x, y) = Ki(x · y), x, y ∈ Sm,

where · stands for the usual inner product of Rm+1. If K ∈ L1(Sm×Sm) := L1(Sm×Sm, σm×σm)

is isotropic, then its norm, also denoted by ‖ · ‖1, can be computed through the formula

‖K‖1 :=
ωm−1

ωm

∫ 1

−1
|Ki(u)|(1 − u2)(m−2)/2du.

We now recall a result proved in [7].
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Proposition 2.1. (1 ≤ p ≤ ∞) Let ρ be a pole in Sm. If f belongs to Lp(Sm) and µ is an element

of Mρ(S
m), then the formula

(f ∗ µ)(x) := 1

σm

∫

Sm

f(y)dϕx(µ)(y), (2.4)

defines an element of Lp(Sm) satisfying ‖f ∗ µ‖p ≤ ‖f‖p|µ|. Further, if f is isotropic, then so is

f ∗ µ.

We call f ∗ µ the spherical convolution of f and µ. If we consider a family {µt : t ∈ (0, π)} in

Mρ(S
m), then we can define a family {Tt : t ∈ (0, π)} of linear operators on Lp(Sm), where each

Tt is defined through the convolution just introduced:

Tt(f) = f ∗ µt, f ∈ Lp(Sm).

It is standard to verify that each Tt is bounded. Indeed, the total variation of the µt determines an

upper bound for the norm of Tt in the sense that (see, for example, [2])

‖Tt‖ ≤ |µt|, t ∈ (0, π).

If for u ∈ [−1, 1] we write dλm(u) := (1 − u2)(m−2)/2du, then we can also construct a family

{Tt : t ∈ (0, π)} via the natural embedding

f ∈ L1([−1, 1], λm) →֒ µf ∈ Mρ(S
m),

where

dµf (u) = f(u)(1− u2)(m−2)/2du, u ∈ [−1, 1].

If we start with a family of isotropic kernels {Kt : t ∈ (0, π)} in L1(Sm), since Kt
i ∈ L1([−1, 1], λm),

we can now put

Tt(f) = f ∗ µKt

i

, f ∈ Lp(Sm).

In this case the norm inequality for the family becomes

‖Tt‖ ≤ ‖Kt‖1, t ∈ (0, π).

The forthcoming results will be formulated based on the two constructions introduced above.

To proceed, let us write Hm
k to denote the space of all spherical harmonics of degree k in m+1

variables and denote its dimension by dmk . It is well-known that

dmk ≤ 2km, k ≥ k0, (2.5)

where k0 = k0(m). The orthogonal decomposition L2(Sm) = ⊕∞
k=0Hm

k is also well-known while the

orthogonal projection of L2(Sm) over a single Hm
k is given by the formula

Yk(f)(x) =
dmk
ωm

∫

Sm

P
(m−1)/2
k (x · y)f(y)dσm(y), f ∈ L2(Sm), x ∈ Sm, (2.6)

in which P
(m−1)/2
k is the usual Gegenbauer polynomial of degree k associated to the dimension m

and normalized as P
(m−1)/2
k (1) = 1.
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The action of the projections over convolutions is given by

Yk(f ∗ µ)(x) = µkYk(f)(x), f ∈ L2(Sm), µ ∈ Mρ(S
m),

where

µk := Yk(µ) =
1

ωm

∫

Sm

P
(m−1)/2
k (ρ · y)dµ(y), k = 0, 1, . . . .

The sequence {µk}∞k=1 will be called the multiplier of µ. Additional information on this specific

topic can be found in [2, 7].

At this point it is important to consider a few concrete examples.

Example 2.2. (Shifting operator) The usual shifting operator is defined by the formula ([2])

Stf(x) =
1

Rm(t)

∫

Rt
x

f(y)dσr(y), x ∈ Sm, f ∈ L2(Sm), t ∈ (0, π),

in which dσr(y) is the volume element of the rim Rt
x := {y ∈ Sm : x · y = cos t} and Rm(t) =

ωm−1(sin t)
m−1 is its total volume. Its convolution structure is defined as

St(f) = f ∗ µt, t ∈ (0, π), f ∈ L2(Sm),

where {µt : t ∈ (0, π)} ⊂ Mρ(S
m) satisfies

Yk(µt) = P
(m−1)/2
k (cos t), k = 0, 1, . . . .

In particular, the multiplier of µt is {P (m−1)/2
k (cos t)}∞k=0.

Example 2.3. (Averages on caps) This example is discussed in [2, 6], while the point of view we

will give here is aligned with [9]. The average operator on the cap Cx
t = {w ∈ Sm : x · y ≥ cos t} of

Sm, defined by t, is the operator At given by

(Atf)(x) =
1

Cm(t)

∫

Cx
t

f(w)dσm(w), x ∈ Sm, t ∈ (0, π),

in which Cm(t) is total volume of the cap Cx
t . It is shown in [9] that

At(f) = f ∗ µZt
, t ∈ (0, π), f ∈ L2(Sm),

where

µZt
= C−1

m (t)µ̃Zt
, t ∈ (0, π),

dµ̃Zt
(x) = Zt(ρ, x)dσm(x), t ∈ (0, π), x ∈ Sm,

and

Zt(x, y) :=

{

ωm, if cos t ≤ x · y ≤ 1

0, otherwise.

The sequence of projections of µZt
are given by (see [2])

Yk(µZt
) =

ωm−1

Cm(t)

(
∫ t

0
P

(m−1)/2
k (cos h)(sin h)m−1dh

)

, t ∈ (0, π), k = 0, 1, . . .
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while some identities for Gegenbauer polynomials lead to

Yk(µZt
) =

ωm−1(m− 1)

k(k +m− 1)
(sin t)mP

(m+1)/2
k−1 (cos t), t ∈ (0, π), k = 0, 1, . . . ,

which defines the multiplier of µZt
.

Example 2.4. (Stekelov-type means) The Stekelov-type mean defined by t ∈ (0, π) is given by

Et(f)(x) =
1

Dm(t)

∫ t

0

Cm(s)

Rm(s)
As(f)(x)ds, t ∈ (0, π), x ∈ Sm,

where the normalizing constant Dm(t) is chosen so that Et(1) = 1. We have that

Et(f) = f ∗ µWt
, t ∈ (0, π), f ∈ L2(Sm),

where

µWt
:= D−1

m (t)µ̃Wt
, t ∈ (0, π),

dµ̃Wt
(x) = Wt(ε · x)dσm(x), t ∈ (0, π), x ∈ Sm,

and

Wt(x, y) :=







∫ t

0

1

Rm(s)
Zs(x, y)ds, if cos t ≤ x · y ≤ 1

0, otherwise,

Zs being the kernels described in the previous example. Also,

Yk(µWt
) =

1

Dm(t)

∫ t

0

Cm(s)Yk(µZs
)

Rm(s)
ds, t ∈ (0, π) k = 0, 1, . . . .

and the multiplier of µWt
becomes clear.

Finally, we may introduce the Hölder condition we intend to use in the paper. It depends upon a

fixed sequence of measures {µt} defining convolution operators Tt as previously described and also

exemplified above. It also depends upon a real number ρ ∈ (0, 2] and a function B : Sm → [0,∞)

belonging to L∞(Sm). A kernel K : Sm × Sm −→ R is said to be (µt, B, ρ)-Hölder if

|(K(x, ·) ∗ µt)(y)−K(x, y)| ≤ B(x)tρ, t ∈ (0, π), x, y ∈ Sm. (2.7)

In this case the corresponding integral operator K is called Hölderian.

The three examples described above define potential sequences of measures that can be used in

the Hölder condition just defined. It is easy to verify that if a kernel K is (µt, B, ρ)-Hölder, for some

B and ρ according to Example 2.2, then it is (µZt
, B, ρ)-Hölder. Similarly, if it is (µZt

, B, ρ)-Hölder,

then it is (µWt
, B, ρ)-Hölder as well.

We close the section presenting a concrete realization for the previous definition. It is commonly

used in learning theory and in methods related to the approximation of functions in reproducing

kernel Hilbert spaces (see [3, 13] and references quoted there). As usual, we will write A(t) ≍ B(t),

t ∈ (0,∞), to indicate that there exist nonnegative constants c1 and c2, not depending upon t, such

that c1 A(t) ≤ B(t) ≤ c2 A(t), t ∈ (0, π).
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Example 2.5. For σ > 0, let Kσ be the Gaussian-like kernel given by

Kσ(x, y) = exp(−2σ−2(1− x · y)), x, y ∈ Sm.

Proposition 2.14 in [3] ratifies that K is representable in the form

Kσ(x, y) =
∞
∑

k=0

λσ
k

dm
k
∑

j=1

ϕk,j(x)ϕk,j(y), x, y ∈ Sm,

where {λσ
k}∞k=0 ⊂ [0,∞) and {ϕk,j : j = 1, 2 . . . , dmk } is an L2(Sm)-orthonormal basis of Hm

k . As a

matter of fact, we have that

λσ
k = e−2/σ2

σm−1Ik+(m−1)/2(2σ
−2)Γ((m+ 1)/2), k = 0, 1, . . . .

where Iv(·) stands for the modified Bessel function of first kind associated with v. In particular,

2λσ
k > (2k +m+ 1)σ2λσ

k+1, k = 0, 1, . . . .

Since

St(Kσ(x, ·)) =
∞
∑

k=0

λσ
kP

(m−1)/2
k (cos t)

dm
k
∑

j=1

ϕk,j(x)ϕk,j , x, y ∈ Sm, t ∈ (0, π),

we have that

St(Kσ(x, ·))(y) −Kσ(x, y) =
∞
∑

k=0

λσ
k

(

P
(m−1)/2
k (cos t)− 1

)

dm
k
∑

j=1

ϕk,j(x)ϕk,j(y).

An application of the usual Hölder’s inequality reveals that





∞
∑

k=0

λσ
k

(

P
(m−1)/2
k (cos t)− 1

)2
dm
k
∑

j=1

|ϕk,j(x)|2




1/2



∞
∑

k=0

λσ
k

dm
k
∑

j=1

|ϕk,j(y)|2




1/2

.

is an upper bound for |St(Kσ(x, ·))(y) −Kσ(x, y)|. The second multiplicand in the bound above is

Kσ(y, y) = 1. On the other hand, since (see [4])

(

P
(m−1)/2
k (cos t)− 1

)2
≍ min(1, kt)2, t ∈ (0, π), k ∈ Z+,

it follows that




∞
∑

k=0

λσ
k

(

P
(m−1)/2
k (cos t)− 1

)2
dm
k
∑

j=1

|ϕk,j(x)|2




1/2

≍





∞
∑

k=0

λσ
k min(1, kt)2

dm
k
∑

j=1

|ϕk,j(x)|2




1/2

,

for t ∈ (0, π) and x ∈ Sm. Hence, we may infer that

|St(Kσ(x, ·))(y) −Kσ(x, y)| ≤ C t2





∞
∑

k=0

k2λσ
k

dm
k
∑

j=1

|ϕk,j(x)|2




1/2

, t ∈ (0, π), x, y ∈ Sm,
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for some C > 0. If we put

B(x) :=





∞
∑

k=0

k2λσ
k

dm
k
∑

j=1

|ϕk,j(x)|2




1/2

, x ∈ Sm,

an application of the well known addition formula for spherical harmonics yields that

B(x) =

(

∞
∑

k=0

k2λσ
kd

m
k

)1/2

, x ∈ Sm.

Since B does not depend upon x, in order to show that B ∈ L∞(Sm), it suffices to verify that the

series in

B2 = σm−1e−2/σ2

Γ((m+ 1)/2)

∞
∑

k=0

k2Ik+(m−1)/2(2σ
−2)dmk

is convergent. However, due to the inequality

Iν(x) <
xνex

2νΓ(ν + 1)
, x > 0,

proved in [12], we have that

B2 ≤ Γ((m+ 1)/2)

∞
∑

k=0

k2dmk
σ2kΓ(k + (m+ 1)/2)

.

Introducing (2.5) in the expression above, it is seen that the convergence of the series boils down

to the convergence of
∞
∑

k=k0

km+2

σ2kΓ(k + (m+ 1)/2)
.

Basic estimates for the Gamma function reduces the analysis to the convergence of

∞
∑

k=k0

km+2ek+(m−1)/2)

σ2k[k + (m+ 1)/2]k+(m−1)/2
.

However, the series above converges by the usual ratio test. Thus, B ∈ L∞(Sm) and, consequently,

Kσ is (µt, B, 2)-Hölder with {µt}∞k=0 as in Example 2.2.

3 Approximation operators

This section is mainly concerned with the analysis of certain normalized linear operators associated

with families {Tt : t ∈ (0, π)} of convolution operators, as defined by the constructions presented in

the previous section. The normalized operators will be used in the search for optimal decay rates

for the sequence of eigenvalues of a Hölderian integral operator K whenever secondary conditions

are in force. The rates are to be used in Section 5.
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Throughout this section {Tt : t ∈ (0, π)} will denote a family of convolution operators defined

by a family {µt : t ∈ (0, π)} of measures in Mρ(S
m), in accordance with the two cases described in

Section 3. The specific problem we will deal with here is this one: for fixed nonnegative integers n

and r and a sequence of real or complex valued functions {Gn : n = 1, 2, . . .} which are integrable

in [0, π], to decide whether the formula

An(f)(·) :=
∫ π

0
Gn(t)Tt(f)(·)vm(t)(sin t)rdt, f ∈ Lp(Sm), (3.8)

(or a slight change of it) defines a bounded linear operator on Lp(Sm). If it does so, to estimate

the rank of such operator. If Tt(f) = f ∗ µt, f ∈ Lp(Sm), the normalizing function vm(t) appearing

above should be interpreted as the constant function 1 while if Tt(f) = f ∗ µKt

i

, f ∈ Lp(Sm), for

some kernel Kt, then

vm(t) :=

∫

supp(Kt(x,·))
dσm(z), (3.9)

where supp(Kt(x, ·)) is the support of the function y ∈ Sm → Kt(x, y) = Kt
i (x · y). Observe that

supp(Kt(x, ·)) does not depend upon x due to the invariance of σm with respect to orthogonal

transformations on R
m+1 ([10]).

Particular versions of the operator given by (3.8) are very commom in the approximation the-

ory literature. After some acquaintance with them, we found convenient to consider (3.8) in its

normalized version:

An,r(f)(·) :=
∫ π

0
G′

n(t)Tt(f)(·)vm(t)(sin t)rdt, f ∈ Lp(Sm), (3.10)

where G′
n = c−1

n,rGn and

cn,r =

∫ π

0
|Gn(t)|vm(t)(sin t)r dt.

A sufficient condition for boundedness of An,r is the content of the proposition below.

Proposition 3.1. If {µt : t ∈ (0, π)} is uniformly bounded in Mρ(S
m), then (3.10) defines a

bounded linear operator on Lp(Sm), 1 ≤ p ≤ ∞. In addition, the family {An,r : n = 1, 2, . . .} is

uniformly bounded.

Proof. Needless to say that the linearity of (3.10) follows from that of Tt, t ∈ (0, π). On the other

hand, Minkowski’s inequality for integrals ([8, p.194]) implies that

‖An,r(f)‖p ≤
∫ π

0
|G′

n(t)|‖Tt(f)‖pvm(t)(sin t)r dt, f ∈ L2(Sm).

Hence,

‖An,r(f)‖p ≤ ‖f‖p
∫ π

0
|µt||G′

n(t)|vm(t)(sin t)r dt ≤ M‖f‖p, f ∈ Lp(Sm),

where M is a uniform upper bound for the family {µt : t ∈ (0, π)} in Mρ(S
m). Thus M is a uniform

upper bound for the sequence {‖An,r(f)‖p}∞n=1.

9



A relevant realization for the operator (3.10) involves the generalized Jackson kernels Jl,n of a

fixed order l defined by

Jl,n(t) :=

[

sin((n + 1)t/2)

sin(t/2)

]2l

, t ∈ (0, π).

In this case, G′
n = J ′

l,n, where J ′
l,n = c−1

n,rJl,n and

cn,r =

∫ π

0

[

sin((n + 1)t/2)

sin(t/2)

]2l

vm(t)(sin t)r dt.

The generalized Jackson kernel Jl,n is an even trigonometric polynomial of degree ln. In the case

l = 1, it reduces itself to the Fèjer kernel while the cases in which l = 1 and n ∈ 2Z+ corresponds

to the Dirichlet kernels ([5, p.3]). In all these cases, the operators An,r are of finite rank, and in

order to prove that, we first compute the projections of An,r(f), for f ∈ Lp(Sm).

Proposition 3.2. For n ≥ 1 and f in L2(Sm), it holds

Yk(An,r(f))(x) =

∫ π

0
G′

n(t)µ
k
t Yk(f)(x)vm(t)(sin t)rdt, k = 0, 1, . . . ,

where for each t ∈ (0, π), {µk
t }∞k=0 is the multiplier of µt.

Proof. Fix n and f . It is an easy matter to verify that

Yk(An,r(f))(x) =

∫ π

0
G′

n(t) [Yk (Tt(f)) (x)] vm(t)(sin t)rdt, k = 0, 1, . . . .

On the other hand, we have that

Yk(Tt(f)) = Yk(f ∗ µt) = µk
t Yk(f), k = 0, 1, . . . .

The result follows.

We close the section presenting a methodology in order to gain finite rank operators among

the An,r. A simplified version of the result to be described below can be found in [11, p.214] while

another one, but in a more general setting, can be found in [16, p.760].

Theorem 3.3. Let {µt : t ∈ (0, π)} be uniformly bounded in Mρ(S
m) and assume the following

assumption holds: for each t, the multiplier of µt is

{

ck,m(vm(t))−1P β
α(k)(cos t)(sin t)

γ
}∞

k=0
,

where {ck,m}∞k=0 is a sequence of nonzero real numbers, α : Z+ → Z+ is strictly increasing, γ > 0

and 2β is an integer at least γ. If G′
n is an even trigonometric polynomial of degree δ(n), then

An,2β−γ is a bounded linear operator on L2(Sm) of rank at most dm+1
α−1(δ(n))

.

Proof. We know from Proposition 3.2 that An,r is a bounded linear operator on L2(Sm). Taking

into account our assumption and applying the previous proposition, we reach that

Yk(An,r(f))(x) = ck,m

(
∫ π

0
G′

n(t)P
β
α(k)(cos t)(sin t)

r+γdt

)

Yk(f)(x), k = 0, 1, . . . .

10



If G′
n is an even trigonometric polynomial of degree δ(n), we can write

G′
n(t) =

δ(n)
∑

j=0

ajP
β
j (cos t), a1, a2, . . . , aδ(n) ∈ R.

Hence, the integrals appearing above become

∫ π

0
G′

n(t)P
β
α(k)(cos t)(sin t)

r+γdt =

δ(n)
∑

j=0

aj

∫ π

0
P β
j (cos t)P

β
α(k)(cos t)(sin t)

r+γdt.

We now proceed inserting the choice r = 2β − γ, that is, we look at the integrals

∫ π

0
P β
j (cos t)P

β
α(k)(cos t)(sin t)

2βdt, j = 0, 1, . . . , δ(n).

Since α is strictly increasing, we can pick k0 so that α(k) > δ(n) whenever k ≥ k0. Hence, the

well-known orthogonality relation for Gegenbauer polynomials ([14, p.98]) implies that

∫ π

0
P β
j (cos t)P

β
α(k)(cos t)(sin t)

2βdt = 0, α(k) > δ(n), j = 0, 1, . . . , δ(n).

It follows that

Yk(An,2β−γ(f)) = 0, α(k) > δ(n),

or, equivalently, that

Yk(An,2β−γ(f)) = 0, k > α−1(δ(n)).

Thus, An,2β−γ(f) is a polynomial of degree at most dm+1
α−1(δ(n))

and the proof follows.

Remark 3.4. Returning to Example 2.2, it is easy to see that the family of measures {µt : t ∈
(0, π)} given there fits in the setting of Theorem 3.3 with ck,m = 1, vm(t) = 1 for all t, γ = 0,

α = the identity mapping, and β = (m − 1)/2. Lizorkin ([11, p. 214]) showed that for G′
n = Jl,n,

n = 1, 2, . . ., the operator An,m−1 has rank at most dm+1
ln .

As for Example 2.3, the family of measures {µZt
: t ∈ (0, π)} fits in Theorem 3.3 with

ck,m =
ωm−1(m− 1)

k(k +m− 1)
,

vm(t) = Cm(t) for all t, α(k) = k − 1, β = (m + 1)/2, γ = m. If G′
n = Jl,n, Proposition 2 in [10]

reveals that An,1 has rank at most dm+1
ln+1.

Regarding Example 2.4, the family of measures {µWt
: t ∈ (0, π)} also fits into the setting of

Theorem 3.3 with ck,m as in the previous case, vm(t) = Dm(t) for all t, α(k) = k−1, β = (m+1)/2,

and γ = m. If G′
n = Jl,n, Proposition 3 in [10] reveals that the operator An,m has rank at most

dm+1
ln+1.
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4 Kolmogorov n-widths

In this section, we return to the setting and notation of Section 1. We will deduce decay rates for

the sequence of eigenvalues of (1.1) under the assumption that K is (µt, B, ρ)-Hölder, in which the

µt all belong to either setting described in Section 2. In a second step, we will use them to estimate

dn(S;L
2(Sm)).

The procedure described above is not standard. Indeed, usually one estimates Kolmogorov n-

widths of certain subspaces of the reproducing kernel Hilbert space HK of a smooth enough kernel

K in order to deduce decay rates for the sequence of eigenvalues of the integral operator K in a

second step. A typical example of this standard procedure is described in [17].

The results will be validated under an additional assumption on the normalizing function vm(t)

introduced in Section 3. Precisely, if Tt(f) = f ∗ µt, f ∈ Lp(Sm), then we will require vm(t) ≍ 1,

t ∈ (0,∞). Otherwise, we will require that

vm(t) ≍ tc(m), t ∈ (0, π), (4.11)

for some constante c(m).

We begin with decay rates for the sequence of eigenvalues of K, in the case in which K is

(µt, B, ρ)-Hölder and some other secondary features hold. Prior to that, we recall a technical lemma

involving the square root K1/2 of the operator K. We use ‖·‖HS to denote the usual Hilbert-Schmidt

norm of a Hilbert-Schmidt operator. Its proof can be easily adapted from Lemmas 4 and 5 in [10].

Lemma 4.1. Let K be an integral operator as described at the introduction. If K is (µt, B, ρ)-

Hölder, then the operator K1/2 −An,r ◦K1/2 is Hilbert-Schmidt and there exists a positive constant

C so that

‖K1/2 −An,r ◦ K1/2‖HS ≤ C

[
∫ π

0
G′

n(t)t
ρ/2vm(t)(sin t)r dt

]

.

Further, if An,r has finite rank q, then the (2q)-th approximation number a2q(K1/2) of K1/2 satisfies

qa2q(K1/2) ≤ ‖K1/2 −An,r ◦ K1/2‖HS .

Proposition 4.2. Let {µt : t ∈ (0, π)} be a uniformly bounded family of measures in Mρ(S
m) so

that, for each t, the multiplier of µt is

{

ck,m(vm(t))−1P β
α(k)(cos t)(sin t)

γ
}∞

k=0
,

where {ck,m}∞k=0 is a sequence of nonzero real numbers, α : Z+ → Z+ is strictly increasing, γ > 0

and 2β is an integer at least γ. Assume that for every positive integer l, there exists q = q(l,m) > 0

so that ln ≤ α(qn), n = 1, 2, . . .. If K is (µt, B, ρ)-Hölder, then the sequence of eigenvalues {λn}∞n=1

of the integral operator K satisfies

λn = O(n−1−ρ/m), n → ∞.

Proof. The proof begins with an application of Theorem 3.3 with the choice

G′
n = J ′

l,n, n = 1, 2, . . . ,

12



leaving l fixed but generic. Due to our assumptions, we end up concluding that, for all n, An,2β−γ

has rank at most dm+1
α−1(ln)

. Recalling the estimate for the dimensions dmn given in Section 2, we may

select a positive integer q′ so that

dmα−1(ln) ≤ (q′α−1(ln))m, n = 1, 2, . . . .

Invoking our assumptions on α, we end up concluding that, for all n, the rank of An,2β−γ is at most

(qq′n)m. If K is (µt, B, ρ)-Hölder, we can infer from Lemma 4.1 that

(qq′n)mλ(qq′n)m = (qq′n)ma(qq′n)m ≤ C

[∫ π

0
Jl,n(t)t

ρ/2vm(t)(sin t)2β−γ dt

]2

, n = 1, 2, . . . ,

with C > 0.This is the point where we need a special choice of the integer l in order to proceed.

Picking l so that 2l ≥ ρ+ c(m) + 2β − γ +1 (c(m) is the constant in (4.11)), we can apply Lemma

1 in [10] in order to see that

(qq′n)mλ(qq′n)m ≤
lρC l

m,ρ

nρ
, n ∈ lZ+,

in which C l
m,ρ is now a positive constant depending upon m,ρ, l. Going one step further, we may

repeat the trick for n ∈ j + lZ+, j ∈ {1, 2, . . . , l − 1}, and finally deduce that

(qq′n)mλ(qq′n)m ≤ C ′

nρ
, n = 1, 2, . . . .

for some positive constant C ′ depending on m,ρ, l, and c(m), but not on n. In other words,

λ(qq′n)m ≤ C ′′

nρ+m
, n = 1, 2, . . . .

for some positive constant C ′′ not depending upon n. This implies the eigenvalue behavior described

in the statement of the theorem.

The extra assumption we have made on the mapping α in the previous theorem is not unreal.

Indeed, it is obviously true if α is a affine mapping, a fact in the concrete examples quoted so far.

Taking into account Proposition 4.2 and one the formulas quoted at the introduction, we have

our final result of the section.

Theorem 4.3. Under the assumptions in Proposition 4.2, if K is (µt, B, ρ)-Hölder, then

dn(S;L
2(Sm)) = O((n+ 1)−1/2−ρ/2m), n → ∞.

We now return to some of the examples we previously mentioned. If the family {µt ∈ (0π)}
is given via the shifting operator as in Example 2.2, then due to all the comments we have made

along the text, it is easily seen that the previous theorems hold for a (µt, B, ρ)-Hölder kernel K.

The same is true for the sequence {µZt
: t ∈ (0, π)} in Example 2.3 attached to the average on caps

operators. Indeed, in this case, we need to observe that

vm(t) ≍ tm, t ∈ (0, π),

13



a consequence of the inequality

τm−1

m

(

2

π

)m−1

tm ≤ vm(t) ≤ τm−1t
m, t ∈ (0, π),

and some calculations ([10, Example 1]). Then the average on caps also fits into the assumption

made in formula (4.11) with c(m) = m, m ∈ Z+. Finally, since the measures in Example 2.4 are

related to those in Example 2.3, the same is true for them. Thus, in all three cases, the asymptotic

behavior in Theorem 4.3 holds.

Let us finish the paper with an unusual example. Here we will assume m ≥ 2 and will consider

the dot product kernel

K(x, y) = 1 +
∞
∑

k=1

(

2k+1n(m−1)/2

k1+kǫ/m

)

(x · y)n, x, y ∈ Sm, (4.12)

where ǫ is chosen to be strictly bigger than m/2. If

bk :=
2k+1k(m−1)/2

k1+kǫ/m
, k = 0, 1, . . . ,

then it is easily seen that

k2ǫ
bk
bk−1

→ 2e−ǫ/m, k → ∞.

In other words, K satisfies all the assumptions of Theorem 3.3 in [1]. In particular, the sequence

{λk}∞k=1 of eigenvalues of K satisfies

λk ≍ bk
2k+1k(m−1)/2

=
1

k1+kǫ/m
, k → ∞.

Taking into account Example 2.5 and considering the Mercer expansion of K, it can be seen that

there exists a positive constant c, such that

|St(K(x, ·))(y) −K(x, y)| ≤ c t2





∞
∑

k=0

k2λk

dm
k
∑

j=1

|ϕk,j(x)|2




1/2

, x, y ∈ Sm.

Defining

B(x) :=





∞
∑

k=0

k2λk

dm
k
∑

j=1

|ϕk,j(x)|2




1/2

, x ∈ Sm,

we immediately have that

B(x) ≤
(

∞
∑

k=0

λk(k d
m
k )2

)1/2

≍
(

∞
∑

k=0

(k dmk )2

k1+kǫ/m

)1/2

, x ∈ Sm.

Since the series appearing above is clearly convergent we conclude that B ∈ L∞(Sm). It is now

clear that K is (St, B, 2)-Hölder and, as so, Theorem 4.3 is applicable, the outcome being

dn(S;L
2(Sm)) ≍ 1

(n+ 1)1/2+(n+1)ǫ/2m
, n → ∞.

In particular, it follows that

dn(S;L
2(Sm)) = o

(

(n+ 1)−(1/2+(n+1)/2m)
)

, n → ∞.
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