
Calabi-Yau Manifolds and SU(3) Structure

Magdalena Larfors1, Andre Lukas2 and Fabian Ruehle2

1Department of Physics and Astronomy, Uppsala University,
SE-751 20 Uppsala, Sweden

2Rudolf Peierls Centre for Theoretical Physics, University of Oxford,

Parks Road, Oxford OX1 3PU, UK

Abstract

We show that non-trivial SU(3) structures can be constructed on large classes of Calabi-Yau three-
folds. Specifically, we focus on Calabi-Yau three-folds constructed as complete intersections in
products of projective spaces, although we expect similar methods to apply to other constructions
and also to Calabi-Yau four-folds. Among the wide range of possible SU(3) structures we find
Strominger-Hull systems, suitable for heterotic or type II string compactifications, on all complete
intersection Calabi-Yau manifolds. These SU(3) structures of Strominger-Hull type have a non-
vanishing and non-closed three-form flux which needs to be supported by source terms in the
associated Bianchi identity. We discuss the possibility of finding such source terms and present
first steps towards their explicit construction. Provided suitable sources exist, our methods lead
to Calabi-Yau compactifications of string theory with a non Ricci-flat, physical metric which can
be written down explicitly and in analytic form.
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1 Introduction

Calabi-Yau (CY) manifolds together with their Ricci-flat metrics lead to a large class of string solu-
tions, which has been the main starting point for string compactifications and string model building
to date. The construction of CY manifolds is relatively straightforward: apart from a complex and
Kähler structure, only the vanishing of the first Chern class of the tangent bundle is required, a
condition which is easily checked. Correspondingly, large classes of CY manifolds have been con-
structed, notably the traditional set of complete intersection CY three-folds in products of projective
spaces (CICYs) [1–3] and CY hypersurfaces in toric four-folds [4]. The existence of Ricci-flat metrics
on CY manifolds is guaranteed by Yau’s theorem [5], although computing this metric is difficult
and currently only possible with numerical methods [6–9]. Fortunately, some of the physics of CY
compactifications, in particular the spectrum of massless particles and holomorphic quantities in the
low-energy theory, can be extracted with methods of algebraic geometry without any recourse to the
metric. However, other crucial pieces of physics, such as the physical Yukawa couplings, do depend
on the metric and are quite difficult to compute.

Another problematic aspect of CY compactifications is moduli stabilisation. Successful stabilisa-
tion of moduli seems to require flux which leads into the realm of manifolds with SU(3) structure.
An SU(3) structure on a six-dimensional manifold X can be defined by a pair (J,Ω) of a two-form J
and a three-form Ω, subject to certain constraints. As we will review, such structures are classified by
five torsion classes W1, . . . ,W5. Manifolds with SU(3) structure carry a globally defined spinor and,
therefore, may preserve some supersymmetry in the context of string compactifications. Whether
a given manifold with SU(3) structure does indeed provide a solution to string theory depends on
the pattern of torsion classes which have to match constraints arising from the chosen flux (as well
as the dilaton solution and the geometry of the un-compactified space). The case of CY manifolds
with a Ricci-flat metric corresponds to the special case of SU(3) structure where all torsion classes
vanish, W1 = · · · = W5 = 0. A closely related case is that of a CY manifold with a metric obtained
by conformal re-scaling of the Ricci-flat metric, which leads to an SU(3) structure characterised by
W1 = W2 = W3 = 0 and 3W4 = 2W5. In the following, we will refer to all other cases as non-trivial
SU(3) structures.

Although manifolds with non-trivial SU(3) structures form a very large class,1 a limited set
of examples which fit into string theory have been constructed. The explicitly known geometries,
suitable for heterotic string compactifications, consist of either homogeneous examples [11–14] or
torus fibrations over certain four-dimensional base spaces [15–17]. An interesting solution-generating
method is also provided in Ref. [18]. For type II compactifications, example geometries have been
constructed on twistor spaces [19–21], on more generic cosets [22], solvmanifolds [23] and on toric
varieties [24–26]. While these geometries have led to interesting examples of string vacua, their
construction is somewhat tedious. The problem is that there is no analogue of Yau’s theorem for the
types of non-trivial SU(3) structures required by string theory. This means that SU(3) structures
have to be constructed explicitly, for example by constructing the forms (J,Ω). Only after this, often
laborious, task is completed is it possibly to decide whether the structure is compatible with string
theory. Frequently, the answer turns out to be “no” and one has to start over in this “unguided”
search for suitable SU(3) structures. On the upside, once an SU(3) structure relevant to string
theory has been found explicitly, the associated metric can be computed from the forms (J,Ω) and is
therefore readily available for computing quantities in the associated effective theory, such as physical
Yukawa couplings.

The above discussion suggests that string compactification involves a choice between two op-
tions, both of which have considerable downsides. Calabi-Yau compactifications have the benefit of
relying on large classes of available spaces whose algebraic properties are well explored. However,

1Indeed, any six-dimensional, orientable spin manifold allows a reduction of the structure group to SU(3) [10].
However, this existence result does not determine the torsion of the SU(3) structure.
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the differential geometry of CY manifolds, which is ultimately required in a string theory context, is
hugely inaccessible due to the difficulties in computing the Ricci-flat metric. On the other hand, com-
pactifications on manifolds with a non-trivial SU(3) structure, offer some hope of a more accessible
differential geometry. However, very few such spaces relevant to string theory are known.2

In this paper, we explore whether the advantages of CY compactifications and those of compact-
ifications on manifolds with SU(3) structure can be combined in a new approach. Specifically, we
would like to ask and answer the following two questions:

• Can CY manifolds carry non-trivial SU(3) structures with explicit metrics?

• If so, are these non-trivial, explicit SU(3) structures on CY manifolds relevant for string com-
pactification?

We will answer the first of these questions with a resounding “yes” and the second one with a
somewhat tentative “yes”.

The plan of the paper is as follows. In the next section, we start with a brief review of SU(3)
structure, in order to prepare the ground and set the notation. Section 3 studies the possibility of
non-trivial SU(3) structures on the quintic, as a warm-up exercise. In Section 4, these results will
be generalised to all CICY manifolds. Further explicit examples are presented in Section 5 and in
Section 6 we discuss the requirement of satisfying the Bianchi identity for the flux. We conclude
in Section 7. Some technical results relevant to the discussion in the main text are collected in
Appendix A.

2 SU(3) structure

In this section, we review a number of well-known facts about SU(3) structures (see, for example,
Refs. [33–35] for more detailed accounts), in order to set the scene and fix our notation. We begin
with the mathematical background and then move on to some aspects of SU(3) structures relevant
in the context of string theory.

2.1 Definition and properties of SU(3) structure

An SU(3) structure of a six-dimensional manifold X is defined as a sub-bundle of the frame bundle
which has structure group SU(3). This means there are local frames εA, where A = 1, . . . , 6, of the
(co-)tangent bundle which patch together with SU(3) transition functions. More explicitly, if we
introduce a frame ea, where a = 1, 2, 3, together with the complex conjugates ēa of the (complexified)
co-tangent bundle by

e1 = ε1 + iε2 , e2 = ε3 + iε4 , e3 = ε5 + iε6 , (2.1)

then the presence of an SU(3) structure corresponds to the frame transformations ea → Uabe
b with

U ∈ SU(3). It is then immediately clear that the two forms

J =
i

2

∑
a

ea ∧ ēa , Ω = e1 ∧ e2 ∧ e3 . (2.2)

are SU(3) invariant and, hence, globally well-defined on X. The metric associated to this SU(3)
structure is given by

g =
∑
a

ea ⊗ ēa . (2.3)

2We note that the conformal CY case e.g. [27], does not offer a more accessible differential geometry since it is based
on the unknown Ricci-flat metric. The same applies to the heterotic flux vacua that are constructed as deformations
of CY solutions, e.g. [28, 29], and more recently [30–32]. This is why we have excluded these cases from what we have
called non-trivial SU(3) structures.
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torsion class SU(3) representation

W1 1⊕ 1

W2 8⊕ 8

W3 6⊕ 6̄

W4 3⊕ 3̄

W5 3⊕ 3̄

Table 1: Torsion classes for SU(3) structures and their associated SU(3) representations.

In terms of the real six-bein εA the above forms can also be written as

J = ε12 + ε34 + ε56 , Ω = Ω+ + iΩ−
Ω+ = ε135 − ε146 − ε236 − ε245 , Ω− = ε136 + ε145 + ε235 − ε246 ,

(2.4)

where ε12 is a short-hand notation for ε1 ∧ ε2, and similar for the other expressions of this type.
Alternatively, an SU(3) structure on the six-dimensional manifold X can be specified by a pair

(J,Ω) of a globally-defined real two-form J (which has to be positive everywhere on X) and a globally-
defined three-form Ω on X satisfying

J ∧ J ∧ J =
3i

4
Ω ∧ Ω̄ , J ∧ Ω = 0 . (2.5)

Note that the (local) expressions (2.2) for J and Ω do indeed satisfy those equations. Conversely,
forms (J,Ω) satisfying (2.5) can always be written locally as in (2.2).

The torsion classes can be read off from the exterior derivatives of J and Ω, which can be cast
into the form

dJ =
3i

4

(
W̄1Ω +W1Ω̄

)
+W4 ∧ J +W3 , dΩ = W1J ∧ J +W2 ∧ J +W5 ∧ Ω , (2.6)

where we decompose W1 = W+
1 + iW−1 and W2 = W+

2 + iW−2 . The torsion classes W1, W4 and W5

can be computed from dJ and dΩ via

W1 = − i
6

Ω y dJ =
1

12
J2 y dΩ , W4 =

1

2
J y dJ , W5 = −1

2
Ω+ y dΩ+ , (2.7)

where the contraction of forms is normalised such that, for example, ε12 y ε1234 = ε34. The remaining
torsion classes are constrained by

J yW2 = 0 , J yW3 = 0 , Ω yW3 = 0 . (2.8)

Altogether, this implies the SU(3) representations for the torsion classes as given in Table 1. For
illustration and later reference, Table 2 lists a number of mathematical properties of six-dimensional
manifolds and the associated vanishing pattern of the torsion classes.

2.2 SU(3) structure in string theory

In string theory, one is interested in 10-dimensional spacetimes M̂ of the form M̂ = X×M , where X
is a six-dimensional compact manifold and M is the four-dimensional non-compact spacetime. The
metric on M̂ has product or warped product structure, with the metric on X induced from an SU(3)
structure on X. This SU(3) structure also implies the existence of a globally defined spinor, as is
required to preserve a minimal amount of supersymmetry, a feature usually desirable in string theory.
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Property Vanishing torsion class

Complex W1 = W2 = 0

Half-flat W−1 = W−2 = W4 = W5 = 0

Special Hermitean W1 = W2 = W4 = W5 = 0

Nearly Kähler W2 = W3 = W4 = W5 = 0

Almost Kähler W1 = W3 = W4 = W5 = 0

Kähler W1 = W2 = W3 = W4 = 0

Ricci-flat W1 = W2 = W3 = W4 = W5 = 0

conformal Ricci-flat W1 = W2 = W3 = 3W4 − 2W5 = 0

Table 2: Mathematical properties and associated pattern of torsion classes, taken from Ref. [36]. Superscripts
± indicate, respectively, the real or imaginary part of the torsion class.

4D geometry String vacuum
Non-vanishing
torsion

SU(3) type

N = 1 Mkw Heterotic, Type II (H3, no RR flux) W3,W4 = dφ,W5 = 2W4 Complex

N = 1 Mkw Type IIB (H3, F3, F5, O3/O7) 3W4 = 2W5 Conf. CY
Type IIB/F-theory (H3, F3, F5, O3/O7) W4 = W5 Complex
Type IIB (F3, O5/O9) W3,W4 = dφ,W5 = 2W4 Complex

N = 1 Mkw Type IIA (F2, F4, O6) W2, 3W5 = dφ Symplectic

N = 1 AdS Type IIA (H3, Feven) W+
1 ,W

+
2 , dW

+
2 ∝ Ω+ Half-flat

Table 3: An overview of SU(3) vacua of string theory where H3 denotes the NS flux, Fp the RR p-form flux,
Op the orientifold planes and φ the dilaton. The third column lists necessary SUSY constraints on the torsion
(necessary and sufficient for the type IIA AdS vacua). The table summarises information from Refs. [36, 47].

The required type of SU(3) structure depends on the choice of flux, the dilaton profile, and the non-
compact space M and its metric. The latter is frequently chosen to be Minkowski space, AdS or dS
with the maximally symmetric metric. To give a flavour of the relevant types of SU(3) structures, we
list various supersymmetric string compactifications in Table 3, together with the required pattern of
torsion classes on X. The interested reader may find more detailed accounts on these SU(3) structure
string vacua, and their various generalisations, in [35,37–47] and the reviews [36,48,49].

Of particular importance for the rest of the paper will be the Strominger-Hull system [35, 37, 38]
which is characterised by a pattern of torsion classes given by

W1 = W2 = 0 , W5 = 2W4 , W3 arbitrary . (2.9)

From Table 2, this means the manifold X has a complex structure but is, in general, not Kähler (they
are, however, conformally balanced). The Strominger-Hull system can provide string solutions both
in the case of the heterotic and the type II string. In either case, the dilaton φ is specified by

W4 = dφ , (2.10)

with the string coupling gS = eφ.
For the heterotic case, the NS three-form field strength H can be expressed in terms of the torsion

classes as

∗H = e2φd(e−2φJ) = −W4 ∧ J +W3 ⇐⇒ H = i(∂ − ∂̄)J = 2 Im (W
(0,1)
4 ∧ J +W

(1,2)
3 ) , (2.11)

where the superscripts denote the component of the torsion class with the indicated number of
holomorphic and anti-holomorphic indices. Heterotic compactifications also involve a vector bundle
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V → X with connection A and associated field strength F . In order for the gauge bundle to preserve
supersymmetry, the connection has to satisfy the conditions

F ∧ Ω = 0 , F ∧ J ∧ J = 0 . (2.12)

In addition, the field strength associated with this gauge connection is related to the curvature R−

of the Hull connection ∇− on X by the Bianchi identity

dH = α′

4

(
tr(F ∧ F )− tr(R− ∧R−)

)
≈ α′

4 (tr(F ∧ F )− tr(R ∧R)) . (2.13)

Here, R− is the curvature of the connection ∇−, whose Christoffel symbols are given by Γ−mnp =

Γmnp− 1
2H

m
np (where Γmnp are the symbols of the Levi–Civita metric associated to the SU(3) structure),

and the last approximation retains only leading order terms in the α′ expansion.
It should be noted that the α′ corrections to the Bianchi identity (2.13) are required for solutions

with non-vanishing H flux on compact manifolds [50]. Furthermore, while the constraints (2.9)-(2.13)
can be shown to be necessary for a heterotic N = 1 Minkowski solution, they do not directly imply
the equations of motion. As was shown in Ref. [39] (see also [18,51]) one needs to require in addition
that ∇− is an SU(3) instanton,

R− ∧ Ω = 0 , R− ∧ J ∧ J = 0 . (2.14)

To see that this condition is satisfied, we first note that the vanishing of the gravitino variation
δψm = ∇+

mη implies that ∇+ is an instanton. Second, it is straightforward to show that

R+
mnpq −R−pqmn =

1

2
dHmnpq , (2.15)

where the right hand side is O(α′) by the Bianchi identity (2.13). Hence, ∇− is also an SU(3)
instanton, but only up to first order α′ corrections. However, these corrections appear at the same
order in α′ as other terms that have already been neglected in the equations of motion, and should
therefore be discarded as well. We refer the reader to Appendix A of [51] for a recent thorough
discussion of this issue.

For type II string theory, H can play the role of the NS three-form (as in the heterotic case), or it
can be interpreted as the RR three-form. In the former case, the relations (2.10) and (2.11) remain
valid, while the Bianchi identity for H reads

dH = NS 5-brane sources . (2.16)

If H is identified with the RR three-form in type IIB string theory, the relation between the torsion
classes and the flux is modified to

∗H = eφd(e−2φJ) = e−φ(−W4 ∧ J +W3) , (2.17)

while the Bianchi identity now reads

dH = RR 5-brane sources . (2.18)

For much of the following discussion, we will be focusing on the pattern of torsion classes (2.9) for the
Strominger-Hull system and only return to the task of satisfying the Bianchi identity in Section 6.

3 A warm-up example: the quintic

In this section, we discuss possible non-trivial SU(3) structures on the quintic CY, defined as the
anti-canonical hypersurface in the ambient space A = P4. This is a warm-up example for the next
section, where this discussion will be generalised to all CICY manifolds. We begin with some general
background and notation for the projective space P4.
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3.1 Basics

On P4 we introduce homogeneous coordinates xA, where A = 0, . . . , 4, and we define the standard
patches UA = {[x0 : · · · : x4] |xA 6= 0}. We will frequently be working on the patch U0 where we
denote the affine coordinates by za = xa/x0, where a = 1, . . . , 4. Two useful quantities, which will
appear throughout, are

σ =
4∑

A=0

|xA|2 , κ = 1 +
4∑

a=1

|za|2 , (3.1)

where the first is the homogeneous version and the second its affine counterpart. In terms of these
quantities, the Fubini-Study Kähler form J can be written as

J =
i

2π
∂∂̄ lnκ =

i

2π

4∑
a,b=1

[
|za|2

κ
δab −

|za|2|zb|2

κ2

]
dza
za
∧ dz̄b
z̄b

. (3.2)

The normalisation is chosen such that
∫
P4 J 4 = 1.

A quintic X ⊂ P4 is defined as the zero locus of a polynomial P = P (x) which is homogeneous of
degree five in the coordinates xA. The affine version of this polynomial is denoted by p = p(z) and it
is related to its homogeneous counterpart via

p(z) = P (1, z) , P (x) = x5
0 p

(
x1

x0
, . . . ,

x4

x0

)
. (3.3)

The above Kähler form J can be restricted to the quintic, which leads to a Kähler form

J0 = J |X (3.4)

on X. In practice, this restriction can be carried out by solving the defining equation p = 0 for, say,
z4 in terms of the remaining three coordinates zα, α = 1, 2, 3, and by replacing the differential dz4

with

dz4 = −
3∑

α=1

p,α
p,4

dzα , p,i =
∂p

∂zi
. (3.5)

Besides J0, another standard differential form on X is the (3, 0)-form Ω0 which, on the patch U0, can
be explicitly written as [52,53]

Ω0 =
dz1 ∧ dz2 ∧ dz3

p,4
. (3.6)

We can ask if the above forms (J0,Ω0) already define an SU(3) structure on X. Given the index
structure of both forms we clearly have

J0 ∧ Ω0 = 0 , (3.7)

so that the second condition (2.5) for an SU(3) structure is satisfied. In order to check the first
condition, we carry out an explicit calculation, using Eqs. (3.2), (3.4) and (3.6), which leads to

J0 ∧ J0 ∧ J0 =
3i

4
F Ω0 ∧ Ω̄0 . (3.8)

The function F on X reads in homogeneous and affine form

F =
1

π3σ4
|∇P |2 =

1

π3κ4

 4∑
a=1

|p,a|2 +
4∑

a,b=1

zaz̄bp,ap̄,b

 , (3.9)
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respectively, where ∇P denotes the gradient of P in terms of homogeneous coordinates. Since this
function is non-trivial, the first conditions (2.5) is not satisfied and the pair (J0,Ω0) does not define
an SU(3) structure.

We note from Eq. (3.9) that F is well-defined on P4 since it is homogeneous of degree zero in xA
and x̄A and it is non-singular since σ does not vanish on P4. Moreover, the quintic X (defined by
P = 0) is smooth precisely if ∇P 6= 0 everywhere on X, so F is a strictly positive function.

3.2 SU(3) structures on the quintic

As we have seen, the above forms (J0,Ω0) do not define an SU(3) structure due to the appearance
of the non-trivial function F in Eq. (3.8). However, this problem can be easily fixed by a conformal
re-scaling. Indeed, by virtue of Eqs. (3.7) and (3.8), the re-scaled forms

J = FkJ0 , Ω = F
3k+1

2 Ω0 , (3.10)

satisfy the relations (2.5) and, hence, define an SU(3) structure for any real number k. Note, in
particular, that F is strictly positive for a smooth quintic and, hence, J is a positive form, as
required.

What are the torsion classes associated to this SU(3) structure? Using dJ0 = dΩ0 = 0, the
exterior derivatives are easily computed as

dJ = k d(lnF) ∧ J , dΩ =
3k + 1

2
d(lnF) ∧ Ω . (3.11)

A comparison with the general equations (2.6) for these derivates shows that the torsion classes are
given by

W1 = W2 = W3 = 0 , W4 = k d(lnF) , W5 =
3k + 1

2
d(lnF) . (3.12)

Since W1 and W2 vanish, we know from Table 3 that we have an associated complex structure on X.
If we further specialise to k = 1, we find

W1 = W2 = W3 = 0 , W5 = 2W4 = 2 d(lnF) , (3.13)

which defines a Strominger-Hull system with W3 = 0, as can be seen by comparing the expression
with Eq. (2.9). The dilaton is fixed by

dφ = d(lnF) , (3.14)

so that the string coupling gS = const×F can be kept perturbative everywhere on X, for a suitable
choice of the integration constant. If H is interpreted as an NS flux, it is explicitly given by

H = i(∂ − ∂̄)J = iF−1(∂F − ∂̄F) ∧ J . (3.15)

In conclusion, starting from the Fubini-Study metric on P4 and the standard (3, 0) form on the
quintic, we can construct a family of SU(3) structures, parametrised by a real number k, on every
smooth quintic. For a special choice, k = 1, this SU(3) structure is of the Strominger-Hull form with
W3 = 0. The dilaton varies non-trivially, but can be kept in the perturbative range and we have
non-zero NS flux.

We note that these SU(3) structures do not corresponds to the conformally Ricci-flat case and
are, hence, non-trivial in the sense defined earlier. Indeed, the last row in Table 2 shows that a
conformally Ricci-flat SU(3) structure is characterised by 3W4 − 2W5 = 0, while, from Eq. (3.12),
our SU(3) structures satisfy

3W4 − 2W5 = −d(lnF) . (3.16)

Our next step will be to generalise this discussion to all CICY manifolds.
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4 CICYs and SU(3) structure

We will now discuss complete intersection CY manifolds (CICYs) in the ambient space A = Pn1 ×
· · · × Pnm . We first review some standard results and notation and then construct SU(3)-structures
on these manifolds, generalising the approach we have taken for the quintic.

4.1 Basics

As mentioned above, the ambient space is given by a product A = Pn1 × · · · × Pnm of m projective
factors with dimensions ni, where i = 1, . . . ,m, and total dimension d =

∑m
i=1 ni. Homogeneous

coordinates for each projective factor are denoted by xi = (xiA), where A = 0, 1 . . . , ni. Their affine
counterparts in the patch xi0 6= 0 are called zi = (zia) with zia = xia/xi0 and a = 1, . . . , ni. We
will frequently work in the patch U0 of A where all xi0 6= 0, using the coordinates (z1, . . . , zm). In
analogy with the quintic case, we define the quantities

σi =

ni∑
A=0

|xiA|2 , κi = 1 +

ni∑
a=1

|zia|2 , (4.1)

which can be used to write down the Fubini-Study Kähler forms Ji for each projective factor. In
affine coordinates zi they are explicitly given by

Ji =
i

2π
∂∂̄ lnκi =

i

2π

ni∑
a,b=1

[
|zia|2

κi
δab −

|zia|2|zib|2

κ2
i

]
dzia
zia
∧ dz̄ib
z̄ib

. (4.2)

The CICY three-foldX is defined as the common zero locus ofK polynomials Pu = Pu(x1,. . .,xm),
u = 1, . . . ,K. They are homogeneous with multi-degree qu = (qiu), where qiu is the degree of homo-
geneity of Pu in the coordinates xi of the ith projective factor. The polynomials are related to their
affine counterparts pu = pu(z1, . . . , zm) on the patch U0 by

pu(z1, . . . , zm) = Pu(1, z1, . . . , 1, zm)

Pu(x1, . . . ,xm) = su pu

(
x1 a
x1 0

, . . . , xma
xm 0

) } su =

m∏
i=1

x
qiu
i0 . (4.3)

The information about the multi-degrees of the defining polynomials, together with the dimensions
of the projective ambient space factors, is often summarised by the configuration matrix

X ∼

 Pn1 q1
1 · · · q1

K
...

...
...

Pnm qm1 · · · qmK


h1,1,h2,1

η

, (4.4)

where the two non-trivial Hodge numbers h1,1 and h2,1 are attached as superscripts and the Euler
number η = 2(h1,1 − h2,1) as a subscript. The Calabi-Yau condition, c1(TX) = 0, simply translates
into the conditions

∑K
u=1 q

i
u = ni + 1, for i = 1, . . . ,m, on the degrees. Using this notation, the

quintic in P4 discussed in the previous section is described by the configuration [P4 | 5]1, 101−200 .
There is an infinite number of CICY configuration matrices of the above type but it turns out that

different configurations can correspond to the same topological class of Calabi-Yau manifolds. Taking
this identification into account, the number of topological types of CICY three-folds becomes finite and
the classification of Ref. [1, 2] leads to 7890 topological types.3 This list provides one representative
configuration matrix for each topological type and we will use some examples from this list in the

3The full list, including supplementary information, can be downloaded from http://www-thphys.physics.ox.ac.

uk/projects/CalabiYau/cicylist/
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next section. For now the discussion will be carried out in terms of a general configuration matrix
and, hence, applies to all CICY manifolds and all configuration matrices.

There are a number of obvious differential forms which can be defined on X. First of all we can
restrict the Fubini-Study Kähler forms (4.2) to obtain the Kähler forms

Ji = Ji|X (4.5)

for i = 1, . . . ,m on X. In particular, note that these forms are closed, that is

dJi = 0 for i = 1, . . . ,m . (4.6)

There are configurations for which the forms Ji provide a basis for the second cohomology of X and
these are sometimes referred to as favourable configurations. In fact, out of the 7890 configurations
provided in the standard list of Ref. [1,2], some 60% turn out to be favourable in this sense. Further-
more, it has recently been shown [54] that almost all of the other entries in the list have equivalent,
favourable configurations. In other words, for almost all of the 7890 different topological types can
a configuration matrix be found such that the forms (4.5) span the entire second cohomology of X.
This means that the subsequent construction, which will be based on the forms Ji, can be thought
of as exhausting the entire available space of Kähler classes. We recall that the triple intersection
numbers λijk of X can be expressed in terms of the forms Ji by

λijk =

∫
X
Ji ∧ Jj ∧ Jk . (4.7)

As on every Calabi-Yau manifold, we have of course also the holomorphic (3, 0) form Ω0. For
CICYs this form can be explicitly constructed [1,3] by first defining the ambient space (3, 0) form Ω̂
via

Ω̂ ∧ dP1 ∧ · · · ∧ dPK = µ , µ = µ1 ∧ · · · ∧ µm , µi =
1

ni!
εA0A1···Ani

xiA0dxiA1 ∧ · · · ∧ dxiAni
, (4.8)

and then restricting this form to X, that is

Ω0 = Ω̂|X . (4.9)

We note that Ω0 has the properties

dΩ0 = 0 , Ω0 ∧ Ji = 0 for i = 1, . . . ,m , (4.10)

the latter as a trivial consequence of the index structure.
The forms Ji ∧ Jj ∧ Jk as well as Ω0 ∧ Ω̄0 are top forms on X and must, therefore, be related by

certain functions Λijk on X such that

Ji ∧ Jj ∧ Jk =
3i

4
Λijk Ω0 ∧ Ω̄0 . (4.11)

We note that integrating this equation over X and using Eq. (4.7) leads to an alternative expression
for the intersection numbers,

λijk =

∫
X

ΛijkΩ0 ∧ Ω̄0 . (4.12)

Eq. (4.11) is key in our construction of SU(3) structures on CICY manifolds and generalises the
relation (3.8) for the quintic. The computation of the single function Λ111 = F in Eq. (3.9) for the
quintic can be generalised, and a general result for Λijk for an arbitrary configuration matrix can be
found. Since the details are somewhat involved and the general formula turns out to be complicated
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this calculation has been relegated to Appendix A. One general rule, which is easily stated, is that
Λijk = 0 whenever the corresponding triple intersection number λijk vanishes. For co-dimension one
configuration matrices, that is, for K = 1 and a single defining polynomial P , the expression for Λijk
is relatively manageable. In this case, we have for all i, j, k with λijk 6= 0 that

Λijk =
cijk
6π3

[
m∏
l=1

|∇lP |2nl

σl

]
(|∇iP |2|∇jP |2|∇kP |2σiσjσk)−1 , (4.13)

where cijk are combinatorial constants and ∇iP is the gradient of P with respect to the homogeneous
coordinates xiA of the ith projective factor. The combinatorial factors cijk can be explicitly computed,
for example by using Eq. (4.12) or from the general expression in Appendix A. We find that all cijk ≥ 0,
with equality only if λijk = 0.

We note that the RHS of Eq. (4.13) is homogeneous of degree zero in all coordinates xi and, hence,
the Λijk are indeed well-defined on A and on X. Further, it follows from Eq. (4.13) that the Λijk are
non-singular (since all σi are non-zero on Pni) and Λijk ≥ 0 everywhere on X. These properties of
Λijk in the co-dimension one case are indeed general and also hold for higher co-dimension, as can be
seen from the results in Appendix A.

4.2 SU(3) structures on CICY manifolds

We will now construct SU(3) structures on arbitrary CICY manifolds by specifying a pair (J,Ω) of
a two- and three-form, starting with the Ansatz

J =
m∑
i=1

aiJi , Ω = AΩ0 , (4.14)

where the (1, 1)-forms Ji and the (3, 0)-form Ω0 have been defined in Eqs. (4.5) and (4.9), respectively.
Further, the ai are real, smooth functions on X which are constrained to be strictly positive (so that
J is a positive form) but are otherwise arbitrary. The function A on X is real or complex, smooth
and should be everywhere non-vanishing.

By virtue of the second relation (4.10) we have J ∧ Ω = 0, so that the second requirement for
an SU(3) structure in Eq. (2.5) is satisfied independently of the choice of functions ai and A. Using
Eq. (4.11), we find the first condition (2.5) for an SU(3) structure is satisfied iff

|A|2 =

m∑
i,j,k=1

Λijkaiajak . (4.15)

Using the explicit expressions for the structure functions Λijk, it can be shown that

m∑
i,j,k=1

Λijkaiajak = |det(B)|2 det(gαβ̄) , (4.16)

where gαβ̄ = −2iJαβ̄ is the metric associated to J and det(B), defined in (A.3), is the generalization

of the factor |p,4|2 that appears in the denominator of Ω in (3.6).
In conclusion, this means that the forms (J,Ω) in Eq. (4.14) define an SU(3) structure on X iff

the functions ai and A satisfy the constraint (4.15). Note that this leaves considerable freedom in
the construction. Basically, we can start by choosing any set of real, smooth and strictly positive
functions ai, and then use Eq. (4.15) to define A. Since all Λijk ≥ 0 and all ai ≥ 0, the RHS of
Eq. (4.15) is positive, so A defined in this way can be taken to be real and positive as well. For the
quintic, where m = 1, this leads to a form J given by the conformal re-scaling of a Kähler form.
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In general, for m > 1, this is no longer necessarily the case, since the functions ai can be chosen
independently.

Since dJi = dΩ = 0, it is easy to compute the exterior derivatives of J and Ω and we find

dJ =

m∑
i=1

dai ∧ Ji , dΩ = d ln(A) ∧ Ω . (4.17)

Comparison with the general expressions (2.6) for dJ and dΩ then leads to the torsion classes

W1 = W2 = 0 , W3 =
∑
i

(dai −W4) ∧ Ji , W4 =
1

2

∑
i

J y(dai ∧ Ji) , W5 = d ln(A) . (4.18)

Since W1 and W2 vanish, we know from Table 2 that there is always a complex structure. The other
generic feature of this class of SU(3) structures is that W5 is always an exact one-form. Further
details depend on the choice of functions ai. This leaves considerably scope for constructing SU(3)
structures based on the Ansatz (4.14), which we only begin to explore in the present paper.

As an example consider the expressions

σs,i :=

ni∑
A=0

|xiA|2s , (4.19)

which are generalisations of σi = σ1,i. Since these quantities are nowhere vanishing on A and ho-
mogeneous of bi-degree (s, s) in (xi, x̄i) they are well-suited to construct smooth, strictly positive
functions ai. For example, we can set

ai =
σ2

1,i

σ2,i
, (4.20)

but there are many other choices along similar lines.
For the remainder of the discussion we will focus on a simple sub-class, characterised by the choice

ai = a ti for i = 1, . . . ,m , (4.21)

where a is a smooth, strictly positive function on X and the ti > 0 are real constants. In this case,
the forms (J,Ω) can be written as

J = a J0 , J0 :=
m∑
i=1

tiJi , Ω = AΩ0 . (4.22)

Note that the above J0 is a Kähler form and the constants ti can thus be interpreted as Kähler
parameters, while J is obtained from J0 by a conformal re-scaling with a. Inserting this into Eq. (4.15),
we find the forms (J,Ω) in Eq. (4.22) define an SU(3) structure iff

|A|2 = a3F , where F :=

m∑
i,j,k=1

Λijktitjtk . (4.23)

We will refer to this sub-class as “universal” SU(3) structures. The structure functions Λijk enter
the construction of these universal SU(3) structures only through the function F , defined above,
which can be explicitly computed using the expression (4.13) for Λijk in the case of co-dimension one
configurations, or the expression (A.8) in the general case. Specialising Eq. (4.16) to the universal
case we have in particular that

F = |det(B)|2 det
(
g0,αβ̄

)
, (4.24)
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where g0,αβ̄ = −2iJ0,αβ̄ is the metric associated to the Kähler form J0 and B is defined in (A.2). This
result shows that F is always a strictly positive function (provided all the Kähler parameters ti > 0).
In fact, F generalises the function of the same name we have defined for the quintic, see Eq. (3.9).

For universal SU(3) structures, we have the exterior derivatives

dJ = d ln a ∧ J , dΩ = d lnA ∧ Ω , (4.25)

and comparison with Eq. (2.6) shows that the corresponding torsion classes are given by

W1 = W2 = W3 = 0 , W4 = d ln a , W5 = d lnA =
3

2
d ln a+

1

2
d lnF . (4.26)

Of course, W1 and W2 are still zero, so that we have a complex structure and W5 remains exact. In
addition to the properties of the generic case (4.18), universal SU(3) structures also have a vanishing
W3 torsion class. Also, the class W4 is exact and related to W5 by

W5 =
3

2
W4 +

1

2
d lnF . (4.27)

The function a is still at our disposal. If it is chosen such that |d ln a| � |d lnF| everywhere on
X, we have 3W4 ' 2W5 from Eq. (4.27). Table 2 shows that this corresponds to an (approximate)
conformally Ricci-flat situation, where the conformal factor a dominates over the effect of non Ricci-
flatness of the underlying Fubini-Study metric, which causes the appearance of the d lnF term in
Eq. (4.27). In contrast to the exact conformal Calabi-Yau structure normally used in the construction
of N = 1 type IIB vacua [40], the present approximate structure comes equipped with an explicit,
albeit approximate, metric.

Another interesting and obvious choice for a is

a = Fk , (4.28)

for any real number k. This leads to a pattern of torsion classes

W1 = W2 = W3 = 0 , W4 = k d lnF , W5 =
3k + 1

2
d lnF , (4.29)

with W4 and W5 proportional to one another. For this choice, the limit in which the SU(3) structure
becomes approximately conformally Ricci-flat, that is, 3W4 ' 2W5, can be made more explicit and
it corresponds to k →∞.

If we set k = 1 so that
a = F , A = F2 , (4.30)

then the torsion classes specialise further to

W1 = W2 = W3 = 0 , W4 = d lnF , W5 = 2 d lnF . (4.31)

This means that W5 = 2W4 and, hence, we have a Strominger-Hull system with W3 = 0 and a dilaton
φ specified by

dφ = W4 = d lnF ⇒ gs = eφ = const×F . (4.32)

This shows that, for a suitable choice of integration constant, the string coupling can be kept per-
turbative. The torsion classes in Eq. (4.31) represent the direct generalisation of the quintic results
to all CICY manifolds. In particular, we find that a Strominger-Hull system can be realised on all
CICY manifolds.

Let us finally remark that the SU(3) structure constructed here does not relate in any obvious
way to the unique integrable SU(3) structure that exist on a CY manifold. Naturally, the (3,0)-
forms of these two SU(3) structure are necessarily proportional. However, we cannot determine how
the Hermitian form J or the Kähler forms Ji relates to the Kähler form of the integrable SU(3)
structure, since the latter is not known explicitly. As mentioned in the Introduction, this ignorance
of the integrable Kähler form is one of our motivations to construct explicit SU(3) structures on CY
manifolds.
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5 Further examples

While the discussion in the previous section was general and applies to all CICY manifolds it is still
useful to work out a few cases other than the quintic more explicitly. We begin with the two CICY
manifolds which are arguably the simplest after the quintic, the bi-cubic hypersurface in P2×P2 and
the tetra-quadric hypersurface in P1×P1×P1×P1. Finally, we analyse a more complicated example
of a co-dimension two CICY.

5.1 The bi-cubic

The bi-cubic hypersurface in the ambient space A = P2 × P2 (number 7884 in the list of Ref. [1]) is
characterised by the configuration matrix

X ∼
[
P2 3
P2 3

]2,83

−162

x = (x0, x1, x2)
y = (y0, y1, y2)

z1 = x1
x0
, z2 = x2

x0
z3 = y1

y0
, z4 = y2

y0

(5.1)

where we have also listed the homogeneous coordinates and the affine coordinates on the patch U0

defined by x0 6= 0, y0 6= 0. The bi-cubic is defined as the zero locus of a bi-cubic polynomial
P = P (x,y), which is related to its affine counterpart p = p(z1, . . . , z4) on U0 by

p(z1, . . . , z4) = P (1, z1, z2, 1, z3, z4) , P (x,y) = x3
0y

3
0 p

(
x1

x0
,
x2

x0
,
y1

y0
,
y2

y0

)
. (5.2)

Defining

σ1 =
2∑

A=0

|xA|2 , σ2 =
2∑

A=0

|yA|2 ,

κ1 = 1 + |z1|2 + |z2|2 , κ2 = 1 + |z3|2 + |z4|2 ,
(5.3)

the two Fubini-Study Kähler forms on U0 can be written as

J1 =
i

2π
∂∂̄ lnκ1 =

i

2πκ2
1

κ1

2∑
a=1

dza ∧ dz̄a −
2∑

a,b=1

z̄azbdza ∧ dz̄b


J2 =

i

2π
∂∂̄ lnκ2 =

i

2πκ2
2

κ2

4∑
a=3

dza ∧ dz̄a −
4∑

a,b=3

z̄azbdza ∧ dz̄b

 (5.4)

To restrict these forms to X we can, for example, solve the equation p = 0 for z4 = f(z), where
z = (zα) = (z1, z2, z3) and use

dz4 = −
3∑

α=1

p,α
p,4

where p,i =
∂p

∂zi
(z, f(z)) . (5.5)

In this way, we can obtain explicit equations for the restricted Kähler forms J1 = J1|X and J2 = J2|X
as well as for the holomorphic (3, 0) form

Ω0 =
dz1 ∧ dz2 ∧ dz3

p,4
. (5.6)

The only non-vanishing triple intersection numbers of the bi-cubic are λ112 = λ122 = 3 (along with the
ones obtained by index permutation) and, hence, we have only two non-vanishing structure functions
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Λ112 and Λ122. They can be computed from the above expressions for Ji and Ω0. A somewhat tedious
calculation shows that

J2
1 ∧ J2 = 3i

4 Λ112 Ω0 ∧ Ω̄0 , Λ112 = 1
3π3
|∇2P |2
σ3
1σ

2
2

J1 ∧ J2
2 = 3i

4 Λ122 Ω0 ∧ Ω̄0 , Λ122 = 1
3π3
|∇1P |2
σ2
1σ

3
2
,

(5.7)

where ∇1P and ∇2P are the gradients of P with respect to the x and y coordinates, respectively.
Note that the above structure functions have the properties mentioned in the general discussion.
They are homogeneous of degree zero in both the x and y coordinates and their complex conjugates
and are, hence, well-defined functions on the ambient space A and on the CY X. Furthermore, they
are non-singular (as σ1 and σ2 do not vanish) and they are clearly positive everywhere.

With these ingredients, the construction of SU(3) structures on the bi-cubic proceeds following
the general logic explained in the previous section. A pair (J,Ω) given by the Ansatz

J =
2∑
i=1

aiJj , Ω = AΩ0 (5.8)

provides an SU(3) structure iff the constraint

|A|2 =
2∑

i,j,k=1

Λijkaiajak . (5.9)

is satisfied. Inserting the bi-cubic structure functions (5.7), this constraint becomes explicitly

|A|2 =
1

π3

(
a2

1a2
|∇2P |2

σ3
1σ

2
2

+ a1a
2
2

|∇1P |2

σ2
1σ

3
2

)
(5.10)

Any choice of two smooth and strictly positive functions a1 and a2 on the bi-cubic now leads to an
SU(3) structure. We simply insert these two functions into the RHS of Eq. (5.10), which is always
strictly positive since ∇1P and ∇2P cannot vanish simultaneously for a smooth bi-cubic. Then,
demanding that A > 0 everywhere fixes A and, hence, an SU(3) structure whose torsion classes are
of the form (4.18) and can be explicitly computed from these equations. In this way, choices for ai
such as the ones proposed in Eqs. (4.19) and (4.20), give rise to a large class of SU(3) structures.

For the universal case ai = a ti with |A|2 = a3F , the function F reads explicitly

F =
1

π3

(
t21t2
|∇2P |2

σ3
1σ

2
2

+ t1t
2
2

|∇1P |2

σ2
1σ

3
2

)
. (5.11)

The bi-cubic Strominger-Hull system is then characterised by the general equations (4.30)–(4.32) with
the above functions F inserted.

5.2 The tetra-quadric

The tetra-quadric hypersurface in the ambient space A = P1 × P1 × P1 × P1 (number 7862 in the list
of Ref. [1]) is described by the configuration

X ∼


P1 2
P1 2
P1 2
P1 2


4,68

−128

x1 = (x1 0, x1 1)
x2 = (x2 0, x2 1)
x3 = (x3 0, x3 1)
x4 = (x4 0, x4 1)

z1 = x1 1
x1 0

z2 = x2 1
x2 0

z3 = x3 1
x3 0

z4 = x4 1
x4 0

(5.12)
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where the homogeneous coordinates for each P1 factor and their affine counterparts on the patch
U0 = {xi,0 6= 0} are listed on the right. The tetra-quadric is defined as the zero locus of a polynomial
P = P (x1, . . . ,x4) of multi-degree (2, 2, 2, 2), related to its affine counterpart p = p(z1, . . . , z4) by

p(z) = P (1, z1, 1, z2, 1, z3, 1, z4) , P (x1,x2,x3,x4) =

(
4∏
i=1

x2
i 0

)
p

(
x1 1

x1 0
,
x2 1

x2 0
,
x3 1

x3 0
,
x4 1

x4 0

)
. (5.13)

As usual we define

σi =
1∑

A=0

|xiA|2 , κi = 1 + |zi|2 for i = 1, . . . , 4 , (5.14)

which leads to the Fubini-Study Kähler forms

Ji =
i

2π
∂∂̄ lnκi =

i

2π

dzi ∧ dz̄i
κ2
i

for i = 1, . . . , 4 . (5.15)

We can restrict these forms to the tetra-quadric, Ji = Ji|X , by solving, for example, for z4 = f(z),
where z = (zα) = (z1, z2, z3) and use

dz4 = −
3∑

α=1

p,α
p,4

where p,i =
∂p

∂zi
(z, f(z)) . (5.16)

On the patch U0, this leads to

Jα =
i dzα ∧ dz̄α

2πκ2
α

, J4 =
i

2πκ2
4

3∑
α,β=1

vαv̄β dzα ∧ dz̄β with vα :=
p,α
p,4

, (5.17)

while the holomorphic (3, 0) form on X can be written as

Ω0 =
dz1 ∧ dz2 ∧ dz3

p,4
. (5.18)

The only non-vanishing triple intersection numbers of the tetra-quadric are λ123 = λ124 = λ134 =
λ234 = 2 and, by inserting the above expressions for Ji and Ω0 into Eq. (4.11), we find for the
corresponding structure functions

Λijk =
1

6π3

|∇lP |2σl
σ2
l σ

2
2σ

2
3σ

2
4

=
1

6π3

|pl|2κ2
l

κ2
1κ

2
2κ

2
3κ

2
4

=:
1

6
Λl where {i, j, k, l} = {1, 2, 3, 4} , (5.19)

and permutations thereof. All other Λijk vanish. We note that, in line with our general statements,
all Λijk are well-defined, smooth and positive.

The Ansatz

J =

4∑
i=1

aiJi , Ω = AΩ0 , (5.20)

then leads to an SU(3) structure (J,Ω) on the tetra-quadric iff |A|2 =
∑4

i,j,k=1 Λijkaiajak and, with
the above structure functions (5.19), this condition turns into

|A|2 = a1a2a3a4

4∑
i=1

a−1
i Λi =

a1a2a3a4

π3κ2
1κ

2
2κ

2
3κ

2
4

4∑
i=1

a−1
i κ2

i |p,i|2 . (5.21)

From this equation, any choice of four smooth functions ai > 0 on X determines a function A > 0
and, hence, an SU(3) structure. As is clear from the examples described by Eqs. (4.19) and (4.20),
there is considerable freedom in this construction.
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For the universal case ai = a ti, the function A is determined by |A|2 = a3F , where F is explicitly
given by

F = t1t2t3t4

4∑
i=1

t−1
i Λi =

t1t2t3t4
π3κ2

1κ
2
2κ

2
3κ

2
4

4∑
i=1

t−1
i κ2

i |p,i|2 . (5.22)

For a smooth tetra-quadric not all Λi vanish simultaneously, so F > 0 everywhere on X.
The Strominger-Hull system on the tetra-quadric is described by the general equations (4.30)–

(4.32) with the above function F inserted.

5.3 A co-dimension two CICY

The purpose of this example is two-fold. First, we show how to generalise the methods from the
co-dimension one case to higher co-dimensions. Second, we illustrate how this leads to the general
formula for the structure functions Λijk given in Appendix A. The example we are working with is a
co-dimension two CICY (number 7888 in the list of Ref. [1]) in the projective ambient space P1×P4,
with configuration matrix

X ∼
[
P1 0 2
P4 4 1

]2,86

−168

x1 = (x1 0, x1 1)
x2 = (x2 0, . . . , x2 4)

z1 = x1 1
x1 0

z2 = x2 1
x2 0

, . . . , z5 = x2 5
x2 0

. (5.23)

We denote the two defining equations by Pu and their affine counterparts in the patch U0 = {x10 6=
0, x20 6= 0} by pu, where u = 1, 2. The explicit computation proceeds similarly to the co-dimension one
case. First, we use the equations pu = 0 to solve for, say, z4 and z5 in terms of z = (z1, z2, z3) = (zα),
and replace their differentials dz4 and dz5 using(

p1,4 p1,5

p2,4 p2,5

)dz4

dz5

 = −

∑3
α=1 p1,αdzα∑3
α=1 p2,αdzα

 , (5.24)

where pu,i = ∂Pu/∂zi. Denoting the matrix in this equation by B, we use

B−1 =
1

det(B)

(
p2,5 −p1,5

−p2,4 p1,4

)
(5.25)

to arrive at

dz4 = − 1

det(B)

3∑
i=1

(p2,5 p1,i − p1,5 p2,i) dzi

dz5 = − 1

det(B)

3∑
i=1

(p1,4 p2,i − p2,4 p1,ii) dzi .

(5.26)

In affine coordinates, the two Fubini-Study Kähler forms are given by

J1 =
i

2π
∂∂̄ lnκ1 =

i

2πκ2
1

[dz1 ∧ dz̄1] ,

J2 =
i

2π
∂∂̄ lnκ2 =

i

2πκ2
2

κ2

3∑
α=2

dzα ∧ dz̄α −
3∑

α,β=2

z̄αzβdzα ∧ dz̄β

 ,

(5.27)

where

κ1 = 1 + |z1|2 , κ2 = 1 +

5∑
a=2

|za|2 . (5.28)
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As a next step we need to compute the holomorphic three-form Ω0. Applying its general defini-
tion (4.8), (4.9) to the present case leads to

Ω0 =
dz1 ∧ dz2 ∧ dz3

p1,4 p2,5 − p1,5 p2,4
. (5.29)

The only non-vanishing intersection numbers of this CICY are λ122 = 4 and λ222 = 8 and the
corresponding non-vanishing structure functions can be written in the form

Λ122 =
1

6π3κ2
1κ

3
2

5∑
a,b,c,d=2

(δa,bδc,d + zaz̄bδc,d + zcz̄dδa,b + zaz̄bzcz̄d)×

(p1,cp̄1,dp2,ap̄2,b − p1,ap̄1,dp2,cp̄2,b − p1,cp̄1,bp2,ap̄2,d + p1,ap̄1,bp2,cp̄2,d)

Λ222 =
1

π3κ4
2

5∑
a,b=2

1∑
c,d=1

(δa,bδc,d + zaz̄bδc,d)×

(p1,cp̄1,dp2,ap̄2,b − p1,ap̄1,dp2,cp̄2,b − p1,cp̄1,bp2,ap̄2,d + p1,ap̄1,bp2,cp̄2,d)

(5.30)

Finally, we compare this with the result from the general expression (A.5):

1. The matrix B in (5.24) is nothing but B2[1, 2, 3] and (5.26) are the differentials obtained
from (A.2).

2. For Λ122, the sums are all symmetric and hence every term occurs twice. That means that
upon factoring out the common factor of 2 from the numerator, we get a factor of 1/3 in the
denominator, matching the symmetry factors cijk of (A.6) that appear in (A.5).

3. We always have to skip three columns in the Jacobian. In Λ122 the index structure shows that
we skip the column which contains derivatives w. r. t. the P1 coordinate z1, which is why the
sums run from 2 to 5. Likewise, in Λ222 we delete columns such that a P1 coordinate and a P4

coordinate are left, so one sum runs over the P1 block, i.e. from 1 to 1, and the other over the
P4 block, that is, again from 2 to 5.

4. The indices on pu,s show anti-symmetry structures which arise from a determinant of the Jaco-
bian with three columns deleted.

5. The terms zaz̄bzcz̄d actually sum to zero due to the symmetry/antisymmetry structure of the
indices.

6. The expression has the structure one would expect from the terms (∇̃i1pu1 · ∇̃ı̄1 p̄ū1)(∇̃i2pu2 ·
∇̃ı̄2 p̄ū2) in (A.5), where we have carried out the anti-symmetrisation from the εu1u2 factors.

For the universal case ai = a ti, the function A is determined by |A|2 = a3F , where F is obtained by
inserting the structure functions (5.30) into the second Eq. (4.23). For the Strominger-Hull system
on this co-dimension two CICY, the function F is used in the general equations (4.30)–(4.32).

6 The Bianchi identity

We have seen that large classes of non-trivial SU(3) structures can be constructed on CICY mani-
folds. In particular, we have demonstrated the existence of a Strominger-Hull system on every CICY
manifold. These SU(3) structures are potentially relevant for string theory, both in the context of
heterotic and type II compactifications. While we leave a comprehensive study of the relevant ap-
plications in string theory for future work, we present here a brief initial discussion of the Bianchi
identities for the anti-symmetric tensor fields. These identities need to be satisfied in order to obtain
a full string solution and this proves a somewhat difficult task. Consequently, we limit our discussion
to some general remarks and then re-visit the tetra-quadric example.
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6.1 Generalities

We recall that a Strominger-Hull SU(3) structure (J,Ω) on a CICY manifold X was obtained by
setting

J = FJ0 , Ω = F2Ω0 , J0 =
m∑
i=1

tiJi , (6.1)

where Ji = Ji|X are the ambient space Kähler forms restricted to X and Ω0 is the holomorphic (3, 0)
form on X. The constants ti > 0 can be interpreted as the analogue of Kähler parameters and the
function F can be written as

F =

m∑
i,j,k=1

Λijktitjtk , (6.2)

where the structure functions have been computed for all CICY manifolds in Eq. (4.13) and Ap-
pendix A. It turns out that for a smooth manifolds, F > 0 everywhere on X as must be the case in
order for J to be a positive form.

Since dJi = 0 and dΩ0 = 0, the exterior derivatives of J and Ω are easily computed, and lead to
the torsion classes

W1 = W2 = W3 = 0 , W5 = 2W4 = 2 d lnF . (6.3)

The dilaton φ, both in the context of type II and heterotic string theory, satisfies

dφ = W4 = d lnF , (6.4)

so that the string coupling gs = eφ = const×F can be kept perturbative, for a suitable choice of the
integration constant.

The final ingredient required for this to become a string solution is that the torsion (6.3) is
supported by a suitably matching flux. Let us focus on the case where this flux is the NS three-form
field strength H, either in the heterotic or type II context. In either case, H is given by Eq. (2.11)
and, inserting J from Eq. (6.1) leads to

H = i(∂ − ∂̄)J = i
(
∂ lnF − ∂̄ lnF

)
∧ J = i(∂F − ∂̄F) ∧ J0 . (6.5)

This is the NS flux we need to add to the compactification in order to obtain a string solution. It is
important to note that H is not closed,

dH = 2i
∂̄∂F
F
∧ J = 2i ∂̄∂F ∧ J0 , (6.6)

and, hence, this flux needs to be supported by a non-zero source term in the Bianchi identity. In
type II string theory this requires an NS5 brane source equal to the RHS of Eq. (6.6) (or a D5 brane
source in the case where H is interpreted as a RR flux). We recall that by equation (6.1), F must be
a smooth function, and so the RHS of (6.6) cannot be proportional to a δ function. In other words,
the source required to satisfy the equation requires some smearing.4 We leave the subtleties of such
constructions for future work, but remark that sources of this type have been discussed for vacua
on solvmanifolds in Ref. [23]. Related discussions can also be found for example in Refs. [42, 55–59].
It would be interesting to explore if the methods used in these references can be useful to find the
required source term.

In the heterotic case, the Bianchi identity reads (to leading order in the α′ expansion)5

dH = α′

4 (tr(F ∧ F )− tr(R ∧R)) , (6.7)

4It is possible that non-universal SU(3) structures, with J =
∑

i aiJi, give more freedom to engineer solutions with
localized sources.

5As is the case for type II vacua, the Bianchi identity can be modified by source terms related to (smeared) NS5
branes. We leave the discussion of this possibility for future work.
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and the task is to match this to the RHS of Eq. (6.6). Since we have specified a metric, the tr(R∧R)
term can be computed explicitly. Hence, solving the Bianchi identities reduces to the task of finding
a suitable vector bundle V → X with a connection A and associated field strength F such that

2i ∂̄∂F ∧ J0 = α′

4 (tr(F ∧ F )− tr(R ∧R)) . (6.8)

Note that the gauge connection also has to satisfy the supersymmetry conditions (2.12) at the same
time. This appears to be a difficult task as there is no obvious guidance for the choice of a suitable
bundle V and its connection. In the present paper, we will not attempt to construct such bundles
and connections.

Instead, we compute the term tr(R ∧ R) in order to gain a clearer picture which contribution
from tr(F ∧ F ) is required. Of considerable help for this task is the observation is that tr(R ∧ R)
is invariant under a conformal re-scaling of the metric [60]. This means that, instead of using the
metric g associated to the SU(3) structure (6.1), we can use the Kähler metric g0 associated to the
Kähler form J0. Despite this simplification, it seems difficult to express tr(R ∧ R) in a manageable
and suggestive form in complete generality for any CICY manifold. For this reason, we will compute
tr(R ∧R) for an example, namely the tetra-quadric CICY discussed in Section 5.2.

6.2 The tetra-quadric re-visited

Our task is to compute the tr(R ∧ R) term in the Bianchi identity for the case of the tetra-quadric
with the metric associated to the Strominger-Hull SU(3) structure (6.1). As discussed, this can be
done in terms of the Kähler metric g0, associated to the Kähler form J0 =

∑4
i=1 tiJi. Summing up

the explicit forms Ji for the tetra-quadric in Eq. (5.17) gives

J0 = ∂∂̄K =
i

2π

3∑
α,β=1

[
tακ
−2
α δαβ + t4κ

−2
4 vαv̄β

]
dzα ∧ dz̄β , (6.9)

where vα = p,α/p,4 and the Kähler potential is given by K = i
2π

∑4
i=1 ti lnκi, restricted to X. The

associated metric g0,αβ̄ = −2iJ0,αβ̄ and its inverse gαβ̄0 can then be written as

g0,αβ̄ =
1

π

[
tακ
−2
α δαβ̄ + t4κ

−2
4 vαv̄β̄

]
, gαβ̄0 = π

[
t−1
α κ2

αδ
αβ̄ − t−1

4 κ2
4w

αw̄β̄
]
, (6.10)

where we have introduced the short-hand notation

wα = λr2
αv̄

α , r2
α =

t4κ
2
α

tακ2
4

, λ−2 = 1 +
3∑

α=1

r2
α|vα|2 . (6.11)

A useful relation between those quantities is

3∑
α=1

vαw
α = λ−1 − λ . (6.12)

In order to compute the curvature two-form, we use the standard Kähler geometry relations

Rβα = −∂̄Γβα , Γβα = gβγ̄0 ∂g0,αγ̄ , (6.13)

and inserting the above metric and its inverse leads to the connection one-form

Γβα = −2∂ lnκαδ
β
α +

λ2r2
β

r2
α

∂(r2
αvαv̄

β) , (6.14)
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and the curvature two-form

Rβα = −4πiJαδ
β
α − Ωβ

α , Ωβ
α = ∂̄

(
λ2r2

β

r2
α

∂(r2
αvαv̄

β)

)
. (6.15)

As a useful crosscheck of our calculation, it is straightforward to check that this expression leads to
a Ricci-form R =

∑3
α=1R

α
α which satisfies

R = ∂∂̄ ln det g0 , (6.16)

as required for a Kähler metric.
The desired quantity tr(R ∧R) can then be written as

tr(R ∧R) =
3∑

α,β=1

(Rβα ∧Rαβ) + c.c. = 8πi
3∑

α=1

Jα ∧ Ωα
α +

3∑
α,β=1

Ωβ
α ∧ Ωα

β + c.c. . (6.17)

It is interesting that this result can be expressed in terms of the tetra-quadric structure functions Λi
given in Eq. (5.19) and the function F in Eq. (5.22) by writing

Ωβ
α =

vα
vβ

Ω̃β
α , Ω̃β

α =
t1t2t3t4
tβ

∂̄

(
Λ4Λβ
FΛα

∂

(
Λα
Λ4

))
. (6.18)

Note that when inserted into Eq. (6.17), the pre-factor vα/vβ drops out so that tr(R∧R) only depends

on Ω̃β
α and the Kähler forms Jα. It is encouraging that tr(R ∧ R) depends on the same quantities

as dH. We hope this result will ultimately provide some guidance as to which vector bundle and
connection to choose for the tetra-quadric, in order to satisfy the Bianchi identity.

7 Conclusion

Compactification on Calabi-Yau three-folds and on manifolds with SU(3) structure are usually seen as
complementary within string theory. In this paper, we have explored the relation between these two
approaches by constructing non-trivial SU(3) structures on Calabi-Yau three-folds and by analysing
their possible role in string compactifications.

Focusing on the relatively easily accessible complete intersection Calabi-Yau manifolds in product
of projective spaces (CICY manifolds) we have obtained a number of interesting results. We have
seen that, using the Kähler forms provided by the projective ambient spaces and the holomorphic
(3, 0) form available on a CY manifold as basic building blocks, we can obtain large classes of SU(3)
structures on all CICY manifolds. For our construction, all these SU(3) structures have vanishing
torsion classes W1 and W2 and, hence, have an associated complex structure. The other three torsion
classes W3, W4 and W5 are generically non-zero and are given in terms of a set of smooth, strictly
positive but otherwise arbitrary functions ai on the CICY manifold. In a “universal” case, where
all functions ai are proportional, we obtain a Strominger-Hull system with W3 = 0 on every CICY
manifold.

Such SU(3) structures can lead to string backgrounds in both heterotic and type II string theory
with a non-trivial dilaton profile and non-vanishing NS flux. We have computed the dilaton profile
required for the Strominger-Hull system on CICY manifolds and find that the string coupling can be
kept in the perturbative range. Further, we have determined the NS flux H supporting this solution
and it turns out that it is not closed and, hence, needs to be supported by sources in the Bianchi
identity. In the type II case, this requires (smeared) NS five-brane solutions and in the heterotic case
a suitable vector bundle.
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We have explicitly discussed a number of examples, namely the quintic in P4, the bi-cubic hy-
persurface in P2 × P2, the tetra-quadric hypersurface in P1 × P1 × P1 × P1 and a co-dimension two
CICY manifold. For the tetra-quadric, we have taken preliminary steps towards solving the Bianchi
identity by computing the tr(R ∧R) term.

A number of follow-up questions and further directions are suggested by the results in this paper.
First and foremost, it would be desirable to clarify, in the case of the universal Strominger-Hull
system, whether the Bianchi identity in the type II or heterotic case can be solved. Only if this can
be accomplished have we found a proper string solution. Our construction also leads to a large class
of non-universal SU(3) structures, where the functions ai are not proportional to one another, and
these should be explored in more detail. It is possible that other SU(3) structures of interest to string
theory can be found among those non-universal cases.

Moreover, while we have primarily manipulated the real two-form J of the SU(3) structure in
this paper, there is scope to construct interesting non-trivial SU(3) structures by a less restricted
Ansatz for the complex three-form Ω. Such generalisations are necessary in order to produce SU(3)
structures with non-integrable almost complex structure. It would, for example, be interesting to
explore if type IIA SU(3) vacua can be constructed in this way.6

While our construction was carried out for CICY manifolds, it likely generalises to other classes
of CY three-folds, notably to CY three-folds constructed as hypersurfaces in toric four-fold ambient
spaces [4]. There is indeed overlap between CICY three-folds and CY hypersurfaces in toric four-
folds and some of the examples considered in this paper, specifically the quintic, the bi-cubic and the
tetra-quadric appear in both lists.

Finally, our construction should readily generalise to CY four-folds, in this case leading to SU(4)
structures. For example, a suitable modification of the quintic example could be applied to the sextic
in P5 or adding another P1 factor to the tetra-quadric example would lead to SU(4) structures on
the degree (2, 2, 2, 2, 2) CY hypersurface in (P1)5. It would be interesting to study this generalisation
and its possible applications to F-theory compactifications.
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A Some technical results

In this appendix we present a general formula for the structure function of any CICY configuration
matrix, including the 7890 specific configuration matrices from Ref. [1].

Recall that the ambient space is a product A = Pn1 × · · · × Pnm of m projective spaces, each
with dimension ni and with total dimension d =

∑m
i=1 ni. We start by computing the affine version

of the structure functions in the patch U0 = {xi0 6= 0}, before giving the homogeneous version.
The coordinates on this patch are given by zi = (zi1, . . . , zini), where i = 1, . . . ,m. We denote the
affine versions of the defining polynomials by pu, where u = 1, . . . ,K and K = d − 3. In order to
avoid double indices, we also denote the affine coordinates collectively by zs, where s = 1, . . . , d. We

6Recently, it has been shown in Ref. [26], that such type IIA SU(3) vacua are allowed on manifolds that are CP1

fibrations over Kähler-Einstein 4-manifolds.
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introduce the K × d Jacobi matrix

Asu =

(
∂pu
∂zs

)
=: pu,s , (A.1)

where we define pu,s = ∂pu/∂zs. By deleting three columns r, s, t from A we obtain K ×K matrices
denoted by BK [r, s, t] and, for ease of notation, we also introduce associated index sets I[r, s, t] =
{1, . . . , d}\{r, s, t}. With this notation, we can write

dzv = −
∑
u

∑
`∈{r,s,t}

(B−1
K [r, s, t])vu pu,` dz` . (A.2)

Using BK [r, s, t], we can generalise the expression (3.6) for the holomorphic (3, 0)-form Ω0 to

Ω0 =
dzr ∧ dzs ∧ dzt
det(BK [r, s, t])

. (A.3)

Lastly, in order to describe the general expression, we define for each index s = (ia) the (ni + 1)-
dimensional gradients

∇̃spu = ∇̃iapu =

(
pu,i1, pu,i2, . . . , pu,ini ,−

ni∑
a=1

zia pu,ia

)
, (A.4)

where pu,ia = ∂pu/∂zia. It should be noted that the ∇̃ia do in fact not depend explicitly on the index
a, and hence they are the same for all coordinates zia from the same ambient space factor i, that is,
∇̃i1pu = . . . = ∇̃inipu. It turns out that this somewhat redundant definition is helpful in order to
incorporate certain combinatorial factors in the final expression for the Λijk. Given this notation, a
straightforward but tedious computation based on Eq. (4.11) leads to

Λijk =
cijk
π3

(
1

κiκjκk

m∏
l=1

1

κl

)
×

ĉijk

K∑
u1,...,uK

K∑
ū1,...,ūK

∑
i1,...,iK
∈I[i,j,k]

∑
ı̄1,...,̄ıK
∈I[i,j,k]

εu1,...,uK εū1,...,ūK εi1,...,iK εı̄1,...,̄ıKδi1 ,̄ı1 . . . δiK ,̄ıK×

(∇̃i1pu1 · ∇̃ı̄1 p̄ū1) . . . (∇̃iKpuK · ∇̃ı̄K p̄ūK ) ,

(A.5)

where the scalar product (∇ipu · ∇ı̄p̄ū) is the standard Euclidean scalar product of the two vectors.
Note that, since the ∇ia in fact only depend on i, we have only attached a label i to Λijk. All Λijk that
cannot be constructed in this way (for example, since it is impossible to delete three affine coordinates
a1, a2 and a3 from a P1 or P2) are zero. Furthermore, there are two symmetry factors cijk and ĉijk
in the expression (A.5). The cijk arise from symmetries in the indices i, j, k and are given by

cijk =


1
1! if λijk 6= 0 and all indices are the same
1
3 if λijk 6= 0 and two indices are the same
1
3! if λijk 6= 0 and all indices are distinct

. (A.6)

The factors ĉijk arise from an over-counting of different factors in the sums: since ∇̃iapu is the same
for all a, we get some terms several times. To be more precise, we generically get each factor K times.
However, it sometimes happens that by leaving out the indices i, j, k in the sums, some Pni do not
enter at all7 and hence do not give rise to a symmetry factor. We find that

ĉijk =
1

(K + 1− ρ)!
, where ρ = number of different Pni factors entering in the sum. (A.7)

7Note that this can only happen for P1, P2, P3, if one, two, or all three indices i, j, k are the same, respectively.
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Looking at Eq. (4.11), we note the following: Ω0 on the right-hand side is given by Eq. (A.3)
involve derivatives of the defining polynomials in the denominator. In contrast, the Kähler forms
J on the left-hand side do not explicitly involve pu. A CICY given by the zero locus of a set of
polynomials, pu(z) = 0, is left invariant by a scaling of pu → λupu. However, from Eq. (4.11) it
would then seem as if the left-hand side does not scale with λu while the right-hand side does. This is
resolved by the observation that expression (A.5) scales as Λijk →

∏K
u=1 |λu|2Λijk. At the same time,

|det(BK [r, s, t])|2 →
∏K
u=1 |λu|2 |det(BK [r, s, t])|2. Since |det(BK [r, s, t])|2 appears in the denominator

in Eq. (A.3), Eq. (4.11) is homogeneous of degree 0.
The expression for the Λijk in terms of homogeneous coordinates is

Λijk =
cijk
π3

(
1

σiσjσk

m∏
l=1

1

σl

)
×

ĉijk

K∑
u1,...,uK

K∑
ū1,...,ūK

∑
i1,...,iK
∈I[i,j,k]

∑
ı̄1,...,̄ıK
∈I[i,j,k]

εu1,...,uK εū1,...,ūK εi1,...,iK εı̄1,...,̄ıKδi1 ,̄ı1 . . . δiK ,̄ıK×

(∇i1Pu1 · ∇ı̄1P̄ū1) . . . (∇iKPuK · ∇ı̄K P̄ūK ) .

(A.8)

where we use the notation explained in Eqs. (4.1) and (4.3). Here, like in the analogous result for
co-dimension one CICYs, Eq. (4.13), ∇iPu denotes the standard gradient of the uth polynomial with
respect to the coordinates xiA of the ith projective ambient space factor.

It is instructive to compare Eq. (A.8) with the co-dimension one result (4.13) in more detail. We
note that the division by |∇iP |2|∇jP |2|∇kP |2 effectively leads to the omission of these terms, making
it the analog of the omissions encoded by the index sets I[i, j, k]. For the co-dimension one case,
the combinatorial factors cijk in Eq. (A.8) do indeed specialise to the factors of the same name in
Eq. (4.13). When comparing the affine expression for the Λijk in Eqn. (A.5) with the expression of the
tetra-quadric (5.19), it seems as if there is an additional factor of κi in the denominator of Eq. (A.5).
However, the scalar products (∇̃i pu · ∇̃ı̄ p̄ū) lead to an extra κi, such that the two expressions match
exactly.

We still need to demonstrate that the affine and homogeneous formulae for Λijk in Eqs. (A.5)
and (A.8) are indeed equivalent. To do this we note that

σi =
∑
A

|xiA|2 = |xi0|2
(

1 +
∑
a

zia

)
= |xi0|2κi , (A.9)

and

∇iPu · ∇ı̄P̄ū =
sus̄ū
xi0x̄ı̄0

∑
a,b

(δa,b + ziaz̄ı̄b)pu,ap̄ū,b

 =
sus̄ū
xi0x̄ı̄0

(∇̃ipu · ∇̃ı̄p̄ū) , with su =
m∏
i=1

x
qiu
i0 .

(A.10)

The full expression (A.8) involves a product of K scalar products of the type (A.10). Due to the
factors εu1...uK , εū1...ūK and δij ,̄ıj , the structure functions Λijk pick up a pre-factor

m∏
ij ,̄ıj

K∏
u,ū

sus̄ū
xij0x̄ı̄j0

=

m∏
ij

K∏
u,ū=1

sus̄ū
|xi0|2

.

This can be further simplified by using the Calabi-Yau condition

K∑
u=1

qiu = ni + 1 , (A.11)
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such that we get

(∇i1Pu1 · ∇ı̄1P̄ū1). . .(∇iKPuK · ∇ı̄K P̄ūK )=
|xi10|2 . . . |xiK0|2∏m

l=1 |x
nl+1
l0 |2

(∇̃i1pu1 · ∇̃ı̄1 p̄ū1). . .(∇̃iKpuK · ∇̃ı̄K p̄ūK ) .

(A.12)

By writing the numerator |xi10|2 . . . |xiK0|2 as a product over all d = K + 3 indices (ia) and dividing
by the three that are left out, we find

|xi10|2 . . . |xiK0|2 =

∏m
l=1 |x

nl
l0 |

2

|xi0|2|xj0|2|xk0|2
. (A.13)

Finally, we can use this to rewrite the pre-factor in (A.12) as

|xi10|2 . . . |xiK0|2∏m
l=1 |x

nl+1
l0 |2

=
1

|xi0|2|xj0|2|xk0|2
1∏m

l=1 |xl0|2
. (A.14)

According to Eq. (A.9), this is precisely the factor that converts the σi appearing in the denominator
of Eq. (A.8) into the κi appearing in the denominator of Eq. (A.5).
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