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Abstract

For the sub-Riemannian problem on the group of motions of Euclidean
space we present explicit formulas for extremal controls in a special case,
when one of the initial momenta is fixed.
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1 Introduction

In this paper, we consider a sub-Riemannian (SR) problem on the group of
motions of Euclidean space SE(3). It can be interpreted as a problem of optimal
motion of a rigid body in R? with nonintegrable constraints [7]. Solution curves
to the problem have applications in image processing (tracking of neural fibres
and blood vessels in MRI and CT images of human brain); and in robotics
(motion planing problem for an aircraft, that can move forward/backward).

The sub-Riemannian problem on SE(3) can be seen as follows. By given two
orthonormal frames Ny = {v},v¢,v3} and N = {v{,v},v}} attached respec-
tively at two given points qo = (20,0, 20) and q1 = (x1,y1,21) in space R3, to
find an optimal motion that transfers o to g; such that the frame Ny is trans-
ferred to the frame N;. The frame can move forward or backward along one
of the vector chosen in the frame and rotate simultaneously via two (of three)
prescribed axes. The required motion should be optimal in the sense of minimal
length in the space SE(3) =2 R3 x SO(3).

The two-dimensional analog of this problem was studied as a possible model
of the mechanism used by the visual cortex V1 of the human brain to recon-
struct curves that are partially corrupted or hidden from observation. The
two-dimensional model was initially due to [II], where the authors recognized
the sub-Riemannian Euclidean motion group structure of the problem. The
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related SR problem in SE(2) was solved in [8], where in particular explicit for-
mulas for the geodesics have been derived in SR arclength parameterization.
Later, an alternative expression in spatial arclength parameterization for cus-
pless SR geodesics was derived in [9]. Application to contour completion in
corrupted images was studied in [I0]. The problem was also studied in [12].
However, many imaging applications such as diffusion weighted magnetic res-
onance imaging (DW-MRI) require an extension to three dimensions [13, [14],
which motivates us to study the problem on SE(3).

The Lie group SE(3) of Euclidean motions of space R? is generated by trans-
lations and rotations about coordinate axes. It is parameterized by matrices

cos a cos 3 — cos B sin « sin 3 x
cosfsina + cosasin fsinfd  cosacosf —sinasinffsind  —cosfBsinf  y (1)
sinasinf — cosacosfsinfS cosfsinasinf + cosasinf  cosfcosf  z |’

0 0 0 1

where 0 € [-5,%), B € [-m,7), a € [0,27) are angles of rotation about the
axes OX, OY, OZ; and (z,y,2) € R3 are coordinates with respect to the axes.
Let us choose

A; = cosacos 0, + (sinacosf + cosasin Bsin ) 0, + (sin asin§ — cos asin 5 cos ) 9.,
Ay = —sinacos 9, + (cosacosf — sinasin Ssind) 9, + (cos asin + sin asin § cos 0) 9,
Az =sin 0, — cos Bsinf 9y + cos 5 cos b 0,

Ay = —cosatan 0, + sina dg + cos asec 5 0y,

As =sinatan 80, + cosa0g — sinasec 3 0g,

Ag = 0a

as the basis left-invariant vector fields agreed with parameterization ().

We consider the sub-Riemannian (SR) manifold (SE(3), A, G¢), see [1]. Here
A is a left-invariant distribution generated by the vector fields As, A4, As; Ge is
an inner product on A defined by

Ge = 23 @ wd + ! @ wh + W’ @ WP,
with ¢ > 0 is a constant and w’ are basis one forms satisfying

(WA =6t 8 =0,ifi#j ol =1
We study a problem of finding sub-Riemannian length minimizers: By given
boundary conditions, to find a Lipschitzian curve v : [0,¢t1] — SE(3), such
that 4(¢) € A for almost all ¢ € (0,%;) and v minimizes a functional of sub-

Riemannian length
t1
l(v)=/0 Ge (7(t),4(t)) dt.

SR geodesics are curves in SE(3) whose sufficiently short arcs are SR mini-
mizers. They satisfy the Pontryagin maximum principle, and the corresponding
controls are called extremal controls.

Due to left-invariance of the problem one can fix the initial value v(0) = e,
where e is the identical transformation of R?. Then the sub-Riemannian problem



is equivalent to the following optimal control problem [, [2]:

¥ = ug Az + ug Ay + usAs,
7(0) =€, V(tl) =4dq,
(7) = [ /EuZ (1) + 2 (t) + w2 (1) dt — min,

where the controls us, u4, us are real valued functions from L (0,1).

The Cauchy-Schwarz inequality implies that the minimization problem for
the sub-Riemannian length functional [ is equivalent to the minimization prob-
lem for the action functional

I
g0 =5 [ (€30 480+ 2 @) ae - min,
with fixed ¢t; > 0.
In paper [I5], the authors show that the problem can be reduced to the case
& =1, and that application of the Pontryagin maximum principle leads to the
following Hamiltonian system:

U1 = —uUsus, T = ugsin 3,
Ug = U3U4, 1y = —ugcosfsinb,
1'1,3 = U1U5 — U2U4, z= us COSﬂCOS 9,
Uy = UoU3 — UsUG, 0 = sec B(ug cos a — us sin a),
U5 = UglUg — ULUS, B:U4 sin a0 + us cos a,
ug = 0, & = —(ug cosa — up sin ) tan 3,
— the vertical part (for extremal controls), — the horizontal part (for geodesics).

(2)

The vertical part describes dynamics of the extremal controls usz, ug, us
together with the remaining momentum components uy, ug, ug. SR geodesics
are solutions to the horizontal part.

In this paper we focus on the simplest case ug = 0, as the most important
for applications, in particular, for tracking of neural fibres and blood vessels in
MRI and CT images of human brain [I5]. In this case, the system on extremal
controls becomes

U1 = —Ugls, Uz = Uzlg, U3z = UIUs — UgUsg, Us = UgUg, Us = —uiuz. (3)

We generalize results of [I5], where, in particular, the extremal controls
are found in the case when the geodesics do not have cusps in their spatial
projection. Such geodesics admit parametrization by spatial arclength, which
leads to expression for the extremal controls in elementary functions. Now, we
relax the ’cuspless’ assumption and derive explicit expression for uq,...,us in
terms of Jacobi elliptic functions.

In Section [2] we show, that if the function wz is known, then the first, the
second, the fourth and the fifth equations of system (B) allow us to express ug,
k € {1,2,4,5} via the initial values u;(0). Then by substitution of wuj in the
third equation of system (B]) we obtain an ordinary differential equation on us.
Solution to this equation is presented in Section [Bl



Remark 1. Finding a parameterization of SR geodesics is a nontrivial problem.
First natural question arises on a theoretical possibility of such parameterization
in some reasonable sense — the question of integrability of the Hamiltonian
system. It was shown in [15, Thm. 2], that (@) is Liouville integrable, since it has
a complete set of functionally independent first integrals in involution: ug, the
Hamiltonian H = (u3 +uj+u?), a Casimir function W = uyug +ugus + usug,
and the right-invariant Hamiltonians

p1 = —u1 cosacos B + ug cos B sin a — ug sin G,
p2 = — cos B(ug cos a + ug sin @) + (ug cos B + (—uq cosa + ug sin «) sin 3) sin 6,
p3 = —ug cos S cos + cos O(ug cosa — ug sin ) sin f — (ug cos a + wug sin «) sin 6.

The question of integrability of Hamiltonian systems was actively studied by
V.I. Arnold [3]. Our research continues his study and examines an important
example of integrable system.

2 Expression for uy, k # 3 via uz and the initial
values

Let T > 0, g € C(0,T). If g is unbounded, assume existence of the integral
T
Jo 9(t)dt. Denote

G(t)/o g(r)dr.

It is known [B, ch. 1, par. 3|, that under such assumptions the Cauchy problem
9(t) = g(t)y(t), y(0) = yo has a unique solution y € C[0,T] UD(0,T) given by
y(t) = yo exp(G(t)).

Similarly, under the same assumptions the Cauchy problem

o(t) = g(H)w(t), v(0) = vo,
w(t) = g(t)v(t), w(0) =wo

has a unique solution (v, w) given by

() = 25 exp (G (1)) + 2522 exp (~G (1)) -
w(t) = =528 exp (G (1)) - 2522 exp (~G (1))

Notice that the first and the fifth equations of system (B]) can be written
in form (@), where g(t) = —us(t), and the second and the fourth equations of
system (B can be written in form (4]), where g(¢t) = us(t). Thus, denoting

U(t) = / us(r)dr (6)

and using (B)), we express u1, ug, ug, us via integral (@) and the initial values

uy(£) = OO oxp (U (1)) + 5@ exp (U (1),
ug(t) = 2251 O ey (U (1)) + 22052410 exep (—U (1)), @
us(t) = 22 exp (U (1)) — 220ipee® exp (U (1)
us(t) = OO oxp (U (1)) — 1 CFCexp (U (1))



3 Expression for the function usg
It follows from ([7) that

wn (Bus(8) = (M) exp (~2U (1)) — (M) exp (20 (1)

st = (2O ) e a0 1) - (205D exp 20 1),

Therefore,

1
ur(t)us(t) —uz(t)ua(t) = 7 (Aexp (-2U (t)) - Bexp (2U (1)), (8)
where A = (u1(0) + u5(0))*+(us(0) = ua(0))*, B = (u1(0) — u5(0))*+(u2(0) + u4(0))*.
Substitution of (&) in the third equation of system (B]) gives the following
second order autonomous differential equation on integral (@l):

is(1) = (1) = % exp (~20(1)) ~ 2 exp (20/(1). 9)

There are three possible cases: two special cases (A = 0 or B = 0) and the
general case AB # 0 (in this case A and B both are positive). Next we study
these 3 cases.

I. A=0 < u1(0) = —u5(0), u2(0) = ug(0). Equation (@) becomes

U(t) = —Byexp (2U(t)), where By = u2(0) + u(0). (10)
We aim for a solution that satisfies the initial conditions
U(0) =0, U(0) = us(0). (11)

Initial value problem ([I0), (1) can be solved by standard methods. A solution
is given by

Ut)=—1In (% [(1 + “L"T(O)) e v+ (1 — “L"T(O)) eth , where b= /u2(0) + u2(0) + u
Therefore, we find

(b+ us(0)) e=" — (b — u5(0)) ¢

us(t) = U (1) = (R e e e (12)
II. B=0< u1(0) = u5(0), u2(0) = —u4(0). Equation (@) becomes
U(t) = Byexp (—2U(t)).
A solution that satisfies initial conditions (IIJ) is given by
U(t) =t (§[(1+252) et 4 (1- 220 e0t]).
Therefore, we find
us(t) = U(t) (b+u3(0)) e? — (b — uz(0)) e~ " (13)

(1 + USIEO)) ebt 4 (1 _ usb(o)) efbt.



III. AB#0= A >0, B> 0. Denote V =2U, Vj = %ln (%) and rewrite
equation (@) as

. -V _ Vv V-V _ V+W
i = yap YA/Be — B/de _ \/AB% = —VABsinh(V+Vp).

Next, denoting y = V + Vj; we obtain the following Cauchy problem:

j= —\/Esinhy, y(0) = %ln (g) , 9(0) = 2u3(0). (14)

In [16], the authors find a solution to problem (I4). It leads to

2

y(t) = In (1 + Jﬁ (cn2 (s, k) + %Cn (11, k) dn (wt,kz))) :

y(t) = =P sn (¢, k),
2’[1.3(0)

— arcsin T) ,if B> A,

T + arcsin (QUST@) , if B < A,

2
with P = \/4ug O+ (VA-VB)', Q= /130 + (vA+VE)
Here, the Jacobi functions sn, cn, dn and the elliptic integral of the first kind

F are used, see [6].
Finally, by backward substitutions we express

U(t):@f%m <§), ug(t):@. (15)

where Q/Jt = F(pOak)—i_%ta k= ’ Po =

Ol

2

4 Conclusion

Let us summarize results of Sections [Il 2 Bl The following theorem is proved.

Theorem 1. Consider the SR problem in SE(3). Suppose ug(0) = 0; then
vertical part (on extremal controls) of the Hamiltonian system of PMP is given

by (3).

The extremal controls uyg, us are expressed via U(t) = fot us(7) d 7 and the initial
values in ().

The extremal control us is given in terms of the initial values depending on
several cases. For the cases u1(0) = Fu5(0), uz(0) = Fug(0), we have (I2),

(I3). Otherwise, we have ({13).

In future work, we plan to perform explicit integration of the geodesic equa-
tion 4(t) = 2?23 u;(7)A; as well as study of the general case ug(0) # 0.
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