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Abstract: We construct a family of quantum scalar fields over a p−adic space-
time which satisfy p−adic analogues of the G̊arding–Wightman axioms. Most
of the axioms can be formulated the same way in both, the Archimedean and
non-Archimedean frameworks; however, the axioms depending on the ordering
of the background field must be reformulated, reflecting the acausality of p−adic
spacetime. The p−adic scalar fields satisfy certain p−adic Klein-Gordon pseudo-
differential equations. The second quantization of the solutions of these Klein-
Gordon equations corresponds exactly to the scalar fields introduced here.
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1. Introduction

Ever since the advent of Quantum Mechanics, the question of its compatibility
with Special Relativity was raised. The occurrence of non-locality in the quantum
world and its implications regarding the relativistic causal structure was the
central theme in the well-known works by Einstein, Podolsky and Rosen, and
Bell. These issues are still debated today, but there is a increasing amount of
research pointing towards the fact that quantum mechanics is incompatible at
a fundamental level not only with the causal structure furnished by Special
Relativity (through light cones), but with any other possible causal ordering1. In
[6], it is concluded that the description of non-localities requires fine-tuning of the
system’s parameters, thus violating a basic principle of any causal model. In [40],
quantum correlations incompatible with a definite causal order are constructed
(although they prove that a causal order emerges in the classical limit), and
the experimental existence of these correlations is reported in [47]. See also
[45] for the incompatibility of Quantum Mechanics with some non-local causal
models. Applications of the absence of a predefined causal structure to quantum
computations are given in [7].

Motivated by these considerations, one could wonder whether it is possible to
construct a quantum field theory (QFT) on a spacetime devoid of any a priori
causal structure. The notions of spacelike and timelike intervals which, from an
operational point of view, characterize the causal structure, are intimately tied
to the existence of a total order on the field number R compatible with the al-
gebraic field operations, so a possibility is to start from a non-ordered number
field. Leaving aside the case of finite fields, the most obvious choice is to consider
the non-Archimedean field of p−adic numbers Qp. The corresponding spacetime
would be Q4

p. In this way, (p−adic) time no longer acts as an ordering param-
eter. While this is completely consistent with the requirement of covariance, it
raises some questions about its meaning in Quantum Mechanics; for some theo-
retical points of view about the possibility of quantum processes without a time
parameter see [64,46].

The spacetime Q4
p is acausal in the broad sense of lacking a causal structure,

but also in the particular, technical, sense that for any pair of points on it,

1 Notice that we emphasize the causal character. There are other possible orderings (chrono-
logical, horismos) that will be not considered here, although they are related, see [30].



Acausal quantum theory for non-Archimedean scalar fields 3

there exists no causal curve connecting them (which, in particular, also implies
that it is achronal). The question of the intrinsic (a)causality of spacetime has
been studied sometime ago [31], and is a topic of obligated discussion when
dealing with the possibility of ‘travels in time’ [34,54]. Acausal (portions of)
spacetimes appears often in relation with wormholes in General Relativity [38].
There have been problems in constructing the S matrix for interacting massive
scalar fields in this setting [14], but it should be stressed that these are due
to the interaction along closed timelike curves, which do not exist at all in the
framework of a globally acausal spacetime such as the one presented here, where
the very notion of ‘timelike’ does not make sense.

A problem present in any acausal theory is the characterization of micro-
causality or local commutativity, that is, the vanishing of the commutator of field
operator-valued distributions when the test functions have support in spacelike
separated regions. It is not clear a priori that a theory without a causal struc-
ture will allow for vanishing commutators even restricting the domain of the
involved operators, but we will show below that a similar property holds when
the test functions are supported in the p−adic unit ball. Thus, there is no room
for phenomena arising in the non-Archimedean case, such as the connection of
spacelike regions by large timelike loops. It is also reasonable to expect that
the consideration of p−adics numbers could also cure the divergences in 1−loop
effective Lagrangians that appear in the real Euclidean case [5], although no
attempt is made here to pursue this direction of research.

Another, different, kind of motivation for studying quantum field theory in
the p−adic setting comes from the conjecture of Vladimirov and Volovich stating
that spacetime has a non-Archimedean nature at the Planck scale, [61], see also
[55]. The existence of the Planck scale implies that below it the very notion of
measurement as well as the idea of ‘infinitesimal length’ become meaningless,
and this fact translates into the mathematical statement that the Archimedean
axiom is no longer valid. Before Volovich, some authors explored the possibility
of constructing theories of the spacetime using background fields different from
R and C; for instance, in [12] Everett and Ulam study the Lorentz group over
Qp in the hope that ‘spaces of this sort might be useful in some future models
of nuclear or subnuclear theories’, see also [55], [56, Chapter 6] and references
therein. Volovich’s conjecture propelled a wide variety of investigations in cos-
mology, quantum mechanics, string theory, QTF, etc., and the influence of this
conjecture is still relevant nowadays, see e.g. [1], [4]-[11], [10], [9], [18]-[19], [28]-
[37], [57]-[61], [65], [67]. In a completely different framework, that of the physics
of complex systems, the paradigm asserting that the space of states of several
complex systems has an ultrametric structure has also originated a large amount
of research, see [42], [27] and references therein. These two ideas are the main
motivations driving the development of p−adic mathematical physics. In par-
ticular, during the last thirty years p−adic QFT has been studied intensively, a
topic whose importance has been highlighted by Varadarajan in [56].

In this article we present a second-quantization, based on Segal’s formal-
ism, for p−adic free scalar fields whose evolution is described by a certain class
of Klein-Gordon type pseudo-differential operators. In order to guarantee that
the resulting theory has some physical content, we show that the correspond-
ing quantum non-Archimedean scalar fields satisfy p−adic versions of G̊arding–
Wightman’s axioms. Most of them can be formulated in a way valid in both the
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Archimedean and non-Archimedean cases, but some of them must be appropri-
ately re-formulated in the p−adic setting by introducing new mathematical ideas
and re-interpreting some classical constructions that are not directly available in
the p−adic context. For instance, the absence of an ordering in the background
number field implies some profound modifications in the usual interpretation of
notions such as the timelike or spacelike character of p−adic spacetime events,
and the introduction of new mathematical objects such as the p−adic restricted
Lorentz group, that we will discuss below. As another example, our p−adic spec-
tral condition does not provide a definition of energy and momentum operators,
because this would require a theory of semigroups, with p−adic time, for oper-
ators acting on complex-valued functions, and such a theory does not exist at
the moment. However, the outcomes of our analysis are consistent with the re-
quirement that the mathematical description of physical reality must not depend
on the background number field, see [62]. This property is due to the particu-
lar nature of the Klein-Gordon field, notice that the same is not true for the
Schrödinger equation, as the number i does not have an analog in an arbitrary
field.

Thus, the main conclusion is that there seems to be no obstruction to the
existence of a mathematically rigorous quantum field theory (QFT) for free fields
in the p−adic framework, based on an acausal spacetime. It must be remarked
that we deal with free fields, omitting interactions. The reason for this is that,
due to Haag’s theorem, interactions require a more technical treatment, but
having a consistent theory for the free case is the first step towards a complete
p−adic QFT.

We have remarked some features derived from the fact that the spacetime is
p−adic. Let us now make some comment about those originated in the configu-
ration space of the fields. A key fact is that we work with complex-valued fields.
This allow us to use the tools from classical functional analysis, in particular Se-
gal quantization. On the other hand, it is also possible to work with p−adic val-
ued fields. In this setting, Khrennikov developed a theory of Gaussian integration
of non-Archimedean-valued functions on infinite-dimensional non-Archimedean
spaces and a calculus of pseudo-differential operators which is suitable for the
second-quantization representation in non-Archimedean quantum field theory,
see [23]-[25] and references therein. Mathematically speaking, this is a completely
different setting from ours: for instance, p−adic Hilbert spaces are radically dif-
ferent to their complex counterparts.

The construction of a quantum field theory over a p−adic spacetime raises
the question about the physical meaning of the prime p. Once a choice for p
is made, we can construct Q4

p (endowed with the maximum norm) and then
give it a geometric structure through a quadratic form q. The geometry of the
resulting spacetime, the quadratic space (Q4

p, q), depends crucially on both, p
and q. We choose the simplest case in which the quadratic form is the unique
elliptic form of dimension four and a prime number p ≡ 1mod4. The first choice
is motivated by the need for ellipticity when doing the explicit computation of
the fundamental solutions (and the corresponding propagators) of the Klein-
Gordon equation. Notice that the naive choice q(k) = k20 − (k21 + k22 + k23) is
excluded because it is not elliptic. It is possible to develop a theory based on
this form, but at the cost of facing greater technical difficulties. However, as
we will see, our choice for q retains all the essential features of a relativistic
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theory, so it is justifiable from a physical point of view. Regarding the choice of
p, the quantum fields introduced here will strongly depend on the geometry of
the hypersurface V =

{
k ∈ Q4

p; q(k) = 1
}
, and if we pick p ≡ 1mod4, then we

can guarantee that
√
ω(k) 6= 0 for any k ∈ Uq, where Uq ⊂ Q3

p is a certain open
and compact subset (depending on q) that will be defined later on. Notice that,
due to these choices, we are actually defining a family of quantizations, a fact
that could be viewed as an advantage over the rigidity of the classical case.

Thus, given a prime number p ≡ 1 mod 4 and a p−adic elliptic quadratic form
q of dimension 4, we will denote by O(q) the orthogonal group of q. As stated,
the p−adic Minkowski spacetime is, by definition, the quadratic space (Q4

p, q),
so the Lorentz group of spacetime is O(q). In this article, ‘time’ is a p−adic
variable, so the notions of past and future are not clearly defined. However, the
p−adic implicit function theorem allows us to determine k0, from q (k0,k) = 1,

as k0 = ±
√
ω (k), where

√
ω (k) is a p−adic analytic function defined in Uq,

and in this way we can define the mass shells:

V ± =
{
(k0,k) ∈ Qp ×Q3

p; k0 = ±
√
ω (k) , k ∈ Uq

}
.

In the p−adic setting the usual geometric notion of cone does not make sense,
because it depends on the fact that the real numbers form an ordered field. There-
fore, the notion of closed forward light cone is replace by the notion of ‘closed
forward semigroup’, which is the topological closure of the additive semigroup
generated by V +. This notion allow us to construct a spectral measure attached
to a strongly continuous unitary representation of the p−adic Poincaré group
as in the classical case, see Theorem 2.

We will denote by F the Fourier transform operator associated to the quadra-
tic form q. The p−adic Klein-Gordon operator attached to q with unit mass is
defined as

�q,αϕ = F−1
(
|q− 1|αp Fϕ

)

where ϕ is a test function and α is a fixed positive number.
In conventional QFT there have been some studies devoted to the optimal

choice of the space of test functions. In [22], Jaffe discussed this topic (see also
[52] and [33]); his conclusion was that, rather than an optimal choice, there
exists a set of conditions that must be satisfied by the candidate space, and any
class of test functions with these properties should be considered as valid. The
main condition is that the space of test functions must be a nuclear countable
Hilbert one. In this article, we use the following Gel’fand triple: H∞ (K) ⊂
L2
K ⊂ H∗

∞ (K), where K = R, C. This triple was introduced in [65]. The space
H∞ (K) is a nuclear countable Hilbert space, which is invariant under the action
of a large class of pseudo-differential operators. This space can be considered
the ‘true’ non-Archimedean analogue of the classical Schwartz space, as we will
repeatedly justify in what follows. In fact, our results could be summarized by
saying that the G̊arding–Wightman axioms make sense in the p−adic context if
we replace the Schwartz space of the classical framework by H∞ (C).

The p−adic Klein-Gordon equation

�q,αu (t,x) = 0 (1)
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admits solutions of plane wave type, more precisely, the functions

exp 2πi
{
tE± − sx1l1 − px2l2 + spx3l3

}
p
,

where {·}p denotes the p−adic fractional part, l = (l1, l2, l3) ∈ Q3
p is a fixed

vector, and E± = ±
√
ω (l) (here

√
ω (k) is the p−adic dispersion) are weak

solutions of (1), see Theorem 3. The general solution of (1), up to multiplication
by a non-zero complex constant, is

∫

Uq

(
χp

(
−
√
ω(k)t+ k · x

)
a (k) + χp

(√
ω(k)t− k · x

)
a†(−k)

) d3k∣∣∣
√
ω (k)

∣∣∣
p

,

(2)

where χp (·) = exp
(
2πi {·}p

)
is the standard additive character of Qp, Uq ⊂ Q3

p

is an open and compact subset, k ·x denotes a suitable bilinear form, and a (k),
a† (−k) are test functions, see Theorem 3. The solutions (2) can be quantized
using the techniques described below, and the corresponding Klein-Gordon fields
satisfy the corresponding Wightman axioms, see Theorem 2.

The p−adic Klein-Gordon equations in the form used in this article were
introduced by the third author, see [67, Chapter 6] and references therein, where
also the problem of the second quantization of their solutions was posed [67,
Chapter 7]. The resulting field theory has a strong number-theoretic flavor. For
instance, the calculation of the Green functions is related to the meromorphic
continuation of Igusa’s local zeta functions, see Theorem 1 and the references
[21], [27, Chapter 10], [67, Chapter 5].

Finally, let us remark that there are a lot of open questions related to p−adic
quantum fields and their underlying mathematical techniques that remain to
be studied within the present framework. Among them, probably the most im-
portant one is the reconstruction theorem, which depends on an appropriate
definition of Wightman distributions, and, of course, the inclusion of non-trivial
interactions, that will be discussed elsewhere. The corresponding theory for non-
elliptic quadratic forms q, though much more difficult, is also of interest.

2. Preliminaries

Along this article p will denote a prime number different from 2. Due to physical
considerations we will formulate all our results in dimension 4, however, many
of our results are still valid in arbitrary dimension.

2.1. The field of p−adic numbers. In this section we summarize the essential
aspects and basic results on p−adic analysis that we will use through the article.
For a detailed exposition of p−adic analysis the reader may consult [2,53,60].

The field of p−adic numbers Qp is defined as the completion of the field of
rational numbers Q with respect to the p−adic norm |·|p, which in turn is defined
as

|x|p =

{
0 if x = 0

p−γ if x = pγ
a

b
,
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where a and b are integers coprime with p. The integer γ := ord(x), with
ord(0) := +∞, is called the p−adic order of x. Any p−adic number x 6= 0
has a unique expansion of the form

x = pord(x)
∞∑

j=0

xjp
j , (3)

where xj ∈ {0, . . . , p − 1} and x0 6= 0. Any non-zero p−adic number x can be

written uniquely as x = pord(x)ac (x), with |ac (x)|p = 1, ac (x) is called the
angular component of x.

By using expansion (3), we define the fractional part of x ∈ Qp, denoted
{x}p, as the rational number

{x}p =

{
0 if x = 0 or ord(x) ≥ 0

pord(x)
∑−ord(x)−1

j=0 xjp
j if ord(x) < 0 .

As a topological space Qp is homeomorphic to a Cantor-like subset of the real
line, see e.g. [2,60]. The balls and spheres are compact subsets.

We extend the p−adic norm to Q4
p by taking

||x||p := max
0≤i≤3

|xi|p, for x = (x0, x1, x2, x3) ∈ Q4
p.

We define ord(x) = min0≤i≤3{ord(xi)}, then ||x||p = p−ord(x). The metric space(
Q4

p, || · ||p
)
is a complete ultrametric space. Thus (Q4

p, ‖·‖p) is a locally compact
topological space.

For l ∈ Z, denote by B4
l (a) = {x ∈ Q4

p : ||x − a||p ≤ pl} the ball of radius

pl with center at a = (a0, a1, a2, a3) ∈ Q4
p, and take B4

l (0) := B4
l . Note that

B4
l (a) = Bl(a0) × · · · × Bl(a3), where Bl(ai) := {x ∈ Qp : |x − ai|p ≤ pl} is

the one-dimensional ball of radius pl with center at ai ∈ Qp. The ball B4
0 equals

the product of four copies of B0 := Zp, the ring of p−adic integers. For l ∈ Z,
denote by S4

l (a) = {x ∈ Q4
p : ||x− a||p = pl} the sphere of radius pl with center

at a ∈ Q4
p, and take S4

l (0) := S4
l .

Remark 1. The natural map Zp → Zp/pZp ≃ Fp, where Fp is the finite field
with p elements, is called the reduction modulo p, denoted as ·. We will identify
Fp =

{
0, 1, . . . , p− 1

}
, where the addition and multiplication are defined modulo

p. We will distinguish between {0, 1, . . . , p− 1} ⊂ Zp and Fp. Later on, we will
also use the symbol ‘·’ to mean conjugation of complex numbers, but it will clear
from the context which case it is being used.

Note 1. Let us collect here some conventions.

(i) We denote by Ω(‖x‖p) the characteristic function of B4
0 . For more general

sets, say Borel sets, we use 1A (x) to denote the characteristic function of
A.

(ii) From now on, we denote by d4x the Haar measure of the locally compact
group

(
Q4

p,+
)
normalized so that the volume of Z4

p is one.

(iii) We will use the notation x = (x0, x1, x2, x3) = (x0,x) ∈ Qp×Q3
p from now

up to Section 5.5.
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2.2. Some function spaces.

2.2.1. The Bruhat-Schwartz space. We take K to mean R or C. A K-valued
function ϕ defined on Q4

p is called locally constant, if for any x ∈ Q4
p there exists

an integer l(x) ∈ Z such that

ϕ(x+ x′) = ϕ(x) for x′ ∈ B4
l(x). (4)

A function ϕ : Q4
p → K is called a Bruhat-Schwartz function (or a test function),

if it is locally constant with compact support. The K-vector space of Bruhat-
Schwartz functions is denoted by DK(Q

4
p) := DK. Let D

′

K(Q
4
p) := D′

K denote the

space of all continuous functionals (distributions) on DK. The space D
′

K coincides
with the algebraic dual of DK, i.e. any linear functional on DK is continuous. For
an in-depth discussion the reader may consult [2], [53], [60].

Remark 2. Most of the time we will work in dimension four, with spaces like
DK(Q4

p) and D′

K(Q
4
p), in these cases we will use the abbreviated notation DK,

D′

K. In a few occasions we will work in dimensions different from 4, then we will
use the notation DK(Qn

p ), D′
K(Q

n
p ). A similar rule will be used for other function

spaces.

2.2.2. The spaces Lr. Given r ∈ [1,+∞), we denote by Lr
K

(
Q4

p, d
4x
)
:= Lr

K, the

K-vector space of all the K-valued functions g satisfying
∫
Q4

p
|g (x)|r d4x <∞.

2.3. Fourier transform. Set χp(y) = exp(2πi{y}p) for y ∈ Qp. The map χp(·) is
an additive character on Qp, i.e. a continuous map from Qp into the unit circle
satisfying χp(y0 + y1) = χp(y0)χp(y1), y0, y1 ∈ Qp.

We set
B (x, y) = x0y0 − sx1y1 − px2y2 + spx3y3,

where s ∈ Z is a quadratic non-residue module p, i.e. the congruence x2 ≡ s
mod p does not have solution. Then B (x, y) is a symmetric non-degenerate
Qp−bilinear form on Q4

p ×Q4
p, and

q(x) := B (x, x) = x20 − sx21 − px22 + spx23, x ∈ Q4
p

is a non-degenerate quadratic form on Q4
p. In addition, q(x) is the unique (up to

linear equivalence) elliptic quadratic form in dimension four, here elliptic means
that q(x) = 0 ⇔ x = 0 (notice that this is not equivalent to the non-degeneracy
of B, as the equation q(x) = 0 could have its own solutions, not coming from
vectors orthogonal to all the vectors in Q4

p).

We identify the Qp−vector space Q4
p with its algebraic dual

(
Q4

p

)∗
by means

of B (·, ·). We now identify the dual group (i.e. the Pontryagin dual) of
(
Q4

p,+
)

with
(
Q4

p

)∗
by taking x∗ (x) = χp (B (x, x∗)). The Fourier transform is defined

by

(Fg)(k) =
∫

Q4
p

g (x)χp (B (x, k)) dµ (x) , for g ∈ L1
C,
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where dµ (x) is a Haar measure on Q4
p. Let L

(
Q4

p

)
be the space of complex-

valued continuous functions g in L1
C whose Fourier transform Fg is integrable.

The measure dµ (x) can be normalized uniquely in such manner that

(F(Fg))(x) = g(−x) for every g belonging to L
(
Q4

p

)
.

We say that dµ (x) is a self-dual measure relative to χp (B (·, ·)). Notice that
dµ (x) = C(q)d4x where C(q) is a positive constant and d4x is the normalized
Haar measure on Q4

p. For further details about the material presented in this
section the reader may consult [63].

We will also use the notation Fx→ξg and ĝ for the Fourier transform of g.

The Fourier transform F [T ] of a distribution T ∈ D′

C is defined by

(F [T ] , ϕ) = (T,Fϕ) for all ϕ ∈ DC.

The Fourier transform T → F [T ] is a linear isomorphism from D′

C onto itself.
Furthermore, T (ξ) = F [F [T ] (−ξ)].

Note 2. Along this article we will use the notation q(x) = x20 − q0(x), where
q0(x) = sx21 + px22 − spx23 is an elliptic quadratic form. The bilinear form corre-
sponding to q0 will be denoted B0(·, ·). Then B (x, y) = x0y0 −B0(x,y).

2.4. The p−adic Minkowski space. Take q(x) as before, and define

G =



1 0 0 0
0 −s 0 0
0 0 −p 0
0 0 0 sp


 .

Then q(x) = x⊤Gx, where ⊤ denotes the transpose of a matrix, and x is identi-

fied with the column vector [x0, x1, x2, x3]
⊤
. The orthogonal group of q is defined

as

O(q) = {Λ ∈ GL4(Qp);B (Λx,Λy) = B (x, y)}
= {Λ ∈ GL4(Qp);Λ

⊤GΛ = G}.

Notice that any Λ ∈ O(q) satisfies detΛ = ±1. We call the quadratic space
(Q4

p, q) the p-adic Minkowski space, and we define the p-adic Lorentz group to
be O(q). Later on, we will introduce the p−adic restricted Lorentz group and
the p−adic restricted Poincaré group.

Remark 3. Special relativity in the p−adic framework was discussed in [12], how-
ever, our definitions of Lorentz group and ‘light cones’ are completely different
to the ones used in this article. In [57]-[58], the authors investigated the rep-
resentations of the p−adic Poincaré group, our notion of Lorentz group agrees
with the one used in these works.
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2.5. The Dirac distribution supported on a hypersurface. Take f ∈ Qp [x0, x1, x2, x3]
to be a non-constant polynomial. The hypersurface attached to f is the set

H := H(f) =
{
x ∈ Q4

p; f(x) = 0
}
.

We say that H is a non-singular hypersurface, if

∇f(x) 6= 0 for any x ∈ H. (5)

By using the p−adic implicit function theorem, see e.g. [21], [48], one shows,
like in the case R4, that H is a p−adic manifold embedded in Q4

p. More exactly,

H is a closed submanifold of Q4
p (which is a p−adic manifold of dimension 4)

of codimension 1. For further details about p−adic manifolds the reader may
consult [21], [48].

The condition (5) implies the existence of a 3-form λ (whose restriction to H
is unique) satisfying

dx0 ∧ dx1 ∧ dx2 ∧ dx3 = df ∧ λ. (6)

Usually λ is called a Gel’fand-Leray form for H . We denote by dλ the measure
induced by λ on H . For the details about the construction of dλ, the reader may
consult [21, Chapter 7]. This construction is similar to one done in the real case,
[15, Chapter III].

The linear functional

DK → K

ϕ → (δH , ϕ) =
∫
H

ϕ (x) dλ

gives rise to a distribution D′
K, which is called the Dirac distribution δH sup-

ported on H .
Denote Q×

p = Qp − {0}. For t ∈ Q×
p , we set

Vt := Vt(q) = {x ∈ Q4
p; q(x) = t}.

Then Vt is a non-singular hypersurface in Q4
p. The orthogonal group O(q) acts

transitively on Vt. On each non-empty orbit Vt there is a non-zero, positive
measure which is invariant under O(q) and unique up to multiplication by a
positive constant, see [41, Proposition 2-2].

For each t ∈ Q×
p , let dµt be a measure on Vt invariant under O(q). Since

Vt is closed in Q4
p, it is possible to consider dµt as a measure on Q4

p supported
on Vt, and by the using the Caratheodory theorem, we can identify dµt with a
positive distribution, i.e. if φ is a non-negative function, then (dµt, φ) ≥ 0. The
Rallis-Schiffman result above mentioned can be reformulated as follows: on each
non-empty orbit Vt there is a non-zero, positive distribution which is invariant
under O(q) and unique up to multiplication by a positive constant.

Now, since δVt
is invariant under O(q), see [67, Lemma 156] for a similar

calculation, we conclude that dµt agrees (up to a positive constant) with δVt
.

From now on we identify δVt
with dµt.

Note 3. From now on, we will use δ (f) to denote the Dirac distribution supported
on the non-singular hypersurface attached to the polynomial f.
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2.6. The spaces H∞. The Bruhat-Schwartz space DK is not invariant under the
action of pseudodifferential operators. In [65], see also [27, Chapter 10], the third
author introduced a class of nuclear countably Hilbert spaces which are invariant
under the action of a large class of pseudo-differential operators. In this section,
we review some basic results about these spaces that we will use in the remaining
sections.

Note 4. We set R+ := {x ∈ R : x ≥ 0}, [ξ]p := max(1, ‖ξ‖p) and consider N to
be the set of non-negative integers.

We define for f, g ∈ DK, with K = R,C, the following scalar product:

〈f, g〉l :=
∫

Q4
p

[ξ]lpf̂(ξ)ĝ(ξ)d
4ξ,

for l ∈ N, where the bar denotes the complex conjugate. We also set ‖f‖2l =
〈f, f〉l. Notice that ‖·‖l ≤ ‖·‖m for l ≤ m. Let denote byHl(Q4

p,K) =: Hl(K) the
completion of DK with respect to 〈·, ·〉l. Then Hm(K) →֒ Hl(K) is a continuous
embedding for l ≤ m. We set

H∞(Q4
p,K) := H∞(K) =

⋂

l∈N

Hl(K).

Notice that H0(K) = L2
K and that H∞(K) ⊂ L2

K. With the topology induced by
the family of seminorms ‖ · ‖l, H∞(K) becomes a locally convex space, which is
metrizable. Indeed,

d(f, g) := max
l∈N

{
2−l ‖f − g‖l

1 + ‖f − g‖l

}
, for f , g ∈ H∞(K),

is a metric for the topology of the convex topological space H∞(K). A sequence
{fl}l∈N ∈ (H∞(K), d) converges to f ∈ H∞(K), if and only if, {fl}l∈N converges
to f in the norm ‖ · ‖l for all l ∈ N. From this observation it follows that the
topology of H∞(K) coincides with the projective limit topology τP . An open
neighborhood base at zero of τP is given by the choice of ǫ > 0 and l ∈ N, and
the sets

Uǫ,l := {f ∈ H∞(K) : ‖f‖l < ǫ}.
The space H∞(K) endowed with the topology τP is a countably Hilbert space in
the sense of Gel’fand and Vilenkin, see e.g. [16, Chapter I, Section 3.1] or [39,
Section 1.2]. Furthermore (H∞(K), τP ) is metrizable and complete and hence
a Fréchet space, cf. [65, Lemma 3.3]. In addition, the completion of the metric
space (DK(Q4

p), d) is (H∞(K), d), and this space is a nuclear countably Hilbert
space, see [65, Lemma 3.4, Theorem 3.6] or [27, Chapter 10].

For m ∈ N and T ∈ D′
K, we set

‖T ‖2−m :=

∫

Q4
p

[ξ]−m
l |T̂ (ξ)|2d4ξ.

Then H−m(K) := H−m(Q4
p,K) = {T ∈ D′

K; ‖T ‖2−m <∞} is a Hilbert space over
K. Denote by H∗

m (K) the strong dual space of Hm (K). It is useful to suppress
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the correspondence between H∗
m (K) and Hm (K) given by the Riesz theorem.

Instead we identify H∗
m (K) and H−m (K) by associating T ∈ H−m (K) with the

functional on Hm (K) given by

[T, g] :=

∫

Q4
p

T̂ (ξ)ĝ(ξ)d4ξ. (7)

Notice that |[T, g]| ≤ ‖T ‖−m‖g‖m. Now by a well-known result in the theory of
countable Hilbert spaces, see [16], H∗

0 (K) ⊂ H∗
1 (K) ⊂ . . . ⊂ H∗

m (K) ⊂ . . . and

H∗
∞ (K) =

⋃

m∈N

H−m (K) = {T ∈ D′
K; ‖T ‖−l <∞, for some l ∈ N} (8)

as vector spaces. Since H∞ (K) is a nuclear space, the weak and strong conver-
gence are equivalent in H∗

∞ (K), see e.g. [16]. We consider H∗
∞ (K) endowed with

the strong topology. On the other hand, let B : H∗
∞ (K) × H∞ (K) → K be a

bilinear functional. Then B is continuous in each of its arguments if and only if

there exist norms ‖ · ‖(a)m in H∗
m (K) and ‖ · ‖(b)l in Hl (K) such that |B(T, g)| ≤

M‖T ‖(a)m ‖g‖(b)l with M a positive constant independent of T and g, see e.g. [16].
This implies that (7) is a continuous bilinear form on H∗

∞ (K)×H∞ (K), which
we will use as a paring between H∗

∞ (K) and H∞ (K).

Remark 4. The spaces H∞ (K) ⊂ L2
K ⊂ H∗

∞ (K) form a Gel’fand triple (also
called a rigged Hilbert space), i.e. H∞ (K) is a nuclear space which is densely
and continuously embedded in L2

K and ‖g‖2
L2

K

= [g, g]. This Gel’fald triple was

introduced in [65].

The following result will be used later on:

Lemma 1. With the above notation, the following assertions hold:

(i) Hl(K) = {f ∈ L2
K; ‖f‖l <∞} = {T ∈ D′

K; ‖T ‖l <∞};
(ii) H∞(K) = {f ∈ L2

K; ‖f‖l <∞, for any l ∈ N};
(iii) H∞(K) = {T ∈ D′

K; ‖T ‖l <∞, for any l ∈ N}.
For the proof the reader may consult ([66, Lemma 3.2]) or [27, Lemma 10.8].

3. Fundamental Solutions for Pseudo-differential Operators of
Klein-Gordon Type

3.1. Some preliminary results. For α > 0, m ∈ Q×
p , and q as before, we define

the following pseudo-differential operator:

�q,α,m = F−1 ◦ |q−m2|αp ◦ F , (9)

where |q −m2|αp denotes the multiplication operator by the function |q−m2|αp .
We call operators of type (9), p-adic Klein-Gordon pseudo-differential operators.
These operators were introduced by Zúñiga-Galindo, see [67, Chapter 6] and the
references therein.

In this section, we consider operators �q,α,m with domain

Dom(�q,α,m) = {T ∈ D′
C : |q−m2|αpFT ∈ D′

C}.
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Remark 5. Notice that

�q,α,m (T (mx)) = |m|2αp (�q,α,1T ) (mx) for any T ∈ Dom(�q,α,m).

Consequently, we may normalize the mass m to one. From now on we assume
that m = 1, and we use the notation �q,α instead of �q,α,1.

Definition 1. We say that Eq,α ∈ D′
C is a fundamental solution for

�q,αu = ϕ, (10)

if u = Eq,α ∗ ϕ is a solution of (10) in D′
C, for any ϕ ∈ DC.

From now on, by an abuse of language, we will say that Eq,α is a fundamental
solution of �q,α.

Lemma 2. Eq,α is a fundamental solution of �q,α if and only if

|q− 1|αpF(Eq,α) = 1 (11)

in D′
C.

Proof. If Eq,α is a fundamental solution of �q,α, then

(
|q− 1|αpF(Eq,α)− 1

)
· Fϕ = 0,

for any test function in DC, which implies (11). Now, if (11) holds, by using
the fact that the product of two distributions, if it exists, is commutative and
associative (see e.g. [53, p. 127. Theorem 3.19]), we get that

(
|q− 1|αpFϕ

)
· F(Eq,α) = Fϕ

for any test function ϕ.

3.2. The p−adic submanifold V . Since q(k) = k20 − sk21 − pk22 + spk23, where
s ∈ Z×

p = Zp − {0} a quadratic non-residue mod p, is an elliptic quadratic form
(i.e. q(k) = 0 ⇔ k = 0), we have

|q(k)|p ≥
(

inf
x∈S4

0

|q(x)|p
)
‖k‖2p, (12)

see e.g. [67, Lemma 25]. Set

V := {k = (k0,k) ∈ Qp ×Q3
p; q(k) = 1}.

By using (12), and the fact that inf
x∈S4

0

|q(x)|p = p−1, we get that V ⊆ Z4
p, which

implies that V is a compact submanifold of Z4
p of codimension 1. Let us empha-

size that V is bounded (in contrast to the classical case). Given (k̃0, k̃) ∈ V with

k̃0 6= 0, by applying the p−adic implicit function theorem, see e.g. [21], there exist
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open and compact subsets U0
j ⊂ Zp, U

1
j ⊂ Z3

p such that (k̃0, k̃) ∈ Uj = U0
j ×U1

j ,

and a p−adic analytic function hj(x) : U
1
j → U0

j such that

V ∩ Uj = {(k0,k) ∈ Uj ; k0 = hj(k)} .

Notice that k0 = −hj(k) is also a ‘local parametrization’ of V . By using the
compactness of V , there exists a finite number of analytic functions ±hj(k) :
U1
j → ±U0

j , j = 1, . . . , N such that

V =

N⊔

j=1

{
(k0,k) ∈ U0

j × U1
j ; k0 = hj(k)

}⊔

N⊔

j=1

{
(k0,k) ∈ −U0

j × U1
j ; k0 = −hj(k)

}⊔
W ,

where W = {(0,k) : q0(k) = 1}. We set Uq :=
N⊔
j=1

U1
j ⊂ Z3

p. We now define in

Uq, two analytic functions as follows:

Uq → Qp

k → ±
√
1 + sk21 + pk22 − spk23 =: ±

√
ω (k),

where ±
√
ω (k) |U1

j
= ±hj(k).

3.2.1. A notion of positivity. We set F×
p =

[
F×
p

]
+

⊔[
F×
p

]
−, where

[
F×
p

]
+

:={
1, . . . , p−1

2

}
and

[
F×
p

]
− =

{
p+1
2 , . . . , p− 1

}
. We define the elements of

[
F×
p

]
+

as positive and the elements of
[
F×
p

]
− as negative. Notice that since p 6= 2,

[
F×
p

]
+
→

[
F×
p

]
−

y → −y mod p

is a bijection. Now, we say that a non-zero p−adic number

a = p−L (a0 + a1p+ . . .) , with L ∈ Z and a0 6= 0,

is positive (denoted as a > 0) if a0 ∈
[
F×
p

]
+
, otherwise we say that a is negative

(denoted as a < 0). This is a well-defined and useful notion of ‘positivity’ in Q×
p ,

however, this notion of positivity is not compatible with the field operations,
consequently, this notion does not give rise to an order in Q×

p . We also recall

that in the case p 6= 2, the equation x2 = a has two solutions in Qp if an only L
is even and the congruence z2 ≡ a0 mod p has two solutions, one in

[
F×
p

]
+
and

the other in
[
F×
p

]
−, we denote them as ±√

a0 ∈ F×
p . Then

x = p−
L
2

(√
a0 + b1p+ b2p

2 + . . .
)
,
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where the b’s are recursively determined by
√
a0, i.e. b1 = f1

(√
a0
)
, b2 =

f2
(√
a0, b1

)
, . . ., and

−x = −p−L
2

(√
a0 + b1p+ b2p

2 + . . .
)

= p−
L
2

(
p−√

a0 + (p− 1− b1) p+ (p− 1− b2) p
2 + . . .

)
.

We now define

V + =
{
(k0,k) ∈ V ; k0 > 0 and k0 =

√
ω (k)

}
,

V − =
{
(k0,k) ∈ V ; k0 < 0 and k0 = −

√
ω (k)

}
.

We call V + the positive mass shell and V − the negative mass shell. Therefore

V = V +
⊔
V −

⊔
W .

Consequently, W has dλ-measure zero, so
∫
W
ϕdλ ≡ 0 for any ϕ ∈ DC.

3.3. The distributions δV ± .

Remark 6. Set q(k0,k) := k20 − q0(k), then

W =
{
(k0,k) ∈ Z4

p; q(0,k) = 1
}
=
{
k ∈ Z3

p;−q0(k) = 1
}
.

A necessary and sufficient condition to have W 6= ∅ is that

− q0(k) ≡ 1 mod p i.e. − sk21 ≡ 1mod p. (13)

The sufficiency of condition (13) follows from the Hensel-Newton lemma, see
e.g. [17, Lemma 1]. The existence of solutions for congruence (13) requires the
computation of the following Legendre symbol:

(−s−1

p

)
=

{
1 if congruence (13) has a solution,

−1 if congruence (13) has no solution.

By using the fact that the Legendre symbol is a multiplicative function and that(
s
p

)
= −1, we get that

(−s−1

p

)
=

{−1 if p ≡ 1 mod 4 ⇔ W = ∅

1 if p ≡ 3 mod 4 ⇔W 6= ∅ .

Taking these results into account, we will set p ≡ 1mod 4 from now on, soW = ∅.
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We set δV = δ (q− 1) as before. The characteristic functions 1V ± are locally
constant functions, so the product distributions 1V ±δ (q− 1) are well-defined.
We set δV ± := 1V ±δ (q − 1). Then

δV = δV + + δV − in D′
C.

In the open subset of Q4
p defined by k0 6= 0, the 3-form λ satisfying (6) (with

f = q) is given by

λ =
dk1 ∧ dk2 ∧ dk3

2k0
,

therefore the corresponding measure is

dλ =
dk1dk2dk3

|k0|p
=

d3k∣∣∣
√
ω (k)

∣∣∣
p

=
d3k√

|1 + q0 (k)|p
for k ∈ Uq.

If p ≡ 1 mod 4, then
√
ω (k) 6= 0 or any k ∈ Uq, and

(δV ± , ϕ) =

∫

Uq

ϕ
(
±
√
ω (k),k

) d3k∣∣∣
√
ω (k)

∣∣∣
p

for any ϕ ∈ DC.

Remark 7. Take a ∈ F4
p satisfying q(a) ≡ 1 mod p. Since ∇q(a) 6≡ 0 mod p, by

the Hensel-Newton lemma, see e.g. [17, Lemma 1], there exists b ∈ Z4
p such that

q(b) = 1 and b ≡ a mod p. This b is not unique. We now define the following
tubular neighborhood of V :

EV =
⊔

a∈F4
p

q(a)≡1 mod p

b+ pZ4
p,

where implicitly we are choosing for each a ∈ F4
p a point b in V . Notice that

EV 6= ∅. Indeed, the solution set of the equation k20 − sk21 ≡ 1 mod p contains
the set A := {(1, 0, u, v) ;u, v ∈ Fp}, and the gradient satisfies the condition
∇q(y) 6≡ 0 mod p, for any y in A.

Lemma 3. Let b = (b0, b1, b2, b3) ∈ V , with b0 ∈ Z×
p .Then

(δ(q(k)− 1), φ(k)Ω(p‖k − b‖p)) =

p−3

∫

Z3
p

φ(b0 + pf(0, u1, u2, u3), b1 + pu1, b2 + pu2, b3 + pu3)du1du2du3,

where f(0, u1, u2, u3) is a p−adic analytic function on the ball Z3
p.

Proof. Recall that

(δ(q(k)− 1), φ(k)Ω(p‖k − b‖p)) =
∫

V ∩(b+pZ4
p)
φ(k)

dk1dk2dk3
|k0|p

.
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Now, by changing variables as k = b + pz,

(δ(q(k)− 1), φ(k)Ω(p‖k− b‖p)) = p−3

∫

{q(b+pz)=1}∩Z4
p

φ(b+ pz)dz1dz2dz3, (14)

where we are assuming that z0 is an analytic function of the variables z1, z2, z3.
We set

u = F (z), with u0 =
q(b+ pz)− 1

p
, ui = zi for i = 1, 2, 3. (15)

Then JacF (z) ≡ 2b0+2pz0 ≡ b0 6≡ 0 mod p, by [21, Lemma 7.4.3], F gives rise to
an analytic isomorphism from Z4

p into itself which preserves the Haar measure,

in this coordinate system {q(b+ pz) = 1}∩Z4
p becomes {u0 = 0}×Z3

p, and (14)
takes the form

(δ(q(k)− 1), φ(k)Ω(p‖k − b‖p)) = (16)

p−3

∫

Z3
p

φ(b0 + pf(0, u1, u2, u3), b1 + pu1, b2 + pu2, b3 + pu3)du1du2du3,

where f(0, u1, u2, u3) : Z3
p → Zp is a p−adic analytic function.

Remark 8. Let us comment about some related results.

(i) In the case b0 ∈ pZp, b1 ∈ Z×
p , a calculation similar to the one done in the

proof of Lemma 3 shows that

(δ(q(k)− 1), φ(k)Ω(p‖k − b‖p)) =

p−3

∫

Z3
p

φ(b0 + pu0, b1 + pg(u0, 0, u2, u3), b2 + pu2, b3 + pu3)du0du2du3,

where g(u0, 0, u2, u3) : Z3
p → Zp is a p−adic analytic function.

(ii) In the case b0 ∈ pZp, b1 ∈ pZp, b2 ∈ Z×
p , we have

{q(k) = 1} ∩ [pZp × pZp × [b2 + pZp]× [b3 + pZp]] ={
p
(
pk20 − spk21 − k22 + sk23

)
= 1
}
∩ [Zp × Zp × [b2 + pZp]× [b3 + pZp]] = ∅.

A similar result is valid in the cases where b0 ∈ pZp, b1 ∈ pZp,b2 ∈ pZp,
b3 ∈ Z×

p , and where b0 ∈ pZp, b1 ∈ pZp,b2 ∈ pZp, b3 ∈ pZp.

3.4. Fundamental solutions. The existence of fundamental solutions for opera-
tors �q,α is closely related to the meromorphic continuation of the Igusa local
zeta function attached to the polynomial q− 1, which is the distribution defined
as

(
|q− 1|sp, θ

)
=

∫

Q4
p\V

|q(x)− 1|spθ(x)d4x for Re(s) > 0, and θ ∈ DC. (17)

Here we use that for a > 0 and s ∈ C, as = es lna. Integrals of type (17) admit
meromorphic continuations to the whole complex plane as rational functions of
p−s, see [21, Theorem 8.2.1].
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For further calculations, we rewrite (17) as

(|q(x)− 1|sp, θ(x)) =
∫

Q4
p\EV

|q(x)− 1|spθ(x)d4x+

∫

EV rV

|q(x)− 1|spθ(x)d4x

=: (I0 (s) , θ) + (I1 (s) , θ).

A fundamental solution Eq,α for operator �q,α is obtained by computing the
Laurent expansion of the local zeta function |q−1|sp at s = −α, see [67, Theorem
134]. Indeed, if

|q− 1|sp =

∞∑

j=−j0

cj(s+ α)j , where cj ∈ D′
C, with − j0 ∈ Z, (18)

then Êq,α = c0.

Note 5. Given two subsets A, B in Q4
p, we denote the distance between them as

dist(A,B) := inf
x∈A, y∈B

‖x− y‖p .

Lemma 4. For any θ ∈ DC, the function (I0 (s) , θ) is holomorphic in the whole
complex plane.

Proof. The result follows, by using a well-known result about the analyticity of
integrals depending on a complex parameter, see [21, Lemma 5.3.1], from the
fact that there exists a positive constant ε = ε (q), such that

|q(x)− 1|p ≥ ε for any x ∈ Q4
p \ EV . (19)

If (19) is false, there exists a sequence {yn}n∈N in Q4
p\EV such that |q(yn)−1|p →

0 as n→ ∞, which means that

dist
(
V,Q4

p \ EV

)
= 0, (20)

because, since V is compact, there exists x0 ∈ V such that

dist
(
V,Q4

p \ EV

)
= inf

y∈Q4
p\EV

‖x0 − y‖p = inf
y∈Q4

p\EV

dist (V, y) .

The assertion (20) is not true. Indeed, since V is compact and Q4
p \ EV is

closed (because EV is open and closed), we have dist
(
V,Q4

p \ EV

)
> 0.

Remark 9. Notice the following computation:

(I1(s), θ) =

∫

EV \V
|q(x)− 1|spθ(x)d4x =

∑

b∈F4
p

q(b)≡1 mod p

∫

b+pZ4
p

|q(x)− 1|spθ(x)d4x

= p−4
∑

b∈F4
p

q(b)≡1 mod p

∫

Z4
p

|q(b+ pz)− 1|spθ(b + pz)d4z

=: p−4
∑

b∈F4
p

q(b)≡1 mod p

(Ib(s), θ) . (21)
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Lemma 5. With the above notations and setting

Ib(s) =

∞∑

j=0

cj (Ib, α) (s+ α)j , where cj (Ib, α) ∈ D′
C,

for b ∈ F4
p, q(b) ≡ 1 mod p, the coefficient c0 ∈ D′

C in expansion (18) is given by

(c0, θ) =

∫

Q4
p\EV

|q(x)− 1|−α
p θ(x)d4x+ p−4

∑

b∈F4
p

q(b)≡1 mod p

(c0 (Ib, α) , θ) .

Proof. The formula follows from Lemma 4 and Remark 9.

We now compute the coefficients c0 (Ib, α) for some bs, the calculation of the
missing cases is similar to the one presented here.

Lemma 6. Assume that b0 6≡ 0 mod p. If α 6= 1, then

(c0 (Ib, α) , θ) = pα
∫

Zp

|u0|−α
p (Θb(u0)−Θb(0))du0 +

pα(1− p−1)

1− p−1+α
Θb(0),

where Θb = TIb,α (θ) ∈ DC (Qp), and TIb,α is a linear operator from DC

(
Q4

p

)

into DC (Qp), and

Θb (0) = p3(δ(q(k)− 1), θ(k)Ω(p‖k − b‖p)).
In addition,

(1V c0 (Ib, α) , θ) =
pα(1− p−1)

1− p−1+α
Θb(0). (22)

If α = 1, then

(c0 (Ib, 1) , θ) = p

∫

Z4
p

|u0|−1
p (Θb(u0)−Θb(0))du0 −

p− 1

2
Θb(0).

Moreover,

(1V c0 (Ib, 1) , θ) = −p− 1

2
Θb(0). (23)

Proof. By changing variables as u = F (z), see (15), we get

(Ib(s), θ) =

∫

Z4
p

|q (b+ pz)− 1|sp θ (b+ pz)d4z

= p−s

∫

Z4
p

|u0|spθ(b0+pf(u0, . . . , u3), b1+pu1, b2+pu2, b3+pu3)du0du1du2du3

where f(u0, . . . , u3) is a p−adic analytic function on Z4
p. Set

Θb(u0) :=∫

Z3
p\D

θ(b0 + pf(u0, . . . , u3), b1 + pu1, b2 + pu2, b3 + pu3)du1du2du3,
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where D = {b0 + pf(u0, . . . , u3) = 0}. Then Θb(u0) ∈ DC (Qp) and Θb(0) =
p3(Ω(p‖k − b‖p)δ(q(k) − 1), θ(k)), see (16). Notice that for u0 given, the set
{b0 + pf(u0, . . . , u3) = 0} has measure zero, and that b0 + pf(u0, . . . , u3) is
locally constant in u0 on Z3

p \ D, this last fact is verified by using the p−adic
Taylor expansion, see e.g. [48]. Therefore

(Ib(s), θ) = p−s

∫

Z4
p

|u0|sp(Θb(u0)−Θb(0))du0 +
p−s(1 − p−1)

1− p−1−s
Θb(0). (24)

If α 6= 1, then (c0 (Ib, α) , θ) is obtained by replacing s = −α in (24). In the case
α = 1, the computation of (c0 (Ib, 1) , θ) is achieved by computing the Laurent
expansion of (Ib(s), θ) around (s+ 1), which follows from the formula:

p−s(1− p−1)

1− p−1−s
=

(
p− 1

ln p

)
1

s+ 1
− p− 1

2
+O(s+ 1),

where O(s+1) denotes a holomorphic function. Finally formulae (22)-(23) follow
from the fact that in the coordinate system (u0, . . . , u3), u0 = 0 is a local equation
of V .

Remark 10. Lemma 6 is valid for general b, but there are small variations in
the formulae for the c0 (Ib, α)s. In the case b0 ≡ 0 mod p, b1 6≡ 0 mod p, the
statement of Lemma 6 and the corresponding proof are similar to ones presented
here, see Remark 8. We outline the calculations for the case b0 ≡ 0 mod p, b1 ≡ 0
mod p, b2 6≡ 0 mod p. In this case, we use the following change of variables:

u = G(z) with u0 = z0, u1 = z1, u2 =
q(b+ pz)− 1

p2
, u3 = z3.

Then

JacG(z) = det




1 0 0 0
0 1 0 0

1
p2

∂u0

∂z0
1
p2

∂u1

∂z1
1
p2

∂u2

∂z2
1
p2

∂u3

∂z3
0 0 0 1


 =

1

p2
∂u2
∂z2

= −2 (b2 + pz2) ,

and thus JacG(z) ≡ −2b2 ≡ b2 6≡ 0 mod p, and by Lemma 7.4.3 in [21], G
gives rise to an analytic isomorphism from Z4

p to itself which preserves the Haar
measure. By changing variables in integral (Ib(s), θ), we get that

(Ib(s), θ) =

p−2s

∫

Z4
p

|u2|spθ(b0 + pz0, b1 + pu1, b2 + ph(u0, . . . , u3), b3 + pu3)du0du1du2du3.

Now the calculations proceed as in the proof of Lemma 6 .

Remark 11. Set δk(x) := p4kΩ(pk‖x‖p). We recall the definition of the product
of two distributions: given F,G ∈ D′

C, their product is defined as (F · G,ϕ) =
limk→∞(G, (F ∗δk)ϕ), if the limit exist for all ϕ ∈ DC. If the product F ·G exists
then the product G · F exists and they are equal.
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Lemma 7. (|q− 1|αp δ(q− 1), ψ) = 0 for any ψ ∈ DC and for any α > 0.

Proof. By Remark 11, (|q− 1|αp δ(q− 1), ψ) = limk→∞(δ(q− 1), (|q− 1|αp ∗ δk)ψ).
Now

(|q− 1|αp ∗ δk)(x) = p4k
∫

x+pkZ4
p

|q(y)− 1|αpd4y.

Since V ⊆ Z4
p has measure zero, we may assume without loss of generality that

x /∈ V . Now, if z ∈ Z4
p then q(x + pkz)− 1 = q(x) − 1 + pkA, with A ∈ Zp and

q(x) − 1 6= 0, then by taking k sufficiently large, we have |q(x + pkz) − 1|αp =
|q(x)− 1|αp , consequently (|q− 1|αp ∗ δk)(x) = |q(x)− 1|αp for k sufficiently large.
Finally, (|q−1|αp δ(q−1), ψ) = (δ(q−1), |q−1|αpψ) = 0 because supp δ(q−1) = V .

Remark 12. For any locally constant function h, it holds that h|q−1|αp δ(q−1) ∈
D′

C, see e.g. [53, p. 126, Proposition 3.16]. Then (h|q − 1|αp δ(q − 1), ψ) = (|q −
1|αp δ(q− 1), hψ) = (δ(q − 1), |q− 1|αphψ) = 0 for any ψ ∈ DC.

Remark 13. Let us make some comments about orthogonal invariance in this
setting.

(i) Let ϕ ∈ DC and let T ∈ D′
C. We define the action of Λ ∈ O (q), by putting

(Λϕ) (x) = ϕ
(
Λ−1x

)
,

and the action of Λ on T , by putting

(ΛT, ϕ) =
(
T,Λ−1ϕ

)
.

We say that T is invariant under O (q), if ΛT = T for any Λ ∈ O (q).

(ii) T is invariant under O (q) ⇔ T̂ is invariant under O (q). We first notice
that by using B

(
Λ−1y, Λ−1k

)
= B (y, k) for any Λ ∈ O (q), we have

(
Λ̂−1ϕ

)
(k) =

∫

Q4
p

χp (B (x, k))
(
Λ−1ϕ

)
(x) dµ (x)

=

∫

Q4
p

χp (B (x, k))ϕ (Λx) dµ (x) =

∫

Q4
p

χp

(
B
(
Λ−1y, Λ−1 (Λk)

))
ϕ (y)dµ (y)

=

∫

Q4
p

χp (B (y, Λk))ϕ (y) dµ (y) = ϕ̂ (Λk) ,

i.e.
(
Λ̂−1ϕ

)
= Λ−1ϕ̂. Now, assuming that ΛT = T for any Λ ∈ O (q), we

have
(
ΛT̂ , ϕ

)
=
(
T̂ , Λ−1ϕ

)
=
(
T, Λ̂−1ϕ

)
=
(
T,Λ−1ϕ̂

)
= (ΛT, ϕ̂)

= (T, ϕ̂) = (T̂ , ϕ).

Here, it is worth to mention that our definition of Fourier transform using
the bilinear form B plays a crucial role.

(iii) By a result of Rallis-Schiffman, the distribution δ(q−1) is the unique (up to
multiplication by complex constants) distribution supported on V invariant
under O (q), [41].
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Theorem 1. There exist fundamental solutions Eq,α for operators �q,α which
are invariant under the action of O (q). Furthermore, the distributions Eq,α

satisfy the following:

(i)

F(Eq,α) = F(E0
q,α) + Cδ(q − 1), (25)

where C is a non-zero complex constant and F(E0
q,α), δ(q − 1) are distri-

butions invariant under O(q).
(ii)

1V F(Eq,α) = Cδ(q− 1). (26)

In particular, the restriction of F(Eq,α) to V is unique up to multiplication
for a non-zero complex constant.

Proof. The existence of fundamental solutions for operators �q,α is guaranteed
by Theorem 134 in [67]. If E0

q,α is a fundamental solution for �q,α, then, by

Lemmas 2, 7, E0
q,α+CF−1 [δ(q− 1)] is also a fundamental solution for any non-

zero complex constant C. Therefore, the Fourier transform of any fundamental
solution may be written as

F [Eq,α] = F
[
E0

q,α

]
+ Cδ(q − 1), (27)

for some fundamental solution E0
q,α and some non-zero complex constant C.

Remark 14. In fact, if there is another fundamental solution E′
q,α of �q,α, in-

variant under O (q), satisfying

F [Eq,α] = F
[
E′

q,α

]
+ Cδ(q − 1) , (28)

then from (27) and (28) we get that F
[
E′

q,α − E0
q,α

]
is a distribution supported

on V and invariant under O (q), and consequently F
[
E′

q,α − E0
q,α

]
= C0δ(q−1) ,

for some constant C0.

By Lemmas 5, 6 and Remark 10, there exists a fundamental solution E0
q,α,

such that F
[
E0

q,α

]
is a linear combination of distributions of any of the types

∫

Q4
p\EV

|q(x)− 1|−α
p θ(x) d4x or pα

∫

Zp

|u0|−α
p (Θb(u0)−Θb(0)) du0,

with Θb(u0) defined as in Lemma 6. In addition, we have

1V F
[
E0

q,α

]
= 0 in D′

C(Q
4
p).

The rest of assertions announced follows from Remark 13 by the following as-
sertion:

Claim. The distribution E0
q,α is invariant under O (q).

We first note that

Λ|q− 1|sp = |q− 1|sp for any Λ ∈ O (q) , and Re(s) > 0, (29)
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because q
(
Λ−1y

)
= q (y) for any Λ ∈ O (q), and any y ∈ Q4

p. Now, we rewrite
(29) as

(
|q − 1|sp, Λ−1ϕ

)
=
(
|q− 1|sp, ϕ

)
for Λ ∈ O (q) , ϕ ∈ DC, and Re(s) > 0,

and use that Λ−1ϕ ∈ DC for ϕ ∈ DC, and that the distribution |q− 1|sp admits a
meromorphic continuation to the whole complex plane to conclude that (29) is
valid for any s. We now recall that F

[
E0

q,α

]
= c0 ∈ D′

C, where

(
|q − 1|sp, ϕ

)
=

∞∑

j=−j0

(cj , ϕ) (s+ α)j =
(
Λ|q− 1|sp, ϕ

)
=
(
|q− 1|sp, Λ−1ϕ

)

=

∞∑

j=−j0

(
cj , Λ

−1ϕ
)
(s+ α)j ,

then (c0, ϕ) =
(
c0, Λ

−1ϕ
)
, which implies that c0 is invariant under O (q), and

consequently, E0
q,α is invariant under O (q).

4. Klein-Gordon type operators acting on H∞

Lemma 8. Let f(k) ∈ Qp[k0, k1, k2, k3] be a non-constant homogeneous polyno-
mial of degree e and α > 0. Then there exists a positive constant A = A(f, α)
such that

|f(k)− 1|αp ≤ A[k]eαp for k ∈ Q4
p.

Proof. We first note that |f(k) − 1|αp ≤
[
max{|f(k)|p , 1}

]α
. We now use that

|f(k)|p ≤ C (f) [k]ep for k ∈ Q4
p, to obtain

|f(k)− 1|αp ≤
[
max{C (f) [k]ep, 1}

]α ≤ [max{C (f) , 1}]α
[
max

[
[k]ep, 1

]]α

= A[k]eαp .

Remark 15. For α ∈ R, we set ⌈α⌉ := min{γ ∈ Z; γ ≥ α}, the ceiling function.

Lemma 9. The mapping

�q,α : H∞(K) → H∞(K)

h → �q,αh

is a well-defined continuous linear operator between locally convex spaces.

Proof. Take K = C. Let us first prove that �q,α is a well-defined linear operator.
Let h ∈ Hl+⌈4α⌉(C), then by the Lemma 8, with e = 2, we have

‖�q,αh‖2l =
∫

Q4
p

[ξ]lp| ̂(�q,αh)(k)|2d4k =

∫

Q4
p

[ξ]lp|q(k)− 1|2αp |ĥ(k)|2d4k

≤ C

∫

Q4
p

[ξ]l+4α
p |ĥ(k)|2d4k ≤ C

∫

Q4
p

[ξ]l+⌈4α⌉
p |ĥ(k)|2d4k = C‖h‖2l+⌈4α⌉.
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By Lemma 1-(i), �q,αh ∈ Hl(C), i.e. �q,α is a well-defined, linear, and continu-
ous operator from Hl+⌈4α⌉(C) into Hl(C) for any l ∈ N. In turn, this implies that
�q,α is a well-defined linear operator from H∞(C) into H∞(C). To establish the
continuity, we use the fact that (H∞(C), d) is a metric space. Take a sequence

{ϕn}n∈N ⊂ H∞(C) such that ϕn
d→ ϕ, with ϕ ∈ H∞(C), which is equivalent to

say that ϕn
‖·‖r→ ϕ, for all r ∈ N. Take l ∈ N and ϕ, ϕn ∈ Hl+⌈4α⌉(C), then by

the continuity of �q,α : Hl+⌈4α⌉(C) → Hl(C), we have �q,αϕn
‖·‖l→ �q,αϕ, and

since l is arbitrary in N, we conclude that �q,αϕn
d→ �q,αϕ.

We know turn to the case K = R. Since (�q,αϕ)(x) = (�q,αϕ)(x) for ϕ ∈
H∞(R), the statement is also valid in H∞(R).

Remark 16. The preceding lemma remains valid if we replace |q(k) − 1|αp by
g ([k]p) |q(k)− 1|αp , where g : R+ → C is any continuous function.

Remark 17. We recall that V is a p−adic compact submanifold of Z4
p of codi-

mension one. We denote by dλ the measure corresponding to the distribution
δ (q− 1) as before. Then (V,B(V ), dλ) is a measure space, where B(V ) is the
Borel σ-algebra generated by the open compact subsets of V , and thus the space
L2
K (V, dλ) is well-defined.

Proposition 1. The mapping

R : Hl(C) → L2
C (V +, dλ)

f → f̂ |
V +

determines a well-defined operator satisfying

‖R(f)‖L2
C
(V +,dλ) ≤ C ‖f‖l (30)

for any l ∈ N. Consequently, R induces a continuous operator from H∞(C) into
L2
C (V

+, dλ).

Proof. Since DC is dense in Hl(C) for any l ∈ N, in order to prove (30) we may

assume without loss of generality that f ∈ DC and that f̂ |V + is not the constant
function zero. Notice that

‖R(f)‖2L2
C
(V +,dλ) =

∫

Uq

∣∣∣f̂
(√

ω (k),k
)∣∣∣

2 d3k∣∣∣
√
ω (k)

∣∣∣
p

, (31)

where
∣∣∣
√
ω (k)

∣∣∣
p
6= 0, cf. Remark 6. For m ∈ Q×

p , we set

Vm =
{
(k0,k) ∈ Q4

p; q (k0,k) = m
}
.

We recall that q (k0,k) = k20−q0 (k). Then Vm is a p−adic compact submanifold
of Q4

p of codimension one. In the case in which Vm 6= ∅, we denote by dλ (m)

the measure on Vm induced by the Gel’fand-Leray form on Vm. Then dk0d
3k =

dλ (m) dm, where dm is the normalized Haar measure of Qp.
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Claim C. For f̂ (k0,k) ∈ DC, the R-valued function defined by

∫

Q
×
p

∫

Vm

∣∣∣f̂ (k0,k)
∣∣∣
2

dλ (m) dm

is in DR (Qp) and

‖f‖20 =

∫

Q4
p

∣∣∣f̂ (k0,k)
∣∣∣
2

dk0d
3 k =

∫

Q
×
p

∫

Vm

∣∣∣f̂ (k0,k)
∣∣∣
2

dλ (m) dm. (32)

This claim is a very particular version of a general theorem on integration over
the fibers in the framework of p−adic manifolds, see [21, Theorem 7.6.1].

Claim D. There exists a positive constant C0 such that

‖f‖20 ≥ C0

∫

Uq

∣∣∣f̂
(√

ω (k),k
)∣∣∣

2 d3k∣∣∣
√
ω (k)

∣∣∣
p

. (33)

Estimation (30) follows from (31)-(33). The fact that operator R extends to
H∞(C) follows from (30), by using a classical argument based on convergence
of sequences due to the fact that the topology of H∞(C) is metrizable.

Proof of Claim D. In order to prove the Claim we proceed as follows. We
set GM := 1 + pMZp, for M ≥ 1. Then GM is a multiplicative subgroup of
the group of squares of Q×

p . This is a compact subgroup so its Haar measure,
denoted as vol(GM ), is finite. Now, we notice that

∫

Q
×
p

∫

Vm

∣∣∣f̂ (k0,k)
∣∣∣
2

dλ (m) dm ≥
∫

GM

∫

Vm

∣∣∣f̂ (k0,k)
∣∣∣
2

dλ (m) dm

=

∫

GM

∫

Vm

∣∣∣f̂ (k0,k)
∣∣∣
2 d3kdm

|m+ q0 (k)|
1
2
p

. (34)

We now use the fact that
Claim E. The mapping

√· : GM → GM

m → √
m

and its inverse are p−adic analytic functions, for M sufficiently large.
We change variables in the last integral in (34) as y0 = k0√

m
, y = k√

m
, then

dk0d
3 k = dy0d

3y and

∫

GM

∫

Vm

∣∣∣f̂ (k0,k)
∣∣∣
2 d3kdm

|m+ q0 (k)|
1
2
p

=

∫

GM

∫

V

∣∣∣f̂
(√
my0,

√
my
)∣∣∣

2 d3ydm

|1 + q0 (y)|
1
2
p

.
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Finally since f̂ is locally constant and
√
m is a unit for every m ∈ GM , we have

for M sufficiently large that

∫

GM

∫

V

∣∣∣f̂
(√
my0,

√
my
)∣∣∣

2 d3ydm

|1 + q0 (y)|
1
2
p

=

∫

GM

∫

V

∣∣∣f̂ (y0,y)
∣∣∣
2 d3ydm

|1 + q0 (y)|
1
2
p

≥ vol (GM )

∫

V +

∣∣∣f̂ (y0,y)
∣∣∣
2 d3y

|1 + q0 (y)|
1
2
p

.

Proof of Claim E.

We first notice that
(
1 + pMZp

)2
= 1 + 2pMZp = 1 + pMZp for M ≥ 2, see

Lemma 8.4.1 in [21]. This means that the mapping

GM → GM

x → x2
(35)

is well-defined and surjective. Then for any m ∈ GM , the equation x2 = m
has a solution

√
m in GM . Notice that there is another solution −√

m = −1 +
(higher order terms) which does not belong to GM . Consequently the mapping

GM → GM

m → √
m

(36)

is well-defined. The fact that the mappings (35)-(36) are p−adic analytic follows
from the implicit function theorem.

Remark 18. The preceding Proposition remains valid if we replace R(f) = f̂ |V +

by R(f)(k) = g ([k]p) f̂(k)|V + , where g is any continuous function g : R+ → C.

Lemma 10. There exist a positive constant C such that

1

|1 + q0(k)|p
≤ C for any k ∈ Q3

p.

Proof. The hypothesis p ≡ 1 mod 4 implies W =
{
k ∈ Z3

p; 1 + q0(k) = 0
}
= ∅,

see Remark 6.
Claim A. |1 + q0(k)|p > C1 for any C1 ∈ (0, p) and for any ‖k‖p ≥ p.

We recall that q0(k) and q(k0,k) are elliptic quadratic forms and that

|q0(k)|p = |q(0,k)|p ≥
(

inf
x∈S3

0

|q(0,x)|p
)
‖k‖2p = p−1‖k‖2p for any k ∈ Q3

p, (37)

see (12). Now, p−1‖k‖2p > 1 if and only if ‖k‖p ≥ p, and by applying the
ultrametric property of the norm ‖ · ‖p, we get from (37), that for ‖k‖p ≥ p,

|1 + q0(k)|p = max {1, q0(k)} ≥ p−1‖k‖2p ≥ p > C1 for any C1 ∈ (0, p) .

Claim B. There exist a constant C0 such that infk∈Z3
p
|1 + q0(k)|p ≥ C0 > 0.

This assertion follows from the fact that |1 + q0(k)|p > 0 for any k ∈ Z3
p. The

statement of the lemma is a consequence of Claims A and B.
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Lemma 11. The mapping

R : L2
C

(
Q3

p, d
3x
)
→ L2

C (V +, dλ)

g → ĝ |
V +

satisfies ‖R(g)‖L2
C
(V +,dλ) ≤ C ‖g‖L2

C(Q3
p,d

3x). Here ĝ (k) denotes the 3-dimensional

Fourier transform is defined with respect to the bilinear form −B0 (x,y) =
−sx1y1 − px2y2 + spx3y3.

Proof. The results follows from Lemma 10, by using that |k0|p =
∣∣∣
√
ω (k)

∣∣∣
p
=

|1 + q0(k)|
1
2
p for k ∈ Uq.

Remark 19. Some observations about the functional spaces involved here:

(i) LetX be a locally compact totally disconnected space. We denote by DC(X)
the C-vector space of locally constant functions with compact support. We
recall that V + ⊂ Q4

p is an open and compact subset, then Q4
p \ V + is open

and closed subset, and thus V + and Q4
p \ V + are locally compact totally

disconnected spaces. The following exact sequence holds:

0 → DC(V
+) → DC(Q

4
p) → DC(Q

4
p \ V +) → 0, (38)

see e.g. [21, p. 99].
(ii) It is well-known that the C-space of finite-valued simple functions is dense

in L2
C (V +, dλ). By using the fact that dλ = d3

k
∣

∣

∣

√
ω(k)

∣

∣

∣

p

is an inner regular

measure, one can show that any finite-valued simple function can be approx-
imated in the L2

C (V
+, dλ)- norm by an element of DC(V

+). i.e. DC(V
+) is

dense in L2
C (V

+, dλ).
(iii) The mapping

L2
C

(
Q4

p, d
4k
)
R−→ L2

C (V +, dλ)

f → f̂ |V +

is a well-defined continuous mapping, more precisely,

∥∥∥f̂ |V +

∥∥∥
L2

C
(V +,dλ)

≤ C
∥∥∥f̂
∥∥∥
L2

C(Q4
p,d

4k)
= C ‖f‖L2

C(Q4
p,d

4k) . (39)

Indeed, (39) holds when f̂ ∈ DC(Q4
p) and f̂ |V +∈ DC(V

+), see Claim D,

then (39) follows by the fact that DC(V
+) is dense in L2

C (V +, dλ) and that
DC(Q4

p) is dense in L2
C

(
Q4

p, d
4k
)
.

Remark 20. Regarding the spaces of integrable functions introduced in the pre-
ceding Remark, we note the following.
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(i) We have the following sequence:

L2
C

(
V +, dλ

) J→֒ L2
C

(
Uq, d

3k
)

→֒ L2
C

(
Q3

p, d
3k
)
,

where ‘→֒’ denotes an isometry. The mapping J is defined as

f (ω (k) ,k)
J→ f (ω (k) ,k)
∣∣∣
√
ω (k)

∣∣∣
1/2

p

, k ∈ Uq.

Since Uq ⊂ Q3
p is open and compact, any function f : Uq → C can be

extended to Q3
p by putting f | Q3

prUq
≡ 0. It is known that L2

C

(
Q3

p, d
3k
)

admits a countable wavelet basis, see e.g. [2, Theorem 8.12.1], consequently
L2
C (V +, dλ) is separable.

(ii) Since L2
C

(
Q4

p, d
4k
)
and L2

C (V
+, dλ) are separable spaces, we have

n⊗

j=1

L2
C

(
Q4

p, d
4xj
)
= L2

C


Q4n

p ,
n∏

j=1

d4xj


 ,

and
n⊗

j=1

L2
C

(
V +, dλj

)
= L2

C


(V +

)n
,

n∏

j=1

dλj


 ,

where each d4xj denotes a copy of normalized Haar measure of Q4
p, and

each dλj denotes a copy of the measure dλ.

(iii) Take θ(n+1) (y, x1, . . . , xn) ∈ L2
C

(
Q4

p, d
4y
)⊗

L2
C

(
Q4n

p ,
n∏

j=1

d4xj

)
, then

∫

Q4n
p

∫

V

∣∣∣θ(n+1) (y, x1, . . . , xn)
∣∣∣
2

dλ (y)

n∏

j=1

d4xj ≤

C

∫

Q4n
p

∫

Q4
p

∣∣∣θ(n+1) (y, x1, . . . , xn)
∣∣∣
2

d4y

n∏

j=1

d4xj = C
∥∥∥θ(n+1)

∥∥∥
2

L2
C

(

Q
4(n+1)
p ,

n+1
∏

j=1

d4xj

) .

This result follows from Claim D, by using Fubini’s theorem.

Lemma 12. For f ∈ L2
C (V +, dλ), we define TV + (f) ∈ D′

C by

(TV + (f) , ϕ) =

∫

V +

f(x)ϕ (x) dλ (x) for ϕ ∈ DC.

Then we have the following sequence of continuous mappings:

H∞ (C)
R→ L2

C (V
+, dλ)

T
V +→ H∗

∞ (C) ,

where the map R is defined as in Proposition 1.
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Proof. The support of TV + (f) is compact since it is contained in V , which is
a compact subset of Q4

p. The Fourier transform of TV + (f) in D′
C is the locally

constant function

f̂ (k) =

∫

V +

χp (B (x, k)) f(x)dλ (x) ,

for a similar calculation the reader may see, for instance, [2, Theorem 4.9.3].
Now, identifying f with the induced distribution TV +f on V +, by using the
definition of H∗

∞ (C) (see (8)), the Cauchy-Schwartz inequality, and the fact

that
∫
Q4

p
[k]

−l
d4k <∞ for l ≥ 5, we have

‖f‖2−l =

∫

Q4
p

[k]
−l
∣∣∣f̂(k)

∣∣∣
2

d4k =

∫

Q4
p

[k]
−l

∣∣∣∣
∫

V +

χp (B (x, k)) f(x)dλ (x)

∣∣∣∣
2

d4k

≤ C(l)

∫

V +

|f(x)|2 dλ (x) = C(l) ‖f‖2L2
C
(V +,dλ) ,

which implies that TV + (f) ∈ H∗
∞ (C).

5. Free non-Archimedean quantum fields

5.1. The Segal quantization. We start by reviewing some well-known fact about
quantization. For an in-depth discussion the reader may consult [51,44], see also
[8,13,33,52] for more physically-oriented approaches. Our presentation follows
closely the book of Reed and Simon [44]. In particular, our notation mimics the
one used in that book. We set H = L2

C (V +, dλ) and denote by 〈·, ·〉 the inner
product of H. We assume that 〈f, αg〉 = α 〈f, g〉, for α ∈ C, and f , g ∈ H.
We define the Fock space over H as F(H) = ⊕∞

n=0H(n), where H(n) = ⊗n
k=1H,

by definition H(0) = C. We denote by Sn : H(n) → SH(n), the symmetrization
operator, and define S = ⊕∞

n=0Sn, see [43, Section II.4]. The symmetric Fock
space over H (also called the boson Fock space over H) is defined as Fs(H) =

⊕∞
n=0H(n)

s , where H(n)
s = SnH(n). We call H(n)

s the n-particle subspace of Fs(H).
We use the same symbol 〈·, ·〉 to denote the inner product of F(H).

We now fix a vector f in H. For the vectors of the form η = ψ1 ⊗ . . . ⊗ ψn,
we define a map b− (f) : H(n) → H(n−1) by b− (f) (η) = 〈f, ψ1〉ψ2 ⊗ . . . ⊗ ψn.
Then b− (f) extends to a bounded map (of norm ‖f‖H) of H(n) in to H(n−1). In

the case n = 0, we define b− (f) : H(0) → 0. The adjoint b+ (f) : H(n) → H(n+1)

of b− (f) is defined as b+ (f) (ψ1 ⊗ . . .⊗ ψn) = f ⊗ ψ1 ⊗ . . . ⊗ ψn. The map
f → b+ (f) is linear, but f → b− (f) is anti-linear.

The boson Fock space is invariant under b− (f) but not under b+ (f). A vector
ψ =

{
ψ(n)

}
n∈N

∈ Fs(H) is called a finite particle vector if ψn = 0 for all but

finitely many n. The set of all finite vectors is denoted as F0. We set the vector
Υ0 = (1, 0, 0, . . .) to be the vacuum.

Let A be a self-adjoint operator on H with domain of essential self-adjointness
D. Let DA =

{
ψ ∈ F0;ψ

(n) ∈ ⊗n
k=1D for each n

}
. We define the operator Γ (A)

(the second quantization of A) on DA ∩H(n)
s as

A⊗ I ⊗ · · · ⊗ I + I ⊗A⊗ · · · ⊗ I + · · ·+ I ⊗ I ⊗ · · · ⊗A,
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where I is the identity operator. The operator Γ (A) is essentially self-adjoint
on DA. In the case A = I, the second quantization N = Γ (A) (the number

operator) is essentially self-adjoint on F0 and for φ ∈ H(n)
s , Nφ = nφ.

The annihilation operator a−(f) on Fs(H) with domain F0 is given by

a−(f) =
√
N + 1 b−(f).

For ψ, η in F0,

〈√
N + 1 b−(f)ψ, η

〉
=
〈
ψ, Sb+(f)

√
N + 1η

〉
,

which implies that (
a−(f)

)∗
↾F0= Sb+(f)

√
N + 1,

where ‘∗’ denotes the adjoint operator. The operator (a−(f))
∗
is called the cre-

ation operator. Both a−(f) and (a−(f))
∗
↾F0 are closable, the corresponding

closures are denoted as a−(f) and as a−(f)∗.

Definition 2. For f ∈ H, the Segal quantum field operator ΦS on F0 is defined
as

ΦS(f) =
1√
2
[a−(f) + a−(f)∗]. (40)

The mapping from H into the self-adjoint operators on Fs(H) given by f →
ΦS(f) is called the Segal quantization over H. Notice that the Segal quantization
is a real linear map.

Remark 21. By using the fundamental properties of the Segal quantization, see
[44, Theorem X.41 ], we obtain the following facts (among others):

(i) For each f ∈ H, ΦS(f) is essentially self-adjoint on F0.
(ii) The commutation relations: for each ψ ∈ F0, and f , g ∈ H,

ΦS(f)ΦS(g)ψ −ΦS(g)ΦS(f)ψ =
√
−1 Im (〈f, g〉)ψ, (41)

that is, [ΦS(f),ΦS(g)] =
√
−1 Im (〈f, g〉) I, on F0.

5.1.1. The free Hermitian field of unit mass. We define for each f ∈ H∞ (R),

Φ(f) = ΦS(Rf) ,

with R defined as in Lemma 11, and for each g ∈ H∞ (C),

Φ(g) = Φ(Re g) +
√
−1Φ(Im g) . (42)

We call the mapping g → Φ(g) the free Hermitian scalar field of unit mass.

Remark 22. By extending the mapping R as in Remark 18, the field f 7→ Φ(f)
remains well-defined. We emphasize that the presence of R (in any of its forms)
means that we are working on-shell.
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5.1.2. The p-adic restricted Poincaré group. As we do not have the structure of
light cones available, we must choose a substitute for them. Here we will base
our treatment on the mass shells V ±.

We define the p-adic restricted Lorentz group as

L↑
+ =

{
Λ ∈ O(q);Λ

(
V ±) = V ±} .

This group is non trivial since transformations of the form
{[

1 0
0 ̥

]
∈ O(q); ̥ ∈ O(q0)

}
,

belong to L↑
+. A further justification for choosing V ± as a replacement for the

light cones comes from the fact that the distributions δ± (q− 1) are invariant

under L↑
+, see [67, Lemma 163].

We define the p-adic restricted Poincaré group P↑
+ as the set of pairs (a, Λ),

where a ∈ Q4
p and Λ ∈ L↑

+, with the group operation

(a, Λ1) (b, Λ2) = (a+ Λ1b, Λ1Λ2) .

The group P↑
+ acts naturally on Q4

p by setting (a, Λ)x = Λx + a. With

the topology inherited from
(
Q4

p, ‖·‖p
)
, L↑

+ and P↑
+ become locally compact

topological groups.
On L2

C (V +, dλ), we define the following projective representation of the re-
stricted Poincaré group:

(U (a, Λ)ψ) (k) = χp (B (a, k))ψ
(
Λ−1k

)
. (43)

5.2. The p-adic Wightman axioms. We present here a p-adic counterpart of the
classical Wightman axioms, see e.g. [51,44], and references therein. We use units
where the rationalized Planck’s constant and the speed of light are equal to one.
We take H = Fs(L

2
C (V +, dλ)), U = Γ (U (·, ·)), with U (·, ·) being defined as in

(43), Φ as in (42), and D = F0. A p-adic Hermitian scalar quantum field theory
is a quadruple {H,U,Φ, D} which satisfies the following properties:
Relativistic invariance of states. H is a separable Hilbert space and U (·, ·)
is a strongly continuous unitary representation on H of the p-adic restricted
Poincaré group.

Spectral condition. We define the closed forward semigroup S(V +) as the
topological closure of the additive semigroup generated by the vectors of V +.
Notice that since V + ⊂ Z4

p, S(V
+) is a compact subset of Z4

p. Furthermore, since

L↑
+ (V +) = V +, we have L↑

+

(
S(V +)

)
= S(V +). The p-adic counterpart of the

spectral condition is the following: there exists a projection-valued measure EV +

on Q4
p corresponding to U(a, I) having support in S(V +).

Remark 23. In the classical case by using a Stone type theorem, see [43, Theorem
VIII.12], one shows the existence of four commuting operators P0, P1, P2, P3,
on a suitable Hilbert space so that U(a, I) = ei

∑

ajPj . In the p-adic case, we
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do not have a complete theory of semigroups, with p-adic time, for operators
acting on complex-valued functions. For this reason, at the moment, we do not
have a definition for the p-adic counterparts of the operators P0, P1, P2, P3, and
consequently, we do not know their spectra.

Existence and uniqueness of the vacuum. There exists a unique vector
Υ0 ∈ H such that U (a, I)Υ0 = Υ0 for all a ∈ Q4

p, this vector is called the
vacuum.
Invariant domains for fields. There exists a dense subspace D ⊂ H and a
map from H∞ (C) to the unbounded operators on H such that:

(i) For each f ∈ H∞ (C), we have that D ⊂ Dom (Φ (f)), D ⊂ Dom
(
Φ (f)

∗)
,

and Φ (f)
∗
↾ D = Φ

(
f
)
↾ D.

(ii) Υ0 ∈ D, and Φ (f)D ⊂ D for any f ∈ H∞ (C).
(iii) For a fixed ψ ∈ D, the map f → Φ (f)ψ is linear.

Regularity of the field. For any ψ1 and ψ2 in D, the map

f → 〈ψ1,Φ (f)ψ2〉H
is an element of H∗

∞ (C). In the Archimedean case this is just a tempered dis-
tribution, here it turns out to be an element of H∗

∞ (C), providing yet another
argument to consider this space as the correct replacement in the p−adic frame-
work of the Schwartz space S.
Poincaré invariance of the field. For each (a, Λ) ∈ P↑

+, U(a, Λ)D ⊂ D, and
for all f ∈ H∞ (C), ψ ∈ D,

U (a, Λ)Φ (f)U (a, Λ)
−1
ψ = Φ ((a, Λ) f)ψ,

where
(a, Λ) f (x) = f

(
Λ−1 (x− a)

)
.

Local commutativity. The p-adic local commutativity property states that if
f , g are in DC

(
Z4
p

)
, then

[Φ(f),Φ (g)]Ψ = (Φ(f)Φ (g)−Φ (g)Φ(f))Ψ = 0,

for all Ψ ∈ D. In the Archimedean case, the commutator vanishes whenever the
test functions f, g are supported on two respective spacelike-separated subsets,
that is, f(x)g(y) = 0 whenever x− y does not belong to the interior of the light
cone. This subset can be characterized as the ‘ball of radius 0’ of Minkowski
spacetime in the sense of the theory of indefinite quadratic forms (see, e.g., [20]
and references therein). Our result can be seen as the equivalent statement in
the p−adic case, with the unit ball playing this role.
Cyclicity of the vacuum. The set D0 of finite linear combinations of vectors
of the form Φ (f1) · · ·Φ (fn)Υ0 is dense in H .

Theorem 2. The following hold true:

(i) The quadruple
{
Fs(L

2
C

(
V +, dλ

)
), Γ (U (·, ·)) ,Φ, F0

}

satisfies the p-adic Wightman axioms.
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(ii) For each f ∈ H∞ (C),
Φ (�q,αf) = 0.

Proof. In the proof of the first part (i), we use the notation

Fs = Fs(L
2
C

(
V +, dλ

)
) = ⊕∞

n=0H(n)
s .

Relativistic invariance of states. We first note that Fs is separable because
L2
C (V

+, dλ) is separable, see Remark 20 (i). On the other hand, since V + is

invariant under L↑
+, U (·, ·) is a strongly continuous unitary representation of

P↑
+ on L2

C (V
+, dλ), see (43). By definition Γ (U) is the unitary operator on Fs

given on H(n)
s by ⊗n

k=1U (·, ·), consequently Γ (U) : H(n)
s → H(n)

s determines a

strongly continuous unitary representation of P↑
+ on H(n)

s . Notice that Γ (U) is
strongly continuous in F0, and since F0 is dense in Fs we conclude that Γ (U) is

a strongly continuous unitary representation of P↑
+ on Fs.

Spectral condition. We show that the four parameter group Γ (U (a, I)) has as-

sociated a projection-valued measure supported on S(V +). The argument needed
is exactly the classical one, see [44, p. 213]. The notion of closed forward semi-
group, which is the p−adic counterpart of the closed forward light cone, allows
us to carry out the calculations as in the classical case. We first notice that
L2
C (V

+, dλ) is already a spectral representation of U(a, I) since

〈ϕ,U(a, I)ϕ〉L2
C
(V +,dλ) =

∫

V +

χp (B (a, k)) |ϕ (k)|2 dλ (k) . (44)

Notice that if we define for ϕ, θ ∈ L2
C (V

+, dλ), the set function

B →
∫

V +

ϕ (k)χp (B (a, k)) θ (k) dλ (k) ,

B being a Borel set in V +, and denote the corresponding projection-valued
measure as d(ϕ,Ekϕ), in the case ϕ = θ, then (44) can be rewritten as

〈ϕ,U(a, I)ϕ〉L2
C
(V +,dλ) =

∫

V +

χp (B (a, k)) d(ϕ,Ekϕ).

Now, since Γ (U(a, I)) ↾ H(n)
s =

⊗n
k=1U(a, I), if ϕ(n) ∈ H(n)

s with n > 0, then
〈
ϕ(n), U(a, I)ϕ

〉
=

∫

V +

· · ·
∫

V +

χp

(
B

(
a,

n∑

i=1

ki

)) ∣∣∣ϕ(n) (k1, . . . , kn)
∣∣∣
2 n∏

k=1

dλ (ki) =

∫

V +

χp (B (a, l)) dµϕ(n)(l) ,

where

µϕ(n)(A) =

∫
· · ·

∑

ki∈A

∫ ∣∣∣ϕ(n) (k1, . . . , kn)
∣∣∣
2 n∏

k=1

dλ (ki) ,



34 M. L. Mendoza-Mart́ınez, J. A. Vallejo, W. A. Zúñiga-Galindo

A being a Borel set in S(V +). Since λ is supported on V + ⊂ S(V +) and S(V +)

is an additive semigroup, then µϕ(n) is supported on S(V +), for any ϕ(n) ∈ H(n)
s .

We now take Ψ =
{
Ψ (n)

}
n∈N

in Fs and denote by µΨ the spectral measure so
that

〈Ψ, Γ (U (a, I))Ψ〉 =
∫
χp (B (a, k)) dµΨ (k) ,

then µΨ =
∑∞

n=0 µΨ (n) since Γ (U(a, I)) : H(n)
s → H(n)

s .
Existence and uniqueness of the vacuum. The argument in the p-adic case
is the same as the Archimedean one, see [44, p. 213].
Invariant domains for fields. By Proposition 1, we have

H∞(C)
R→ L2

C

(
V +, dλ

)
→ F0 → Fs(L

2
C

(
V +, dλ

)
), (45)

where all the arrows denote continuous mappings. By using sequence (38),
DC(V

+) ⊂ DC(Q4
p), and since DC(Q4

p) ⊂ H∞(C), F(DC) = DC, and DC(V
+) is

dense in L2
C (V +, dλ), we conclude that R(H∞(C)) is dense in L2

C (V
+, dλ), and

hence ⊕∞
n=0Sn(⊗nR(H∞(C))) in Fs(L

2
C(V

+, dλ)).
If f is real-valued, we use that ΦS(f) is essentially self-adjoint on F0, the fact

that ΦS(f) : F0 → F0, and sequence (45), jointly with the density of R(H∞(C))
to obtain that Φ(f) ↾F0 is essentially self-adjoint, and Φ(f) : F0 → F0. If f
is complex-valued, the results follows from the previous discussion by using the
definition of Φ(f).
Regularity of the field. Suppose that ψ1, ψ2 ∈ F0 and that fn → f ∈ H∞(C)

(i.e. fn
‖·‖

l→ f for any l ∈ N), with fn real-valued. Then (30) implies that

f̂n |V +

L2
C(V +,dλ)→ f̂ |V + ,

i.e. R(fn) → R(f) in Fs, see sequence (45). Now by using Segal’s quantization, cf.
Theorem X.41-(d) in [44], we have Φ (fn)ψ → Φ (f)ψ for all ψ in F0, therefore

〈ψ1,Φ (fn)ψ2〉 → 〈ψ1,Φ (f)ψ2〉 .

By treating the real and imaginary parts of f separately, we obtain that 〈ψ1,Φ (f)ψ2〉
is a complex-valued bilinear form in F0 × F0, and that

|〈ψ1,Φ (f)ψ2〉| ≤ ‖ψ1‖ ‖Φ (f)ψ2‖ . (46)

We now estimate ‖Φ (f)ψ2‖. By the definition of Φ (f), it is sufficient to consider

that f is real-valued. By taking ψ2 =
{
ψ
(n)
2

}
n∈N

, xi ∈ Q4
p for i ∈ {1, . . . , n},

y ∈ V +, and using that

(Φ (f)ψ2)
(n)

(x1, · · · , xn) =
√
n+ 1√
2

∫

V +

f̂(y)ψ
(n+1)
2 (y, x1, · · · , xn) dλ (y)

+
1√
2n

n∑

i=1

f̂(xi)ψ
(n−1)
2 (x1, · · · , x̃i, · · · , xn) ,
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where x̃i means that xi is omitted, we have
∥∥∥(Φ (f)ψ2)

(n)
∥∥∥
2

H(n)
s

=

(n+ 1)

2

∫

Q4n
p

∣∣∣∣
∫

V +

f̂(y)ψ
(n+1)
2 (y, x1, · · · , xn) dλ (y)

∣∣∣∣
2 n∏

j=1

d4xj+

1

2n

∫

Q4n
p

∣∣∣∣∣

n∑

i=1

f̂(xi)ψ
(n−1)
2 (x1, · · · , x̃i, · · · , xn)

∣∣∣∣∣

2 n∏

j=1

d4xj =: I0 + I1.

To estimate I0, we use the Cauchy-Schwartz inequality, estimation (30), and
Remark 20 (iii) to get:

I0 ≤ (n+ 1)

2

{∫

V +

∣∣∣f̂ (y)
∣∣∣
2

dλ (y)

}
×





∫

Q4n
p

∫

V +

∣∣∣ψ(n+1)
2 (y, x1, · · · , xn)

∣∣∣
2

dλ (y)

n∏

j=1

d4xj





≤ C1(n) ‖f‖2l
∫

Q4n
p

∫

Q4
p

∣∣∣ψ(n+1)
2 (y, x1, · · · , xn)

∣∣∣
2

d4y

n∏

j=1

d4xj

≤ C1(n) ‖f‖2l
∥∥∥ψ(n+1)

2

∥∥∥
2

H(n+1)
s

,

for any l ∈ N. For I1, we have

I1 ≤ 1

2n

(
n ‖f‖0

∥∥∥ψ(n−1)
2

∥∥∥
H(n−1)

s

)2

= n ‖f‖20
∥∥∥ψ(n−1)

2

∥∥∥
2

H(n−1)
s

.

Consequently,

‖Φ (f)ψ2‖ ≤
√
2 ‖f‖l ‖ψ2‖ for any l ∈ N,

which implies that

f → 〈ψ1,Φ (f)ψ2〉 is an element of H∗
∞ (C) ,

see (8).
Poincaré invariance of the field. The proof is identical to that of Theorem
X.42 in [44].
Cyclicity of the vacuum. The cyclicity of the vacuum for Φ (·) follows from
Theorem X. 41 (parts (b) and (d)) in [44], by using the fact that the mapping

R : DC(Q4
p) → L2

C (V +, dλ)

f → f̂ |V +

(47)

has a dense range. Indeed, by using that DC(V
+) is dense in L2

C (V +, dλ),
see Remark 19, and the sequence (38), we conclude that DC(Q4

p) is dense in

L2
C (V

+, dλ). Finally, (47) follows from the fact that F(DC(Q4
p)) = DC(Q4

p).
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Local commutativity. Segal’s quantization can be performed on the field Φ(f),
f ∈ H∞ (C), see [44, Theorem X.41]. Local commutativity in this context means
that

[Φ (f) ,Φ (g)]ψ = Φ (f)Φ (g)ψ −Φ (g)Φ (f)ψ = 0, (48)

for any f , g ∈ H∞ (C) with support on an appropriate domain, and for all
ψ ∈ F0. Without loss of generality we may suppose that f and g in (48) are real-
valued since Φ is linear. Since the range of R : DC → L2

C (V
+, dλ) is dense in

L2
C (V

+, dλ), we may assume that f , g belong to DC, cf. [44, Theorem X.41-(d)].
By using the Segal quantization, cf. [44, Theorem X.41-(c) ], we have

[Φ (f) ,Φ (g)]ψ =
√
−1 Im 〈Rf,Rg〉L2

C
(V +,dλ) ψ

=
1

2





∫

V +

{
f̂ (k)ĝ (k)− f̂ (k) ĝ (k)

}
dλ (k)



ψ.

Now, we define

∆ (x) =

∫

V +

{χp (−B (x, k))− χp (B (x, k))} dλ (k) , (49)

which is a well-defined function in Q4
p because V + is open and compact. Then

[Φ (f) ,Φ (g)]ψ =
1

2





∫

Q4
p

∫

Q4
p

∆ (x− y) f (x) g (y) d4xd4y




ψ. (50)

Therefore, the study of the local commutativity in the p−adic quantum field
theory of a scalar field becomes the study of the vanishing of ∆(x) as a distribu-
tion on DC(Q4

p)×DC(Q4
p). It is then enough to observe that ∆ (x) ≡ 0 if x ∈ Z4

p,
because χp|Zp

≡ 1.

Finally, to prove the second part (ii) notice that, since �q,α : H∞ (C) →
H∞ (C), see Lemma 9 , Φ (�q,αf), f ∈ H∞ (C), is well-defined, and since
H∞ (C) ⊂ L2

C

(
Q4

p, d
4k
)
, we have F (�q,αf) = |q− 1|αp F(f), so R(�q,αf) = 0,

and consequently Φ (�q,αf) = 0, for all f ∈ H∞ (C).

5.3. Conjugated fields. We take H = L2
C (V +, dλ) as before. Recall that (k0,k) ∈

V + if and only if (k0,−k) ∈ V +. By using this fact, we define

C : H → H

f (k0,k) → f (k0,−k).

ThenC induces a conjugation onH, i.e.C gives an antilinear isometry satisfying
C2 = I. We set HC := {f ∈ H;Cf = f}.

We recall that ω (k) : Uq → Qp is a non-vanishing analytic function. We
define

µ(k) =

{√|ω(k)|p if k ∈ Uq ,

0 if k ∈ Q3
p\Uq.
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Then µ (k) ∈ DR(Q3
p).

We now define the canonical fields corresponding to C as follows:

ϕ (f) =
1√
2

{(
a− (Rf)

)∗
+ a− (CRf)

}
, for f ∈ H∞(C), and

π (f) =

√
−1√
2

{(
a− (µRf)

)∗ − a− (CµRf)
}
, for f ∈ H∞(C).

We call f → ϕ (f) the canonical free field over HC of mass 1, and f → π (f)
the canonical conjugate momentum over HC of mass 1. These maps are complex
linear and ϕ (f), π (f) are self-adjoint if and only if Rf ∈ HC .

The distribution δ (x0 − t0) g (x) is defined as the direct product of the dis-
tributions δ (x0 − t0) and g (x):

δ (x0 − t0)× g (x) : DC(Qp)×DC(Q3
p) → C

∑
i φi (x0) θi (x) →∑

i φi (t0)
∫
Q3

p
g (x) θi (x) d

3x,

see e.g. [60]. If g ∈ L2
C

(
Q3

p, d
3x
)
, then the Fourier transform of the distribution

δ (x0 − t0) g (x) is χp (k0t0) ĝ (k), where ĝ (k) ∈ L2
C

(
Q3

p, d
3k
)
is the 3−dimensional

Fourier transform with respect to the bilinear form −B0 (x,k). By using Lemma
11, we can extend the projectionR to the distributions of the form δ (x0 − t0) g (x),
g ∈ L2

C

(
Q3

p, d
3x
)
, and thus we extend the class of functions on which ϕ (·) and

π (·) are defined to include these distributions.
In the case t0 = 0, with g real-valued, we have

(
CRδ̂g

)
(k0,k) = Rδ̂g (k0,−k) = Rĝ (k0,−k) = ĝ(−k)) = ĝ (k) = R

(
δ̂g
)
.

Consequently, R (δg) and µR (δg) are in HC , and ϕ (δg), π (δg) are self-adjoint
if g ∈ L2

C

(
Q3

p, d
3x
)
is real. We call the maps g → ϕ (δg) and g → π (δg) the

time-zero fields.
From now on, we will only use ‘test functions’ of the form δg with g ∈

L2
C

(
Q3

p, d
3x
)
in ϕ (·) and π (·), and write ϕ (g) and π (g) instead of ϕ (δg) and

π (δg). If f and g are functions from L2
R

(
Q3

p, d
3x
)
, by using Theorem X.43-(c),

we have

[ϕ (f) ,π (g)]ψ =
√
−1





∫

V +

f̂(k)ĝ(k)µ (k) dλ(k)



ψ, for all ψ ∈ F0. (51)

5.4. Transferring fields from Fs

(
L2
C (V

+, dλ)
)
to Fs

(
L2
C

(
Uq, d

3k
))
. We use the

notation

a† (f) =
(
a− (f)

)∗
, a (f) =

(
a− (Cf)

)
.
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As we already mentioned, each function f(k) = f
(√

ω (k),k
)
∈ L2

C (V
+, dλ) is

a function on Uq. We take

(Jf) (k0,k) =
f
(√

ω (k),k
)

∣∣∣
√
ω (k)

∣∣∣
1
2

p

as before. Then J is a unitary isometry of L2
C (V

+, dλ) onto L2
C

(
Uq, d

3k
)
. The

annihilation and creation operators on Fs

(
L2
C

(
Uq, d

3k
))
, ã (·), ã† (·) are related

to a (·) and a† (·) by the formulas:

ã (Jf) = Γ (J) a (f)Γ (J)−1 ,

ã† (Jf) = Γ (J) a† (f)Γ (J)
−1

.

By using the unitary map Γ (J), we carry the quantum fields over Fs

(
L2
C

(
Uq, d

3k
))

as follows:

Φ̃ (f) = Γ (J)Φ (f)Γ (J)−1 =
1√
2




ã


C̃

Rf
∣∣∣
√
ω (k)

∣∣∣
1
2

p


+ ã†




Rf
∣∣∣
√
ω (k)

∣∣∣
1
2

p








for f ∈ H∞(R), and

ϕ̃ (f) = Γ (J)ϕ (f)Γ (J)
−1

=
1√
2




ã




R (fδ)
∣∣∣
√
ω (k)

∣∣∣
1
2

p


+ ã†




R (fδ)
∣∣∣
√
ω (k)

∣∣∣
1
2

p








for f ∈ L2
C(Q

3
p, d

3x), where C̃ = Γ (J)CΓ (J)
−1

acts by
(
C̃g
)
(k) = g(−k).

We drop the tilde ·̃, and from now on, we work with fields on Fs

(
L2
C

(
Uq, d

3k
))
,

for f , g real-valued. Then, formula (51) becomes

[ϕ (f) ,π (f)] =
√
−1

∫

Uq

f(x)g(x)d3x,

which is the canonical commutation relation in L2
C(Uq, d

3x).

5.5. Some classical calculations. In this section, we discuss in a p−adic frame
the annihilation and creation operators introduced above, to show that they
conform to the common usage in the Physics literature. We start by defining

D0 =
{
ψ;ψ ∈ F0, ψ

(n) ∈ DC(U
3n
q ) for all n

}

and for each l ∈ Q3
p (we do not use bold letters for 3-dimensional vectors) an

operator a (l) on Fs

(
L2
C

(
Uq, d

3x
))

= ⊕∞
n=0H(n)

s with domain D0 by

(a (l)ψ)
(n)

(k1, . . . , kn) =
√
n+ 1ψ(n+1) (l, k1, . . . , kn) , n ≥ 0 .
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The formal adjoint of a (l) is given by

(
a (l)† ψ

)(n)
(k1, . . . , kn) =

1√
n

n∑

j=1

δ (l − kj)ψ
(n−1)

(
k1, . . . , k̃j , . . . kn

)
,

for n ≥ 1, and by definition
(
a (l)

†
ψ
)(n)

(k1, . . . , kn) = 0 for n = 0. This

operator is a well-defined quadratic form on D0 × D0: if ψ2 =
{
ψ
(n)
2

}
n∈N

,

ψ1 =
{
ψ
(n)
1

}
n∈N

∈ F0, then the quadratic form

〈
ψ2, a (l)

† ψ1

〉
=

∞∑

n=1

〈
ψ
(n)
2 ,

(
a (l)† ψ1

)(n)〉

H(n)
s

=

∞∑

n=1

1√
n

n∑

j=1

∫

Un−1
q

ψ
(n)
2 (k1, . . . , kj−1, l, kj+1, . . . , kn)×

ψ
(n−1)
1 (k1, . . . , kj−1, kj+1, . . . , kn)

n∏

i=1
i6=j

d3ki

is well-defined. The formulas

a (g) =

∫

Uq

a (k) g (−k)d3k and a† (g) =

∫

Uq

a† (k) g (k) d3k, (52)

hold for all g (k) ∈ DC(Uq), if the equalities are understood in the sense of
quadratic forms, i.e.

〈ψ2, a (g)ψ1〉 :=
∫

Uq

〈ψ2, a (k)ψ1〉 g (−k)d3k

and

〈ψ2, a (g)ψ1〉 :=
∫

Uq

〈
ψ2, a

† (k)ψ1

〉
g (k)d3k.

On the other hand, since a (l) : D0 → D0, the powers of a (l) are well-defined on
D0. Then 〈

ψ1,
(
a (l)

†
)n

ψ2

〉
= 〈(a (l))n ψ1, ψ2〉 ,

for each n, where the equality is to be understood in the sense of quadratic
forms, and

〈
ψ1,

(
N2∏

i=N1+1

a† (li)

)(
N1∏

i=1

a (li)

)
ψ2

〉
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is a well-defined quadratic form on D0 ×D0. In addition, if fi ∈ DC(Uq), then
the following expressions are well-defined as quadratic forms: The product

(
N2∏

i=N1+1

a† (fi)

)(
N1∏

i=1

a (fi)

)
=

∫

U
3N2
q

(
N2∏

i=N1+1

a† (ki)

)(
N1∏

i=1

a (−ki)
)(

N2∏

i=1

fi (ki)

)
d3k1 · · · d3kN2 ,

the number operator

N =

∫

Uq

a† (k) a (k) d3k ,

and the free Hamiltonian of unit mass,

H0 =

∫

Uq

µ (k) a† (k) a (k) d3k .

Finally, by using quadratic forms on D0 we can express the free scalar field
and the time zero fields in terms of a† (k) and a (k) (i.e. by using (52) with g
real-valued):

Φ (t, x) =

1√
2

∫

Uq

{
χp

(√
ω (k)t−B0 (k, x)

)
a† (k) + χp

(
−
√
ω (k)t+B0 (k, x)

)
a (k)

}

× d3k
∣∣∣
√
ω (k)

∣∣∣
1
2

p

,

ϕ (x) =
1√
2

∫

Uq

{
χp (−B0 (k, x)) a

† (k) + χp (B0 (k, x)) a (k)
} d3k
∣∣∣
√
ω (k)

∣∣∣
1
2

p

,

π (x) =

√
−1√
2

∫

Uq

{
χp (−B0 (k, x)) a

† (k)− χp (B0 (k, x)) a (k)
} ∣∣∣
√
ω (k)

∣∣∣
1
2

p
d3k.

5.6. A p-adic Klein-Gordon equation. In this section, we consider the inhomo-
geneous p−adic Klein-Gordon equation:

�q,αu (t,x) = h (t,x) , (53)

where (t,x) ∈ Qp × Q3
p and h (t,x) ∈ DC(Qp × Q3

p). We use the techniques
and results of [67, Chapter 6]. By a solution (or weak solution) we understand
a distribution from D′

C(Qp × Q3
p) satisfying (53). We denote by E0

q
(t,x), the

fundamental solution of (53) obtained in Theorem 1.
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Theorem 3. The following hold true:

(i) The equation

�q,αu (t,x) = 0 (54)

admits plane waves, this means that if (E±,κ) ∈ V ±, that is, they form a

fixed pair of solutions to E± = ±
√
ω (κ), then χp {−B ((t,x) , (E±,κ))} is

a weak solution of (54).
(ii) The distributions

∫

Uq

χp

{
−B

(
(t,x) ,

(√
ω (k),k

))} d3k∣∣∣
√
ω (k)

∣∣∣
p

+

∫

Uq

χp

{
B
(
(t,x) ,

(
−
√
ω (k),k

))} d3k∣∣∣
√
ω (k)

∣∣∣
p

are the unique weak solutions of (54) (up to the multiplication by a non-zero

complex constant) which are invariant under L↑
+.

(iii) The distributions

u(t,x;A,B,C) = E0
q
(t,x) ∗ h (t,x)+

C

∫

Uq

{
χp

(
−
√
ω (k)t+B0 (k,x)

)
A (k) + χp

(√
ω (k)t+B0 (k,x)

)
B (k)

}

× d3k∣∣∣
√
ω (k)

∣∣∣
p

,

where C is a non-zero complex number, and A (k), B (k) ∈ DC(Q3
p), are

weak solutions of (53).

Proof.

(i) Since F−1
k0→t
k→x

(δ (k0 − E±,k− κ)) = χp {−B ((E±,κ) , (t,x))}, the condition

E± = ±
√
ω (κ) implies that k±0 = ±

√
ω (k), so δ (k0 − E±,k− κ) is sup-

ported on V ± ⊂ V . The result follows from the fact that the weak solutions
of (54) are exactly the distributions from D′

C(Qp×Q3
p) whose Fourier trans-

form is supported on V , see [67, Lemma 169].
(ii) The distributions of the form CδV , for C ∈ C×, are the unique solutions of

(54) which are invariant under O(q), see [67, Lemma 169] and [41, Propo-
sition 2-2.]. By writing CδV = CδV + +CδV − in D′

C(Qp×Q3
p) and using the

fact that δV ± are invariant under L↑
+ = {Λ ∈ O(q);Λ (V ±) = V ±}, see [67,

Lemma 163], we conclude that CδV + +CδV −are the unique weak solutions

of (54) which are invariant under L↑
+. The announced formula follows by

computing the inverse Fourier transform of δV ± .
(iii) The result follows from the second part by using Theorem 1.
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Remark 24. Notice that
∣∣∣
√
ω (k)

∣∣∣
p
A (k),

∣∣∣
√
ω (k)

∣∣∣
p
B (k), are test functions, and

also

∫

Uq

χp

(√
ω (k)t+B0 (k,x)

)
B (k)

d3k∣∣∣
√
ω (k)

∣∣∣
p

=

∫

Uq

χp

(√
ω (k)t−B0 (k,x)

)
B (−k)

d3k∣∣∣
√
ω (k)

∣∣∣
p

,

so the unique weak solution of �q,αu (t,x) = 0 (with C = 1/
√
2) invariant under

L↑
+ corresponds to the free scalar field Φ (t,x), with a (k) =

∣∣∣
√
ω (k)

∣∣∣
p
A (k),

a† (k) =
∣∣∣
√
ω (k)

∣∣∣
p
B (k). As we have seen, these solutions can be quantized

using the machinery of the second quantization in such a way that Wightman
axioms are satisfied.
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65. Zúñiga-Galindo W. A., Non-Archimedean white noise, pseudodifferential stochastic equa-

tions, and massive Euclidean fields, J. Fourier Anal. Appl. 23 (2017), no. 2, 288–323.
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