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Entropy formula in Einstein-Maxwell-Dilaton theory and its validity for black

strings
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We consider near horizon fall-off conditions of stationary black holes in Einstein-Maxwell-
Dilaton theory and find conserved charge conjugate to symmetry generator that preserves
near horizon fall-off conditions. Subsequently, we find supertranslation, superrotation and
multiple-charge modes. We apply the obtained results on a typical static dilaton black hole
and on a charged rotating black string, as examples. In this case, supertranslation double-
zero-mode charge T(0,0) is not equal to black hole entropy times Hawking temperature. This
may be seen as a problem but it is not, because, in Einstein-Maxwell-Dilaton theory, we
have a U(1) gauge freedom and we use an appropriate gauge fixing to fix that problem. We
show that new entropy formula 4πĴ+

0 Ĵ
−

0 , proposed in [5], is valid for black strings as well as
black holes.

I. INTRODUCTION

The Einstein-Maxwell-dilaton (EMD) theory originating from a low energy limit of string theory,
allows for black holes that have mass, rotation, charge and scalar hair [1]. The uniqueness of static,
asymptotically flat spacetimes with non-degenerate black holes of Einstein-Maxwell-dilaton theory
has been investigated in [2]. The dilaton field can change the asymptotic behavior of the solutions
to be neither asymptotically flat nor (A)dS. Rotating solutions of EMD gravity with Liouville-type
potential in four and (n + 1)-dimensions when horizon is flat have been studied respectively in
[3, 4]. These solutions [3, 4] describe charged rotating dilaton black strings/branes.
In this paper we would like to provide the first non-trivial evidence for universality of the entropy
formula 4πJ+

0 J
−
0 in Einstein-Maxwell-dilaton gravity in 4-dimensions. Recently the above entropy

formula emerged in the near horizon description of non-extermal Kerr black holes in 4-dimensions
[5]. In previous paper [6] we have show that this entropy formula give us the correct results for
Kerr-Newman (A)dS black holes. In order to investigate universality of the above entropy formula,
here we study the near horizon fall-off conditions of stationary black holes in Einstein-Maxwell-
Dilaton gravity. We show that the above new entropy formula not only is valid for black hole
solutions of this theory but also work correctly for black string solutions. For this propose we use
the covariant phase space method for obtaining conserved charges in EMD theory. Then we study
the near horizon behavior of a stationary black hole in EMD theory. We find conserved charge
conjugate to symmetry generator that preserves near horizon fall-off conditions. After that we
obtain supertranslation, superrotation and multiple-charge modes.
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II. CONSERVED CHARGES IN EINSTEIN-MAXWELL-DILATON THEORY

Let us consider Einstein-Maxwell-Dilaton (EMD) theory. The Lagrangian describing EMD
theory is a functional of metric gµν , U(1) gauge field Aµ and a real scalar field ϕ

L =
√−g

(

R − 2Λ − 1

2
∂µϕ∂

µϕ− 1

4
N (ϕ)FµνF

µν − V(ϕ)

)

, (1)

where R, Fµν = ∂µAν −∂νAµ and Λ are respectively the Ricci scalar, electromagnetic field strength
and the cosmological constant.
Now, we briefly review the approach of the covariant phase space method for obtaining conserved
charges in EMD theory. To do this, we follow references [7–11]. First order variation of the
Lagrangian (1) is

δL[Φ] = EΦ[Φ]δΦ + ∂µΘµ[Φ, δΦ], (2)

where Φ = {gµν , Aµ, ϕ} denotes collection of dynamical fields, EΦ have dual indices with Φ and
sum on Φ is explicitly assumed. In the equation (2),

Θµ[Φ, δΦ] =
√−g

{

2∇[α
(

gµ]βδgαβ

)

− ∂µϕδϕ − NFµνδAν

}

, (3)

is the surface term and we refer to it as symplectic potential. Also, EΦ = 0 give us the field
equations

Gµν + Λgµν = T µν
(A) + T µν

(ϕ), (4)

∇ν (NF νµ) = 0, (5)

✷ϕ− V ′ − 1

4
N ′FαβF

αβ = 0, (6)

where Gµν is the Einstein tensor and

T µν
(A) =

1

2
N
(

FµαF ν
α − 1

4
gµνFαβFαβ

)

, (7)

T µν
(ϕ) =

1

2
∂µϕ∂νϕ− 1

2
gµν

(

1

2
∂αϕ∂

αϕ+ V
)

, (8)

are contributions of electromagnetic field and scalar field in energy-momentum tensor, respectively.
Here, the prime symbol denotes differentiation with respect to ϕ.
Now consider two arbitrary variations δ1 and δ2. Suppose these two variations do not commute
δ1δ2 6= δ2δ1. By varying Eq.(2), we find second order variation of the Lagrangian

δ1δ2L[Φ] = δ1EΦ[Φ]δ2Φ + EΦ[Φ]δ1δ2Φ + ∂µδ1Θµ[Φ, δ2Φ]. (9)

Similarly, one can write

δ2δ1L[Φ] = δ2EΦ[Φ]δ1Φ + EΦ[Φ]δ2δ1Φ + ∂µδ2Θµ[Φ, δ1Φ]. (10)

By subtracting Eq.(10) from Eq.(9), we have

δ[1,2]L[Φ] = δ1EΦ[Φ]δ2Φ − δ2EΦ[Φ]δ1Φ +EΦ[Φ]δ[1,2]Φ + ∂µ (δ1Θµ[Φ, δ2Φ] − δ2Θµ[Φ, δ1Φ]) , (11)
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where δ[1,2] = δ1δ2 −δ2δ1 is commutator of two variations δ1 and δ2. By using Eq.(2), and replacing
δ → δ[1,2], we can write Eq.(11) as

∂µω
µ
LW[Φ; δ1Φ, δ2Φ] = − 1

16π
(δ1EΦ[Φ]δ2Φ − δ2EΦ[Φ]δ1Φ) , (12)

where

ωµ
LW[Φ; δ1Φ, δ2Φ] =

1

16π

(

δ1Θµ[Φ, δ2Φ] − δ2Θµ[Φ, δ1Φ] − Θµ[Φ, δ[1,2]Φ]
)

, (13)

is the Lee-Wald symplectic current. Since the symplectic potential is linear in δΦ then the terms
containing δ1Φ, δ2Φ and δ[1,2]Φ eliminate each other and ωµ

LW is a skew-symmetric bilinear in δ1Φ
and δ2Φ. The Lee-Wald symplectic current is conserved when equations of motion and linearized
equations of motion are satisfied. In other words, if Φ is a solution of EΦ = 0 and δ1Φ and δ2Φ are
solutions of δEΦ = 0, then the Lee-Wald symplectic current is conserved

∂µω
µ
LW[Φ; δ1Φ, δ2Φ] ≃ 0. (14)

The sign ≃ indicates that the equality is held on-shell. We can define symplectic 2-form on solution
space through the Lee-Wald symplectic current

ΩLW[Φ; δ1Φ, δ2Φ] =

ˆ

C

ωµ
LW[Φ; δ1Φ, δ2Φ]d3xµ, (15)

where C is a codimension-1 spacelike surface. Solution phase space can be constructed by factoring
out the degeneracy subspace of configuration space (see Ref.[7] for detailed discussion). Hence
ΩLW will be a symplectic form on solution phase space and it is closed, skew-symmetric and non-
degenerate.
Suppose ξµ(x) and λ(x) to be generators of diffeomorphism and U(1) gauge transformation. We
can introduce a combined transformation so that χ = (ξ, λ) is the generator of such transforma-
tions [6, 12]. The change in metric, U(1) gauge field and scalar field induced by an infinitesimal
transformation generated by χ are given by

δχgµν = Lξgµν , (16)

δχAµ = LξAµ + ∂µλ, (17)

δχϕ = Lξϕ, (18)

respectively. Here, Lξ denotes the Lie derivative along the vector field ξ. Also, the change in
Lagrangian (1) induced by an infinitesimal transformation generated by χ is

δχL[Φ] = LξL[Φ] = ∂µ (ξµL[Φ]) . (19)

Since change in dynamical fields are linear in generator χ and change in the Lagrangian is a total
derivative then χ generates a local symmetry on solution phase space [7]. The generators of such
local symmetry on solution phase space are conserved charges. The charge perturbation conjugate
to χ is defined as

δQχ = ΩLW[Φ; δΦ, δχΦ]. (20)
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The algebra among conserved charges is

{Qχ1
, Qχ2

} = Q[χ1,χ2] + C̃(χ1, χ2), (21)

where C̃(χ1, χ2) is central extension term and the Dirac bracket is defined as

{Qχ1
, Qχ2

} = δχ2
Qχ1

. (22)

Now, we want to find explicit form of conserved charges in the EMD theory. To this end, we
assume that the variation in Eq.(1) is induced by an infinitesimal transformation generated by χ

δχL[Φ] ≃ ∂µΘµ[Φ, δχΦ], (23)

then we can define an on-shell Noether current

Jµ
N[Φ;χ] ≃ Θµ[Φ, δχΦ] − ξµL[Φ], (24)

which is conserved on-shell, i.e. ∂µJ
µ
N ≃ 0. Thus there exists a second rank tensor density of weight

+1

Kµν
N [Φ;χ] ≃ −√−g

{

2∇[µξν] + NFµν(λ+Aαξ
α)
}

, (25)

so that Jµ
N ≃ ∂νK

µν
N . We refer to Kµν

N as Noether potential. To find explicit form of the symplectic
current, first, we take an arbitrary variation from Eq.(24)

∂νδK
µν
N [Φ;χ] ≃ δΘµ[Φ, δχΦ] − δ (ξµL[Φ]) . (26)

To have generality we assume that χ depends on the dynamical fields. On the other hand, second
variation of Eq.(1), induced by an infinitesimal transformation generated by χ, is

δχδL[Φ] ≃ ∂µδχΘµ[Φ, δΦ]. (27)

Since the commutator of an arbitrary variation and a variation induced by an infinitesimal trans-
formation generated by χ is δδχ − δχδ = δδχ then the equation (27) can be written as

δδχL[Φ] − δδχL[Φ] ≃ ∂µδχΘµ[Φ, δΦ]. (28)

By substituting Eq.(23) into Eq.(28), we find the explicit form of the symplectic current as

ωµ
LW[Φ; δΦ, δχΦ] ≃ ∂νQµν

LW[Φ, δΦ;χ], (29)

with

Qµν
LW[Φ, δΦ;χ] =

1

16π

{

δKµν
N [Φ;χ] − δKµν

N [Φ; δχ] + 2ξ[µΘν][Φ, δΦ]
}

. (30)

In the EMD theory the explicit form of Qµν
LW can be found by substituting equations (25) and (3)

into the above equation

Qµν
LW[Φ, δΦ;χ] =

√−g
8π

{

hλ[µ∇λξ
ν] − ξλ∇[µh

ν]
λ − 1

2
h∇[µξν] + ξ[µ∇λh

ν]λ − ξ[µ∇ν]h

− 1

2

[

N
(

δFµν +
1

2
hFµν

)

+ N ′Fµνδϕ

]

(λ+Aαξ
α)

− 1

2
NFµνξαδAα − N ξ[µF ν]αδAα − ξ[µ∂ν]ϕδϕ

}

,

(31)
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where hµν = δgµν . We can use Eq.(29) and Stokes’ theorem to write conserved charge perturbation
(20) as

δQχ =

˛

D

Qµν
LW[Φ, δΦ;χ]d2xµν , (32)

where D denotes boundary of C and it is a spacelike codimension-2 surface. Usually it is thought
that the linearization is just valid at spatial infinity. To overcome this problem, we take an
integration from Eq.(32) over one-parameter path on the solution phase space. To this end, suppose
that Φ(W) is a collection of fields which solve the equations of motion of the EMD theory, where
W is a free parameter in the solution phase space. Now, we replace W by sW, where 0 ≤ s ≤ 1
is just a parameter. By expanding Φ(sW) in terms of s we have Φ(sW) = Φ(0) + s∂Φ

∂s

∣

∣

s=0
+ · · · .

By substituting Φ = Φ(sW) and δΦ = ds∂Φ
∂s

∣

∣

s=0
into Eq.(32), we can define the conserved charge

conjugate to χ. Then we will have

Qχ =

ˆ 1

0
ds

˛

D

Qµν
LW[Φ;χ|s]d2xµν , (33)

where integration over s denotes integration over the one-parameter path on the solution phase
space. In the equation (33), s = 0 is the value of the parameter corresponds to the background
configuration. In this way, background contribution in the conserved charge is subtracted and then
the conserved charge will be always finite. Therefore, this method is applicable to spacetimes with
any backgrounds.

III. NEAR HORIZON FALL-OFF CONDITIONS AND SYMMETRIES

Let us consider near horizon behavior of a stationary black hole in EMD theory. One can write
near horizon metric in the Gaussian null coordinate system [6, 13–15]

ds2 = −2κρdv2 + 2dvdρ + 2ρθAdvdx
A + (ΩAB + ρλAB)dxAdxB + O(ρ2), (34)

where v is the advanced time coordinate such that a null surface is defined by gαβ∂αv∂βv = 0 and
the vector tangent to this surface is given by kµ = gµν∂νv which defines a ray. Also, ρ is the affine
parameter of the generator kµ. We assume that the horizon is located at ρ = 0. Suppose κ, θA,
ΩAB and λAB are functions of xA, where two coordinates xA are chosen constant along each ray.
One can introduce following near horizon fall-off conditions for the U(1) gauge field and scalar field

Av = A(0)
v +A(1)

v ρ+ O(ρ2), Aρ = 0, AB = A
(0)
B +A

(1)
B ρ+ O(ρ2), (35)

ϕ = ϕ(0) + ϕ(1)ρ+ O(ρ2), (36)

respectively, where we set Aρ = 0 as a gauge condition and A
(i)
v , A

(i)
B and ϕ(i) are functions of xA.

By substituting fall-off conditions (34), (35) and (36) into the field equations, we can find additional
restrictions. The (v, v) and (v,A) components of the equations of motion (4) at zeroth order restrict

κ andA
(0)
v to be constants, i.e. independent of xA. The other components of the equations of motion

relate first order terms to zeroth order ones in metric, gauge field and scalar field expansions and
we do not need them later.
In order to obtain the asymptotic symmetry generator χ, we assumed that the leading terms does
not depend on the dynamical fields. Under such an assumption the boundary conditions will be
"state independent", which means that the form of the asymptotic symmetry generators are not
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considered to depend explicitly of the charges [14]. In this way we can find components of symmetry
generator χ as follows [6, 14]:

ξv = T, ξρ =
1

2
ρ2ΩABθA∂BT + O(ρ3),

ξA = Y A − ρΩAB∂BT +
1

2
ρ2ΩACΩBDλCD∂BT + O(ρ3),

(37)

λ = λ(0) + ρΩABϕA∂BT − 1

2
ρ2
(

ΩACΩBDλCDϕA∂BT − ΩABψA∂BT
)

+ O(ρ3), (38)

The symmetry generator χ, with above components, preserves the given near horizon fall-off con-
ditions. Here T , Y A and λ(0) are arbitrary functions of xA. The change in dynamical fields under
the action of symmetry generator χ can be read as

δχθA = LY θA − 2κ∂AT, δχΩAB = LY ΩAB ,

δχλAB = LY λAB + θA∂BT + θB∂AT − 2∇̄A∇̄BT,
(39)

δχA
(1)
v = LYA

(1)
v , δχA

(0)
A = LY A

(0)
A +A(0)

v ∂AT + ∂Aλ
(0),

δχA
(1)
A = LYA

(1)
A +A(1)

v ∂AT + ΩBC
(

∂AA
(0)
B − ∂BA

(0)
A

)

∂CT,
(40)

δχϕ
(0) = LY ϕ

(0), (41)

where LY denotes the Lie derivative along Y A and ∇̄A is the covariant derivative with respect
to connection Γ̄A

BC compatible with the metric of the horizon ΩAB. It is worth mentioning that

because κ and A
(0)
v are not dynamical then they will remain unchanged under the action of the

symmetry generator χ, i.e. δχκ = 0 and δχA
(0)
v = 0.

The asymptotic Killing vectors (37) are functions of the dynamical fields. To take it into account
we introduce a modified version of Lie brackets [16]

[ξ1, ξ2] = Lξ1
ξ2 − δ

(g)
ξ1
ξ2 + δ

(g)
ξ2
ξ1, (42)

where ξ1 = ξ(T1, Y
A

1 ) and ξ2 = ξ(T2, Y
A

2 ) and δ
(g)
ξ1
ξ2 denotes the change induced in ξ2 due to the

variation of metric δ
ξ1
gµν = Lξ1

gµν . Therefore one finds that

[ξ1, ξ2] = ξ12, (43)

with ξ12 = ξ(T12, Y
A

12), where

T12 = Y A
1 ∂AT2 − Y A

2 ∂AT1, Y A
12 = Y B

1 ∂BY
A

2 − Y B
2 ∂BY

A
1 . (44)

Thus, the algebra of asymptotic Killing vectors is closed. In addition to T and Y A, the symmetry
generator χ = χ(T, Y A, λ(0)) contains another degree of freedom, λ(0). Here, λ(0) is an arbitrary
function of xA and generates U(1) symmetry. Hence, we need to introduce two other commutators
[6]

[χ(0, 0, 0, λ
(0)
1 ), χ(0, 0, 0, λ

(0)
2 )] = 0, (45)

[χ(0, 0, 0, λ
(0)
1 ), χ(0, Y A

2 , 0)] = −[χ(0, Y A
2 , 0), χ(0, 0, 0, λ

(0)
1 )] = χ(0, 0, 0,−LY2

λ
(0)
1 ), (46)
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in addition to Eq.(43). The equation (45) comes from the fact that U(1) is an Abelian group
and we will justify Eq.(46) when we consider the algebra among conserved charges. In a nutshell,
algebra among asymptotic symmetry generators can be written as

[χ1, χ2] = χ12, (47)

where T12 and Y A
12 are given in Eq.(44) and

λ
(0)
12 = LY1

λ
(0)
2 − LY2

λ
(0)
1 . (48)

Suppose the induced metric on the horizon ΩAB is conformally related to an off-diagonal one γAB,
i.e.

ΩABdx
AdxB = Ωγzz̄dzdz̄, (49)

where z̄ is complex conjugate to z. For Kerr-Newman (A)dS black holes, γAB describes the Riemann
sphere. In this way, the Laurent expansion on the horizon is allowed. The general solution of the
conformal Killing equations is Y = Y z(z)∂z + Y z̄(z̄)∂z̄ and T = T (z, z̄) and λ(0) = λ(0)(z, z̄) are
arbitrary functions of z and z̄. Thus, we can define modes as

T(m,n) = χ(zmz̄n, 0, 0, 0), Ym = χ(0,−zm+1, 0, 0), Ȳm = χ(0, 0,−z̄m+1, 0),

λ
(0)
(m,n) = χ(0, 0, 0, zm z̄n),

(50)

where m,n ∈ Z. By using Eq.(47), we find the algeba among these modes

[Ym, Yn] = (m − n)Ym+n, [Ȳm, Ȳn] = (m− n)Ȳm+n, [Ym, Ȳn] = 0,

[T(m,n), T(k,l)] = 0, [Yk, T(m,n)] = −mT(m+k,n), [Ȳk, T(m,n)] = −nT(m,n+k),
(51)

[λ
(0)
(m,n), λ

(0)
(k,l)] = 0, [Yk, λ

(0)
(m,n)] = −mλ(0)

(m+k,n), [Ȳk, λ
(0)
(m,n)] = −nλ(0)

(m,n+k),

[λ
(0)
(m,n), T(k,l)] = 0,

(52)

This algebra contains a set of supertranslations current T(m,n) and two sets of Witt algebra currents,

given by Ym and Ȳm. It also contains a set of multiple-charges current λ
(0)
(m,n). Two sets of Witt

currents are in semi-direct sum with the supertranslations and multiple-charges current. The
subalgebra (51) is known as bms

H
4 [14] and it differs from Bondi-Metzner-Sachs algebra bms4

[17–19](the structure constants are different).

IV. NEAR HORIZON CHARGES

Now we find conserved charge conjugate to the asymptotic symmetry generator χ obtained in
previous section. We take codimension-two surface D in Eq.(33) to be the horizon

δQχ =

˛

H

Qµν
LW[Φ, δΦ;χ]d2xµν ,

=

ˆ

d2xQvρ
LW

∣

∣

ρ=0
.

(53)

By substituting the boundary conditions and components of the asymptotic symmetry generators
into Eq.(53), we have

Qχ =
1

8π

ˆ

d2x
√

det Ω

{(

κ− 1

2
N (0)A(0)

v A(1)
v

)

T − 1

2
Y A

(

θA + N (0)A(1)
v A

(0)
A

)

− 1

2
N (0)A(1)

v λ(0)
}

,

(54)
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where an integral over one-parameter path on solution phase space was taken. As we mentioned
earlier, one can use equations (21) and (22) to find the algebra among the conserved charges. After
performing some calculations, we find that

{Qχ1
, Qχ2

} = Q[χ1,χ2], (55)

where [χ1, χ2] is given by equations (47). In this case, by comparing Eq.(21) and (55), we see
that the central extension term does not appear. Since the algebra among the conserved charges
is isomorphic to the algebra among symmetry generators and the commutation relation (47) is
appeared in the right hand side of Eq.(55) then it seems reasonable to consider such a commutation
relation. By substituting Eq.(50) into Eq.(54), supertranslation, superrotation and multiple-charge
modes can be obtained as

T(m,n) =
1

8π

ˆ

dzdz̄Ω
√
γ

(

κ− 1

2
N (0)A(0)

v A(1)
v

)

zmz̄n, (56)

Ym =
1

16π

ˆ

dzdz̄Ω
√
γ
(

θz + N (0)A(1)
v A(0)

z

)

zm+1, (57)

Ȳm =
1

16π

ˆ

dzdz̄Ω
√
γ
(

θz̄ + N (0)A(1)
v A

(0)
z̄

)

z̄m+1, (58)

Q(m,n) = − 1

16π

ˆ

dzdz̄Ω
√
γN (0)A(1)

v zmz̄n, (59)

respectively, where γ = det(γAB). Comparing the above equations with Eqs.(6.4), (6.7), (6.25) and
(6.26) in Ref.[6], we deduce that Eq.(57) and Eq.(59) will give us the correct value for superrotaion
charges and multiple-charges but Eq.(56) will not give the correct value for supertranslation charges.
In fact, we expect that the supertranslation double-zero-mode charge T(0,0) gives us the black hole
entropy multiplied by Hawking temperature TH = κ/2π.
Now, we deviate slightly from the discussion to express the difference between results obtained in
this paper and results appeared in Ref.[6]. Compare conserved charge density expression (31) with
one used in Ref.[6] (see Eq.(2.29)) where scalar field was suppressed. They are different! Difference
comes from the fact that in obtaining Eq.(2.29) in Ref.[6] the gauge parameter λ was redefined as
λ+ ξµAµ → λ (see [20] for detailed discussion). This is the origin of the difference.
Now let return to our discussion. The equation (55) gives us the algebra among charge modes

{Ym,Yn} = (m − n)Ym+n, {Ȳm, Ȳn} = (m− n)Ȳm+n, {Ym, Ȳn} = 0,

{T(m,n),T(k,l)} = 0, {Yk,T(m,n)} = −mT(m+k,n), {Ȳk,T(m,n)} = −nT(m,n+k),
(60)

{Q(m,n),Q(k,l)} = 0, {Yk,Q(m,n)} = −mQ(m+k,n), {Ȳk,Q(m,n)} = −nQ(m,n+k),

{Q(m,n),T(k,l)} = 0.
(61)

In order to find the correct form of supertranslation charges, first we consider algebra among

supertranslation modes and multiple-charge modes (see Eq.(52)). It is clear that λ
(0)
(m,n) and T(k,l)

commute with each other. By introducing a new mode,

η(m,n) = (0, 0, 0, zm z̄n), (62)
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we construct a subalgebra of the algebra (52). Therefore, we can define new supertranslation modes
as

T
(new)
(m,n) = T(m,n) + η(m,n), (63)

so that they obey same algebra as the old ones do. Strictly speaking, these new modes obey the

algebra (51) and (52) with T(m,n) → T
(new)
(m,n) . Thus, we are allowed to use U(1) gauge fixing to find

the correct form of supertranslation charges. To this end, we fix the U(1) gauge freedom as

λ(0) = −A(0)
v T, (64)

so that corresponding modes are given by Eq.(62). In this way, we can define new supertranslation

charges conjugate to supertranslation modes T
(new)
(m,n) as

T (new)
(m,n) =

κ

8π

ˆ

dzdz̄Ω
√
γzmz̄n. (65)

This is exactly what we were looking for. In fact, these are charge modes corresponding to charge

conjugate to symmetry generator χ = χ(T, 0, 0,−A(0)
v T ). Eventually, we perform a redefinition as

T̃(m,n) = 1
2κ

T (new)
(m,n) . In this way, we expect that the supertranslation double-zero-mode T̃(0,0) could

be related to the black hole entropy as [6, 14, 15]

S = 4πT̃(0,0). (66)

Since λ(0) is in general a dynamical field independent function and we set it as Eq.(64) in the last
step, i.e. when we want to calculate charges, then T̃(0,0) will satisfy the same algebra as (60) and
(61). Now, we replace the brackets with commutators, namely { , } ≡ i[ , ], then the algebra
among charge modes becomes

i[Ym,Yn] = (m− n)Ym+n, i[Ȳm, Ȳn] = (m− n)Ȳm+n,

i[Yk, T̃(m,n)] = −mT̃(m+k,n), i[Ȳk, T̃(m,n)] = −nT̃(m,n+k),

i[Yk,Q(m,n)] = −mQ(m+k,n), i[Ȳk,Q(m,n)] = −nQ(m,n+k).

(67)

where commutators not displayed vanish.
It is expected that we can apply the Sugawara deconstruction proposed in [5]. To do this, we
introduce four new generators Ĵ±

m and K̂±
m so that they obey the following algebra

i[Ĵ±
m, K̂

±
n ] = mδm+n,0, (68)

where commutators not displayed vanish. The algebra (68) consists of two copies of the 3-
dimensional flat space near horizon symmetry algebra [21]. Hence we can construct generators

T̃(m,n) , Y(new)
m and Ȳ(new)

m as follows:

T̃(m,n) = Ĵ+
mĴ

−
n , Y(new)

m =
∑

p

Ĵ+
m−pK̂

+
p , Ȳ(new)

m =
∑

p

Ĵ−
m−pK̂

−
p . (69)

It is easy to check that the definitions presented in Eq.(69) obey the algebra (67) provided that
Ĵ±

m and K̂±
m satisfy the algebra introduced in Eq.(68). There will be exist six algebraic constraints

on charge zero modes (because we assume that charge zero modes are complex numbers)

S
4π

= Ĵ+
0 Ĵ

−
0 , ± i

2
J = Ĵ±

0 K̂
±
0 , (70)

where J is angular momentum of black hole.
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V. EXAMPLES

Let us consider a typical static dilaton black hole [22–24] as first example. The procedure have
been done in sections III and IV is independent of whether the black object is a black hole or a
black string, etc. Therefore, as second expamle, we consider a black string solution of EMD theory.
In both examples we set Λ = 0 and V = 0.

A. Static Dilaton Black Hole

Consider a typical static dilaton black hole

ds2 = − F (r)dv2 + 2dvdr +H(r)(dθ2 + sin2 θdφ2),

ϕ =ϕ∞ + ln

∣

∣

∣

∣

r + Σ

r − Σ

∣

∣

∣

∣

, A =

(

e
1

2
ϕ∞q

r − Σ

)

dv,
(71)

with

F (r) =
(r − 2M − Σ)(r + Σ)

r2 − Σ2
, H(r) = r2 − Σ2, Σ = − q2

2M
, (72)

where 0 ≤ r < ∞, 0 ≤ θ ≤ π and 0 ≤ φ < 2π are radial, polar and azimuthal coordinates,
respectvely. This black hole has three parameters M , q and ϕ∞ and solves the equations of motion
(4)-(6) with N (ϕ) = 4 exp(−ϕ) (Λ = 0 and V = 0 were assumed). The event horizon is located at
rH = 2M + Σ. Now, we define new radial coordinate ρ = r − rH . We can expand metric, U(1)
gauge field and scalar field with respect to ρ and find that the corresponding fall-off conditions can

be written as Eqs.(34)-(36), where the explicit form of κ, A
(0)
v and dynamical fields are given as

κ =
1

4M
, θA = 0, Ωθθ = (4M2 − 2q2), Ωφφ = (4M2 − 2q2) sin2 θ,

Ωθφ = 0, A(0)
v =

e
1

2
ϕ∞q

2M
, A(1)

v = −e
1

2
ϕ∞q

4M2
, A

(0)
A = A

(1)
A = 0,

ϕ(0) = ϕ∞ + ln

∣

∣

∣

∣

∣

2M2 − q2

2M2

∣

∣

∣

∣

∣

.

(73)

The full 2-metric on horizon,

dσ2 = (4M2 − 2q2)
[

dθ2 + sin2 θdφ2
]

, (74)

is conformally related to Riemann sphere. To show this relation, one can introduce a change of
coordinates z = eiφ cot θ/2 and z̄ = e−iφ cot θ/2 and show that the conformal factor is given by
Ω = (4M2 − 2q2).
Now we can calculate the supertranslation double-zero-mode T̃(0,0) = 1

4(4M2 − 2q2). Therefore,
static dilaton black hole entropy is

S = π(4M2 − 2q2), (75)

where Eq.(66) was used. This result is consistent with the previous result obtained in [25]. It is
clear that superrotation charge modes Ym and Ȳm are zero. By substituting Eq.(73) and Eq.(74)
into Eq.(59), one can find multiple-charge double-zero-mode as

Q(0,0) = qe− 1

2
ϕ∞ , (76)
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which is exactly total electric charge of static dilaton black hole [25].
The given black hole has an inner and outer horizons of radius r− = −Σ and r+ = 2M + Σ,
respectively. One can choose zero mode eigenvalues of Ĵ±

m and K̂±
m as

Ĵ±
0 =

1

2
(r+ ± ir−), K̂±

0 = 0, (77)

so that they satisfy Eq.(70).

B. Rotating Charged Dilaton Black String

Now consider a rotating charged dilaton black string [3]

ds2 = −F (r)
(

Ξdt− adφ̂
)2

+
dr2

F (r)
+R(r)

(

a

l2
dt − Ξdφ̂

)2

+R(r)
dx2

l2
, (78)

ϕ =
β

α
ln

(

b

r

)

, A = −q

r

(

Ξdt− adφ̂
)

, (79)

with

F (r) = rβ−1

(

−M +
(1 + α2)q2

bβr

)

, R(r) = bβr2−β, Ξ2 = 1 +
a2

l2
, β =

2α2

1 + α2
, (80)

where −∞ < t < ∞ is time coordinate. The line-element (78) describes a black string for 0 ≤
φ̂ < 2π and −∞ < x < ∞. This black string has three parameters M > 0, q and b and solves the
equations of motion (4)-(6) with N (ϕ) = 4 exp(−αϕ), where α is a constant. Also, l is a constant
and it has dimension of length. The spacetime described by Eq.(78) presents a naked singularity
with a regular cosmological horizon at

rH =
(1 + α2)q2

bβM
. (81)

In order to find near horizon geometry of rotating charged dilaton black string, first we write
the metric (78) in the advanced Eddington-Finkelstein coordinates (v, r, φ̃, x). To this end, we
transform coordinates as

dv = dt+
1 −B(r)g

tφ̂

gtt
dr, dφ̃ = dφ̂+B(r)dr, (82)

with

B(r) =
a

F (r)R(r)l2

√

R(r)[R(r) − l2F (r)]. (83)

Next, we perform another coordinates transformation as φ̃ = φ + ΩHv, where ΩH = a
Ξl2

is the
horizon velocity of rotating charged dilaton black string. Finally, we find that

ds2 = − F

Ξ2
dv2 +

2F
(

1 + a
Ξl2
RB

)

(

FΞ2 − a2

l4
R
) dvdr +

2aF

Ξ
dvdφ+

2FRB
(

1 + Ξl2

a
FB

)

(

FΞ2 − a2

l4
R
) drdφ

+
(

−Fa2 +RΞ2
)

dφ2 +R
dx2

l2
.

(84)
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In this coordinate system the U(1) gauge field can be written as

A = −q

r

(

dv

Ξ
− adφ

)

, (85)

and scalar field remains unchanged. Also, we have gvv = gvφ = 0 on the cosmological horizon. Now
we write near horizon fall-off conditions for rotating charged dilaton black string in the Gaussian
null coordinate system. To do this, we follow the method proposed in Appendix A of the paper
[26]. Therefore, we rewrite the metric relative to the correct set of geodesics. A suitable pair of
cross-normalized null normals is

l = ∂v , and n =

(

l4(1 + Ξ)2

2a2bβr2−β
H

)

∂v − Ξ∂r −
(

l2(1 + Ξ)

abβr2−β
H Ξ

)

∂φ. (86)

These vectors are defined on horizon and we have l · l|H = n · n|H = 0 and l · n = 1. Now we
consider a family of null geodesics that crosses H. The vector field tangent to them is n and they
are labeled by (v, θ, φ). Suppose ρ is an affine parameter which parameterize the given geodesics
so that ρ = 0 on H. The geodesics can be constructed up to second order in ρ:

Xµ
(v,θ,φ)(ρ) = Xµ

∣

∣

ρ=0
+ ρ

dXµ

dρ

∣

∣

∣

∣

ρ=0

+ O(ρ2), (87)

where Xµ
∣

∣

ρ=0
= (v, rH , θ, φ) and dXµ

dρ

∣

∣

ρ=0
= nµ. The equation (87) defines a transformation

from (v, r, θ, φ) to (v, ρ, θ, φ) and then we can calculate the first order expansion of the metric

gµν = g
(0)
µν + ρg

(1)
µν + O(ρ2), where

g(0)
vρ = 1, g

(0)
φφ = bβr2−β

H Ξ2, g(0)
xx =

bβr2−β
H

l2
, (88)

g(1)
vv = −2κ, g

(1)
vφ = aMrβ−2

H , (89)

where κ is surface gravity of the rotating charged dilaton black string,

κ =
Mrβ−2

H

2Ξ
. (90)

In the new coordinate system, the U(1)gauge field and scalar field can be expanded as

Av = − q

rHΞ
− q

r2
H

ρ+ O(ρ2), Aφ =
aq

rH
+
aqΞ

r2
H

+ O(ρ2),

Aρ = O(ρ2), Ax = O(ρ2),

ϕ =
β

α
ln

(

b

rH

)

+
βΞ

αrH
ρ+ O(ρ2).

(91)

From Eq.(88), the full 2-metric on horizon is

dσ2 = bβr2−β
H

(

Ξ2dφ2 +
dx2

l2

)

. (92)

This metric is conformally related to cylinder. To show this relation, we introduce a field-dependent
change of coordinates

z = exp

(

x

Ξl
+ iφ

)

, z̄ = exp

(

x

Ξl
− iφ

)

. (93)
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Now, we can write the metric of the horizon in the conformal form

dσ2 =ΩγABdx
AdxB

=Ωdzdz̄,
(94)

with

Ω = bβr2−β
H Ξ2 exp

(

−2x

Ξl

)

. (95)

Here, γAB is metric on a cylinder. The conformal factor Ω is a function of z and z̄. The induced
metric on the horizon is locally, conformally equivalent to a cylinder and hence the Laurent expan-
sion on the cylinder is allowed. Therefore, we can use Eqs.(65) and (57)-(59) to find charge modes
on the horizon of a rotating charged black string.
The supertranslation double-zero-mode charge per unit length of the string can be obtained as

T̃(0,0) =
bβr2−β

H Ξ

8l
, (96)

and hence the entropy per unit length of the string will be

S =
πbβr2−β

H Ξ

2l
, (97)

where Eq.(66) was used. Also, one can show that superrotation charge and multiple-charge modes
per unit length of the string are

Ym =
iaMΞbβ

16l

(

3 − α2

1 + α2

)

δm,0, Ȳm = − iaMΞbβ

16l

(

3 − α2

1 + α2

)

δm,0,

Q(0,0) =
qΞ

2l
,

(98)

respectively. Therefore, angular momentum and electric charge per unit length of the string can
be read as

J =
aMΞbβ

8l

(

3 − α2

1 + α2

)

, QE =
qΞ

2l
, (99)

respectively. One can choose zero mode eigenvalues of Ĵ±
m and K̂±

m as

Ĵ±
0 =

(

bβr2−β
H

8lΞ

)

1

2

(1 ± ia

l
), K̂±

0 = −
(

bβr2−β
H

8lΞ

)− 1

2

(

3 − α2

1 + α2

)(

a2bβM

16l2Ξ

)

(1 ± il

a
), (100)

so that they satisfy Eq.(70). The results appeared in Eq.(97) and Eq.(99) are coincident to the
results that was obtained in Ref.[3].

VI. CONCLUSION

In this paper, we have considered Einstein-Maxwell-Dilaton (EMD) theory. In EMD theory,
by using Eq.(31), conserved charge conjugate to symmetry generator χ = (ξ, λ) can be obtained.
The expression (31) differs from the one obtained in Ref.[20] and used in [6]. Difference comes
from the fact that in obtaining Eq.(2.29) in Refs.[6, 20], the gauge parameter λ was redefined
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as λ + ξµAµ → λ. In section III, we have considered near horizon fall-off conditions for metric,
U(1) gauge field and scalar field in the Gaussian null coordinate system. Equations of motion

implied that surface gravity κ and first order term of timelike component of U(1) gauge field A
(0)
v

have to be constants for stationary black holes. components of symmetry generator χ are given
by Eq.(37) and Eq.(38). The change in dynamical fields are given by Eqs.(39)-(40) under the
action of symmetry generator χ. We have assumed that the induced metric on the horizon ΩAB

is conformally related to an off-diagonal one γAB (where xA = {z, z̄} and z̄ is complex conjugate
to z) and hence the Laurent expansion on the horizon is allowed. Supertranslation, superrotation
and multiple-charge modes are given by Eq.(50) and the algebra among them contains a set of
supertranslations current T(m,n) and two sets of Witt algebra currents, given by Ym and Ȳm. It also

contains a set of multiple-charges current λ
(0)
(m,n). Two sets of Witt currents are in semi-direct sum

with the supertranslations and multiple-charges current. We have obtained near horizon conserved
charge conjugate to near horizon symmetry generator χ and have shown that the algebra among
the conserved charges is given by Eq.(55). Consequently, equations (56)-(59), give us charge modes.
we expect that the supertranslation double-zero-mode charge T(0,0) gives us the black hole entropy
multiplied by Hawking temperature. Because of the presence of second term in integrand in Eq.(56)
this statement could not be true. This may be seen as a problem but it is not. Because, in EMD
theory, we have a U(1) gauge freedom and we can use of an appropriate gauge fixing to fix that

problem. To this end, we have introduced new supertranslation modes T
(new)
(m,n) , see Eq.(63), and

fixed the U(1) gauge freedom as Eq.(64). Supertranslation charges (65) conjugate to these new
supertranslation modes are exactly what we were looking for. By redefining new Supertranslation

charges as T̃(m,n) = 1
2κ

T (new)
(m,n) , the relation between black hole entropy S and T̃(0,0) is given by

Eq.(66). We have shown that T̃(m,n) together with superrotation charge modes and multiple-charge

modes satisfy the algebra (67). By introducing four new generators Ĵ±
m and K̂±

m so that they obey
the algebra (68), one can apply the Sugawara deconstruction proposed in [5]. In this way, one can

construct generators T̃(m,n) , Y(new)
m and Ȳ(new)

m as (69). Hence, the relation among zero modes are
given by Eq.(70), where J is angular momentum of black hole. In section V, we have considered
two examples, one a typical static dilaton black hole and another a charged rotating black string.
Because the procedure have been done in sections III and IV is independent of whether the black
object is a black hole or a black string then, we can apply the method on a black string as well
as a black hole. In both examples we have assume that Λ = V = 0. For a typical static dilaton
black hole, the full 2-metric on horizon is conformally related to Riemann sphere. Using (56)-(59)
we have found charge zero modes. The obtained results are exactly matched with the results of
previous works. In subsection V B, we wrote near horizon fall-off-conditions correspond to rotating
charged dilaton black string in the Gaussian null coordinate system (see equations (88)-(91)). We
have shown that the induced metric on the horizon of rotating charged dilaton black string is
locally, conformally equivalent to cylinder. Therefore, we have used Eqs.(65) and (57)-(59) to find
the value of charge zero modes per unit length of the string. Using these two examples, we showed
that the new entropy formula proposed in [5] is valid in EMD theory and for black strings.
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