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SOME MULTIDIMENSIONAL INTEGRALS IN
NUMBER THEORY AND CONNECTIONS WITH THE
PAINLEVE V EQUATION

ESTELLE BASOR, FAN GE, AND MICHAEL O. RUBINSTEIN

ABSTRACT. We study piecewise polynomial functions v (c) that
appear in the asymptotics of averages of the divisor sum in short
intervals. Specifically, we express these polynomials as the inverse
Fourier transform of a Hankel determinant that satisfies a Painlevé
V equation. We prove that vi(c) is very smooth at its transi-
tion points, and also determine the asymptotics of v, (c) in a large
neighbourhood of k& = ¢/2. Finally, we consider the coefficients
that appear in the asymptotics of elliptic Aliquot cycles.

1. INTRODUCTION

Asymptotics of the mean square of sums of the k-th divisor
function over short intervals. Let di(n) be the k-th divisor num-
bers, i.e. the Dirichlet coefficients of the k-th power of the Riemann
zeta function:

C(s)k = f: d’“(f), Rs > 1. (1.1)

n

The Dirichlet coefficient di(n) is equal to the number of ways of writing
n as a product of k factors. Define

Se(X) = 3 diln). (12)

n<X

Let XP,_1(log X) be the residue, at s = 1 of ((s)*X?®/s, with
Pr._1(log X) being a polynomial in log X of degree k — 1. Then

Sk(X) :XPk_l(logX)—i-Ak(X), (13)
with Ag(X) denoting the remainder term.
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The k divisor problem states that the true order of magnitude for
Ak is:

AR(X) = O (X B2kt (1.4)
When k = 2, the traditional Dirichlet divisor problem is
Dy(X) = Xlog X + (27 — 1) X + Ay (X), (1.5)

with a conjectured remainder
Ay(X) = O (X149 (1.6)

The estimate for the remainder term Ay(X) is based on expected
cancellation in Voronoi-type formulas for Ag(X) and also on estimates,
due to Cramér [3] (k = 2) and Tong [10] (k > 2), for the mean square
of Ak

Let

Ag(r; H) = Ap(z + H) — Ag(x) (1.7)

be the remainder term for sums of dj, over the interval [z, z + H].

Define

p

Keating, Rodgers, Roditty-Gershon, and Rudnick conjectured [7]:
Conjecture 1.1. If0<a<1-— % is fixed, then for H = X,

1 [ 2 2
< / (Mula. 1)) do ~ 0 P(0) H(log X)X 00 (19)
X

where Py(«) is given by
1

Prla) = (1 - a)k2_17k(m

). (1.10)
Here
1 2

(1.11)
G is the Barnes G-function, so that for positive integers k, G(1+ k) =
203 (k= 1)L

For 1 — ﬁ <a<l-— %, the conjecture is consistent with a theorem
of Lester [§].
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Let U be an N x N matrix. The secular coefficients Sc;(U) are the
coefficients of the characteristic polynomial of U:

det(l +2U) = i Sc;(U)x? (1.12)

Thus Sco(U) = 1, Scy1(U) = tr U, Sen(U) = det U. The secular coef-
ficients are the elementary symmetric functions in the eigenvalues of
U.
Define the matrix integrals, with respect to Haar measure, over the
group U(N) of N x N unitary matrices:
2

[k(m;N)::/U(N)‘ S Se(U)...Se, (U)| dU . (113)

SN
Theorem 1.1 (KR3). Let ¢ :=m/N. Then for c € [0,k],
Ty(m; N) = (@) N1+ O (NF72), (1.14)
with
ve(c) = m /W S+ ..+t —o) [Jti — ) dty ... dty,

i<j

(1.15)

KR? also proved the matrix integral satisfies a functional equation
I(m; N) = It(kN — m; N), from which it follows that

Ye(e) = vk —¢), (1.16)
and also that

Theorem 1.2 (KR?).

()= 3 @ (c= 0" gp(e =) (17)

0<t<c

where ggo(c — €) are (complicated) polynomials in ¢ — (.

For a fixed k, yx(c) is a piecewise polynomial function of c¢. Specif-
ically, it is a fixed polynomial for r < ¢ < r + 1 (r integer), and each
time the value of ¢ passes through an integer it becomes a different
polynomial.

For example,

1 317 —
’}/Q(C) = 5 0<t <1 (tl — (C — tl))2 dtl = , (118)
0<c—t1<1 (2-¢) 1<e<?2
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v3(c) = {

while for 1 < ¢ < 2 we get

and
Tl 0<e<1
(B3—¢c), 2<c<3

= Q=

(1.19)

®

1
() = g( — 268+ 24¢T — 25268 + 1512¢° — 4830¢*

+ 8568¢* — 84842 + 4392¢ — 927). (1.20)

2. RELATIONSHIP TO A HANKEL DETERMINANT

Our starting point is to derive an expression for v, (c) as the Fourier
transform of a Hankel determinant. In (ILTIl), we substitute for the
Dirac delta function:

é(x) = /_OO exp(2mizy)dy. (2.1)

One can be rigorous by writing §(z) as the limit of a highly peaked
Gaussian, i.e. as the inverse Fourier transform of a highly spread out

Gaussian, but for convenience we proceed as above.
Thus

1 o , :
Y(c) = I /_OO exp(2miuc) /{071% exp <—2mu2tj)
< [t —t)? dts ... dtydu. (2.2)

i<j
We also note a more symmetric form of the above by substituting
t; =x;+1/2, so that

Y(c) = m /00 exp(2miu(c—k/2)) /[_1/271/%c exp (—QWiuij>

X H(‘T’ —z;)?dty ... dzpdu. (2.3)
i<j
We will prove the following two formulas for ~(c).

Theorem 2.1.
1 o0 o
_ . (i+5—2)
Yie(c) = GO T R /_OO exp(2miuc) gxelg (f (v)) du
(2.4)
where f(u) = fol exp(—2miut)dt = (1 — exp(—2miu))/(2mwiu). The de-
terminant is a Hankel determinant.




MULTIDIMENSIONAL INTEGRALS AND PAINLEVE V 5

A similar, but more symmetric, identity is:

W) = Gay k:)zl(zm')k(k—w /_ _exp(2rinfe—k/2) det (R (w)

where h(u) = f_lﬁz exp(—2miuz)dr = sin(wu)/(7u).

Our proof will use the Andreief identity:

Lemma 2.2 (Andreief). Let Ax(t), Bi(t),r(t) be integrable functions
on the interval [a,b]. Then

N
1
N /[a,bw]l:[l“tj) det (Au(t;)) det (Be(ty))dty ... dty (2.6)

NxN

= det ( / br(t)Aj(t)Bk(t)dt) . (2.7)

Proof of Theorem[21l. To prove the first identity in 21 apply An-
dreief’s identity to equation (22)), with A and B two Vandermonde
determinants, and r(t) = exp(—2miut), to get:

Yr(c) =

1 = : ' L\ i =2
m/ exp(2miuc) gxeg (/0 exp(—2miut)t dt) du (2.8)

The entries of the matrix can be expressed as derivatives, with respect
to u, of fol exp(—2miut)dt, and we can then correct for the extra powers
of —2miu by dividing the I-th row by (—2miu)!~! and the j-th column
by (—2miu)~!, thus by (—2miu)**~1 in total (and then dropping the
—1 since k(k — 1) is even).

Using the second form (2.3]), we similarly have (2.5 where h(u) =

f_lﬁz exp(—2miuz)dz = sin(mru)/(7u). O

Some of the basic properties of v, (c) can be read from (2.4). For ex-
ample, the inverse Fourier transform of £\ is equal to (—27i)7¢’ on the
interval (0,1) and 0 outside this interval. Expanding the determinant
as a permutation sum, each summand thus has inverse Fourier trans-
form a convolution of such terms, and is thus supported on ¢ € (0, k).

It also shows that v, (c) is a polynomial in ¢ on each interval [j, j+1],
0 < j <k —1 of degree at most k% — 1, because the i,; entry has
inverse Fourier Transform a polynomial in ¢ on (0, 1) of degree i+ j — 2.
Multiply out the determinant as a permutation sum. Each summand,
when integrated with respect to ¢, is the inverse Fourier transform of

du
(2.5)
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a product of k functions, and hence consists of £k — 1 convolutions of
the individual inverse Fourier transforms. Each convolution increases
the degree of the polynomial by 1. Hence, each permutation ¢ has its
resulting degree bounded by (k —1) + Y% (i + 0, — 2) = k> — 1.

We can thus use (24) to compute the polynomials ~;(c) by eval-
uating it at > k2 rational values of ¢, say, in each unit interval and
interpolating. In this manner, we determined the polynomials ~.(c)
listed in Table [l and

In the symmetric form (2.5]), one also sees that vx(c) = yx(c — k), by
substituting —u for u, and using the fact that the determinant in that
formula is an even function of .

Setting
g(t) = /1 exp(—tz)dx, (2.9)
so that 10
g™(t) :/ (—z)" exp(—tz)dz, (2.10)
and letting "
Dy(t) = det(g" (1)), (2.11)
we have that (2.4]) can be written as
() = m /_ Z exp(2micu) Dy(2riv)du.  (2.12)

Dy (t) also satisfies a Painlevé V equation. This is proven in more
generality in a paper of Basor, Chen and Ehrhardt [I] (4.38 of that
paper, with a = 0, b = ¢, a = 0). Specifically, the following holds.

Theorem 2.3. Let
Dy (t)

Dy (t)

Hy(t) =t + k2. (2.13)

Then
(LH}(1))* =
(Hip(t) + (2k — t)H,(t))* — 4(H,,(t))*(kK* — Hp(t) +tH,(t)). (2.14)

Another interesting feature, is that, while v, (c) is given by a different
polynomial on each [j,j+1], 0 < j < k—1, vy (c) can be differentiated
72+ (k — j)* — 2 times at ¢ = j, i.e. is very smooth.

Theorem 2.4. Let j be an integer and 0 < j < k. Define
vic,k) =+ (k—c)? (2.15)
Then vi(c) is (v(j, k) — 2)-times differentiable at ¢ = j.
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Note that v(c, k) reaches its minimum at ¢ = |£ |, in which case

k+1 k41
([E20) - E2. 16
Thus, we have

Corollary 2.5. The function vi(c) is (L%J — 2)-times differentiable
forall 0 < ¢ < k.

The following lemma is essentially proved in Section 4 of [6].

Lemma 2.6. Let

L(u - / / o= 2miu Yt (t- — to)%dty - - - dty,. (2.17)
2 2 i<

4

Then
k
imu(k—2c a(C’ k) 1
where
vic,k) = + (k —¢)? (2.19)
and
ale, k) = (1) (2m) VP Gle+ 12 Gk — ¢+ 1)2 (2.20)

Note that I, above is essentially the inner multidimensional integral
in the expression ([23) for 7.

Lemma 2.7. We have

1 [, 1 si 2
Ya(c) = — / e2miu(e=1) <——+w)du (2.21)

(2mi)? J_o u? w2yt
(2.22)
A
5 y Zf 0 S C S 1,
= ' (2.23)
)3

In particular, ~o(c) is not differentiable at ¢ = 1.

Proof of Theorem 2.4 Substituting (Z.I7) into equation (Z.3)),

() = m/_: e2minte=5) () . (2.24)

Moreover, from its multi-integral definition we see that Ij(u) is con-
tinuous for all real w. In particular, I;(u) is bounded near the origin.
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Therefore, to prove that vx(c) is (v(j, k) — 2)-times differentiable at
¢ = j, it suffices to show that

Ji(c) ::/|>1 2™ (e~ 3) [ (w)du (2.25)

is (v(j, k) — 2)—times differentiable at ¢ = j.
By Lemma

i a(l, k) 1
_ 27r2u c—— imu(k—20) )
Ji(c) = /|>1 ( Ze ( ( cam T O (7uu(£,k)+1)) du
w £=0

k

— oriu(e—r) [ LK) R
- ; /|u>1 ¢ ( uv (6k) +0 ur(Gh)+1 du.

We show that for each ¢,

_ smiue—t) | [ UL K) LV 2o
Joulc) /| K <uu( 4O () )du (226)

is (v(j, k) — 2)-times differentiable at ¢ = j.
Case 1: £ = j. In this case, we observe that, forn = 1,2,...,v(j, k)—
2, the integrals

o" 2miu(c—j) a(j, k’) 1
/|u>1% {e \waw O\ wamm ) )| 2
[ e gy (20K o (1
_/|u>16 J (271-'&“) (UV(]7k) +O ul/(j,k)-i-l du
n (@l k) 1
< /|u>1 B (W +0 (W du

are uniformly convergent in c¢. Therefore, J;; is (v(j, k) — 2)-times
differentiable at ¢ = j and, in addition,

d” 2miu(c—j) - (0 K) 1
@ijk(c) - /u|>1 ‘ 7 (2mi) (u”(j,k) +0 uv(Gk)+1 du
(2.27)

forn=1,2,...,v(j,k) — 2.
Case 2: € # j. In this case, we show that J,x(c) is in fact C™ at
¢ = j. To prove this, it suffices to show that

d
/ e2mins &4 (2.28)
le|>1

u

is C™ at § # 0.
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Using integration by parts repeatedly we see that

us AU m! o du
e27rzu5 R 7/ 2miud + Om 5_1 Lgm 999
/c|>1 u o (2mi0)™ Jigsa L ( ) (2.29)

for any m € N and real § # 0, where the Big-O term is a C* function
for & # 0. Also, by uniform convergence (see a similar argument in

Case 1)
| .
m: / 627r2u5 du (2 ] 30)
c[>1

(2mig)™ umtl

is (m — 1)-times differentiable at § # 0. It follows that

o
/ 627r2u5 _U (231)
le[>1

u

g

is (m — 1)-times differentiable at § # 0. Since m is arbitrary, we have

d
/ e2mius 24 (2.32)
le[>1

u

is C> at § # 0.
Combining Case 1 and Case 2 we obtain that

Ji(c) = / 2 iule=5) I} (u)du (2.33)
Ju|>1

is (v(j, k) — 2)-times differentiable at ¢ = j, and therefore, so is vx(c).

<%) R (2.34)

is not differentiable at ¢ = j. It suffices to show that

d v(j,k)—2
(Y7, .

is not differentiable at ¢ = j. By equation (2.27) we have

AN 2ri(e—) (k)2
— ik :/ e eI (2w )T
<d0) ’ Ju|>1

a(j, k) 1
(uu(j,k) +0 (uu(j,k)—l—l du.

Again, by the uniform convergence argument we see that

. . . 1
2miu(c—j) | o \Y(k)—2 _—
Jo e o020 (G )

Lastly, we show that
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is differentiable at ¢ = j. Therefore, it remains to show that

/ e27riu(c—j) . (QWiu)V(j’k)_2 . Cl,(j, k) du
Ju|>1

uV(]vk)

is not differentiable at ¢ = 7, or equivalently,

/ 627riu(c—1) i d_u
2
u|>1 u

is not differentiable at ¢ = 1.
It follows from Lemma 2.7 that

- 1 sin(ru)?
2miu(c—1)
e -+ ———]d
A»l ( u2 T2l u

is not differentiable at ¢ = 1. Since
. 2
/ e27riu(c—l) i Sln(;”i) du
Ju|>1 ™Uu

is differentiable at ¢ = 1, we see that

/ p2miu(e—1) d_u
2
lu|>1 u

is not differentiable at ¢ = 1. This ends our proof of Theorem 2.4
O

The highly smooth nature of ~,(c) was first observed empirically by
Conrey in the related problem of determining the asymptotics of the
second moment of Dirichlet polynomials whose coefficients are k-th
divisor numbers. Specifically, he defines

M TS o LI b
k(c) - T1—I>Iolo CLkT(lOg T)kQ /0

2

o~ di(n) dt
an/2+it

n=1

for integer values of k and N = T with ¢ > 0, and determined M;(c)
for k < 4 (conjecturally for k = 3,4). By comparing Conrey’s tables
(personal communication) for My(c) with our tables for ~x(c), it ap-
pears to be the case that the derivative of My(c) is equal to (k%)!vyx(c).

Bettin [2] has proven the analogous smoothness for the polynomials
Mk(c)

3. EXPANSION FOR log Di(t) AND THE LIMITING BEHAVIOUR OF
Y (c)
Notice that

g<"><0):/0 (—2)ds = (=1)"/(n + 1). (3.1)
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Thus, pulling out powers of —1 from the determinant, of which there
are an even number, we have Dy (0) = detgxx(1/(i 47 — 1)), which is a
special case of the Cauchy determinant and thus

Dy(0) = G(k + 1)*/G(2k + 1). (3.2)
Now, Dy(t) satisfies the Toda equation [9]:

D 1(t)Dyyr(t)  Di(t)  (Di(1))? )
Du()2 Di(t)  Di(t)? (log(Dy(1))) (3.3)

This follows from a recursion of Dodgson (aka Lewis Carroll) for com-
puting determinants [5]. Define ¢,,(k) by:

[e.e]

(k)
Dy(t) = Dy(0 —=t" . 3.4
(1) k<>exp<; & ) (34)
Take the log derivative of the lhs and rhs of the above identity, sub-
stitute the series for log(Dg(t)), and clear the denominator of the rhs.
Comparing coefficients gives the recursion, for M > 2:

M-3
w(h) = == 3 m o+ emal)
% (Carms(k — 1) + earomes(k + 1) — 2car_ms(k)) (3.5)
This recursion determines the coefficients ¢, (k) in terms of ¢ (k), . . ., cpr—o(k).
To get ¢1(k):
c1(k) = D (0)/ D (0). (3.6)

One can differentiate Dy(t) by using the product rule to get a sum of
determinants where we differentiate the i-th row. However, because the
entries of Dy(t) are derivatives, differentiating the i-th row produces
a row that matches the one below it, and the determinant vanishes.
Thus, only the last of these terms, where we differentiate the last row,
survives. However, that determinant is also a Cauchy determinant with
i,j entry (—=1)"71/(i+j — 1) as before, except for the last row where
the entry is (—1)"7 /(i + 7).
Using the formula for the Cauchy determinant, a lot of cancellation
occurs and we get
a(k) =—k/2. (3.7)
To determine cy(k), substitute ¢ = 0 into identity (B.3]). On the lhs:

Dy—1(0) Dy41(0)/ D1 (0)?
= G(k)*G(k +2)*G(2k + 1)*/(G(2k — 1)G(2k + 3)G(k + 1)¥)
= k*/(4(4k* — 1)). (3.8)
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On the rhs, the constant term of (log(Dy()))” is co(k), so
ca(k) = K*/(4(4K* — 1)). (3.9)

The recursion, along with the initial two terms determine all the
¢m(k)’s. For example, c3(k) = 0, and

C4(]€) k2

C16(4k2 — 1)* (4k2 — 9)

We can apply the above to determine the asymptotic expansion of
vk(c) in a large neighbourhood of k/2. To do so, isolate the m = 1,2
terms from the series ([3.4)), substitute into (2I2) with ¢ = 2miu, and

compose the series for exp with that of the terms m > 3 of ([B4), to
get that the integrand of (2.12)) equals:

(kmu)? k% (mu)?

exp | ——————"—+2mi(c— k/2)u 14 +...].
p( 2(4k2 — 1) ( ”)( 4 (4k? — 1)° (4k% — 9) )

(3.11)
One can obtain more terms, if desired, from the recursion for ¢,/ (k).

We thus have the following asymptotic expansion:

Theorem 3.1. Let b, = 8(1 — 1/(4k?)) and ¢ = k/2 + o(k). Then

(3.10)

Ye(c) ~ %\/%@(p(—bk(c —k/2)?)

1 [/64(c— k/2)" — 24(c — k/2)? + 3/4
X <1+ 152 —9( 2

(e k/2) (16;%/2) —3>+4<c—kfz/2> )+> (3.12)

i.e. Gaussian near the centre.

4. ELLIPTIC ALIQUOT CYCLES

The basic method used to pass from (L. IT]) to equation (2.2]) can be
used in the context of elliptic aliquot cycles.

Let p = (p1,...,p4) be a d-tuple of distinct primes. Let «(p)
be the probability of choosing random and independently d elliptic
curves Iy, ..., Eqgover F, , ... F, , respectively, with the property that
|E(Fp,)| = pjs1, for j € {1,...,d}. Here, pgy1 = p1. We are choosing
the curves £ uniformly from the set of isomorphism classes of elliptic
curves over [,
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David, Koukoulopoulos, and Smith [4] gave an asymptotic for the
average of a(p) over the set

Pa(z) ={(p1,---.pa) : ;1 <z} (4.1)

(Hasse’s bound implies that a(p) = 0 unless [p; 1 —p; — 1] < 2,/p; for
1<j<d).

Theorem 4.1 (DKS). For any fized A > 0,
_ A ’ du VI @ Vi
Z a(p) - Caliquot/2 2\/6 d + OA ((log .Z')A) Caliquot (1 da’

logu ogx
PEPy(x) (log ) g)
where
det(c;) +1 — tr(o;) = det(o;11)(£)
d . d. j J J
" @ e - # {0' € GLo(Z/0Z)" : for 1< j < d, where 04y1 = o
alzquot aliquot ; |GL2 (Z/fznd
with
d 2d d—1
I((zli)quot ::ﬁ // \/1_(t1+"‘+td—1)2H 1—1% dt1---dtg_1.
lt1<1 (1<j<d-1) 7=l
[t1+-+ta—1]<1
Let

/ / V1= (t; + - +td1)H 1—t2 dty - dtq .

;<1 (1<j<d—1)
[t1+-Ata—1]<1
(4.2)
I(1) = 1, I(2) = 4/3. One might wonder if I(d) persists in being
rational. We will show, for d = 3, that this seems unlikely.
Replacing the Dirac delta function by the integral in (2.I]), we have

0o d
= / /[ " H(l — t§)1/2 exp (27Tiy th) dty - - - dtqdy (4'3)
—oo J[-1, ;

But )
[ a-eyteaeripa = nem)/en, 49
-1
(J-Bessel function on the rhs). Separating the integral, we get
> J1(27Ty))d
I(d :/ <7 dy, 4.5
(d) @ (4.5)

i.e. a one dimensional integral.
This formula can be used to efficiently evaluate I(d) for, say, d =
3,4, ..., for example with Poisson summation.
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Let f € L*(R) and let

= /_ h f(t)e 2™, (4.6)

denote its Fourier transform. The Poisson summation formula asserts,
for, say, f continuous, that

Yo fm= Y f (4.7)

n=—oo n=—oo

provided the rhs converges absolutely and that > f(n + v) converges
uniformly in v on compact sets.
Let A > 0. By a change of variable

A Z fnA) = Z fn/A) = F(0)+ ) f(n/A), (4.8)

n=—o0 n=—o00 n#0
so that
/ Flt)dt — AanA = fn/A) (4.9)
n=—00 n#0

tells us how closely the Riemann sum AY > f(nA) approximates
the integral [~ f(t)

Apply, with
J1(27T?/) I
fly) = ( : 4.10
= ("5 (1.10)
Note that
0 2 1 _ 2 1/2 < 1
/ L 7Ty)e><p(—2m’ux)d:c: (=)™ . ul <1, (4.11)
oo (2y) 0, otherwise.

(2y)
lution of (1 — u?)'/? with itself, is supported in |u| < d.
Hence, in the Poisson sum method, any choice of A > 1/d gives
no remainder in the Poisson formula (i.e. 0 contribution from them
|n| > 1 terms). Thus, taking A = 1/d gives:

- (G v (et e

Furthermore, J;(z) ~ 1/ cos(z — 37/4), hence the sum on the right

has terms that are < (27)~%(n/d)=3%2. Thus with d = 3, the first
million terms of the sum gives more than twenty digits accuracy.

d
Therefore, the Fourier transform of (Jl 2my) ) , being the d-fold convo-
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One can accelerate the convergence of the sum further using the
asymptotics of the J-Bessel function, and algorithms for the evaluation
of the polylogarithm Lis(z) = > ” 2"/n®. Or one can cheat and just
use a blackbox like Maple to evaluate (A.5), with d = 3:

I(3) = 1.7053570421915038354985956872898996791331386909
7890590667136169819331192007797559594679011 ... (4.13)

Let A, /B, be the n — th convergent of the continued fraction of the
real number «a. If p, q € Z satisfies:

la —p/ql < |a— An/B,| (4.14)

then ¢ > B,,. Therefore, computing the continued fraction for /(3), the
85-th convergent is:

14703927951211792459205597491632973549428444428

8622199098152613288048825699460716423721576467 (4.15)

(and |I(3) — Ags/Bss| # 0. With given precision, there is a limit to
how many convergents we can meaningfully use).

Thus, if 7(3) is rational, then it has denominator at least 10%°. It
would not be too difficult to increase the denominator to hundreds or
thousands of digits (millions of digits with some effort), assuming 7(3)
is irrational.

Maple’s identify command did not turn up any obvious expressions
for 1(3) in terms of algebraic numbers and known constants.

One can also determine the behaviour of I(d) for large d. Writing

(Jl((jzj)y))d - (%)d exp (dlog(/1(2my)/(7y))) (4.16)

expanding J; in its Maclaurin series, and pulling out the y? term, the
above becomes

(z)de _d7T2y2
9) P 2
d7r4y4 d7r6y6 d7r8y8 13d7r10y10
— — — — o). (4.1
XD ( 24 144 720 43200 ) (4.17)
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Taking the Maclaurin series of the latter exponential (truncated with
remainder term), we thus get the asymptotic expansion

= [ (280

(z)d—lﬁi l—i— d L 7 n 3829 L
2 di/? 81  384d?  3072d®  491520d* )
(4.18)
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> — Dly(c)

P

(k
3
(2
B

| O | O~.

—2¢8 + 24¢" — 252¢% + 1512¢° — 4830t
+8568¢% — 8484¢% + 4392¢ — 927

\)

(c—3)°

Cl5

—3c15 + 60 — 1680c™ + 291202 — 2948401 + 1873872¢10 — 79279207
+23268960¢8 — 48674340¢” + 73653580¢5 — 80912832¢° + 63969360
—35497280¢% + 13131720¢2 — 2910240¢ + 292464

3¢!® — 120¢1 4 3360¢™3 — 58240¢!? + 644280c — 494894410 + 284284007
—128700000¢8 + 470398500¢” — 13814801008 + 3179336160¢° — 5531176560
+6950332480¢% — 5910494520¢2 + 3031004640¢ — 705916304

(4—-c)P

624

—4c27 4+ 120¢% — 690022 + 253000¢%T — 5578650¢%° + 796950007
—785367660c!® + 5598232200¢7 — 2991528292506 + 123134189200¢1°
—398517412920¢'* 4 1029946456560¢'3 — 2149736416100¢'2 4 3651921075600¢!!
—5072249298600¢'° 4 5768661885360¢° — 5363308269495¢% + 4055447662200¢7
—2470634081300¢5 + 1194550480200¢° — 447845361810¢* + 125530048600¢3
—24758793900¢? + 3065085000¢ — 179192775

6¢2% — 360¢% + 20700¢%2 — 759000¢%T + 17798550¢2 — 292215000
+3673797820¢!® — 38235839400¢!7 + 347123925225¢16 — 2790376974000¢1°
+19589544660840¢!* — 117507788504400¢'3 4 592028782736300¢2
—2479096272534000¢M + 8573537591434200¢0 — 24367026171730000c°
+56603181050415945¢% — 106665764409131400¢7 + 161304132700472300c°
—192656070655587000¢° 4 177464649282553710¢* — 121528934511474600¢3
+58223870087874900¢% — 17407730744067000¢ + 2443806916000825

—4¢2% £ 360¢% — 20700¢2% + 75900027 — 1886115020 + 345345000
—4991492660¢'® + 59676982200¢!7 — 604502001675¢1% + 5220961534800¢1°
—38343917872920c!* + 238359873297840¢!3 — 1250073382257700¢!2
+5522495132708400c! — 20539021982760600¢'° + 64263112978594640¢”
—168820549421134545¢% + 370693368908418600¢ — 674525363862958300¢°
+1002229415508043800¢° — 1187187920423969310¢* + 1078975874367012600¢3
—706068990841773900¢2 + 295689680026989000¢ — 59394510856327775

(5—c)*t

TABLE 1. The polynomials (k* — 1)!y,(c) for k < 5 and
J<e<j+1
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EFIGEDIC!

6

0

=
35

6

1

—5¢35 + 210¢3% — 21420633 + 1413720¢%2 — 5686296031 + 1501747632¢30
—27736558080¢29 + 375954464160c28 — 3881009646360¢27 + 31410293440680¢26
—203947162827408¢2° + 1082230579684800c2* — 4764220775823600¢23
+17613096754503600¢22 — 55229306110228800c2! + 148080133608311520¢20
—341689133815514100c + 682008750903872700c18 — 1182119446613536200¢17
+1784232273468783600c16 — 2349159980084905680c1® + 2699953776702032400c14
—2707997790067516800c3 + 2366932574161864800c2 — 1798264701411305400¢:
+1182907170763213896¢10 — 670007069282572560¢° + 324322366699605120¢8
—132818300667235920¢7 + 45395326648924560c¢5 — 12709759385961792¢>
+2839179794146080c* — 486611119673910¢3 + 60083734292610c¢2
—4757721939180¢ + 181451828088

10¢35 — 840¢3% + 8568033 — 5654880¢32 + 23844744031 — 702958132850

+158939827200¢29 — 3010298623200¢28 + 51174168784200¢27 — 802885194480600¢26
+11485501718811120¢2% — 145954772087342400¢2* + 1615205663712622800¢23
—15414821245929142800¢22 + 126507768912420350400¢21 — 893399034384858022560¢20
+5440022414523749814300c!9 — 28627456041998656712100c¢18 + 130462364245768533732600c¢17
—515683796529615245254800¢16 + 1769595318452023551221040¢1° — 5272695333575690900655600¢14
+13632520546818627517123200¢3 — 30536223709478278133815200¢2 + 59100950810144250579990600¢
—98447935269887910573290424¢10 + 140369638227928515300288240¢° — 170046927222112798851396480c3
+173284197564689124463669680c” — 146552294343347207749027440c + 100980418141793007531096768¢5
—55222971916535322127277280c? + 23052485974924851589246410¢% — 6898544814307888233994110¢2

+1317633501288006725436180c — 120657836168926671721608

TABLE 2. (k*—1)!y(c)fork=6and j <c<j+1,5=
0,1,2. The polynomials for j = 3,4, 5 can be determined
from the above using yx(c) = v (k — ¢).
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