ON ABHYANKAR'S LEMMA ABOUT RAMIFICATION INDICES

JEAN-LUC CHABERT AND EMMANUEL HALBERSTADT

ABSTRACT. We provide a simple proof of the fact that the ramification index of the *compositum* of two finite extensions of local fields is equal to the least common multiple of the ramification indices when at least one of the extensions is tamely ramified.

1. Introduction

Let L/K be an extension of number fields and assume that L is the *compositum* of two sub-extensions K_1 and K_2 . Let \mathfrak{q} be a prime ideal of L and let $\mathfrak{p} = \mathfrak{q} \cap K$, $\mathfrak{p}_1 = \mathfrak{q} \cap K_1$, $\mathfrak{p}_2 = \mathfrak{q} \cap K_2$. We denote by $e(\mathfrak{q}/\mathfrak{p})$ the ramification index of \mathfrak{q} in the extension L/K. Then, by multiplicativity of the ramification indices, that is,

$$e(\mathfrak{q}/\mathfrak{p}) = e(\mathfrak{q}/\mathfrak{p}_i) \times e(\mathfrak{p}_i/\mathfrak{p}) \quad (i = 1, 2),$$

we obviously have:

(1)
$$\operatorname{lcm}\left\{e(\mathfrak{p}_1/\mathfrak{p}), e(\mathfrak{p}_2/\mathfrak{p})\right\} \mid e(\mathfrak{q}/\mathfrak{p}).$$

On the other hand, if one of the extensions K_i/K is normal, for instance if K_1/K is normal, the extension L/K_2 is normal and the following morphism is injective:

$$\rho: \sigma \in \operatorname{Gal}(L/K_2) \mapsto \sigma_{|K_1|} \in \operatorname{Gal}(K_1/K)$$
.

Recall that, as the residue fields are perfect, the ramification index $e(\mathfrak{q}/\mathfrak{p}_2)$ is equal to the order of the inertia group $\mathcal{I}_{\mathfrak{q}}(L/K_2)$ of \mathfrak{q} in the extension L/K_2 , that is,

$$\mathcal{I}_{\mathfrak{g}}(L/K_2) = \{ \sigma \in \operatorname{Gal}(L/K_2) \mid \forall x \in \mathcal{O}_L \ \sigma(x) - x \in \mathfrak{q} \}.$$

Now, the image by ρ of $\mathcal{I}_{\mathfrak{q}}(L/K_2)$ is clearly contained in the inertia group $\mathcal{I}_{\mathfrak{p}_1}(K_1/K)$. Thus, $e(\mathfrak{q}/\mathfrak{p}_2)$ divides $e(\mathfrak{p}_1/\mathfrak{p})$, and hence,

(2)
$$e(\mathfrak{q}/\mathfrak{p}) \mid e(\mathfrak{p}_1/\mathfrak{p}) \times e(\mathfrak{p}_2/\mathfrak{p})$$
.

Formula (2) may be false in general (see Remark 2.3 below).

There is another well known result about ramification indices of *composita*, namely Abhyankar's lemma. This result is generally known in the following form:

Proposition 1.1. (Narkiewicz [2, p. 229]) If K, K_1, K_2 are local fields such that K_1/K is tame, K_2/K is finite and $e(K_1/K)$ divides $e(K_2/K)$, then K_1K_2/K_2 is unramified.

Roughly speaking, one may kill tame ramification by taking an extension of the base field (see also [1, p. 279]). In fact, one finds in [4] a stronger formulation, but it is stated only for function fields:

1

Proposition 1.2. (Stichtenoth [4, Th. 3.9.1]) Let L/K be a finite separable extension of function fields. Suppose that $L = K_1K_2$ is the compositum of two intermediate fields $K \subseteq K_1, K_2 \subseteq L$. Let Q be a place of L extension of a place P of K and set $P_i := Q \cap K_i$ for i = 1, 2. Assume that at least one of the extensions P_1/P or P_2/P is tame. Then

$$e(Q/P) = lcm\{e(P_1/P), e(P_2/P)\}.$$

Since we did not find in the literature such a statement with respect to number fields (although it probably exists somewhere hidden under an indirect formulation), we provide here a simple proof of this generalized result (proof which in some sense is close to that of Proposition 1.2).

2. Abhyankar's lemma

Theorem 2.1. Let A be a Dedekind domain with quotient field K. Let L/K be a finite separable extension of fields. Assume that L is the compositum of two subfields K_1 and K_2 . Denote by B, B_1 and B_2 the integral closures of A in L, K_1 and K_2 . Let \mathfrak{p} be a maximal ideal of A whose residue field A/\mathfrak{p} is perfect with characteristic p (which may be 0). Finally, let \mathfrak{q} be a maximal ideal of B lying over \mathfrak{p} and let $\mathfrak{p}_i = \mathfrak{q} \cap A_i$ for i = 1, 2.

If at least one of the extensions K_i/K is tamely ramified in \mathfrak{p}_i (that is, if one of the integers $e(\mathfrak{p}_i/\mathfrak{p})$ is not divisible by p), then one has the equality:

(3)
$$e(\mathfrak{q}/\mathfrak{p}) = \operatorname{lcm} \left\{ e(\mathfrak{p}_1/\mathfrak{p}), e(\mathfrak{p}_2/\mathfrak{p}) \right\}.$$

Note that, if the characteristic of A/\mathfrak{p} is 0, then the ramification is always tame. Of course, Propositions 1.1 and 1.2 are consequences of Theorem 2.1.

Proof. Let L' be the normal closure of L over K, let B' be the integral closure of B in L' and let \mathfrak{q}' be a maximal ideal of B' lying over \mathfrak{q} . One knows that $e(\mathfrak{q}'/\mathfrak{p}) = |G_0|$ where G_0 denotes the inertia group of \mathfrak{q}' in the extension L'/K. Moreover, denoting by $\pi \in B'$ a uniformizer with respect to \mathfrak{q}' , we have a group homomorphism:

$$s \in G_0 \mapsto s(\pi)/\pi \mod \mathfrak{q}' \in (B'/\mathfrak{q}')^*$$

whose kernel is the subgroup:

$$G_1 = \{ s \in \operatorname{Gal}(L'/K) \mid \forall x \in B' \ s(x) - x \in \mathfrak{q}^{2} \}.$$

Thus, $G_1 \triangleleft G_0$. The injectivity of the morphism $G_0/G_1 \rightarrow (B'/\mathfrak{q}')^*$ shows that the group G_0/G_1 is cyclic and that its order is prime to the characteristic p of B'/\mathfrak{q}' . Moreover, one knows also that, if p=0, then $G_1=\{1\}$ and, if p>0, then G_1 is a p-group (cf., for instance, [3, IV, §2]). Finally, G_0 is a semidirect product of a cyclic group of order prime to p with the normal p-group G_1 .

If E is a field between K and L', the analogs of the groups G_j for j=0,1 with respect to \mathfrak{q}' in the extension L'/E are clearly the groups $G_j \cap \operatorname{Gal}(L'/E)$. Let $\Gamma_1 = \operatorname{Gal}(L'/K_1)$, $\Gamma_2 = \operatorname{Gal}(L'/K_2)$ and $\Gamma = \operatorname{Gal}(L'/L)$. One has $\Gamma = \Gamma_1 \cap \Gamma_2$ since $L = K_1K_2$. Then, by multiplicativity, one has:

$$e(\mathfrak{q}/\mathfrak{p}) = \frac{e(\mathfrak{q}'/\mathfrak{p})}{e(\mathfrak{q}'/\mathfrak{q})} = \frac{|G_0|}{|G_0 \cap \Gamma|} \text{ and } e(\mathfrak{p}_i/\mathfrak{p}) = \frac{e(\mathfrak{q}'/\mathfrak{p})}{e(\mathfrak{q}'/\mathfrak{p}_i)} = \frac{|G_0|}{|G_0 \cap \Gamma_i|} \ (i = 1, 2).$$

Let $m = \operatorname{lcm} \{ e(\mathfrak{p}_1/\mathfrak{p}), e(\mathfrak{p}_2/\mathfrak{p}) \}$, then $m = \operatorname{lcm} \{ \frac{|G_0|}{|G_0 \cap \Gamma_1|}, \frac{|G_0|}{|G_0 \cap \Gamma_2|} \}$. Now, let $d = \operatorname{gcd} \{ |G_0 \cap \Gamma_1|, |G_0 \cap \Gamma_2| \}$, then $m \times d = |G_0|$. Finally, $\frac{e(\mathfrak{q}/\mathfrak{p})}{m} = \frac{d}{|G_0 \cap \Gamma|}$. Thus, we have to prove that $d = |G_0 \cap \Gamma|$.

 1^{st} case. If p=0, G_0 is cyclic. Since in a cyclic group the order of a subgroup which is the intersection of two subgroups is the gcd of the orders of these two subgroups, it follows from the equality $\Gamma = \Gamma_1 \cap \Gamma_2$ that $|G_0 \cap \Gamma| = d$.

 2^{nd} case. If $p \neq 0$, by hypothesis p does not divide one of the integers $e(\mathfrak{p}_i/\mathfrak{p}) = \frac{|G_0|}{|G_0 \cap \Gamma_i|}$. Assume that p does not divide $\frac{|G_0|}{|G_0 \cap \Gamma_1|}$. As G_1 is the only p-Sylow subgroup of G_0 , G_1 is contained in Γ_1 , and hence, $G_1 = G_1 \cap \Gamma_1$ and $G_1 \cap \Gamma = G_1 \cap \Gamma_2$. Thus, trivially, we have:

$$(4) |G_1 \cap \Gamma| = \gcd\{ |G_1 \cap \Gamma_1|, |G_1 \cap \Gamma_2| \}.$$

Moreover, let $\pi: G_0 \to G_0/G_1$ be the canonical morphism. Clearly, we have:

$$|G_0 \cap \Gamma| = |\pi(G_0 \cap \Gamma)| \times |G_1 \cap \Gamma|$$
 and $|G_0 \cap \Gamma_i| = |\pi(G_0 \cap \Gamma_i)| \times |G_1 \cap \Gamma_i|$ $(i = 1, 2)$.

The containment $\pi(G_0 \cap \Gamma) \subseteq \pi(G_0 \cap \Gamma_1) \cap \pi(G_0 \cap \Gamma_2)$ is obvious. Let us prove the reverse inclusion. Let $x_i \in G_0 \cap \Gamma_i$ (i = 1, 2) such that $\pi(x_1) = \pi(x_2)$, then $x_2 = g_1x_1$ for some $g_1 \in G_1 \subseteq \Gamma_1$, and hence, $x_2 \in G_0 \cap \Gamma$. From the equality $\pi(G_0 \cap \Gamma) = \pi(G_0 \cap \Gamma_1) \cap \pi(G_0 \cap \Gamma_2)$ and the fact that the group G_0/G_1 is cyclic, we deduce:

(5)
$$|\pi(G_0 \cap \Gamma)| = \gcd\{ |\pi(G_0 \cap \Gamma_1)|, |\pi(G_0 \cap \Gamma_2)| \}.$$

Since $|G_0|/|G_1|$ and $|G_1|$ are coprime it follows by multiplicativity from (4) and (5) that:

$$|G_0 \cap \Gamma| = \gcd\{|G_0 \cap \Gamma_1|, |G_0 \cap \Gamma_2|\} = d.$$

Corollary 2.2. With the same notations as in Theorem 2.1, if $e(\mathfrak{p}_1/\mathfrak{p})$ and $e(\mathfrak{p}_2,\mathfrak{p})$ are coprime, then

$$e(\mathfrak{q}/\mathfrak{p}) = e(\mathfrak{p}_1/\mathfrak{p}) \times e(\mathfrak{p}_2/\mathfrak{p}).$$

Remark 2.3. When K_1/K and K_2/K are both widely ramified, not only $e(\mathfrak{q}/\mathfrak{p})$ may be strictly greater than the least common multiple of $e(\mathfrak{p}_1/\mathfrak{p})$ and $e(\mathfrak{p}_2/\mathfrak{p})$, but it may happen that it does not divide the product $e(\mathfrak{p}_1/\mathfrak{p}) \times e(\mathfrak{p}_2/\mathfrak{p})$.

For instance, let $K = \mathbb{Q}$, $K_0 = \mathbb{Q}(j)$, $K_1 = \mathbb{Q}(\sqrt[3]{3})$, $K_2 = \mathbb{Q}(j\sqrt[3]{3})$, and $L = \mathbb{Q}(j,\sqrt[3]{3}) = K_0K_1 = K_1K_2$ where $j = \exp(2i\pi/3)$. Then, if \mathfrak{q} is a (in fact, the) prime ideal of L lying over $\mathfrak{p} = 3\mathbb{Z}$, then we have $e(\mathfrak{p}_0/\mathfrak{p}) = 2$, $e(\mathfrak{p}_1/\mathfrak{p}) = e(\mathfrak{p}_2/\mathfrak{p}) = 3$. It follows from formula (1) that $e(\mathfrak{q}/\mathfrak{p}) = 6$ which does not divide $e(\mathfrak{p}_1/\mathfrak{p}) \times e(\mathfrak{p}_2/\mathfrak{p}) = 9$.

References

- [1] A. Grothendieck et al., Revêtements étales et groupe fondamental (SGA1), Lecture Notes 224, Springer, 1971. [arXiv:math/0206203].
- [2] W. Narkiewicz, Elementary and analytic theory of algebraic numbers, Springer, 2004.
- [3] J.-P. Serre, Corps locaux, Hermann, Paris, 1962.
- [4] H. Stichtenoth, Algebraic Function Fields and Codes, Springer, 1993.

LAMFA CNRS-UMR 7352, UNIVERSITÉ DE PICARDIE, 80039 AMIENS, FRANCE E-mail address: jean-luc.chabert@u-picardie.fr