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ON ABHYANKAR’S LEMMA

ABOUT RAMIFICATION INDICES

JEAN-LUC CHABERT AND EMMANUEL HALBERSTADT

Abstract. We provide a simple proof of the fact that the ramification index
of the compositum of two finite extensions of local fields is equal to the least
common multiple of the ramification indices when at least one of the extensions
is tamely ramified.

1. Introduction

Let L/K be an extension of number fields and assume that L is the compositum

of two sub-extensions K1 and K2. Let q be a prime ideal of L and let p = q ∩K,
p1 = q ∩K1, p2 = q ∩K2. We denote by e(q/p) the ramification index of q in the
extension L/K. Then, by multiplicativity of the ramification indices, that is,

e(q/p) = e(q/pi)× e(pi/p) (i = 1, 2) ,

we obviously have:

(1) lcm {e(p1/p), e(p2/p)}
∣

∣ e(q/p) .

On the other hand, if one of the extensions Ki/K is normal, for instance if K1/K
is normal, the extension L/K2 is normal and the following morphism is injective:

ρ : σ ∈ Gal(L/K2) 7→ σ|K1
∈ Gal(K1/K) .

Recall that, as the residue fields are perfect, the ramification index e(q/p2) is equal
to the order of the inertia group Iq(L/K2) of q in the extension L/K2, that is,

Iq(L/K2) = {σ ∈ Gal(L/K2) | ∀x ∈ OL σ(x) − x ∈ q} .
Now, the image by ρ of Iq(L/K2) is clearly contained in the inertia group Ip1

(K1/K).
Thus, e(q/p2) divides e(p1/p), and hence,

(2) e(q/p)
∣

∣ e(p1/p)× e(p2/p) .

Formula (2) may be false in general (see Remark 2.3 below).

There is another well known result about ramification indices of composita,
namely Abhyankar’s lemma. This result is generally known in the following form:

Proposition 1.1. (Narkiewicz [2, p. 229]) If K,K1,K2 are local fields such that

K1/K is tame, K2/K is finite and e(K1/K) divides e(K2/K), then K1K2/K2 is

unramified.

Roughly speaking, one may kill tame ramification by taking an extension of the
base field (see also [1, p. 279]). In fact, one finds in [4] a stronger formulation, but
it is stated only for function fields:
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Proposition 1.2. (Stichtenoth [4, Th. 3.9.1]) Let L/K be a finite separable ex-

tension of function fields. Suppose that L = K1K2 is the compositum of two inter-

mediate fields K ⊆ K1,K2 ⊆ L. Let Q be a place of L extension of a place P of K
and set Pi := Q∩Ki for i = 1, 2. Assume that at least one of the extensions P1/P
or P2/P is tame. Then

e(Q/P ) = lcm{e(P1/P ), e(P2/P )} .
Since we did not find in the literature such a statement with respect to number

fields (although it probably exists somewhere hidden under an indirect formulation),
we provide here a simple proof of this generalized result (proof which in some sense
is close to that of Proposition 1.2).

2. Abhyankar’s lemma

Theorem 2.1. Let A be a Dedekind domain with quotient field K. Let L/K be

a finite separable extension of fields. Assume that L is the compositum of two

subfields K1 and K2. Denote by B, B1 and B2 the integral closures of A in L,
K1 and K2. Let p be a maximal ideal of A whose residue field A/p is perfect with

characteristic p (which may be 0). Finally, let q be a maximal ideal of B lying over

p and let pi = q ∩ Ai for i = 1, 2.
If at least one of the extensions Ki/K is tamely ramified in pi (that is, if one of

the integers e(pi/p) is not divisible by p), then one has the equality:

(3) e(q/p) = lcm { e(p1/p), e(p2/p) } .
Note that, if the characteristic of A/p is 0, then the ramification is always tame.

Of course, Propositions 1.1 and 1.2 are consequences of Theorem 2.1.

Proof. Let L′ be the normal closure of L over K, let B′ be the integral closure of B
in L′ and let q′ be a maximal ideal of B′ lying over q. One knows that e(q′/p) = |G0|
where G0 denotes the inertia group of q′ in the extension L′/K. Moreover, denoting
by π ∈ B′ a uniformizer with respect to q′, we have a group homomorphism:

s ∈ G0 7→ s(π)/π mod q
′ ∈ (B′/q′)∗

whose kernel is the subgroup:

G1 = {s ∈ Gal(L′/K) | ∀x ∈ B′ s(x)− x ∈ q
′2} .

Thus, G1⊳G0. The injectivity of the morphism G0/G1 → (B′/q′)∗ shows that the
group G0/G1 is cyclic and that its order is prime to the characteristic p of B′/q′.
Moreover, one knows also that, if p = 0, then G1 = {1} and, if p > 0, then G1 is
a p-group (cf., for instance, [3, IV, §2]). Finally, G0 is a semidirect product of a
cyclic group of order prime to p with the normal p-group G1.

If E is a field between K and L′, the analogs of the groups Gj for j = 0, 1 with
respect to q′ in the extension L′/E are clearly the groups Gj ∩ Gal(L′/E). Let
Γ1 = Gal(L′/K1), Γ2 = Gal(L′/K2) and Γ = Gal(L′/L). One has Γ = Γ1 ∩ Γ2

since L = K1K2. Then, by multiplicativity, one has:

e(q/p) =
e(q′/p)

e(q′/q)
=

|G0|
|G0 ∩ Γ| and e(pi/p) =

e(q′/p)

e(q′/pi)
=

|G0|
|G0 ∩ Γi|

(i = 1, 2) .

Let m = lcm { e(p1/p), e(p2/p) }, then m = lcm { |G0|
|G0∩Γ1|

, |G0|
|G0∩Γ2|

}. Now, let

d = gcd { |G0 ∩ Γ1|, |G0 ∩ Γ2| }, then m× d = |G0|. Finally, e(q/p)
m = d

|G0∩Γ| . Thus,

we have to prove that d = |G0 ∩ Γ|.
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1st case. If p = 0, G0 is cyclic. Since in a cyclic group the order of a subgroup
which is the intersection of two subgroups is the gcd of the orders of these two
subgroups, it follows from the equality Γ = Γ1 ∩ Γ2 that |G0 ∩ Γ| = d.

2nd case. If p 6= 0, by hypothesis p does not divide one of the integers e(pi/p) =
|G0|

|G0∩Γi|
. Assume that p does not divide |G0|

|G0∩Γ1|
. As G1 is the only p-Sylow subgroup

of G0, G1 is contained in Γ1, and hence, G1 = G1∩Γ1 and G1∩Γ = G1∩Γ2. Thus,
trivially, we have:

(4) |G1 ∩ Γ| = gcd{ |G1 ∩ Γ1|, |G1 ∩ Γ2| } .
Moreover, let π : G0 → G0/G1 be the canonical morphism. Clearly, we have:

|G0 ∩Γ| = |π(G0 ∩Γ)| × |G1 ∩Γ| and |G0 ∩Γi| = |π(G0 ∩Γi)| × |G1 ∩Γi| (i = 1, 2) .

The containment π(G0 ∩ Γ) ⊆ π(G0 ∩ Γ1) ∩ π(G0 ∩ Γ2) is obvious. Let us prove
the reverse inclusion. Let xi ∈ G0 ∩ Γi (i = 1, 2) such that π(x1) = π(x2), then
x2 = g1x1 for some g1 ∈ G1 ⊆ Γ1, and hence, x2 ∈ G0 ∩ Γ. From the equality
π(G0 ∩ Γ) = π(G0 ∩ Γ1) ∩ π(G0 ∩ Γ2) and the fact that the group G0/G1 is cyclic,
we deduce:

(5) |π(G0 ∩ Γ)| = gcd{ |π(G0 ∩ Γ1)|, |π(G0 ∩ Γ2)| } .
Since |G0|/|G1| and |G1| are coprime it follows by multiplicativity from (4) and (5)
that:

|G0 ∩ Γ| = gcd{|G0 ∩ Γ1|, |G0 ∩ Γ2|} = d .

�

Corollary 2.2. With the same notations as in Theorem 2.1, if e(p1/p) and e(p2, p)
are coprime, then

e(q/p) = e(p1/p)× e(p2/p) .

Remark 2.3. When K1/K and K2/K are both widely ramified, not only e(q/p)
may be stricly greater than the least common multiple of e(p1/p) and e(p2/p), but
it may happen that it does not divide the product e(p1/p)× e(p2/p).

For instance, let K = Q, K0 = Q(j), K1 = Q( 3
√
3), K2 = Q(j 3

√
3), and L =

Q(j, 3
√
3) = K0K1 = K1K2 where j = exp(2iπ/3). Then, if q is a (in fact, the) prime

ideal of L lying over p = 3Z, then we have e(p0/p) = 2, e(p1/p) = e(p2/p) = 3. It
follows from formula (1) that e(q/p) = 6 which does not divide e(p1/p)× e(p2/p) =
9.
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