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A new bound on Erdoés distinct distances problem in
the plane over prime fields

A. Tosevich* D. Koh' T. Pham? C-Y. Shen ¢ L. Vinh ¥

Abstract

In this paper we obtain a new lower bound on the Erdés distinct distances problem
in the plane over prime fields. More precisely, we show that for any set A C FIZ, with
|A] < p™/% and p =3 mod 4, the number of distinct distances determined by pairs of
points in A satisfies

[A)] 2 A+,

Our result gives a new lower bound of |[A(A)| in the range |A] < pH%.

The main tools in our method are the energy of a set on a paraboloid due to
Rudnev and Shkredov, a point-line incidence bound given by Stevens and de Zeeuw,
and a lower bound on the number of distinct distances between a line and a set in
IF‘IQ). The latter is the new feature that allows us to improve the previous bound due
Stevens and de Zeeuw.

1 Introduction

The celebrated Erdos distinct distances problem asks for the minimum number of distinct
distances determined by a set of n points in the plane over the real numbers. The break-
through work of Guth and Katz [6] shows that a set of n points in R? determines at least
Cn/log(n) distinct distances. The same problem can be considered in the setting of finite

fields.
Let [F,, be the prime field of order p. The “distance” formula between two points = (xy, z2)
and y = (y1,y2) in ) is defined by
|z =yl = (21 = 91)* + (22 — 12)*.
While this is not a distance in the traditional sense, the definition above is a reasonable

analog of the Euclidean distance in that it is invariant under orthogonal transformations.

For A C IFIZ), let
AA) ={llz —yl[ : 2,y € A}
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and let |A(A)| denote its size. It has been shown in a remarkable paper of Bourgain, Katz,
and Tao [3] that if |A| = p*, 0 < @ < 2, then we have

|A(A)] > | Al

for some € = ¢(a) > 0.

This result has been quantified and improved over time. The recent work of Stevens and
De Zeeuw [11] shows that

141 s
[A(A)] = [A]T0 = |A], (1)
under the condition |A| < p1.

Here and throughout, X < Y means that there exists ¢; > 0, independent of p, such that
X <Y, X 2 Y means X > (logY) Y for some positive constant co, and X ~ Y means
that c3 X <Y < ¢4 X for some positive constants c3 and cy.

For the case of large sets, losevich and Rudnev [5] used Fourier analytic methods to prove
that for A C F?, where ¢ is not necessarily prime, with |A| > 4q"5, we have A(A)=F,. It

was shown in [7] that the threshold q% cannot in general be improved when d is odd, even
if we wish to recover a positive proportion of all the distances in [F,. In prime fields, the
question is open in dimension 3 and higher. In two dimensions, Chapman, Erdogan, Koh,
Hart and losevich ([4]) proved that if |A| > p3, p prime, then |A(A)| > p. In particular,
their proof shows that if Cp < |A| < p*/3 for a sufficiently large C' > 0, then

|A[
IA(A)] > - (2)

The 4/3 threshold was extended to all (not necessarily prime) fields by Bennett, Hart,
losevich, Pakianathan and Rudnev ([2]). We refer the reader to [B [7] for further details.

The main purpose of this paper is to improve the exponent % + % = 1% on the magnitude
of A(A) when A is a relatively small set in F} with p = 3 mod 4. The main tools in our
arguments are the energy of a set on a paraboloid due to Rudnev and Shkredov, a point-
line incidence bound given by Stevens and de Zeeuw, and a lower bound on the number of

distinct distances between a line and a set in IFIZ,. The following is our main result.

Theorem 1.1. Let F, be a prime field of order p with p = 3 mod 4. For A C IFIZ, with
|A] < ps, we have

A(A)] 2 |47 = |A]z*
Remark 1.1. The Stevens-de Zeeuw exponent in (Il) is .533..., whereas our exponent is
.535358.... Thus our result is better than that of the Stevens-de Zeeuw in the range |A| <
1

p™/S. On the other hand, our result is superior to (@) in the range |A| < p2-2107 = pioss . In

conclusion, Theorem [I1l improves the currently known distance results in the range |A] <

4214
065

Remark 1.2. While our improvement over the Steven-de Zeeuw estimate is small, we in-
troduce a new idea, namely the count for the number of distances between a line and a set.
This should lead to further improvements in the exponent in the future.

The rest of the paper is devoted to prove Theorem [[L1] and we always assume that p = 3
mod 4.
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2 Proof of Theorem 1.7

To prove Theorem [LLT] we make use of the following lemmas. The first lemma is a point-line
incidence bound due to Stevens and De Zeeuw in [11].

Lemma 2.1 ([T1]). Let P be a set of m points in IFIQ) and L be a set of n lines in IFIQ). Suppose
that m™8 <n <m®7 and m2n'3 <« p'®. Then we have

I(P,L) = #{(p,0);p € P,L € L} < m!/Pn!/1,

Let P be a paraboloid in IF?). For @ C P, let E(Q) be the additive energy of the set @,
namely, the number of tuples (a,b,c,d) € Q* such that a — b = ¢ — d. Using Pach and

Sharir’s argument in [9] and Lemma 2] Rudnev and Shkredov [§] derived an upper bound
of E(Q) as follows.

Lemma 2.2 ([8]). Let P be a paraboloid in F3. For Q C P with |Q| < p?/2twe have
B(Q) < Q"

In the following theorem, we give a lower bound on the number of distinct distances between
a set on a line and an arbitrary set in IFIQ). This will be a crucial step in the proof of Theorem
[LIl The precise statement is as follows.

Theorem 2.3. Let [ be a line in IFIQ), Py be a set of points on I, and P, be an arbitrary set

in F2. Suppose that |Pl|i71 < |P| < p%. Then the number of distinct distances between Py
and Py, denoted by |A(Py, P,)|, satisfies

AP, P)| 2 min { BRI, PP [P P R
We will provide a detailed proof of Theorem in Section 3. The following is a direct
consequence from Theorem [2.3]

Corollary 2.4. Let A C IFIQ, with |A| < p”/®. Suppose there is a line containing at least
|A| 57 points from A. Then we have

|IA(A)] 2 min{|A|%+‘1‘—§’ A|1%+%—E}'

The above corollary shows that the exponent 8/15 in () due to Stevens and De Zeeuw is
improved when A contains many points on a line.

We are now ready to prove Theorem [Tl



Proof of Theorem [I.I: Let ¢ > 0 be a parameter chosen at the end of the proof.
Throughout the proof, we assume that that
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— Ft2< 2 3
5 te< (3)
which is equivalent with ¢ < 4/105. If there is a line containing at least |A|7/'°*¢ points
from A, then we obtain by Corollary 2.4] that

A(A)] 3> min{| A[5s 5T, [ A5+, (4)

|7/15+

Now we assume that there is no line supporting more than |A points from A.

For any line [ in IFIZ, defined by the equation az + by — ¢ = 0, the vector (a,b,c) is called a
vector of parameters of [.

We first start with counting the number of triples (z, z,y) € A% such that ||z —z|| = ||z —v|],
where z = (a,b), © = (21, 22),y = (y1, y2).

It follows from the equation ||z — z|| = ||z — y|| that
(=2a) (21 = y1) + (=2b) (w2 — y2) + (27 + 23) — (47 +y3) = 0.

This equation defines a line in IFIQ) with the parameters

(z1, 22,27 + 23) — (Y1, ¥2, ¥ +¥3) = (21 — Y1, T2 — Yo, 77 + 75 — yi — v3).
Let L be the set of these lines. It is clear that L can be a multi-set.

Let @ be the set of points of the form (x,y, z* + y?) with (z,y) € A. We have Q is a set on
the paraboloid z = 2% + y* and |Q| = |A|.

Notice that the number of triples (2, z,y) € A® with the property ||z —z|| = ||z —y|| is equiv-
alent to the number of incidences between lines in L and points in —2A := {(—2a;, —2a2) :
(al,ag) S fi}.

For each line [ in L, let f(l) be the size of I N (—2A), and m(l) be the multiplicity of [. Let
L, be the set of distinct lines in L.

Thus, we have

1(=24,2) = 3 ft)m()

lely
= > fmD)+ > Flym(l)
IELy, f(1)<|A[T/15=¢ I€Ly,|A|/15- << F(1)<|A|7/ 15+
:leﬁ—]é.

We now bound I; and I, as follows.

One can check that the size of L is bounded by |A[?, which implies that

I < A%

Let Ly be the set of distinct lines [ in L; such that \A|%_E < f(l) < |A\%+E.
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To bound I, we consider the following two cases:

Case 1: Suppose

> m(l) < JAP

leLo
We see that .
L= f(ym(l) < A,
leLs

since any line in Ly contains at most |A|7/1°*¢ points. Thus in this case we obtain that
I(=2A,L) = I, + I, < JA[ 5+ [A] 571 < |A[H, (5)

Now, for each ¢ € IF,, let v(¢) denote the number of pairs (z,y) € A? such that ||z —y|| = ¢.
We have

2 2

VA (t) = oo =D 1x( >

z,ycA:ljlz—y||=t x€A yeA:||z—yl|=t

By the Cauchy-Schwarz inequality,

) <A Y1 =14 > 1.

z€A \yeA:|lz—yll=t x,y,2€As||lz—yl|=t=[z—2||
Summing over t € [F,,, we obtain
E V2(t) < |A] E 1.
teFy x,y,2€Ax|[z—y|=lz—2]|

By the Cauchy-Schwarz inequality and the above inequality, we get

A4
|A|(J4)| <N ) < A (w9, 2) € A% ||z — yl| = ||z — 2|} < |A[I(=24, L).
teF,

Combining the above inequality with (), we obtain

|A(A)] > |A|BT. (6)

Case 2: Suppose

> m(l) > AP

leLs

By the Cauchy-Schwarz inequality and Theorem [Z2 we have

#{(a—=b,|lal| = ||b]|): a,b € A, (a—b,||al]| —]|b]]) is a vector of parameters of a line in Ly}

(7)
(ZleLz m(l))Z

>
E(Q)
> |A|7 T



In the next step, we are going to show that
|Lo| < AR

Indeed, since each line in L, contains at least |A|”/'*~¢ points, the size of L, is at most
| A|16/15+2¢ < | A[¥/7. The last inequality follows from our assumption (&). Hence, we are
able to apply Theorem 2.1] so that we have

|A[557¢| Lo| < I(=24, Ly) < |A["Y/13|Ly| /15,

which gives us that

[Lo| < A" (®)
For each line [ € Ly, let m/(l) be the number of distinct vectors (a — b, ||a|| — [|b]|) with
(a,b) € A? such that (a — b, ||al| —||0]|) is a vector of parameters of [.

It follows from ([7) and (8)) that there exists [ € Ly such that
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m/ (1) > |A|7 7w (9)

We now claim that |[A(A)| > m/(l). Indeed, suppose that [ is determined by m’(l) distinct
vectors (ay — by, [|a1]| = [|b1]]), - - -, (@mr@) — buv@ys |l@me @) |] = |10y |]). Then we have

(a2 = by, [Jaz]] = |b2]]) = Az - (a1 = by, [Jaa|| = [[ba]]),

(az — b, |las]| = |[bs]]) = As - (a1 — by, [Jaa|| = [[ba]]),

(@) = Ome @), | ame @y || = Ome @ |]) = Ameqy - (@1 — by, [lan || = []b1]]),

A
A

)
)

for some Mg, ..., Ay € Fp. Since the vectors (a; — by, [|ai|| — [|b1]]), ..., and (aprq) —
b (1), ||am@y|] = ||y ||) are distinet, we have Ao, ..., Ay are distinct. On the other hand,
we also have

lag = boll = A3 - [lar = bull, -, am@y = by || = Ay - llar = bull,

which gives us |A(A)| > m/(?_l, and the claim is proved.

Hence, it follows from the equation (@) that

4 _ 30e _ 15¢

[A(A)] > [A[T (10)

By (@) of Case 1 and () of Case 2, it follows that if no line contains more than |A|5+¢
points in A, then

IA(A)] >>min{|A\%+%7 w;,%,%}_
Finally, combining this fact with (d) yields that

A(A)] > min {|A[ S, A AT

To deduce the desirable result, we consier the common solutions (e, d) to the system of the
following three inequalities:

8+4e> 8+1 S5 4 30e 15e>5
5 - 157 =Y T T g =



By a direct computation, we can obtain the largest § = 1128 for ¢ = 175 Thus, choosing

2107 31605 -
€ = Jig05 gives
1128
[A(A)] > AP = |Af=or,
which completes the proof. O

3 Distances between a set on a line and an arbitrary
set in F’

In this section, we will prove Theorem 2.3 We first start with an observation as follows: if
|A(Py, Po)| > min { | BT| Py~ | P75
then we are done. So WLOG, we assume that
|A(Py, Po)| < min {|P|*7| |71, | P78} (11)
Hence, to prove Theorem 2.3] it is sufficient to show that
AP, P)| 2 min { AP, (P|P

Since the distance function is preserved under translations and rotations, we can assume
that the line is vertical passing through the origin, i.e. P; C {0} xF,. For the simplicity, we
identify each point in P; with its second coordinate. The following lemma on a point-line
incidence bound is known as a direct application of the Kévari-S6s—Turén theorem in [IJ.

Lemma 3.1. Let P be a set of m points in Ff) and L be a set of n lines in Ff). We have

I(P,L) < min {ml/Zn +m,nY?m + n}.

For x € P, and P, C IF]%, we define
g(PQVT) = #{((a’ab)v(cvd)) S P22 a2 + (b_x)Q = 02 + (d—l‘)Q},

as the number of pairs of points in P, with the same distance to x € P;. In the next lemma,

we will give an upper bound for »_ _, (P, ).

Lemma 3.2. Let P;, P, be sets as in Theorem [Z3. Suppose that |P|*7 < |Py| and | Py <
p"/%. Then we have
> &P ) S AT 4 o)

zeP)

Proof. For x € P, and A € F,, let rp,(z, \) be the number of points (a,b) in P, such that
a’ + (b —z)? = X\. Then we have

T := Z E(Py,x) = Z 7p, (2, \)?.

z€P (z,\)eP xFy



Let t = % > 1, and let R; be the number of pairs (z, A) € Py xF, such that rp,(z, \) > ¢.

We have

T = Z rp, (2, \)? + Z rp,(x,\)? =T+ 11
(@ \)ER: (@ \)ER

Since 37, \ygr, TR (T, A) < |Pi[|[P| and rp, (2, A) <t for any pair (z,A) € Ry, we have
I < t|P||Py| = | Py || Py 8/

In the next step, we will bound I17.

2 we have

From the equation A = a® + (b — )
a? +b* = 2bw — 2° + \.

Let P be the set of points (b, a® + b?) with (a,b) € P, and L be the set of lines defined by
y = 2uxr — u* + v with (u,v) € R;. We have |L| = |R;| and |P| ~ |P|.

With these definitions, we observe that II can be viewed as the number of pairs of points
in P on lines in L.

We partition L into at most log(|P|) sets of lines L; as follows:
Li={l€L:2t<|lnP| <27},
and let I1(L;) denote the number of pairs of points in P on lines in L;.

For each 4, we now consider the following cases:

Case 1: |P|V? < |L;| < |P|"/8. It follows from Lemma B.1] that
2't|Li| < I(P, L) < |P|"?|Li| + |P| < |P|V?|Li],
which leads to that 2°¢ < |P|"/2. Thus

II(L) < |Li| (|P|1/2)2 < |P|15/8 -~ |P2|15/8.

Case 2: |P|/8 < |L;| < |P|®". Tt follows from Lemma 2.1] that
22t|LZ‘ S [(P7 LZ) S ‘Li‘11/15‘P|11/15.

This implies that

|L'| _ |P‘11/4
1= ()87
In this case, we have
[[(L) < |P‘11/4 _22i+2t2 < ‘P|11/4 ~ |P2|11/4
Y= (2it)15/4 (2i)7/4  (2i)T/

One can check that the condition m—2n'3 < p' in the Theorem 211 is satisfied once |P| <
7/6
p"/S.

Case 3: |L;| < |P|"2. Applying Lemma [B.1] again, we obtain

2't|Li| < I(P, L) < |P|'?|Li| + |P| < | P|. (12)

8



If 2t > |P|"/® then there is at least one line in L which has at least |P|”/® points from P,
which follows that there exists (z, A) € R; such that the circle centered at (0, z) of radius A
contains at least |P|7/® ~ |P,|"/® points from P,. This implies that

AP, )| > ||,
which contradicts to our assumption ([IT]).

Thus, we can assume that 2t < |P|7/®. With this condition, we have
[I(Li) < |Lif(2')* < 2't - (|Lif (2'0) < [P|™/° ~ | B,
where we have used the inequality (I2]) in the last step.

Case 4: |L;| > |P|¥7. In this case, by the pigeon-hole principle, there is a point z in Py
that determines at least | P,|¥7 /| Py| lines, and each of these lines contains at least one point
from P. This implies that

AP, B)| > BT P

which contradicts to our assumption ([IT]).

Putting these cases together, and taking the sum over all ¢, we obtain
T 5 |P1|7/11|P2|18/11 + |P2|15/8.
This completes the proof of the lemma. O

We are ready to prove Theorem 2.3l

Proof of Theorem As in the beginning of this section, if
|A(Py, Po)| > min {| B, | P~ | P}
then we are done. Thus, we might assume that
|A(Py, Po)| < min {|P|¥7| |71, | P78}
Let N be the number of quadruples (p1, p2, P}, p5) € Py X Py x Py X P, such that

1pr — pal| = [[P} — P5]|-

Let T be the number of triples (p1, pa, ph) € Py X Py X Py such that ||p1 — pa|| = ||p1 — phll-
As in the proof of Lemma B.2], we have

T 5 |P1|7/11|P2|18/11 + |P2|15/8.
By the Cauchy-Schwarz inequality, we have

N < |P1|T 5 |P1|18/11|P2|18/11 + |P1||P2|15/8.

By the Cauchy-Schwarz inequality again, one can show that KEQP;J; < N. Thus we have

APy, Py)| 2 min{ | PRy V| P[RR

This ends the proof of the theorem. O
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