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Sum-product estimates over arbitrary finite fields

Doowon Koh*  Sujin Lee!  Thang Pham!  Chun-Yen Shen $

Abstract

In this paper we prove some results on sum-product estimates over arbitrary finite
fields. More precisely, we show that for sufficiently small sets A C [F, we have

(A= A)2 + (A= A% > |A]" o1,

This can be viewed as the Erdds distinct distances problem for Cartesian product sets
over arbitrary finite fields. We also prove that

max{|A+ A|,[A? + A2} > A5, A+ A2 > A

1 Introduction

The well-known conjecture of Erdés-Szemerédi [4] on the sum-product problem asserts that
given any finite set A C 7Z, one has

max{|A+ AJ, |4+ Al} > C.JA]

for any € > 0, where the constant C. only depends on ¢ and the sum and product sets are
defined as
A+A={a+b:abe A},

A-A={ab: a,be A}.
In other words, it implies that there is no set A C Z which is both highly additively

structured and multiplicatively structured at the same time. In order to support their
conjecture, they proved that there is a universal constant ¢ > 0 so that one has

max{|A + A|, |A- Al} > |A"*+.

The constant ¢ has been made explicitly and improved over 35 years. For instance, Elekes
[5] proved that ¢ = 1/4, which has been improved to 4/3 by Solymosi [20], to 4/3 + 5/9813
by Konyagin and Shkredov [15], and to 4/3 4+ 1/1509 by Rudnev, Shkredov, Stevens [19].
The current best known bound is 4/3 + 5/5277 given by Shakan [21].
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In 2004, the finite field analogue of this problem has been first studied by Bourgain, Katz,
and Tao [2]. They showed that given any set A C F,, with p prime and p° < |A| < p'~° for

some ¢ > 0, one has
max{|A + A[, [A- Al} > C5|A|"™,

for some € = €(§) > 0. Actually, this result not only proved a sum-product theorem in the
setting of finite fields, but it also has been shown that there are many elegant applications
in computer science and related fields. We refer readers to [3, 12, 22] for more details.

There are many progresses on making explicitly the exponent €. The current best bound
with e = 1/544/305 is due to Shakan and Shkredov [23] by employing a point-line incidence
bound and the theory of higher energies. We refer readers to [23], 8, 9, 10, 1T}, 28] [16] and

references therein for earlier results.

In recent years, many variants of sum-product problems have been studied intensively.
For example, by employing the current breakthrough point-plane incidence bound due to
Rudnev [18], it has been shown in [1] that for any set A C F,, suppose that the size of A is
sufficiently small compared with the size of the field, then we have

max{|A+ Al [A>+ A%} > [A]P7, [(A— A+ (A—A)°| > |A]P5 |A+ A% > |A"0, (1)

where A? := {2?: x € A}. These exponents have been improved in recent works. More
precisely, Pham, Vinh, and De Zeeuw [28] showed that max{|A+A|, |A24+A2[} > |A|%/° | A+
A% > |A|%/®, and Petridis [27] proved that |(A — A)? 4+ (A — A)?| > |A>/2. The higher
dimensional version of this result can be found in [28§].

We note that the lower bound of (A4 — A)? + (A — A)? is not only interesting by itself in
sum-product theory, but it also can be viewed as the finite field version of the celebrated
Erdés distincet distances problem for Cartesian product sets. We refer readers to [14] for
recent progresses on this problem for general sets.

In the setting of arbitrary finite fields IF, with ¢ is a prime power, the problems will become
more technical due to the presence of subfields which eliminate the possibility of sum-product
type estimates. It has been proved by Li and Roche-Newton [I7] that for A C F, \ {0}, if
|AN cG| < |G|Y? for any subfield G of F, and any element ¢ € [y, then we have

max{|A + A|,[A- A[} > |A]"*1r

The purpose of this paper is to extend estimates in () to the setting of arbitrary finite
fields by employing methods in [2 [I7]. As mentioned before, the presence of subfields in
general fields eliminates the sum-product type estimates. Therefore, it is natural to impose
a condition which captures the behavior of how the given set A intersects the subfields.
Below are our main theorems.

Theorem 1.1. Let A CF,. If |AN (aG)| < |G|Y? for any subfield G and a € F?, then

q’

(A= A)? + (A — A)?| > |A|a,

It is worth noting that one can follow the method in [I3] and the sum-product result in [I7]
to obtain the exponent |A|1+Tlcs. Therefore, in order to get a better exponent, we need to

develop more sophisticated methods to prove our results. In our next theorem, we give a
lower bound on max{|A + Al,|A? + A?|}.



Theorem 1.2. If A C F, and it satisfies that |(A+ A) N (aG +b)| < |G[Y? for any subfield
G,a €F;, and b € Fy, then we have

max{|A + A, [A? + A[} > |A"*3
An application of the Pliinnecke inequality to Theorem 1.2, we have the following corollary.

Corollary 1.3. Let A C F. If |[(A+ A) N (aG +b)| < |G|Y? for any subfield G and a € F,
and b € Iy, then

|A+ A% > A"

The rest of the papers are devoted to the proofs of Theorems 1.1 and 1.2. Throughout
this paper, we use the notation f > ¢ to mean there is an absolute constant C' such that
f > Cg. The constant C' may vary from line to line, but is always an absolute constant.

2 Proof of Theorem [I.1]
To prove Theorem [Tl we make use of the following lemmas.
Lemma 2.1 ([29]). Let X, By, ..., By be subsets of F,. Then we have

(X + By | X + By
X

Bi+-+ Byl <

and
| X + B1|| X + Bs

RY

|By — Bs| <

Lemma 2.2 ([I6]). Let X, By,..., By be subsets in F,. Then, for any 0 < ¢ < 1, there
exists a subset X' C X such that | X'| > (1 —€)|X| and

X + By| - |X + By

/
|X+Bl+"'+Bk‘§C' ‘X|k71 ]

for some positive constant ¢ = c(€).

Lemma 2.3 ([I7]). Let B be a subset of F, with at least two elements, and define Fg as the
subfield generated by B. Then there exists a polynomial P(xy,...,x,) in n variables with
integer coefficients such that

P(B,...,B) =TFs.

Lemma 2.4 ([I7]). Let X and Y be additive sets. Then for any € € (0,1) there is some
constant C' = C(¢€) such that at least (1 — €)|X| of the elements of X can be covered by

X+Y| | X-Y
C-min{‘ +V] | |}

i ooyl

translates of Y.



We are now ready to prove Theorem 1.1.

Proof of Theorem L1l We first define A := |(A—A)?+(A—A)?|. Without loss of generality,
we may assume 1,0 € A by scaling or translating. We now define the ratio set:

a1 — a2

as — aq

RQLAy:{ wueAﬂg%M}.

We now consider the following cases:
Case 1: 1+ R(A,A) ¢ R(A,A).
In this case, there exist aq, as, b1, by € A such that

ay — a2

by — by

ro=1+ Z R(AA).

One can apply Lemma [2Z4] four times to obtain a subset A; C A with |A;| > |A| such that
2a1A; can be covered by at most

201As + A2 — ¥ _ [(A—a)?— A2 A% _ (A A)— 42— A2
Al - Al - Al

translates of A%, 2b; A; can be covered by at most

1201 Ay + A3 — 3| - |(A— A)? — A% — A?|
| As| - A
translates of A%, where A, is a subset of A with |As| > |A| and
A2 A28
m§MP+M+Aﬂ<LT%TL

which can be obtained by using Lemma [Z2] and for any = € {—bs, —as}, the set —2z4,;
can be covered by at most
| —22A; — A% + 27| - |(A—x)? — A% — A?| - |(A— A)? — A% — A2
Al - |4 B Al

translates of A%, Applying Lemma again, we have that there exists a subset A3 C A;
such that |As| > |A;| and

Km—@myum—@mrum—@mﬂ<h4“m@“%fT”“‘@MW (2)
1

On the other hand, we also have
|(b1 — b2) Az + (by — ba) A1 + (a1 — az)Ar| > [As + 1A, (3)
because r ¢ R(A, A) implies that the equation
a; —ag = 1r(by + rby)
has no non-trivial solutions. This gives us

|As + rAr] = [As]] Ay > A% (4)
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We now estimate (by — by) Ay + (a1 — ag)A; as follows.

First we note that

|(b1 — bg)Al + (a1 — ag)A1| = |2b1A1 — 2b2A1 + 2(1,1141 — 2&2A1|.

Since 2b; A; can be covered by at most |(A — A)* + A? — A?|/|A| copies of A3, —2b,A; can
be covered by at most |(A — A)? + A% — A?%|/|A| copies of A2, 2a;A; can be covered by
at most [(A — A)? + A% — A?%|/|A] copies of A%, and —2ayA; can be covered by at most
|(A— A)? + A? — A?|/|A| copies of A%, we have

|(A_A)2_A2_A2|4
|AJ*
‘A2+A2|3
AP

[(b1 — b2) Ay + (a1 — a2)Ay] < A2 A% 4 A+ A7

(A —A)? — A7 — A7 ()

Lemma 2.2 tells us that there exists a set X C A? such that | X| > |A| and

‘AQ —I—A2|2

|X + A% + A <
|Al

So, applying Lemma [2.1], we have

(A= A2+ X||X + A2+ 42| A3
<

N2 (A2 2
(A= A)° — (A2 + A7) < X "

[A-AP?
AT we

Putting [2)-(@) together, and using the fact that A% + A% < A and |A + 4| <
have )
A AT

Case 2: A- R(A,A) ¢ R(A, A). As above, there are elements ay, as, b, by, by € A such that

ay — az

by — by
Note that b # 0 and a; # ay since 0 € R(A, A). Thus r~! exists.

Let Ay be the set as in Case 1. Lemma [2.4] implies that there exists a set Ay C A; such that
|As| > |Ay| and —2bA, can be covered by at most
| — 2bAy + A + 17| - [(A—Db)*+ A% — A?|
4] = 4]

r:==9

¢ R(A, A).

translates of A2
Using the same argument as above, we have

AP < Az + 7145 = [r T Ay + Ay < 071 Ay + Agll(ar — az) Az + (b — by) Ay

|A|
< |571A2 + Asl|(a1 — a2) Ay + (by — be) A4
B Al
- |As + bAQ\AK’
= | A[15 :



Since —2bA, can be covered by at most |(A —b)* — A% — A?|/| A| translates of —A?, we have

(A—0)* — A% — A% o A 2
—2A5 — 2bA5| < —24A,— A — | —2A— A7
‘ 2 2| = |A| | 2 ‘ < |A|3 ‘
Moreover, we also have
A?’
| A% —2A|=| - A? =24+ 1| < |(A—-1) - A2 — A% < W
Therefore .
|Ag + bAs| = | — 2A5 — 20A,| < W
In other words, we obtain )
A > |A|M e,

Case 3: A™'- R(A, A) ¢ R(A, A).

As above, in this case, there exist aq,as,b1,by,b € A, b # 0 such that

ay — a2

=bt.
: by — by

¢ R(A, A).

As in Case 2, we see that r~! exists, and one can use the same argument to show that

A |AM

Case 4: We now consider the last case

In the next step, we prove that for any polynomial F'(xq, ...

coefficients, we have

,T,) in n variables with integer

F(A,...,A)+ R(A,A) C R(A, A).

Indeed, it is sufficient to prove that

1+ R(A, A) C R(A, A), A™ + R(A, A) C R(A, A)

for any integer m > 1, and A™ = A--- A (m times).

It is clear that the first requirement 1 + R(A, A) C R(A, A) is satisfied. For the second
requirement, it is sufficient to prove it for m = 2, since one can use inductive arguments for

larger m.

Let a,a’ be arbitrary elements in A. We now show that

aad' + R(A, A) C R(A, A).

If either @ = 0 or @’ = 0, then we are done. Thus we may assume that a # 0 and a’ # 0.

First we have

a+ R(A,A) =a(l+a'R(A,A)) Ca(l+ R(A,A))) C R(A, A),
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and

ad' + R(A, A) = a(a’ + a ' R(A, A)) C a(d + R(A, A)) C aR(A, A) C R(A, A).

In other words, we have proved that for any polynomial F'(xy,xs, ..., x,) with integer coef-
ficients, we have

F(A,...,A)+ R(A,A) C R(AA).
On the other hand, Lemma gives us that there exists a polynomial P such that
P(A,...;A) =TFa,.
This follows that
Fa+ R(A,A) C R(A,A).
It follows from the assumption of the theorem that
Al = [ANF4| < [Fal2.
Hence, |R(A, A)| > |Fa| > |A]%
Next we will show that there exists r € R(A, A) such that
|A+7rAl > |A]2

Indeed, let ET(X,Y) be the number of tuples (1, s, 91,%2) € X? x Y2 such that
Ti+y1 = T2+ Yo
Notice that the sum 3 po4 o) BT (A, rA) is the number of tuples (ai, ag, by, by) € A% x A?
such that
a; +1rby = ag + by
with aj,ay € A, by,by € A and r € R(A, A). Tt is clear that there are at most |R(A, A)||A|?
tuples with a; = as,b; = by, and at most |A[* tuples with b; # by. Therefore, we get
Y ET(ArA) < |R(AA)AP + A" < 2|R(A, A)| AP
reR(A,A)
By the pigeon-hole principle, there exists r:= §1=72 € R(A, A) such that
Et(ArA) <2|A>
Hence,
|A+rAl > |AP?/2.
Suppose 1 = (a3 — ag) /(b1 — be). Let Aj be the set defined as in Case 1. Note that we can
always assume that |A;| > 9|A|/10. Hence

A\ Ap + A, |A+7r(A\ A)| < |A]?/10.

Thus we get
|Ay + 1A > |A]

Using the upper bound of |A; +rA;| in Case 1, we have

A15
|A]? < AL+ 1A1] = [(by — bo) Ay + (a1 — ag) A] < TA[
which gives us )
A AT,
This completes the proof of the theorem. O



3 Proof of Theorem

For A C F, and B := A+ A, we define F(A% (A — B)?) as the number of 6-tuples
(a1, as, by, as,a4,by) € (A x A x B)? such that

a? + (ay — by)?* = a3 + (ag — by)*.
Lemma 3.1. Let ACF,, and B:=A+ A. If

E (A% (A-DB)") <|AP|B,

then we have

max {|A + A|,|A? + A} > |A|'"5.
Proof. We consider the equation
24 (y—2) =t, (9)

where v € A,y € B,z € A,t € A + A%

It is clear that for any triple (a,b, c) € A%, we have a solution (a,b+ c,c,a® +b0?) € A x B x
A x (A% + A?%) of the equation ([@). By the Cauchy-Schwarz inequality, we have

Al < [A? + A% - B(A% (A= B)?) < [A* + A%||A+ APJAP,
which implies that
max {|A + A|,|A? + A?|} > |A|'"5.

This concludes the proof of the lemma. O

In this section, without loss of generality, we assume that for any subset A" C A with
|A’| > |A|, we have
B (A, (4~ B)) > |48,

otherwise, we are done by Lemma [3.1]
Lemma 3.2. For A C F,, set B= A+ A. Suppose E (A* (A — B)?) > |A>*¢|B]*. Then

there exist subsets X C A and Y C B with |X| > |A'75|Y] > |B|'™¢ such that the
following holds:

o Foranyb €Y, 90% of (A—b)? can be covered by at most |(A—b1)?|€ ~ |A|¢ translates
of —A2.
e For any a € X, 90% of (a — B)? can be covered by at most |A|¢ translates of —A2.
Proof. Since E (A% (A — B)?) > |A]>7¢| BJ?, there exists a set Y C B with |Y] > |B|'™
such that for any b; € Y, the number of 5-tuples (a1, as, as, as,b) € A* x B satisfying the

equation
al + (ay —b1)* = a3 + (b — ay)? (10)

is at least |A]*>~¢|B|.

We now show that for any b; € Y, we can cover 90% of (A —b;)? by at most |A|° translates
of —A2. Tt suffices to show that we can find one translate of —A? such that the intersection



of (A — b;)? and that translate is of size at least |A|'™¢ ~ [(A — b1)?|'"¢. When we find
such a translate, we remove the intersection and then repeat the process until the size of
the remaining part of (A — b;)? is less than |(A — b;)?|/10.

Indeed, the number of solutions of the equation (I0) is at least |A|>~¢|B|, and thus there
exist b € B and a3, ay € A such that

A
(A =01)* 0 (=A% + 0§ + (b — a:)*)| > ﬁ > (A= bl

Hence, there is a translate of —A? such that it intersects (A—b;)? in at least > |(A—b;)?|*~¢
elements.

In the next step, we are going to show that there is a subset X of A with |X| > |A['™¢
such that for any a; € X, we can cover 90% of (B — a4)* by at most |A|° translates of
— A% Tt suffices to show that we can find one translate of —A? such that the intersection of
(B — a4)? and that translate is of size at least |B||A|7¢ > [(B — a4)?||A|~¢. When we find
such a translate, we remove the intersection and then repeat the process until the size of
the remaining part of (B — ay)? is less than |(B — a4)?|/10.

Since F(A% (A — B)?) > |A|>™| B|?, there is a subset A’ C A with |A’| > |A|'~¢ such that,
for each ay € A’, the number of solutions of the equation

(I§+(a2 —b1)2 :a§+(b—a4)2 (11)
is at least |A|?>~¢|B|?. Hence, there exist as,a; € A and b; € B such that

B
4]

(=42 + (a = bo)? +a2) 0 (B — ay)?| >

Thus there is a translate of —A? that intersects with (B —ay4)? in at least | B|/|A[¢ elements.
U

we now are ready to prove Theorem

Proof of Theorem[L.2. By employing Lemma 2.2] without loss of generality, we can suppose
that A satisfies the following inequality

|A2 +A2|2

|A% 4+ A% + A% <
A

Let ¢ > 0 be a parameter which will be chosen at the end of the proof. Let X and Y
be sets defined as in Lemma B2l For the simplicity, we assume that |X| = |A|'™¢ and
Y| =|A — Al'**¢. As in the proof of Theorem [T} we first define the ratio set:

b — by

R(X,Y) := {al_@:al,ag € X, by, by EY}.

We now consider the following cases:

Case 1: 1+ R(X,Y) ¢ R(X,Y).



In this case, there exist ai,ao € X, by, by € Y such that
b1 — by

ay — az

r.=1+

¢ R(X,Y).

Applying Lemma 32 we can find subsets X; C X and Y; C Y with | X;| > | X]|, [Y1| > |Y]
such that (X;—b1)%, (X1—02)%, (Y1—a1)?, (Y1 —az)? can be covered by at most |A|¢ translates
of —A2.

One can apply Lemma 2.4 four times to obtain subsets Xy C Xi,Ys C Y] with | X5 >
| X[, |Y2| > |Yi| such that 2a,Y; can be covered by at most

201V + A2 — 3] _ |(Y—a)? - A2 — AP
|Al - |Al

translates of A%, —2a,Y5 can be covered by at most

| — 2a,Ys — A? + a3 - |(Vy — ag)? — A? — A?|
|A] N |A]

translates of A%, —2b, X, can be covered by at most

| = 20X — A2 0] _ (X5 — by)® — A2 — A
Al B |Al

translates of A2, and 2b; X5 can be covered by at most

260X + A2 B |(Xp — by)* — A2 — AY
| Ay - Al

translates of A%, where A; C A with |A;] > |A| and

A2 A28
M?H9+ﬁ+Aﬂ<L7%rL

which can be obtained by using Lemma 2.2

Applying Lemma again, we see that there exists a subset Y3 C Y5 such that |Y3]| > |5
and

‘XQ —+ Y2H<b1 — b2)X2 -+ (a1 — (IQ)YQ‘

(a1 — a2) Xy + (b1 — b2) Xy + (a1 — a2) V3] K

Y5
‘A -+ A —+ A||<Z)1 — bQ)XQ -+ (CLl — CLQ)YH
<
Y|
|A+ AP (b1 = 02) X + (a1 — a2) Y2 (12)
|AJ? Y]
On the other hand, we also have

|(a1 — a2)X2 + <b1 — bQ)XQ + (CLl — CLQ)YE;| > ‘T’XQ -+ Y:g| (13)

Since r ¢ R(X,Y’), the equation

a; — as = T(bl +Tb2)
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has no non-trivial solutions. This gives us

rXo +Ys| = [Xof[Ys] > | X|[Y]. (14)
We now estimate (by — by) Xo + (a; — az)Ys as follows.
First we note that

‘(bl — b2)X2 + (CLl — CL2>}/2| = |2b1X2 — 2b2X2 + 2&1}/2 — 20,2Y2‘.

Since 2b; X, can be covered by at most |(X; — b1)? + A% — A?|/|A| copies of A%, 2by X
can be covered by at most [(X; — by)? + A? — A?|/|A] copies of A%, 2a,Y; can be covered
by at most (Y] — ay)? + A% — A?|/|A| copies of A2, and 2a,Y; can be covered by at most
|(Y] — ag)? + A? — A?]/|A| copies of A% we have

(b1 = b2) X2 + (a1 — a2)Ya| < (15)
|(X1 —b1)? — A% — A?||(X| — by)? — A% — A?|
<
| Al*
X (Vi —a1)? = A2 = A%||(Y1 — ap)? — A — A%||AT + A® + A% + A7
‘A2+A2|3 2 2 214
< W| — AT - AT - A7
‘A2+A2|11
- |A‘10746 )

where we have used the fact that (X; —b1)?, (X1 —b2)?, (Y1 —a1)?, (Y1 — ag)? can be covered
by at most |A|¢ translates of —AZ%.

Putting (I2HIH]) together, we obtain
|A+A|3|A2 +A2|11 > |A|15_5€.

Case 2: Y - R(X,Y) ¢ R(X,Y). Similarly, in this case, there exist aj,as € X, b,by,by € Y

such that
by — by

ay — az

Since 0 € R(X,Y), we see that b # 0, and b; # by. This tells us that r~1 exists.
Let X, and Y5 be sets defined as in Case 1.

ro=b- ¢ R(X,Y).

We use Lemma 24 to obtain a set X3 C Xo with | X3| > | X;| such that 20.X3 can be covered
by at most |(X3 + b)* — A% — A?|/|A] translates of |A]?.

Moreover, one also has

| X2 + bX5][(a1 — az)Ys + (b1 — b2) X
| X

‘A2+A2|11

| A[10—4e| X |

(16)

< | X + X5 -

Since —2bX3 can be covered by at most |(X3 — b)? — A% — A?%|/|A| translates of —A?, we
have

11



(X5 — D)2 — A% —
|A]

|A% + A% + A2
|A‘176

AQ
| Xo+bXs| = |[—2X,—2bX;5| < |-|—2X2—A2| < |-|—2X2—A2|,

where we used the fact that (X3 — b)? can be covered by at most |A[|° translates of —A2.
Note that it follows from the proof of Lemma [3.2] that we can assume that 1 € Y by scaling
the set A. Therefore, we can bound |A% — 2X,| as follows

| — A% —2X,| < | — A2 —2A + 1] < [(A—1)% — A% — A%| < |A||A? + A% + A%
In other words, we have indicated that

‘A2+A2—|—A2‘2 ‘A2+A2|4
|A‘1726 |A‘3726 )

| X + bX;3| < (17)

since we have assumed that |A? + A2+ A?| < |A2+ A?|?/| A|. Putting (I8) and (7)) together,
we obtain
|A2 +AQ|15 > |A|16_95.
Case 3: Y ! R(X,Y) ¢ R(X,Y).
As above, in this case, there exist ay,ao € X,b1,b9,0 € Y, b # 0 such that

by — by

ay — a2

ri=">b""

¢ R(X,Y).

As in Case 2, we see that r~! exists, and one can use the same argument to show that
‘A2 —|—A2|15 > ‘A|16*96.

Case 4: We now consider the last case

1+ R(X,Y)C R(X,Y) (18)

Y R(X,Y)CR(X,Y) (19)

Y1 R(X,Y)C R(X,Y). (20)

In the next step, we prove that for any polynomial F(xq,...,z,) in n variables with integer

coefficients, we have

FY,....)Y)Y+ R(X,)Y) C R(X,Y).
Indeed, it is sufficient to prove that
1+ R(X,)Y)C R(X,)Y), Y"+ R(X,Y) C R(X,Y),

for any integer m > 1, and Y =Y ---Y (m times).

It is clear that the first requirement 1 + R(X,Y) C R(X,Y) is satisfied. For the second
requirement, it is sufficient to prove it for m = 2, since one can use inductive arguments for
larger m.

Let y, vy’ be arbitrary elements in Y. We now show that

yy + R(X,Y) C R(X,Y).
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If either y = 0 or ¢y’ = 0, then we are done. Thus we can assume that y # 0 and 3’ # 0.

First we have
y+R(X,)Y)=y(1+y 'R(X.Y)) Cy(l+ R(X,Y)) C R(X,Y),
and

vy + RX,Y) =y +y 'R(X,Y)) Cy(y + R(X,Y)) CyR(X,Y) C R(X,Y).

In other words, we have proved that for any polynomial F(z1,xs, ..., x,) in some variables
with integer coefficients, we have

F(Y,....,Y)+R(X,Y) C R(X,Y).

On the other hand, Lemma gives us that there exists a polynomial P such that

This follows that
Fy + R(X,Y) C R(X,Y).

It follows from the assumption of the theorem that
Y] = |V NFy| < [Fy 12
Hence, |R(X,Y)| > |Fy| > |V
Next we will show that there exists r € R(X,Y’) such that either
Y +rX] > |Y]|X]/2,

or
Y +rX|>|Y|?/2.

Recall that the sum 3 _p 3y EF(Y,7X) is the number of tuples (a1, az, b1, by) € X2 xY?
such that
by +ra; = by + rag

with aj,as € X, by,by € Yandr € R(X,Y). Itis clear that there are at most |R(X,Y)|| XY
tuples with a; = ag, by = by, and at most | X|?|Y|? tuples with b; # by. Therefore, we get
> ETrX,Y) < [RXY)|IX|Y]+ IXPIY P < [RXY)X]Y] + [ XP[R(X, Y]

reR(X,Y)

Hence, there exists r € R(X,Y’) such that either ET(rX,Y) < 2|X|[Y]| or E*(rX,Y) <
2| X |%. This implies that either

Y +rX| = Y] X]/2,

or
Y +rX|>|Y|?/2.

Put r = (by — by) /(a1 — az). Let Xy and Y5 be sets defined as in Case 1. Note that we can
always assume that | Xs| > 9|X]/10 and |Ys| > 9]Y'|/10. Thus

‘Y-'-T(X\Xz)‘ + ‘(Y\Yz) —|—TX2| < ‘X||Y‘/5

13



It follows from our assumption that |X| = |A|'™¢ and |Y| = |A — A]'7¢, we can assume that
Vs +7Xo| > [X]|Y],

or
‘YQ + TX2| > ‘Y‘Q

As in Case 1, we have
|A2+A2‘11

Y2 +rXs| < | A[10—4e

In short, we have

A2 + A% > A

Choose € = 3/42, the theorem follows directly from Cases (1)-(3) and Lemma B.11 O
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