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MONOCHROMATIC HILBERT CUBES AND ARITHMETIC

PROGRESSIONS

JÓZSEF BALOGH, MIKHAIL LAVROV, GEORGE SHAKAN, AND ADAM ZSOLT WAGNER

Abstract. The Van der Waerden number W (k, r) denotes the smallest n such that whenever
[n] is r–colored there exists a monochromatic arithmetic progression of length k. Similarly, the
Hilbert cube number h(k, r) denotes the smallest n such that whenever [n] is r–colored there
exists a monochromatic affine k–cube, that is, a set of the form

{

x0 +
∑

b∈B

b : B ⊆ A

}

for some |A| = k and x0 ∈ Z.
We show the following relation between the Hilbert cube number and the Van der Waerden

number. Let k ≥ 3 be an integer. Then for every ǫ > 0, there is a c > 0 such that

h(k, 4) ≥ min{W (⌊ck2⌋, 2), 2k
2.5−ǫ

}.

Thus we improve upon state of the art lower bounds for h(k, 4) conditional on W (k, 2) being

significantly larger than 2k. In the other direction, this shows that the if the Hilbert cube
number is close its state of the art lower bounds, then W (k, 2) is at most doubly exponential
in k.

We also show the optimal result that for any Sidon set A ⊂ Z, one has
∣
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∣

∣
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{

∑

b∈B

b : B ⊆ A

}∣

∣

∣

∣

∣

= Ω(|A|3).

1. Introduction

A k–term arithmetic progression (AP) in the integers is a set of the form

{x0 + dj : 0 ≤ j ≤ k − 1},
where x0, d ∈ Z. Recall the famous Van der Waerden theorem.

Theorem 1.1 (Van der Waerden [Wa], 1927). Let k, r ≥ 2 be integers. Then there exists an n
such that in any r–coloring of [n], at least one color class contains a k–term AP.

The smallest such n is said to be the Van der Waerden number, which we denote by W (k, r).
The state of the art bounds on W (k, r) are as follows: Berlekamp [Be] showed for prime p we
have p · 2p ≤ W (p+ 1, 2). This result was recently generalized by Blankenship, Cummings and
Taranchuk [BCT] who showed the following for p prime

pr−12p ≤ W (p+ 1, r). (1)

Kozik and Shabanov [KoSh] proved the general lower bound c · rk−1 ≤ W (k, r) for all k ≥ 3,
which is a slight improvement over an application of the Lovász local lemma [Sza]. The best
known upper bound for W (k, r) is the breakthrough result of Gowers [Go]

W (k, r) ≤ 22
r
2
2
k+9

.

Research of the first author is partially supported by NSF Grant DMS-1500121 and Arnold O. Beckman
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This upper bound has been further improved in the case when k = 3 by a series of papers by
Graham, Solymosi, Bourgain, Sanders and Bloom (see e.g. [Bl]) to

W (3, r) ≤ 2cr(ln r)4 .

For r = 2, Graham [Gr] conjectures

W (k, 2) < 2k
2

, (2)

and offers $1000 for a proof or disproof.

Prior to Van der Waerden’s study of monochromatic APs, Hilbert studied the same problem
for affine cubes.

Definition 1.1. Given a set A ⊆ Z, its restricted sumset is the set

Σ∗A :=

{

∑

b∈B
b : B ⊆ A

}

.

An affine k–cube, or Hilbert cube, is a set of integers that has the form x0 + Σ∗A for some
x0 ∈ Z and A ⊂ Z with |A| = k.

We remark that in the literature, a Hilbert cube typically allows repeated elements in A but we
do not. All of the literature we mention below, with the exception of [CFS], allows repeats. It
turns out that in all cases their results can be easily transferred to our situation.

Theorem 1.2 (Hilbert [Hi], 1892). Let k, r ≥ 2 be integers. Then there exists an n such that
any r–coloring of [n], at least one color class contains an affine k–cube.

We denote the smallest such n by h(k, r). Hilbert’s proof yields

h(k, r) ≤ r((3+
√
5)/2)k . (3)

Since every
(k
2

)

–term AP is an affine k–cube, we have

h(k, r) ≤ W
(

(k
2

)

, r
)

. (4)

Thus Van der Waerden’s theorem implies Theorem 1.2 (but not the bound in (3)). Sze-
merédi [Sze], in his seminal paper on the density version of Van der Waerden’s theorem, proved
that

h(k, r) = O(r)2
k

.

Hilbert’s and Szemerédi’s results are a massive improvement over combining (4) with the state
of the art Van der Waerden bounds in (1). The case where k = 2 was asymptotically solved by
Brown, Chung, Erdős and Graham [BCEG], who showed that

h(2, r) = (1 + o(1))r2.

Their lower bound uses difference sets arising from finite projective planes, and their upper
bound follows from bounds on Sidon sets. Gunderson and Rödl [GuRö] showed that for k ≥ 3
we have

r(1−o(1))(2k−1)/k ≤ h(k, r),

where o(1) → 0 as r → ∞. Recently Conlon, Fox and Sudakov [CFS] improved the bound of
Erdős and Spencer [ErSp] by showing that there exists an absolute constant c such that

rck
2 ≤ h(k, r). (5)

This is currently the best lower bound known for small values of r. Their proof heavily relies
on an inverse Littlewood–Offord type theorem of Nguyen and Vu [NgVu], which we will also
use in our proof of our main result. Note that a significant improvement on (5) would improve
on (1) because of (4). Unfortunately, improving the bounds on Van der Waerden numbers
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is a notoriously difficult problem. To circumvent this problem, in this paper we focus on
improving the Conlon–Fox–Sudakov bound conditional on the fact that W (k, 2) is much bigger
than 2k.

Theorem 1.3. Let k ≥ 3 be an integer. Then for every ǫ > 0, there is a c > 0 such that

h(k, 4) ≥ min{W (⌊ck2⌋, 2), 2k2.5−ǫ}.

Theorem 1.3 asserts that either

(i) the lower bound for W (k, 2) in (1) is far from sharp and h(k, 4) is larger than (5),

(ii) the lower bound for W (k, 2) in (1) is nearly sharp and we can roughly reverse (4).

We remark that by Theorem 1.3, one can solve Graham’s conjecture in (2) by providing an

upper bound of h(k, 4) < 2k
2.5−ǫ

. Our proof of Theorem 1.3 can be easily adapted to provide
lower bounds for h(k, r) where r > 1 is a square of an integer. We briefly mention that Hilbert
cubes have played a central role in upper bounds for van der Waerden numbers [Go, Sze], via
Gower’s uniformity norms and Szemerédi’s cube lemma.

The idea for the proof of Theorem 1.3 is the following. In a random coloring of [n], the
probability that an affine k–cube, x0 +Σ∗A is monochromatic is

2

2|Σ∗A| .

This probability is small when |Σ∗A| is large. When |Σ∗A| is small, then A should look much
like an AP and we are led back to the Van der Waerden problem. Our main tools for making
this argument rigorous are a paper of Nguyen and Vu [NgVu] (see Theorem 3.1) concerning the
Littlewood–Offord theory and another paper of Szemerédi and Vu [SzVu] (see Theorem 3.2) on
finding long APs in restricted sumsets, along with some analysis of our own (see Lemma 4.1)
of the case when A is a large subset of a generalized AP.

To prove Theorem 1.3, we analyze which A ⊂ Z satisfy

|Σ∗A| = O(|A|2.5−ǫ).

We conclude this implies A has some additive structure, which eventually yields Theorem 1.3.
Curiously, after this analysis we cannot rule out the case that A is a Sidon set, that is |A+A| =
(|A|+1

2

)

. We use different techniques to handle this case.

Theorem 1.4. There exists a c > 0 such that for any Sidon set A ⊂ Z one has

|Σ∗A| ≥ c|A|3.

This result is a side product of our methods and we believe it is of independent interest. The
proof is elementary, self-contained and best possible up to the constant c. To see this last
point, recall the classical result that [n] contains a Sidon set, say A, of size n1/2(1 − o(1)) (see

e.g. [O’Br, Theorem 5]). Thus Σ∗A ⊂ [n3/2] and

|Σ∗A| ≤ |A|3(1 + o(1)).

We briefly mention a related theorem of finding monochromatic Folkman cubes, a wide gener-
alization of Schur’s theorem that was obtained independently by Folkman, Rado and Sanders.
This generalization is now commonly referred to as Folkman’s theorem (see for example [GRS]).
Let F (k, r) be the smallest n such in that any r–coloring of [n] one can find a set A of size k
such that Σ∗A ⊆ [n] and Σ∗A is monochromatic. The state of the art bounds on F (k, r) are
significantly different from the best bounds on H(k, r). Indeed, already for F (k, 2) the best
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upper bound due to Taylor [Ta] is tower-type, while the best lower bound is due to Balogh–
Eberhard–Narayanan–Treglown–Wagner [BENTW]. They are as follows:

22
k−1/k ≤ F (k, 2) ≤ 22

3
2
.
.
.
3

,

where the tower on the right side has height 4k − 3.

2. Initial set-up and the random coloring

Generalized APs play a central role in our argument.

Definition 2.1. A generalized AP (GAP) of rank r is a set of the form

Q =

{

a+

r
∑

i=1

kidi : mi < ki ≤ Mi for 1 ≤ i ≤ r

}

.

for some a,m1, . . . ,mr, M1, . . . ,Mr ∈ Z, and d1, . . . , dr ∈ Z. The volume of Q is (M1 −
m1) · · · (Mr −mr). We say Q is proper if its volume is equal to its size. We say Q is symmetric
if mi = −Mi for 1 ≤ i ≤ r.

Proof idea. We let N = min{W (⌊ck2⌋, 2), 2k2.5−ǫ/(10 log k)}−1 where c > 0 is a sufficiently small,
fixed constant that depends on our argument. We color [N ] by a product coloring χ1 × χ2,
where

• χ1 : [N ] → [2] avoids monochromatic APs of length ⌊ck2⌋,
• χ2 : [N ] → [2] is a uniformly random coloring.

If a Hilbert cube has many distinct elements, then the coloring χ2 makes sure it is not monochro-
matic. We will show that all Hilbert cubes having very few distinct elements will contain a
ck2–term AP, in which case χ1 ensures it is not monochromatic. �

To understand χ2, we will need the following lemma, which appears in a short paper of Erdős
and Spencer [ErSp].

Lemma 2.1. Let n, k, u ∈ N be integers with u ≥ k(k + 1)/2. The number of sets S ⊆ [n] of
size k satisfying |Σ∗S| ≤ u is at most (kn)log uu2k.

The critical case for our purposes is u = ka for some a = O(1) and k a fixed power of log n and

so the bound in Lemma 2.1 is na log k(1+o(1)). In this case it is easy to see that ∼k na proper
GAPs of rank a−1 satisfy the hypothesis of Lemma 2.1. The additional log k in the exponent is
not concerning for our purposes. A corollary of Lemma 2.1 is that a random coloring is unlikely
to contain Hilbert cubes of large size.

Corollary 2.2. Fix an arbitrary a > 2. If

N ≤ 2k
a/(10a log k) (6)

and χ2 : [N ] → {0, 1} is the uniform random 2–coloring then w.h.p. (as k → ∞, a fixed) χ2

does not contain a monochromatic Hilbert cube of size at least ka.

Proof. The probability that a Hilbert cube of size u is monochromatic under χ2 is 21−u. By
Lemma 2.1 the number of such cubes is ≤ N(kN)log uu2k, since we have at most N choices for
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x0. By the union bound and (6) the probability, p(k), that there is a monochromatic Hilbert
cube of size at least ka satisfies

p(k) ≤ N
∑

u≥ka

(

k2k
a/(10a log k)

)log u
u2k21−u ≤ kN2

(

k2k
a/(10a log k)

)a log k
k2ak21−ka = o(1). (7)

�

3. The AP–avoiding coloring

To analyze a Hilbert cube x0 +Σ∗A, we ignore x0 and focus on the structure of A. We assume
that

|Σ∗A| ≤ k2.5−ǫ, (8)

since we Corollary 2.2 implies we may choose a χ2 so that all Hilbert cubes not satisfying (8)
are not monochromatic.

We proceed in several steps. First, we use a result of Nguyen and Vu [NgVu] to show that for
sets satisfying (8), at least half of the set A must be contained in a GAP of small rank and
volume. We consider two cases for the rank of the resulting GAP, and show that in each case
x0 +Σ∗A is not monochromatic in χ1 × χ2.

3.1. Results concerning restricted sumsets of GAPs. We first recall an inverse theorem
of Nguyen and Vu.

Theorem 3.1 (Nguyen–Vu, special case of Theorem 2.1 in [NgVu]). Let C be a constant, and
let A be a k–element set with |Σ∗A| ≤ kC . Then there is a proper symmetric rank r GAP, Q,

such that |A ∩Q| ≥ 1
2k and |Q| = O(kC−r/2), where the constant factor may depend on C.

In particular, if A satisfies (8), then the two possible cases are

(1) |Q| = O(k2−ǫ) and Q is a rank 1 GAP (an AP),

(2) |Q| = O(k1.5−ǫ) and Q is a rank 2 GAP.

To see the last point of Theorem 3.1, note that if Q were to have rank 3 or greater, then
|Q| = O(k1−ǫ), which contradicts that Q contains at least half of the elements of A.

Definition 3.1. For an integer ℓ, let ℓ∗A denote the subset of Σ∗A consisting of sums of exactly
ℓ distinct elements

ℓ∗A := {
∑

b∈B
b : B ⊂ A, |B| = ℓ}.

Theorem 3.2 (Szemerédi–Vu, Theorem 7.1 in [SzVu]). For any fixed positive integer r there
are positive constants C and c depending on r such that the following holds. For any positive
integers n and ℓ and any set A ⊆ [n] with ℓ ≤ 1

2 |A| and ℓr|A| ≥ Cn, the set ℓ∗A contains a

proper GAP of rank r′ and size at least cℓr
′ |A|, for some integer r′ ≤ r.

Our standing assumption (8) is not compatible with r′ ≥ 2 and ℓ = Ω(|A|) in Theorem 3.2 as

long as n = |A|O(1). We formulate this in the following corollary.

Corollary 3.3. For every positive integer r, there is a constant C ′ such that the following
holds. Let P be an arbitrary AP with |P | = n, and let A ⊆ P which satisfies C ′n ≤ |A|r+1 and
|Σ∗(A)| = o(|A|3). Then Σ∗A contains an AP of length Ωr(|A|2).
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Proof. If P = {a+ kd : 1 ≤ k ≤ n}, then apply the Freiman homomorphism x 7→ x−a
d maps P

to [n], A to a subset of [n], and preserves the size of both A and Σ∗A. So we may assume that
P = [n] in what follows.

We take C ′ to be 2rC, where C = C(r) is the corresponding constant in Theorem 3.2. Then we
have |A|r+1 ≥ 2rCn, or (12 |A|)r|A| ≥ Cn. Applying Theorem 3.2 with ℓ = 1

2 |A|, we conclude

that ℓ∗A contains a proper GAP of rank r′ for some r′ ≤ r, which has size c(12 |A|)r
′ |A| =

c
2r′

|A|r′+1. In particular, Σ∗A ⊃ ℓ∗A contains a GAP of size Ωr(|A|r
′+1). For r′ ≥ 2, this

is incompatible with our assumption |Σ∗(A)| = o(|A|3) for sufficiently large |A|. So we may
assume that r′ = 1, and therefore Σ∗A contains an AP of length Ωr(|A|2). �

The following corollary is an immediate consequence of Corollary 3.3 and our choice of χ1.

Corollary 3.4. Suppose a set A is of size k and contained in an AP of size O(kα) for some
α ≥ 1. Then x0 +Σ∗A is not monochromatic in χ1.

In case (1) of Theorem 3.1, we have that A is a subset of an AP of length O(k2−ǫ), and so
by Corollary 3.4, x0 + Σ∗A is not monochromatic in the coloring χ1. Thus x0 + Σ∗A is not
monochromatic in the product coloring χ1 × χ2.

3.2. Completing the proof of Theorem 1.3. We are now left to analyze case (2) in Theo-
rem 3.1. Here at least half of the elements of A is contained in a proper, symmetric GAP, Q,
of rank 2 and size O(k1.5−ǫ). In this case, A is basically a dense subset of a two-dimensional

integer box (ignoring the technicality that while Q is proper, it may not be that |Σ∗Q| = 2|Q|).
In this case, the size of Σ∗A is roughly cubic in |A| as is shown by the following lemma.

Lemma 3.5. There is an absolute constant C such that for A ⊆ [m]× [n], with |A| ≥ C
√
mn,

|Σ∗A| ≥ Ω

( |A|3
(log |A|)4

)

.

This is best possible up to the logarithm, as is seen by taking A = [m]×[n]. We prove Lemma 3.5
in the following section, but first show how it implies Theorem 1.3.

Since Q is proper, we may decompose it into the following six disjoint sets:

• Q1 = {id1 + jd2 : 1 ≤ i ≤ m, 1 ≤ j ≤ n},
• Q2 = {id1 + jd2 : 1 ≤ i ≤ m,−n ≤ j ≤ −1},
• Q3 = {id1 + jd2 : −m ≤ i ≤ −1, 1 ≤ j ≤ n},
• Q4 = {id1 + jd2 : −m ≤ i ≤ −1,−n ≤ j ≤ −1},
• Q5 = {id1 : −m ≤ i ≤ m},
• Q6 = {jd2 : −n ≤ j ≤ n, j 6= 0}.

At least one of |A ∩ Q1|, |A ∩ Q2|, . . . , |A ∩ Q6| has size at least 1
12 |A|. If this happens for Q5

or Q6, then we are in the situation of case (1) of Theorem 3.1, which we already handled in
Corollary 3.4.

Without loss of generality, by switching the signs of d1 and d2, we may assume |A ∩ Q1| ≥
|A|
12 .

Let φ : Q1 → Z
2 via φ(id1 + jd2) = (i, j). Since Q1 is proper, φ is injective. It follows, for k

sufficiently large, that we have

|φ(A ∩Q1)| = |A ∩Q1| = Ω(k) ≥ C
√
mn.
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Thus we may apply Lemma 3.5 to find that

|Σ∗φ(A ∩Q1)| = Ω(k3−ǫ). (9)

Combing this with (8), we have that

|Σ∗(A ∩Q1)| = |A ∩A1| < |Σ∗φ(A ∩Q1)|.
One may compare the rest of our argument to [TV, Theorem 3.40]. It follows that there is a
“collision,” that is there exist 1 ≤ x1, y1 ≤ km and 1 ≤ x2, y2 ≤ kn, satisfying

x1d1 + x2d2 = y1d1 + y2d2.

This simplifies to

|d1| · |x1 − y1| = |d2| · |x2 − y2|.
Let

d := gcd(d1, d2).

So |d1|
d divides |d2|

d |x2 − y2| and by Euclid’s lemma |d1|
d divides |x2 − y2|. Thus

|d1|
d

≤ kn.

Similarly, |d1|
d ≤ km.

Let R be the AP with common difference d given below:

R = {−m|d1| − n|d2|, . . . ,−d, 0, d, . . . ,m|d1|+ n|d2|}.
Then R contains every integer divisible by d between the largest and smallest element of Q, so
Q ⊆ R. Moreover,

|R| ≤ 1 + 2
m|d1|+ n|d2|

d
≤ 1 + 2m · kn+ 2n · km = O(k|Q|) = O(k2.5−ǫ).

By Corollary 3.4, x0+Σ∗(A∩Q1) is not monochromatic in χ1 and so neither is x0+Σ∗A. Thus
we have handled case (2) of Theorem 3.1 and completed the proof of Theorem 1.3.

4. Restricted sumsets for dense subsets of high dimensional boxes

It remains to prove Lemma 3.5. We work in arbitrary dimensions, which may be of independent
interest. In the following lemma, we are only interested in the case m = 1, but other values of
m are useful as a strengthened induction hypothesis. We recall the m–fold sum is

mB := B + . . .+B,

where there are m summands.

Lemma 4.1. For all integers d ≥ 1 there exists an absolute constant Cd such that the following
holds.

Suppose that A ⊆ [N1]× [N2]× . . .× [Nd], with density α = |A|
N1N2···Nd

satisfies α
(logα−1)d−i

Ni ≥ Cd

for 2 ≤ i ≤ d, and m is an integer. Then

|mΣ∗A| ≥ Ω

(

|A|d+1md

logd
2

(α−1)

)

.

7



Proof. We induct on d. For d = 1, we will show the stronger |mΣ∗A| ≥ O(|A|2m). To begin

with, we have |Σ∗A| ≥
(|A|+1

2

)

. Let A = {a1, a2, . . . , ak}; then an increasing sequence of
(k+1

2

)

+1
elements of Σ∗A is given by

0 < a1 < a2 < . . . < ak

< a1 + ak < a2 + ak < . . . < ak−1 + ak

< a1 + ak−1 + ak < a2 + ak−1 + ak < . . . < ak−2 + ak−1 + ak

< . . . <

< a1 + a2 + . . . + ak−1 + ak.

From the estimate |X + Y | ≥ |X| + |Y | − 1 we have |mX| ≥ m|X| − m + 1, and therefore as

long as |A| ≥ 2 we have |mΣ∗A| ≥ m
(|A|+1

2

)

−m+ 1 ≥ 1
2 |A|2m.

For the induction step, assume that this lemma holds in dimension d−1, where d ≥ 2. Partition
A into stacks

Ax = {a ∈ A : (a1, . . . , ad−1) = x}
indexed by x ∈ [N1] × · · · × [Nd−1]. The average size of a stack Ax is αNd. Call a stack Ax

sparse if |Ax| ≤ 1
2αNd, and dense otherwise. Then the total number of elements of A contained

in sparse stacks is at most

1

2
αNd ·

d−1
∏

i=1

Ni =
1

2
|A|,

so at least 1
2 |A| elements of A are in dense stacks.

The sizes of dense stacks range from 1
2αNd to Nd. For each t such that 1

2αNd ≤ t ≤ 1
2Nd, define

Xt = {x ∈ [N1]× · · · × [Nd−1] : t < |Ax| ≤ 2t},
so that Xt indices all stacks whose sizes range from t to 2t. By a dyadic decomposition, we can
find a t so that the union of the stacks indexed by Xt is large. That is, letting s =

⌈

log2 α
−1
⌉

,
we can partition the indices of all the dense stacks into the disjoint union of s sets

s−1
⋃

i=0

X2i−1αNd
.

Since at least 1
2 |A| elements of A are in dense stacks, there must be a t = 2i−1αNd for some i

between 0 and s−1 such that at least 1
2s |A| elements of A are in stacks indexed by some x ∈ Xt.

For each x ∈ Xt, we choose two disjoint sets Bx, Cx ⊆ Ax, where |Bx| = 2⌊ t
3⌋ and |Cx| = ⌊ t

3⌋.
Since αNd ≥ Cd, we have ⌊ t

3⌋ ≥ t
4 , provided that we choose Cd sufficiently large. Define

C =
⋃

x∈Xt

Cx.

We will show that |mΣ∗A| is large in two steps.

Let b ∈ mΣ∗A be given by summing the ⌊ t
3⌋ smallest elements of each Bx, each with multiplicity

m. Then b+mΣ∗C is a subset of mΣ∗A. We show that not only is |b+mΣ∗C| large, but that
its projection onto the first d− 1 coordinates is large.

In this projection, the exact elements of each Cx are irrelevant, since their first d−1 coordinates
are just x. Being able to choose the elements of Cx, of which there are at least t

4 , up to m times

each is equivalent to being able to include x in a sum up to mt
4 times, and so the size of the

projection is |mt
4 Σ∗Xt|.

Since each stack Ax has size at most 2t, and the union of all stacks indexed by Xt has size at

least |A|
2s , we know that Xt itself must have size at least |A|

4st . We apply the induction hypothesis
8



to Xt. The density of Xt in [N1]× · · · × [Nd−1] is at least

α′ =
|A|

N1 · · ·Nd−1 · 4st
≥ |A|

N1 · · ·Nd · 4s
≥ α

4⌊log2(α−1)⌋ ,

which will satisfy the conditions in the induction hypothesis provided we choose Cd sufficiently
large compared to Cd−1. Additionally, log

(

α′−1
)

= Θ(log α−1). So we have
∣

∣

∣

∣

mt

4
Σ∗Xt

∣

∣

∣

∣

≥ Ω

(

|Xt|d(14mt)d−1

(log α′−1)(d−1)2

)

≥ Ω

( |A|d−1md−1t−1

(log α−1)(d−1)2+d

)

.

Second, for each element of b + mΣ∗C, we show that there are many elements of mΣ∗A with
the same projection onto the first d− 1 coordinates. We can obtain such elements by replacing
b with a different sum which also uses m⌊ t

3⌋ elements of Bx for each x, counting multiplicity.

Let k = ⌊ t
3⌋, and let Bx = {bx,1, . . . , bx,2k}. For a fixed x, there are at least mk2 distinct sums

of elements of Bx with total multiplicity mk. The argument here is similar to the d = 1 case of
this lemma. Start with the smallest possible sum,

k
∑

i=1

mbx,i.

For each sum with total multiplicity mk, we may increase its dth coordinate by choosing the
largest i < 2k such that bx,i is included in the sum, while bx,i+1 is included fewer than m times,
and replace bx,i by bx,i+1. This ends only when we reach the largest possible sum,

2k
∑

i=k+1

mbx,i.

The sum of the indices on the mbx,i, taken with multiplicity, starts at
∑k

i=1mi = m
(

k+1
2

)

and

ends at
∑2k

i=k+1mi = mk2+m
(

k+1
2

)

. In each step, since we replace some bx,i by bx,i+1, the sum

of indices increase by 1, so we take a total of mk2 ≥ m( t4)
2 = Ω(mt2) steps.

Now we must aggregate this result over all x ∈ Xt. Starting at the element b as previously
defined, go through the elements of Xt arbitrarily, and for each x ∈ Xt, perform the above
process, taking Ω(mt2) steps. There are a total of |Xt| · Ω(mt2) steps taken, and each one
increases the dth coordinate while leaving the first d−1 coordinates unchanged. Altogether, for
every a ∈ b+mΣ∗C, we obtain

|Xt| · Ω(mt2) = Ω

(

mt2 · |A|
4st

)

= Ω

( |A|mt

logα−1

)

different elements of mΣ∗A with the same first d− 1 coordinates as a.

Repeating this for each of the Ω
(

|A|dmd−1t−1

log10d−10+d |A|

)

elements of b+mΣ∗C, we get

|mΣ∗A| ≥ Ω

( |A|dmd−1t−1

(log α−1)(d−1)2+d

)

· Ω
( |A|mt

logα−1

)

= Ω

( |A|d+1md

(log α−1)d
2

)

,

completing the inductive step. �

In our application we will have d = 2. In this case, assuming that A is sufficiently large, we get
the bound in a second lemma, given below. By applying a Freiman isomorphism, that bound
also applies when d > 2 but the set A is too sparse to use Lemma 4.1 directly.

Lemma 4.2. There is an absolute constant C such that for all d ≥ 2, the following holds.
Suppose that A ⊆ [N1]× [N2]× · · · × [Nd], with |A| ≥ C

√
N1N2 · . . . ·Nd. Then

|Σ∗A| ≥ Ω

( |A|3
(log |A|)4

)

.
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Proof. First we handle the case d = 2. Then this result is a direct application of Lemma 4.1,
once we assure ourselves that it applies. Without loss of generality, assume that N1 ≤ N2.

Since |A| ≥ C
√
N1N2, the density α = |A|

N1N2
satisfies αN2 ≥ C

√

|N2|
|N1| ≥ C, so the conditions of

Lemma 4.1 are satisfied for any C which is at least the constant C2 from that lemma.

Taking m = 1, we conclude that

|Σ∗A| ≥ Ω

( |A|3
(log α−1)4

)

= Ω

( |A|3
(log |A|)4

)

.

Next, we assume that d > 2 and we begin by omitting any coordinates i with Ni = 1, so that
we may assume Ni ≥ 2 for all i. Therefore if we define

M =

d
∑

i=2

N2N3 · . . . ·Ni,

we have M ≤ (N2 · . . . ·Ni)(1 +
1
2 + 1

4 + · · · ) ≤ 2N2 · . . . ·Ni.

We map [N1]× · · · × [Nd] to [N1]× [M ] by the homomorphism φ : Zd → Z
2 which takes

(x1, x2, . . . , xd) 7→



x1,
d
∑

i=2

xi

i−1
∏

j=2

Nj



 .

The homomorphism φ is injective on [N1]× · · · × [Nd], so the image φ(A) has the same size as
A. Therefore

|φ(A)| ≥ C
√

N1N2 · . . . ·Nd ≥ C

√

N1M

2
,

which is large enough for the d = 2 case of this lemma to apply if we choose C = C2

√
2.

Applying the d = 2 case of this lemma,

|Σ∗A| ≥ |Σ∗φ(A)| ≥ Ω

( |φ(A)|3
(log |φ(A)|)4

)

= Ω

( |A|3
(log |A|)4

)

,

which was what we wanted. �

Lemma 3.5 follows from Lemma 4.2 by taking d = 2.

5. Sidon sets

We now set out to prove Theorem 1.4. We prove this by starting with a small subset X ⊆ A,
and adding elements to X slowly while ensuring that |Σ∗X| grows quickly. In the end, |Σ∗X|
will reach Ω(|A|3) in size before the set A is exhausted.

As long as |Σ∗X| is relatively small, the following lemma guarantees that we can increase |Σ∗X|
by a factor of 3

2 with the addition of only two new elements.

Lemma 5.1. Let A be a Sidon subset of the positive integers, and let X ⊆ A with |X| ≤ 1
2 |A|

and |Σ∗X| ≤
( 1

2
|A|
2

)

. Then we can extend X to X ′ = X ∪ {a1, a2} with a1, a2 ∈ A \X in such a

way that |Σ∗X ′| ≥ 3
2 |Σ∗X|.

Proof. Let B = {a1 + a2 : a1, a2 ∈ A \X}. Since A is Sidon, all elements of B are distinct, so

|B| =
(|A\X|

2

)

≥
( 1

2
|A|
2

)

. In particular, |B| ≥ |Σ∗X|.
The total number of solutions of the equation s1 + b = s2 with s1, s2 ∈ Σ∗X and b ∈ B is at

most
(|Σ∗X|

2

)

: once we choose the set {s1, s2}, we are forced to choose the order s1 < s2, and
10



then b, if it exists, is unique. So there exists an element b ∈ B for which there is at most the
average number

(|Σ∗X|
2

)

|B| ≤ |Σ∗X|2
2|B| ≤ |Σ∗X|

2|B| · |Σ∗X| ≤ 1

2
|Σ∗X|

of solutions. In other words, |Σ∗X ∩ (Σ∗X + b)| ≤ 1
2 |Σ∗X|.

Write this b as a1 + a2, and let X ′ = X ∪ {a1, a2}. Then

|Σ∗X ′| ≥ |Σ∗X + (Σ∗X + b)| ≥ |Σ∗X|+ |Σ∗X + b| − |Σ∗X ∩ (Σ∗X + b)| ≥ 3

2
|Σ∗X|,

as desired. �

When |Σ∗X| is large, the previous lemma does not apply, and we need a second iterative way
to increase |Σ∗X|.

Lemma 5.2. Let A be a Sidon subset of the positive integers, and let X ⊆ A with |X| ≤ 3
4 |A|

but |Σ∗X| ≥
( 1

4
|A|
2

)

. Then we can extend X to X ′ = X ∪ {a1, a2} with a1, a2 ∈ A \X in such a

way that |Σ∗X ′| ≥ |Σ∗X|+ 1
2

( 1

4
|A|
2

)

.

Proof. Let A′ be a subset of A with |A′| = 1
4 |A| and A′∩X = ∅, and let B = {a1+a2 : a1, a2 ∈

A′}. Since A is Sidon, all elements of B are distinct, so |B| =
(|A′|

2

)

=
( 1

4
|A|
2

)

; in particular,
|B| ≤ |Σ∗X|.

Let S consist of the |B| largest elements of |Σ∗X|. Of the |B|2 elements of S ×B, at most
(|B|

2

)

are ordered pairs (s, b) with s + b ∈ Σ∗X, because then s + b would be a larger element of S,

and there are
(|S|

2

)

=
(|B|

2

)

pairs of elements of S.

So there are at least |B|2 −
(|B|

2

)

> 1
2 |B|2 elements of S ×B which are ordered pairs (s, b) with

s + b /∈ Σ∗X. By averaging, there is some b ∈ B contained in at least 1
2 |B| of those ordered

pairs. For this choice of b, Σ∗X + b contains at least 1
2 |B| values not found in Σ∗X.

Write b = a1 + a2 for some a1, a2 ∈ A′, and let X ′ = X ∪ {a1, a2}. Then

|Σ∗X ′| ≥ |Σ∗X + (Σ∗X + b)| ≥ |Σ∗X|+ 1

2
|B| ≥ |Σ∗X|+ 1

2

(1
4 |A|
2

)

,

as desired. �

Now we put together the details and prove Theorem 1.4.

Proof. Begin with X = ∅, and |Σ∗X| = 1, and repeatedly apply Lemma 5.1 until one of the

hypotheses is violated: either |X| ≥ 1
2 |A| or |Σ∗X| ≥

( 1

2
|A|
2

)

. In fact, after k iterations of

Lemma 5.1, we will have |Σ∗X| ≥ (32)
k, so the second hypothesis will be violated when |X| is

only O(log |A|); for |A| sufficiently large, this will happen first.

Next, apply Lemma 5.2 to X repeatedly, increasing |X| by 2 at every step while increasing

|Σ∗X| by 1
2

( 1

4
|A|
2

)

= Ω(|A|2).

It will take more than 1
8 |A| applications of Lemma 5.2 before the hypothesis that |X| ≤ 3

4 |A| is
no longer satisfied. At that point, |Σ∗X| will have size at least 1

8 |A| · 1
2

( 1

4
|A|
2

)

= Ω(|A|3).

In particular, this means that |Σ∗A| = Ω(|A|3). �
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[GuRö] D. S. Gunderson and V. Rödl. Extremal problems for affine cubes of integers. Combinatorics, Probability

and Computing, 7.1: 65–79, 1998.
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