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REFLECTIVE AUTOMORPHIC FORMS ON LATTICES OF SQUAREFREE LEVEL

MORITZ DITTMANN

Abstract. We show that there are only finitely many nonconstant reflective automorphic forms Ψ on
even lattices of squarefree level splitting two hyperbolic planes and give a complete classification in the
case where the zeros of Ψ are simple and Ψ has singular weight.

1. Introduction

Let L be an even lattice of signature (n, 2) with dual lattice L′. The Hermitian symmetric domain
HL associated to L is one of the two connected components of

{[Z] ∈ P(L⊗ C) : (Z,Z) = 0, (Z,Z) < 0}.

LetO(L)+ be the subgroup ofO(L) that preservesHL. Automorphic forms are homogeneous functions on
the affine cone over HL that are invariant under a finite index subgroup of the group O(L)+ of isometries
fixing HL. One way to obtain such functions is to apply Borcherds’ singular theta correspondence (see
[Bor98]) to a suitable vector-valued modular form F . The resulting function Ψ is an automorphic form
for a group containing the kernel Γ(L) of O(L)+ → Aut(L′/L) and has product expansions at the cusps
which is why Ψ is also called an automorphic product. The divisor of Ψ is a linear combination of rational
quadratic divisors with multiplicities determined by the principal part of F . Conversely, Bruinier has
shown in [Bru14] that if L splits two hyperbolic planes, then every automorphic form Ψ for Γ(L) whose
divisor is a linear combination of rational quadratic divisors is an automorphic product.

An automorphic form Ψ is called reflective if its zeros are orthogonal to roots of L and strongly
reflective if all these zeros are simple. Such functions play an important part in finding interesting
generalized Kac-Moody algebras, as their denominator identities should be reflective automorphic forms
(see e.g. [GN02]), and in algebraic geometry, as the existence of a reflective modular form of large
weight (when compared to the vanishing orders of its zeros) implies that the corresponding modular
variety is uniruled (see [GH14]). For n ≥ 4 Ma has proven that up to scaling only finitely many lattices
carry a reflective automorphic form with bounded slope (see [Ma18]) and that there are only finitely
many lattices carrying a 2-reflective automorphic form (i.e. a reflective automorphic form whose zeros
correspond to roots of norm 2) (see [Ma17]) and Scheithauer obtained partial classification results for
strongly reflective automorphic products of singular weight on lattices of squarefree level (see [Sch06]
and [Sch17]).

In the present paper we restrict to the case where the even lattice L has squarefree level N and
additionaly assume that L splits II1,1 ⊕ II1,1(N). For such lattices we prove the following result.

Theorem 1.1. There are only finitely many even lattices L of signature (n, 2), n ≥ 4 and squarefree
level N that split II1,1 ⊕ II1,1(N) and carry a nonconstant reflective automorphic form.

Our result is effective, i.e. we obtain bounds on the level N and the rank n+ 2 of L, thus obtaining
a finite list of possible candidates for L. The idea of the proof is as follows. Suppose Ψ is a nonconstant
reflective automorphic form on L. By Bruinier’s converse theorem above we can assume that Ψ is an
automorphic product corresponding to some vector-valued modular form F . Since L splits II1,1, the
reflectivity of Ψ can be restated as a condition on the principal part of F . For squarefree level N
every symmetric weakly holomorphic modular form for the Weil representation and in particular the
symmetrization of F is the lift of some scalar-valued weakly holomorphic modular form f for the group
Γ0(N). Then the condition on the principal part of F can be restated as conditions on the principal
parts of f at all cusps (this uses that L splits II1,1(N)). These conditions are so restrictive that there
are only finitely many solutions for the level N and the rank n+ 2.

One way to construct reflective automorphic forms is described in [Sch06]: The automorphism group
of the Leech lattice Λ is Conway’s group Co0. Let g ∈ Aut(Λ) have order n. Then the characteristic
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polynomial of g can be written as
∏

k|n(x
k − 1)bk . We associate to g the eta product

ηg(τ) =
∏

k|n

η(kτ)bk

and assume that its level is squarefree. Moreover we assume that the fixpoint lattice Λg of g is nontrivial.
The function fg = 1/ηg can be lifted to a vector-valued modular form Fg = FΓ0(N),fg ,0 for the Weil rep-
resentation on the lattice L = Λg⊕II1,1⊕II1,1(N). The function Fg can then be lifted to an automorphic
product Ψg with Borcherds’ lift. This automorphic product turns out to be strongly reflective and to
have singular weight. Further possible inputs can be obtained by applying Aktin-Lehner involutions to
fg and L. With this method one obtains strongly reflective automorphic products of singular weight on
the following lattices by lifting the function in the second column first to a vector-valued modular form
FΓ0(N),f,0 and then to an automorphic product.

Table 1.

L f L f

II4,2(2
+2
II 3+3) η1−122336−6 II6,2(2

−6
II 5−5) η122−35−210−1

II4,2(2
+2
II 3+3) −3η132−63−162 II6,2(2

+2
II 5+5) η1−3225−110−2

II4,2(2
−4
II 3−3) −2η122−13−663 II6,2(2

+2
II 5+3) η1−12−25−3102

II4,2(2
−4
II 3−3) 6η1−623326−1 II6,2(11

−4) η1−211−2

II4,2(2
+4
II 7−3) η112−27114−2 II6,2(2

+4
II 7−4) η1−12−17−114−1

II4,2(2
+2
II 7−3) 2η1−2217−2141 II6,2(3

+45−4) η1−13−15−115−1

II4,2(3
+35−3) η1−2315115−2 II8,2(3

−7) η133−9

II4,2(3
−35+3) −η113−25−2151 II8,2(3

−3) 9η1−933

II4,2(23
−3) η1−123−1 II8,2(2

−8
II 3+3) η1−42−1346−5

II4,2(2
+4
II 3−35+3) η1−131516−110−115−1 II8,2(2

−8
II 3+7) η142−53−46−1

II4,2(2
+4
II 3+35−3) η112−13−15−115130−1 II8,2(2

+2
II 3−7) η1−5243−16−4

II4,2(2
+2
II 3+35−3) η2−13−15−16110130−1 II8,2(2

+2
II 3−3) η1−12−43−564

II4,2(2
+2
II 3−35+3) η1−1216−110−115−1301 II8,2(7

−5) η1−37−3

II6,2(5
+5) η115−5 II10,2(2

+10
II ) η182−16

II6,2(5
+3) 5η1−551 II10,2(2

+2
II ) 16η1−1628

II6,2(2
+6
II 3−4) η122−4326−4 II10,2(5

+6) 5η1−45−4

II6,2(2
+2
II 3−4) 4η1−4223−462 II10,2(2

+6
II 3−6) η1−22−23−26−2

II6,2(2
−4
II 3−6) η11213−36−3 II14,2(3

−8) η1−63−6

II6,2(2
−4
II 3−2) 3η1−32−33161 II18,2(2

+10
II ) η1−82−8

II6,2(2
−6
II 5−3) η1−22−15210−3 II26,2 η1−24

By working out the obstruction space for each of the finitely many lattices from Theorem 1.1 we can
now prove the following.

Theorem 1.2. Let L be an even lattice of signature (n, 2), n ≥ 4 and squarefree level N that splits
II1,1 ⊕ II1,1(N) and Ψ a strongly reflective automorphic form of singular weight on the corresponding
hermitian symmetric domain. Then Ψ is the theta lift of FΓ0(N),f,0 with f one of the functions from the
table above. In particular, all Ψ can be realized as the theta lift of a symmetric form F .

We remark that with the methods used in the present paper one could also obtain a complete list
of reflective automorphic forms without the assumptions on its weight and on the order of its zeros,
however, due to the number of cases it does not seem feasible to do this without a computer.

The paper is structured as follows: In Sections 2 and 3 we recall the necessary material on lattices,
discriminant forms and the Weil representation. In Section 4 we recall Borcherds’ singular theta corre-
spondence, define reflective automorphic forms and prove Theorem 1.1. In Sections 5 and 6 we summarize
how one can compute the Fourier expansions of certain cusp forms at various cusps. This is done for
newforms for Γ0(N) and images of these in higher levels in Section 5 and for eta quotients for Γ1(N) in
Section 6. We then use these expansions to prove Theorem 1.2 in Section 7.

I thank Nils Scheithauer for helpful discussions on the content of this paper.
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2. Lattices and discriminant forms

A finite abelian group D with a Q/Z-valued non-degenerate quadratic form D → Q/Z, γ 7→ γ2/2 is
called a discriminant form. Every discriminant form decomposes into a sum of Jordan components (not
uniquely if p = 2) and every Jordan component is a sum of indecomposable Jordan components. The
possible non-trivial Jordan components are as follows (for details consult [CS99] or [Nik80]).

Let q > 1 be a power of an odd prime p. The non-trivial p-adic Jordan components of exponent q are
q±n for n ≥ 1. The indecomposable Jordan components are q±1, generated by an element γ with qγ = 0

and γ2/2 = a/q mod 1 where a is an integer with
(

2a
q

)

= ±1. The component q±n is a sum of n copies

of q+1 and q−1 where the number of copies of q−1 is even if ±n = +n and odd if ±n = −n.
If q > 1 is a power of 2, then the even 2-adic Jordan components of exponent q are q±2n

II for n ≥ 1. The

indecomposable Jordan components are q±2
II , which are generated by two elements γ, δ with qγ = qδ = 0,

γδ = 1/q mod 1 and γ2/2 = δ2/2 = 0 mod 1 if ± = + and γ2/2 = δ2/2 = 1/q mod 1 if ± = −.
If q > 1 is a power of 2, then the odd 2-adic Jordan components of exponent q are q±nt for n ≥ 1 and

t ∈ Z/8Z with
(

t
2

)

= ±1 if n = 1, t = −2, 0, 2 if n = 2 and ± = +, t = −2, 2, 4 if n = 2 and ± = −, and

t = n mod 2 for any n. The indecomposable Jordan components are q±1
t where

(

t
2

)

= ±1, generated

by an element γ with qγ = 0 and γ2/2 = t/2q mod 1 (with some of them being isomorphic).
The sum of two Jordan components with the same prime power q can be determined by adding the

ranks, multiplying the signs in the exponent and adding the subscripts t if there are any.
The level of a discriminant form D is the smallest positive integer N with Nγ2/2 ∈ Z for all γ ∈ D

and we define the signature sign(D) ∈ Z/8Z of D by
∑

γ∈D

e(γ2/2) =
√

|D|e(sign(D)/8),

where e(z) = exp(2πiz).
The signature of q±n for odd q is given by −n(q − 1) + 4k where k = 1 if q is not a square and

±n = −n, otherwise k = 0. For even q, the signature of q±2n
II is 4k, whereas for q±nt it is t+ 4k, where

in both cases k is as before.
For a discriminant form D we define Dc to be the elements γ ∈ D with cγ = 0, i.e. the elements of

order dividing c. We define Dc to be {γ ∈ D : γ = cδ for some δ ∈ D}, i.e. the set of c-th powers in D.
Then

0 → Dc → D → Dc → 0

is exact and Dc is the orthogonal complement of Dc.
The number of elements of a given norm in the Jordan components of prime order have been deter-

mined by Scheithauer (assuming that pǫn is even 2-adic if p = 2).

Proposition 2.1 ([Sch06], Proposition 3.1). The number of elements in 2ǫnII of norm j/2 mod 1 is

N(2ǫnII , j) =

{

2n−1 − ǫ2(n−2)/2 if j 6= 0,

2n−1 + ǫ2(n−2)/2 if j = 0.

Proposition 2.2 ([Sch06], Proposition 3.2). Let p be an odd prime. Then the number of elements in
pǫn of norm j/p mod 1 is given by

N(pǫn, j) =































pn−1 − ǫ
(

−1
p

)n/2

p(n−2)/2 if n is even and j 6= 0,

pn−1 + ǫ
(

−1
p

)n/2
(

pn/2 − p(n−2)/2
)

if n is even and j = 0,

pn−1 + ǫ
(

−1
p

)(n−1)/2 (
2
p

)(

j
p

)

p(n−1)/2 if n is odd and j 6= 0,

pn−1 if n is odd and j = 0.

Now suppose that D has squarefree level N . Then the Jordan components of D are of the form pǫpnp

for primes p | N and there can be no odd 2-adic Jordan components. Using the last two propositions
one can then determine the numbers of elements of any given norm and order in D as follows.

Proposition 2.3 ([Sch06], Proposition 3.3). Let D be a discriminant form of squarefree level. Let c | N .
Then the number of elements in Dc of norm j/c mod 1 is given by

N(Dc, j) =
∏

p|c

N(pǫpnp , cj/p).
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If L is an even lattice of signature (b+, b−) with dual lattice L′, then L′/L is a discriminant form
with the quadratic form given by reducing the quadratic form on L′ modulo 1 and conversely every
discriminant form can be obtained in this way. The signature of L′/L is b+ − b− mod 8 by Milgram’s
formula and we define the level of L to be the level of L′/L.

For a positive integer a we let II1,1(a) be the lattice Z2 with Gram matrix ( 0 a
a 0 ). If a = 1, then

we just write II1,1. Later we will only consider even lattices L of squarefree level N of the form L =
K ⊕ II1,1 ⊕ II1,1(N) (i.e. L splits II1,1 ⊕ II1,1(N)). We now give conditions on D = L′/L for this to be
satisfied.

Proposition 2.4. Let N be a squarefree positive integer, L = II1,1(N) and D = L′/L. Then D =
∏

p|N p
ǫpnp with np = 2 and ǫp =

(

−1
p

)

for all p.

Proof. Note that L′ =
(

1
NZ
)2
. Therefore L′/L = (Z/NZ)

2
which proves that np = 2 for all p | N . We

fix a prime p | N . Then γ = (1/p, 0) + L ∈ D is an isotropic element of order p. In particular Dp = pǫp2

has nontrivial isotropic elements. By Propositions 2.1 and 2.2 this is only possible if ǫp is as claimed. �

Proposition 2.5. Let L be an even lattice of signature (b+, b−) and squarefree level N and D = L′/L.
Suppose that L splits II1,1. Then D =

∏

p|N p
ǫpnp with np ≤ b+ + b− − 2. If np = b+ + b− − 2, then

ǫp =
(

|Dp|
p

)(

−1
p

)b−−1

.

Proof. We can write L = K⊕II1,1 for an even lattice K of signature (b+−1, b−−1). Then K ′/K ∼= L′/L
and Theorem 1.10.1 in [Nik80] applied to K shows that np ≤ b++ b−− 2 and that ǫp must be as claimed
if this is an equality. �

It follows that if D = L′/L =
∏

p|N p
ǫpnp for an even lattice L of signature (b+, b−) and squarefree

level N that splits II1,1 ⊕ II1,1(N), then 2 ≤ np ≤ b+ + b− − 2 for all p | N and that

ǫp =







(

−1
p

)

if np = 2,
(

|Dp|
p

)(

−1
p

)b−−1

if np = b+ + b− − 2.

A primitive vector α ∈ L of positive norm is called a root if the reflection

σα(x) = x− 2
(x, α)

(α, α)
α

at α⊥ is an automorphism of L. The following proposition describes the roots of L if the level N is
squarefree.

Proposition 2.6 (see [Sch06], Propositions 2.1 and 2.2). Let L be an even lattice of squarefree level N
and let α ∈ L. Then α is a root if and only if k = α2/2 is a positive divisor of N and α ∈ L ∩ kL′.

If the level of L is squarefree and γ ∈ D = L′/L, then we say that γ corresponds to roots if γ has
order k and satisfies γ2/2 = 1/k mod 1 for some k | N . This notion is inspired by Proposition 2.5 in
[Sch06].

3. The Weil representation

Let D be a discriminant form with even signature. There is a unitary group action of SL2(Z) on the
group ring C[D], defined by

ρD(T )eγ = e(−γ2/2)eγ

ρD(S)eγ =
e(sign(D)/8)

√

|D|
∑

β∈D

e(βγ)eβ ,

where S =
(

0 −1
1 0

)

and T = ( 1 1
0 1 ) are the standard generators of SL2(Z). This is called the Weil

representation of SL2(Z).
A holomorphic function F : H → C[D] on the upper half-plane H = {z ∈ C : Im(z) > 0} is called a

weakly holomorphic modular form of weight k ∈ Z for ρD if

F (Mτ) = (cτ + d)kρD(M)F (τ)

for all M =
(

a b
c d

)

∈ SL2(Z) and F is meromorphic at the cusp ∞. We denote by M !
k(ρD) the complex

vector space of such functions. An element of M !
k(ρD) is called holomorphic if it is holomorphic at ∞

4



and is called cusp form if it vanishes at ∞. The spaces of holomorphic modular forms and cusp forms
are denoted by Mk(ρD) and Sk(ρD).

The Weil representation can be computed explicitly; see [Sch09], Theorem 4.7. From the resulting
formulas one can see that the components Fγ of a weakly holomorphic modular form F =

∑

γ∈D Fγeγ
of weight k for ρD transform as

Fγ |kM = ξ(M)

√

|Dc|
√

|D|
∑

β∈Dc∗

e(−dβ2
c/2)e(−bβγ)e(−abγ2/2)Faγ+β, (3.1)

where |k is the Petersson slash operator, M =
(

a b
c d

)

∈ SL2(Z), ξ is the root of unity as in [Sch09],

Theorem 4.7, and Dc∗ and β2
c/2 are as in Section 2 of the same article. If N is squarefree, then

ξ(M) = e(sign(D)/8)

(

d

|Dc|

)(

c

|Dc|

)

∏

p|c

e(− sign(Dp)/8)

and Dc∗ = Dc. In particular, Fγ is a weakly holomorphic modular form of weight k and character χγ
with χγ(b) = e(−bγ2/2) for Γ1(N). For any scalar-valued modular form f and rational number x ∈ Q we
write [f ](x) for the Fourier coefficient of f at qx, so in particular [Fγ ](x) denotes the respective Fourier
coefficient of Fγ .

One can construct modular forms for ρD from scalar-valued modular forms as follows.

Proposition 3.1 ([Sch15], Theorem 3.1). Let k be an integer, N the level of D and f a weakly holo-
morphic modular form of weight k for Γ0(N) with character χD where

χD(M) =

(

a

|D|

)

e((a− 1) oddity(D)/8).

Let H be an isotropic subset of D which is invariant under (Z/NZ)∗ as a set. Then

FΓ0(N),f,H =
∑

M∈Γ0(N)\ SL2(Z)

∑

γ∈H

f |kMρD(M
−1)eγ

is an element of M !
k(ρD) which is invariant under the automorphisms of D that stabilize H as a set.

Moreover, if f is a holomorphic modular form (resp. a cusp form) then so is FΓ0(N),f,H .

We will only need this for H = {0} and squarefree N . We summarize Section 6 of [Sch06] to show
how the lift FΓ0(N),f,0 can be computed in this case. For each positive divisor c of the squarefree level
N we choose a matrix

Mc =

(

1 b

c d

)

∈ SL2(Z)

with d = 1 mod c and d = 0 mod c′ where c′ = N/c and let

fc = f |kMc.

The function fc has a Fourier expansion in integral powers of q1/c
′

because the cusp 1/c of Γ0(N) has
width c′, so we can write

fc = gc′,0 + gc′,1 + · · ·+ gc′,c′−1

with
gc′,j |T (τ) = e(j/c′)gc′,j(τ).

Then

FΓ0(N),f,0(τ) =
∑

c|N

∑

µ∈Dc′

ξc

√

|Dc|
√

|D|
c′gc′,jµ,c′

(τ)eµ

where jµ,c′/c
′ = −µ2/2 mod 1 and

ξc = e(sign(D)/8)

( −c
|Dc′ |

)

∏

p|c

e(− sign(Dp)/8)

=

( −c
|Dc′ |

)

∏

p|c′

e(sign(Dp)/8).

Note that FΓ0(N),f,0 is symmetric, i.e. invariant under the automorphisms of D, by Proposition 3.1.
Since N is squarefree, the converse also holds, i.e. every weakly holomorphic symmetric modular form
F is equal to FΓ0(N),f,0 for some weakly holomorphic f (see [Sch15], Corollary 5.5).
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Let D be a discriminant form and H ⊂ D an isotropic subgroup. Then DH = H⊥/H is a discriminant
form whose signature equals that of D. There is a map from M !

k(ρDH
) to M !

k(ρD), given by

F =
∑

γ+H∈DH

Fγ+He
γ+H 7→ F̂ =

∑

γ∈D

Fγ+He
γ .

This map sends holomorphic modular forms to holomorphic modular forms and cusp forms to cusp forms.
We say that F̂ is the lift of F on H .

4. Reflective automorphic forms

Let L be an even lattice of signature (n, 2) with n ≥ 4 even, V = L⊗Z R and V (C) = V ⊗R C. Then

{[Z] ∈ P(V (C)) : (Z,Z) = 0, (Z,Z) < 0}
is a complex manifold with two connected components, which are exchanged by Z 7→ Z. We choose
one of these components and denote it by HL. The subgroup O(V )+ ⊂ O(V ) that preserves the two
connected components acts holomorphically on HL. We let

H̃L = {Z ∈ V (C) \ {0} : [Z] ∈ HL}
be the affine cone over HL.

Let Γ ⊂ O(L)+ = O(L) ∩O(V )+ be a subgroup of finite index, χ : Γ → C∗ a unitary character and k

an integer. A meromorphic function Ψ: H̃L → C is an automorphic form of weight k for Γ and χ if

Ψ(MZ) = χ(M)Ψ(Z)

Ψ(tZ) = t−kΨ(Z)

for all M ∈ Γ, t ∈ C∗ and Z ∈ H̃L. One way to obtain such functions is described in the following
theorem.

Theorem 4.1 ([Bor98], Theorem 13.3). Let L be an even lattice of type (n, 2), n ≥ 3 with D = L′/L
and F a weakly holomorphic modular form of weight 1−n/2 for ρD with integral coefficients [Fγ ](m) for

all m ≤ 0. Then there is a meromorphic function Ψ: H̃L → C with the following properties.

(1) Ψ is a modular form of weight [F0](0)/2 for the group O(L, F )+ and some unitary character χ.
(2) The only zeros or poles of Ψ are on rational quadratic divisors λ⊥ for λ ∈ L of positive norm

and are zeros of order
∑

0<x∈Q

xλ∈L′

[Fxλ+L](−x2λ2/2) (4.1)

or poles if this number is negative.
(3) For each primitive norm 0 vector z ∈ L and for each Weyl chamber W of K = M/Zz with

M = L ∩ z⊥ the restriction Ψz has an infinite product expansion converging when Z is in a
neighbourhood of the cusp z which is some constant times

e((Z, ρ(K,W,FK)))
∏

λ∈K′

(λ,W )<0

∏

δ∈L′/L
δ|M=λ

(1− e((λ, Z) + (δ, z′)))[Fδ ](−λ
2/2).

The function Ψ is called the automorphic product corresponding to F . Bruinier proved the following
converse theorem.

Theorem 4.2 ([Bru14], Theorem 1.2). Let L be an even lattice of signature (n, 2), n ≥ 4 even such that
L = K ⊕ II1,1 ⊕ II1,1(m) for an even positive definite lattice K and some positive integer m. Then every
automorphic form Ψ for the discriminant kernel Γ(L) of O(L)+ whose divisor is a linear combination of
rational quadratic divisors is (up to a nonzero constant factor) the Borcherds lift of a weakly holomorphic
vector-valued modular form for the Weil representation.

Different vector-valued modular forms F , even on different lattices, can give the same automorphic
product Ψ. We describe an example of when this occurs. Suppose L = K + II1,1(m) for some positive
integer m and let M ⊂ K be a sublattice of finite index. Then H = K/M ⊂ K ′/M ⊂ M ′/M is an
isotropic subgroup of DM = M ′/M with orthogonal complement H⊥ = K ′/M . The quotient H⊥/H is
isomorphic to K ′/K and a modular form FL as in Theorem 4.1 on DL = L′/L induces a modular form
FN on DN = N ′/N where N = M ⊕ II1,1(m). The embedding N →֒ L gives an identification of the
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corresponding domains HN and HL and the automorphic products corresponding to FL and FN coincide
(see [Sch17], Proposition 3.4).

We say that an automorphic form Ψ is reflective if it is holomorphic and all its zeros are of the form
λ⊥ for roots λ ∈ L. If in addition all zeros are simple, then we say that Ψ is strongly reflective. If L
splits II1,1, then (strong) reflectivity of an automorphic product Ψ can easily be checked on F .

Proposition 4.3. Suppose L has squarefree level and splits II1,1. Then the automorphic product Ψ is
reflective if and only if the corresponding vector-valued modular form F satisfies the following:

(1) If γ ∈ D has order m and corresponds to roots, then the Fourier expansion of Fγ at ∞ is

Fγ = cγ,−1/mq
−1/m +O(1) with cγ,−1/m ≥ 0 and

(2) Fγ is holomorphic at ∞ for all other γ ∈ D.

Moreover, Ψ is strongly reflective if and only if all cγ,−1/m are at most 1.

Proof. Suppose that F satisfies the two conditions. Then Propositions 9.1, 9.2 and 9.3 in [Sch06] prove
that Ψ is reflective. It also follows that Ψ is strongly reflective if all cγ,−1/m are at most 1.

Now assume that Ψ is reflective. Write L = K ⊕ II1,1. Then L
′ = K ′ ⊕ II1,1 and D = L′/L ∼= K ′/K.

Let γ ∈ D and x < 0 such that [Fγ ](x) 6= 0 (so γ2/2 = −x mod 1) and let m be the largest integer with
[Fmγ ](m

2x) 6= 0. Choose κ ∈ K ′ with κ+K = mγ. By adding a primitive element of suitable norm in
II1,1 to κ we obtain a primitive element λ ∈ L′ with λ2/2 = −m2x. Then Mλ ∈ L is primitive, where M
is the order of mγ ∈ D and the order of Ψ at (Mλ)⊥ is equal to [Fmγ ](m

2x). It follows thatMλ is a root
of L (and that [Fmγ ](m

2x) = 1 if Ψ is strongly reflective). Therefore the norm (Mλ)2/2 = −M2m2x ∈ Z

ofMλmust divide N . Then x = −a/(Mm) for some a ∈ Z>0 becauseN , and hence also the denominator
of x, are squarefree. Moreover λ/(Mm2x) must be in L′ by Proposition 2.6, so 1/(Mm2x) ∈ Z by the
primitivity of λ. This forces a = m = 1, so γ satisfies the condition given in item (1).

�

If L is an even lattice of squarefree level and F is a vector-valued modular form of weight 1 − n/2
on L′/L that satisfies the conditions (1) and (2), then we also call F reflective (strongly reflective if
in addition all cγ,−1/m are at most 1), so that the statement of the proposition can be rephrased as
follows: If L splits II1,1, then Ψ is (strongly) reflective if and only if F is (strongly) reflective. If instead
F only satisfies conditions (1) and (2) with cγ,−1/m being any complex number, then we say that F is
semi-reflective. Note that, in contrast to the reflective modular forms, the semi-reflective modular forms
form a complex vector space.

For the rest of the section we assume that L is an even lattice of squarefree level N and signature
(n, 2) with n ≥ 4 such that L splits II1,1(N) and that F is a semi-reflective form with F0 6= 0. We replace
F by

1

|Aut(D)|
∑

σ∈Aut(D)

σ(F ), (4.2)

which is symmetric and nonvanishing (because F0 6= 0). Then F = FΓ0(N),f,0 for a nonzero weakly
holomorphic modular form f of weight k = 1 − n/2 for Γ0(N) with character χD by Corollary 5.5 in
[Sch06].

Lemma 4.4. Let c | N . Then f |kMc ∈ O(q−1/c′), where c′ = N/c.

Proof. Suppose there is some cusp s = 1/c with c | N such that f has a pole of order larger than 1/c′

at s, i.e. f |kMc /∈ O(q−1/c′). We can assume that c is the smallest divisor of N with this property, so

f |kMc̃ ∈ O(q−1/c̃′ ) for all c̃ | N with c̃ < c. For any d | N and a ∈ Z the discriminant form corresponding
to II1,1(N) contains elements of order d and norm a/d mod 1. Since L splits II1,1(N), there is therefore
an element γ ∈ D = L′/L of order c′ and norm γ2/2 = a/c′ mod 1, where a/c′ is the order of the pole
of f at 1/c. Then

Fγ =
∑

d|c

ξd

√

|Dd|
√

|D|
d′gd′,jγ,d′

= ξc

√

|Dc|
√

|D|
c′gc′,jγ,c′

+
∑

d|c
d<c

ξd

√

|Dd|
√

|D|
d′gd′,jγ,d′

.

The first summand on the right hand side has a pole of order a/c′, while the remaining terms have poles
of order less than 1/c′ by our assumption on the minimality of c. Therefore Fγ must have a pole of order
a/c′ > 1/c′ which contradicts the assumption that F is semi-reflective. �
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Lemma 4.5. Let N be a squarefree integer, k a negative integer and f a nonzero weakly holomorphic
modular form of weight k and some Dirichlet character χ for Γ0(N) satisfying f |kMc = O(q−1/c′) for
all c | N . Then

∏

p|N

(p+ 1) ≤ −2ω(N) 12

k

where ω(N) is the number of primes dividing N .

Proof. This follows immediately from the valence formula for Γ0(N) (see e.g. Theorem 4.1 in appendix
I of [HBJ94]), because the left hand side is the index of Γ0(N) in SL2(Z), 2

ω(N) is the number of cusps
of Γ0(N) and the width of the cusp 1/c is c′. �

This can only be satisfied if k is at least −12 and ω(N) is at most 3. For fixed k and ω(N), the level
N is then bounded by the values in the following table (with “-” meaning that the set of possible N is
empty).

Table 2. Bound on N depending on k and ω(N)

k

−1 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11 −12

ω(N)

0 1 1 1 1 1 1 1 1 1 1 1 1

1 23 11 7 5 3 3 2 2 - - - -

2 35 15 6 6 - - - - - - - -

3 42 - - - - - - - - - - -

Proof of Theorem 1.1. Suppose Ψ is a nonconstant reflective automorphic form for Γ(L). By Theorem
4.2, we can assume that Ψ is the theta lift of a modular form F on D = L′/L, which must be reflective by
Proposition 4.3. Note that the weight of Ψ is nonzero because Ψ is not constant. Therefore [F0](0) 6= 0
and hence F0 6= 0. We can therefore find a weakly holomorphic modular form f 6= 0 of weight k = 1−n/2
and character χD for Γ0(N) such that the symmetrization (4.2) of F is FΓ0(N),f,0 and apply Lemmas
4.4 and 4.5. This shows that k and N are bounded as above. In particular, there are only finitely many
possibilities for n and N . The result follows because there are only finitely many lattices of a fixed rank
n+ 2 and level N . �

5. Fourier expansions of newforms

Let N be a squarefree positive integer, k any integer and χ a Dirichlet character of modulus N . For
a divisor c | N we let c′ = N/c and write χc and χc′ for the unique characters of modulus c and c′ such
that χ = χc · χc′ . Suppose

g(τ) =

∞
∑

n=1

anq
n

is a newform, i.e. a normalized eigenform for all Hecke operators, of weight k and character χ for Γ0(N).
For each divisor c | N we want to compute the Fourier expansion of g|kMc at ∞, where Mc is as in

Section 3. This expansion will be an expansion in powers of q1/c
′

because the cusp 1/c of Γ0(N) has
width tc = c′.

To compute these Fourier expansions we choose integers λ1 and λ2 such that

Wc′ =

(

λ1c
′ λ2

−N c′

)

has determinant c′. By Atkin-Lehner theory g|kWc′ is a newform of weight k for Γ0(N) but with character
χ. Its Fourier expansion at ∞ can be calculated with the following proposition.

Proposition 5.1 (see [Asa76], Section 1). Let N be squarefree and let g be a newform of weight k and
character χ for Γ0(N). Let c | N and c′ = N/c. Then the Fourier expansion of g|kWc′ is given by

g|kWc′ = λ

∞
∑

n=1

a(c
′)

n qn
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where










a
(c′)
n = χc′(n)an if (n, c′) = 1,

a
(c′)
n = χc(n)an if (n, c) = 1,

a
(c′)
nm = a

(c′)
n a

(c′)
m if (n,m) = 1,

and

λ = χc′(c)χc(c
′)
∏

p|c′

χp(c
′/p)λp,

with

λp =

{

G(χp)q
−k/2ap if χp is primitive,

−q1−k/2ap if χp is principal.

Here G(χp) =
∑p−1

h=1 χp(h)e(h/p) is the usual Gauss sum.

The Fourier expansions of g|kMc and g|kWc′ are related as follows.

Proposition 5.2. Let g be a newform of weight k and character χ for Γ0(N) with N squarefree. Then

g|kMc(τ) = χc′(−1)χ−1
c (c′)c′−k/2g|kWc′(τ/c

′).

Proof. Let

A =

(

c′ + bc λ1b − λ2

N + cd λ1d− λ2c

)

.

Then A ∈ Γ0(N) and

Mc =
1

c′
AWc′

(

1 0

0 c′

)

.

This implies that

g|kMc(τ) = χ(λ1d− λ2c)c
′−k/2g|kWc′(τ/c

′).

But

χ(λ1d− λ2c) = χc′(−λ2c)χc(λ1d)
since c′|d. From det(Wc′) = c′ we see that λ1c

′ + λ2c = 1, so that λ1 = c′−1 mod c and λ2 = c−1

mod c′. Together with d = 1 mod c this implies that

χ(λ1d− λ2c) = χc′(−1)χ−1
c (c′)

which completes the proof. �

Next we suppose that g is a newform of some smaller level M | N and character χ of modulus M . We
have just seen how to compute the Fourier expansions of g|kMc for c |M . For later use we also want to
compute the Fourier expansions of g|kMc for c | N , as well as those of h|kMc where

h(τ) = g|k
(

N/M 0

0 1

)

(τ) = (N/M)−k/2g(Nτ/M),

which is also a cusp form of level N and character χ.

Proposition 5.3. Let N be squarefree and let g be a newform of weight k and character χ for Γ0(M)
for some M | N . Let c | N , define m = (c,M) and choose a matrix

M̃m =

(

1 x

m y

)

∈ SL2(Z)

with y = 0 mod M/m. Then

g|kMc = χM/m(c)χ−1
M/m(m)g|kM̃m

Proof. Note that

Mc =

(

1 b

c d

)

=

(

y − bm −x+ b

cy − dm −cx+ d

)(

1 x

m y

)

and that the first matrix on the right hand side is in Γ0(M). Therefore

g|kMc = χ(−cx+ d)g|kM̃m.
9



To compute χ(−cx+ d) we decompose χ as χm · χM/m and obtain

χ(−cx+ d) = χM/m(−cx)
where we have also used that m | c, d = 1 mod m and (M/m) | d. From y − mx = 1 and y = 0
mod M/m we infer that mx = −1 mod M/m. Hence

χ(−cx+ d) = χM/m(−cx) = χM/m(c)χ−1
M/m(m).

�

Proposition 5.4. Let N,M, c,m and g be as in the previous proposition. Let

h(τ) = g|k
(

N/M 0

0 1

)

(τ)

and let r1 = (c,N/M) and r2 = (c′, N/M). Choose a matrix

M̃m =

(

1 x

m y

)

∈ SL2(Z)

with y = 0 mod M/m. Then

h|kMc(τ) = χ−1
m (r2)(N/M)−k/2g|kM̃m(r1τ/r2).

Proof. Note that
(

N/M 0

0 1

)

Mc =

(

N/M 0

0 1

)(

1 b

c d

)

=

(

yr2 − bmr1 br1 − xr2

my −md/r2 d/r2 −mx

)(

1 x

m y

)(

r1 0

0 r2

)

and that the first matrix of the last line is in Γ0(M). Therefore

h|kMc(τ) = χ(d/r2 −mx)(N/M)−k/2g|kM̃m(r1τ/r2).

It remains to compute χ(d/r2 −mx). But this is

χ(d/r2 −mx) = χm(d/r2)χM/m(−mx).
Moreover, χm(d) = 1 because d = 1 mod c and mx = y − 1, so χM/m(−mx) = 1 which completes the
proof. �

6. Eta quotients

The Dedekind eta function is the holomorphic function on the upper half-plane defined by

η(τ) = q1/24
∏

n>0

(1− qn).

It transforms as follows.

Proposition 6.1 ([Rad73], p.163). Let M =
(

a b
c d

)

∈ SL2(Z) with c > 0. Then

η(Mτ) = ε(M)
√
cτ + dη(τ)

where

ε(M) =

{

(

d
c

)

e((−3c+ bd(1− c2) + c(a+ d))/24) if c is odd,
(

c
d

)

e((3d− 3 + ac(1− d2) + d(b − c))/24) if c is even.

Next we let ηk(τ) = η(kτ) for a positive integer k.

Proposition 6.2 ([Sch09], Proposition 6.2). Let M =
(

a b
c d

)

∈ SL2(Z) with c > 0. Let r, s, t ∈ Z with
r, t > 0 and

rt = k, r | c, k | (dr − cs).

Then

ηk(Mτ) = ε

((

at br − as

c/r (dr − cs)/k

))

1√
t

√
cτ + dη

(

rτ + s

t

)

.

10



Proposition 6.3 ([DHS15], Proposition 5.1). Let N be a positive integer. Take integers rδ for δ | N
such that N

24

∑

δ|N δrδ and N
24

∑

δ|N rδ/δ are integers and
∑

δ|N rδ is even. Then the eta quotient

∏

δ|N

η(δτ)rδ

is a weakly holomorphic modular form for Γ1(N) of weight k =
∑

δ|N rδ/2 and character

χ

((

a b

c d

))

= e





b

24

∑

δ|N

δrδ



 .

Proposition 6.4. Suppose N is squarefree. Then the eta quotient from the last proposition is a cusp
form if and only if

∑

δ|N

(δ, c)

(δ, c′)
rδ > 0

for all c | N .

Proof. Let a/c ∈ Q∪∞ be a cusp and let c′ = N/(N, c). We can suppose that c > 0, because every cusp
of Γ1(N) is equivalent to one with c > 0. We choose b and d such that the matrix Ma/c =

(

a b
c d

)

is in
SL2(Z) and c

′ | d. We want to apply 6.2 to compute ηδ(Ma/cτ) and note that we can choose r = (c, δ),
t = (c′, δ) and s = 0. Therefore

ηδ(Ma/cτ) = λ
√
cτ + dη

(

(δ, c)

(δ, c′)
τ

)

for some nonzero complex number λ. It follows that the smallest power of q occuring in the Fourier
expansion of

∏

δ|N

η(δτ)rδ |kMa/c

is
1

24

∑

δ|N

(δ, c)

(δ, c′)
rδ,

so that the eta quotient vanishes at the cusp a/c if and only if the sum is positive. Since (δ, c) and (δ, c′)
only depend on (c,N) it suffices to consider those c that divide N . �

7. Strongly reflective automorphic forms of singular weight

Theorem 1.1 states that there are only finitely many even lattices L of squarefree level N that split
II1,1⊕II1,1(N) and carry a nonconstant reflective automorphic form for the discriminant kernel Γ(L) and
we have found bounds on the rank n+2 and the level N of L in Section 4. In this section we examine the
remaining cases to find all strongly reflective automorphic forms of singular weight (n− 2)/2 for Γ(L).

In the following F will always be a strongly reflective modular form on an even lattice L of squarefree
level N that splits II1,1⊕ II1,1(N), as the study of strongly reflective automorphic forms for Γ(L) can be
reduced to the study of such F by Theorem 4.2 and Proposition 4.3.

Given F and a divisor d of N we let

Md = {γ ∈ D : Fγ = q−1/d +O(1)},
and cd = |Md|. Note that the elements in Md all have order d and norm 1/d mod 1 by Proposition 4.3.
These numbers cd have to satisfy certain conditions, which we will now derive.

A. The numbers cd are obviously integers and satisfy 0 ≤ cd ≤ N(Dd, 1). Moreover, since − Id =
S2 ∈ SL2(Z) acts in the Weil representation by sending eγ ∈ D to e(sign(D)/4)e−γ , the identity

Fγ(τ) = Fγ(− Id τ) = (−1)1−n/2e(sign(D)/4)F−γ(τ) = F−γ(τ)

holds. Consequently all cd with d > 2 are even integers.
B. We let

G =
1

|Aut(D)|
∑

σ∈Aut(D)

σ(F )
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be the symmetrization of F . Then G is semi-reflective and symmetric. Let γ ∈ D have order d
and norm 1/d mod 1. Then

Gγ = c̃dq
−1/d +O(1)

where c̃d = cd/N(Dd, 1). Since G is symmetric, there exists a weakly holomorphic modular form
f of weight 1 − n/2 and character χD for Γ0(N) such that G = FΓ0(N),f,0 (see Corollary 5.5 in
[Sch15]).

We have seen in the proof of Lemma 4.4 that f |1−n/2Md = O(q−1/d′) for d | N . We let ad be

the coefficient of f |1−n/2Md at q−1/d′ . From the formula

Gγ =
∑

l|d′

ξl

√

|Dl|
√

|D|
l′gl′,jγ,l′

for the Γ0(N)-lift (see Section 3), we find that

c̃d = ξd′

√

|Dd′ |
√

|D|
dad′

or equivalently

ad = ξ−1
d

√

|D|
√

|Dd|
cd′

d′ ·N(Dd′ , 1)
.

Now let g be a cusp form of weight k = 1 + n/2 for Γ0(N) with character χD. Then f · g is a
weakly holomorphic modular form of weight 2 and trivial character for Γ0(N), so

p =
∑

M∈Γ0(N)\ SL2(Z)

(f · g)|2M

is a weakly holomorphic modular form of weight 2 for SL2(Z). Then p can be identified with
a meromorphic differential on the modular curve X(1). Since p is weakly holomorphic, this
differential is holomorphic at all points except ∞. By the residue theorem, its residue at ∞ must
vanish. But the residue at ∞ is (up to a nonzero constant) exactly the constant term in the
Fourier expansion of the modular form p at ∞, which is therefore 0. Let P be the set of cusps
for Γ0(N). Then

p =
∑

M∈Γ0(N)\ SL2(Z)

(f · g)|2M =
∑

s∈P

∑

M∈Γ0(N)\ SL2(Z)
M∞=s

(f · g)|2M.

Note that the cusps of Γ0(N) are of the form 1/c for c | N and that a set of representatives for
the cosets of Γ0(N) in SL2(Z) sending ∞ to 1/c is given by McT

j where j = 0, . . . , tc − 1 and
tc = N/(N, c2) (which is equal to N/c = c′ since N is squarefree) is the width of 1/c. Therefore

p =
∑

c|N

tc−1
∑

j=0

(f · g)|2McT
j

To obtain the constant Fourier coefficient of p we must therefore add the constant Fourier coef-
ficients of the functions (f · g)|2McT

j. But the constant coefficient of (f · g)|2McT
j is equal to

that of (f · g)|2Mc for all j, so the constant coefficient of p is given by
∑

c|N

tc · [(f · g)|2Mc](0) =
∑

c|N

c′
∑

α∈ 1

c′
Z

α>0

[f |1−n/2Mc](−α)[g|1+n/2Mc](α)

=
∑

c|N

c′ · [f |1−n/2Mc](−1/c′)[g|1+n/2Mc](1/c
′)

where in the last step we have used that f |1−n/2Mc = O(q−1/c′). Letting bc be the coefficient of

g|1+n/2Mc at q
1/c′ , we have thus shown that

0 =
∑

d|N

d′adbd =
∑

d|N

ξ−1
d

√

|D|
√

|Dd|
cd′

·N(Dd′ , 1)
bd.

We have described how to compute the coefficients bd for newforms and cusp forms that arise
from newforms of lower levels in Section 5. One can always find a basis consisting of such cusp
forms, so we can in fact compute all conditions coming from cusp forms.
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C. Another condition arises from a vector-valued Eisenstein series and has been described in Theo-
rem 11.1 in [Sch06]. In contrast to the other two conditions it uses that [F0](0) = n− 2, which
follows from Ψ having singular weight. In [Sch06] F is required to be symmetric, but this con-
dition is not necessary if one replaces cdNd by cd (note that these are two different cd, the first
is the one from [Sch06], which in our notation would be c̃d, while the second one is as defined
above). With this adjustment, Theorem 11.1 from [Sch06] states that

k

k − 2

1

Bk,ψ

L(k, ψ)

L(k, χ)

mk

Nk

∑

cd|N

εc,dcd

√

mc|Dc|
√

m|D|
Nk

ckdk−1
= 1 (7.1)

where we use the following notation:

k = 1 + n/2

χ = χD

m is the conductor of χ

ψ is the primitive character of modulus m that induces χ

Bk,ψ is the generalized Bernoulli number

L(k, ·) is the Dirichlet L-function of the character in the second

argument evaluated at k

mc = (m, c)

εc,d = ψc(N
2/(cdmc))ψc′(−c)

ψc(2)

ψ(2)

εc
ε
bc

ψc, ψc′ are the unique characters of modulus c and c′ such that ψ = ψcψc′

εc =
∏

p|c/mc

ǫp

(−1

p

)np/2
∏

p|mc

ǫp

(

mc/p

p

)(−1

p

)(np+1)/2

ε = εN

bc =
∏

p|c/mc

(−1)

The following proposition can be proved by computing the conditions A, B and C for the finitely many
possible lattices from Table 2.

Proposition 7.1. Let L be an even lattice of squarefree level N and signature (n, 2), n ≥ 4 such that L
splits II1,1 ⊕ II1,1(N) and F a strongly reflective modular form on D = L′/L with [F0](0) = n− 2. If F
is symmetric, then it is of the form F = FΓ0(N),f,0 for one of the functions f from Table 1.

Proof. We give one example, namely the case where n = 12 and N = 3. In this case n3 must be odd by
the formula for the signature of the Jordan components, so χ = χD =

(

·
3

)

. To compute the conditions
B we observe that the space of cusp forms of weight k = 1 + n/2 = 7 and character χ for Γ0(3) has
dimension 1 and is spanned by a newform g with Fourier expansion

g(τ) = q − 27q3 + 64q4 +O(q6).

There are two classes of cusps for Γ0(3), namely 1/c for c = 1, 3. We let

M1 =

(

1 2

1 3

)

and M3 =

(

1 0

3 1

)

.

Then M3 ∈ Γ0(3) and

g|7M3(τ) = g(τ) = q − 27q3 + 64q4 +O(q6),

so the coefficient b3 = [g|7M3](1) = 1. Using Proposition 5.2 we find that

g|7M1(τ) = χ3(−1)χ−1
1 (3) · 3−7/2g|7W3(τ/3)

= −3−7/2g|7W3(τ/3).

By Proposition 5.1,

g|7W3(τ) = λ

∞
∑

n=1

a(3)n qn
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with

λ = χ3(1)χ1(3)χ3(1)G(χ3)3
−7/2a3

=
√
3 · i · 3−7/2 · (−27)

= −i.
It follows that

g|7M1(τ) = 3−7/2 · i
∞
∑

n=1

a(3)n qn/3

and b1 = [g|7M1](1/3) = 3−7/2 · i · a(3)1 = 3−7/2i.
Therefore condition B states that

ξ−1
1

c3 ·
√

|D|
N(D3, 1)

· 3−7/2 · i+ ξ−1
3 c1 = 0,

where we have used that N(D1, 1) = 1. Note that ξ3 = 1 and that

ξ1 = e(sign(D)/8)

(−1

|D|

)

= e((n− 2)/8) · (−1) = −e(1/4) = −i,
so

i · c3 ·
√

|D|
N(D3, 1)

· 3−7/2 · i+ c1 = 0,

or equivalently

c3 =
37/2 · c1 ·N(D3, 1)

√

|D|
.

To compute condition C we note that χ = ψ, so m = 3 and Bk,ψ = 98/3. Then (7.1) simplifies to

7

5
· 3

98

(

ε1,1c1
1

√

3|D|
· 37 + ε1,3c3

1
√

3|D|
· 3 + ε3,1c1

)

= 1.

To compute the signs εc,d we note that
(

−1
3

)(n3+1)/2
= ǫ3 by the signature formula for the Jordan

components. A quick calculation then gives

ε1,1 = ε1,3 = ε3,1 = 1,

and hence
(

1 +
36
√
3

√

|D|

)

c1 +

√
3

√

|D|
c3 =

70

3
.

By condition A the number c1 must be 0 or 1. If it is 0, then conditions B and C obviously have no
common solution. Therefore c1 = 1, so

c3 =
37/2 ·N(D3, 1)

√

|D|
= 37/2

(

√

|D|
3

+

√
3

3

)

by condition B. Inserting this into condition C gives

28 + 756

√
3

√

|D|
=

70

3
,

which has no real solution for |D|. This completes the proof for this case. The other cases are similar. �

The result for the non-symmetric case is the following.

Proposition 7.2. Let L be an even lattice of squarefree level N and signature (n, 2), n ≥ 4 such that L
splits II1,1 ⊕ II1,1(N) and F a strongly reflective modular form on D = L′/L with [F0](0) = n− 2. If F
is not symmetric, then L and the numbers cd are one of the following.

n N L

10 2

II10,2(2
+4
II ) c1 = 0, c2 = 2

II10,2(2
+6
II ) c1 = 0, c2 = 4

II10,2(2
+8
II ) c1 = 0, c2 = 8

II10,2(2
+10
II ) c1 = 0, c2 = 16
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8 3
II8,2(3

+5) c1 = 0, c3 = 18

II8,2(3
−7) c1 = 0, c3 = 54

6

3 II6,2(3
−4) c1 = 0, c3 = 4

5 II6,2(5
+5) c1 = 0, c5 = 100

6

II6,2(2
−4
II 3+4) c1 = c2 = 0, c3 = 6, c6 = 60

II6,2(2
−4
II 3−6) c1 = c2 = 0, c3 = 18, c6 = 180

II6,2(2
+4
II 3−4) c1 = 0, c2 = 2, c3 = 0, c6 = 60

II6,2(2
+6
II 3−4) c1 = 0, c2 = 4, c3 = 0, c6 = 120

4 14 II4,2(2
+4
II 7−3) c1 = 0, c2 = 2, c7 = 0, c14 = 112

Proof. If N = 1 or N is prime, then this is part of Theorem 6.27 in [Sch17]. In the other cases conditions
A, B and C give the following list of possibilities:

n N L

8 6

II8,2(2
+4
II 3−3) c1 = 0, c2 = 3, c3 = 6, c6 = 36

II8,2(2
+6
II 3−3) c1 = 0, c2 = 7, c3 = 6, c6 = 84

II8,2(2
+4
II 3−7) c1 = 1, c2 = 3, c3 = 0, c6 = 2268

II8,2(2
+6
II 3−7) c1 = 1, c2 = 7, c3 = 0, c6 = 5292

6

6

II6,2(2
−4
II 3+4)

c1 = c2 = 0, c3 = 6, c6 = 60

c1 = 0, c2 = 1, c3 = 6, c6 = 36

c1 = 0, c2 = 2, c3 = 6, c6 = 12

II6,2(2
−4
II 3−6)

c1 = c2 = 0, c3 = 18, c6 = 180

c1 = 0, c2 = 2, c3 = 24, c6 = 84

II6,2(2
+4
II 3−4)

c1 = 0, c2 = 2, c3 = 0, c6 = 60

c1 = 0, c2 = c3 = 2, c6 = 48

c1 = 0, c2 = 2, c3 = 4, c6 = 36

c1 = 0, c2 = 2, c3 = 6, c6 = 24

c1 = 0, c2 = 2, c3 = 8, c6 = 12

c1 = 0, c2 = 2, c3 = 10, c6 = 0

II6,2(2
+6
II 3−4)

c1 = 0, c2 = 4, c3 = 0, c6 = 120

c1 = 0, c2 = 5, c3 = 6, c6 = 66

c1 = 0, c2 = 6, c3 = 12, c6 = 12

10

II6,2(2
+4
II 5+3) c1 = 0, c2 = 3, c5 = 20, c10 = 90

II6,2(2
+4
II 5+5)

c1 = 0, c2 = 5, c5 = 200, c10 = 650

c1 = 1, c2 = 3, c5 = 0, c10 = 1950

4

6 II4,2(2
−4
II 3−3)

c1 = 0, c2 = 1, c3 = c6 = 0

c1 = c2 = 0 = c3 = 0, c6 = 12

c1 = c2 = 0, c3 = 2, c6 = 8

c1 = c2 = 0, c3 = c6 = 4

14 II4,2(2
+4
II 7−3) c1 = 0, c2 = 2, c7 = 0, c14 = 112

15 II4,2(3
+35−3) c1 = 0, c3 = 4, c5 = 10, c15 = 0

30

II4,2(2
+4
II 3−35+3) c1 = 0, c2 = 3, c3 = 6, c5 = 20, c6 = 36, c10 = 90, c15 = 0, c30 = 360

II4,2(2
+4
II 3+35−3)

c1 = c2 = 1, c3 = 8, c5 = 20, c6 = 30, c10 = 100, c15 = 120, c30 = 360

c1 = 1, c2 = 2, c3 = 4, c5 = 10, c6 = 24, c10 = 80, c15 = 120, c30 = 720

c1 = 1, c2 = 3, c3 = c5 = 0, c6 = 18, c10 = 60, c15 = 120, c30 = 1080
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For these remaining cases we proceed as follows. Let γ ∈ D. Then Fγ is a weakly holomorphic modular
form of weight 1 − n/2 and character χγ for Γ1(N). If h is a cusp form of weight k = 1 + n/2 and
character χγ for Γ1(N), then

p =
∑

M∈Γ1(N)\ SL2(Z)

(Fγ |1−n/2M)(h|1+n/2M)

is a weakly holomorphic modular form of weight 2 for SL2(Z), so the constant term in its Fourier
expansion at ∞ must vanish. We call p the pairing of Fγ with h. Note that the Fourier expansion of
Fγ |1−n/2M can be computed using (3.1). For h we will choose eta quotients, so that h|1+n/2M can be
computed using Propositions 6.1 and 6.2. We can therefore write the constant coefficient [p](0) of p in
terms of the Fourier coefficients of F at negative powers of q. Since [p](0) = 0, this gives conditions on
these coefficients. To simplify the calculations we note that

p =
∑

s∈P

∑

M∈Γ1(N)\ SL2(Z)
M∞=s

(Fγ |1−n/2M)(h|1+n/2M)

where P is the set of cusps for Γ1(N) and that a set of representatives for the cosets of Γ1(N) in SL2(Z)
mapping ∞ to a cusp a/c is given byMa/cT

j whereMa/c is any matrix in SL2(Z) mapping ∞ to a/c and

j = 0, . . . , tc − 1 where tc = N/(c,N) is the width of a/c. Note that we can suppose that Ma/c =
(

a b
c d

)

satisfies d = 0 mod tc. Therefore

p =
∑

s∈P

tc · (Fγ |1−n/2Ma/c)(h|1+n/2Ma/c),

so we only need to compute one Fourier expansion of Fγ and h for each cusp of Γ1(N).
We give a detailed example of this for n = 8 and N = 6, while we only sketch the proof for the

remaining cases, as they are very similar. If γ ∈ D, then we let adγ = |Md ∩ γ⊥| and

δγ,Md
=

{

1 if γ ∈Md,

0 otherwise.

If γ has order d, then we let Nd,e
γ be the number of elements in Me that project onto γ under the natural

projection D = Dd ⊕Dd → Dd.

• If n = 8 and N = 6 then we let β ∈ D be an element of order 2 and norm 1/2 mod 1 and
let h1(τ) = η(τ)6η(2τ)3η(3τ)2η(6τ)−1. Then h1 is a cusp form of weight 1 + n/2 = 5 and
character χβ = χβ by Propositions 6.3 and 6.4. The group Γ1(6) has four classes of cusps,
namely s = 1/6, 1/3, 1/2 and 1/1. We choose the matrices Ma/c as follows:

M1/6 =

(

1 0

6 1

)

M1/3 =

(

1 1

3 4

)

M1/2 =

(

1 1

2 3

)

M1/2 =

(

1 5

1 6

)

Then (3.1) gives

Fβ |−3M1/6 = Fβ = δβ,M2
q−1/2 +O(q1/2),

Fβ |−3M1/3 = ξ(M1/3)

√

|D3|
√

|D|
∑

µ∈D3

e(−βµ)e(−β2/2)Fβ+µ

= −ǫ2
1

√

|D2|
∑

µ∈D2

e(βµ)Fµ

= −ǫ2
1

√

|D2|

(

c1q
−1 +

(

a2β − (c2 − a2β)
)

q−1/2
)

+O(1)

= −ǫ2
1

√

|D2|

(

c1q
−1 +

(

2a2β − c2
)

q−1/2
)

+O(1),

Fβ |−3M1/2 = ξ(M1/2)

√

|D2|
√

|D|
∑

µ∈D2

e(−βµ)e(−β2/2)Fβ+µ

= −iǫ2
1

√

|D3|
∑

µ∈β+D3

Fµ
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= −iǫ2
1

√

|D3|
(

δβ,M2
q−1/2 +N2,6

β q−1/6
)

+O(q1/6)

Fβ |−3M1/1 = ξ(M1/1)

√

|D1|
√

|D|
∑

µ∈D1

e(−βµ)e(−β2/2)Fβ+µ

= i
1

√

|D|
∑

µ∈D

e(βµ)Fµ

= i
1

√

|D|

(

c1q
−1 + (2a2β − c2)q

1/2 + c3q
−1/3 + (2a6β − c6)q

−1/6
)

+O(1).

The Fourier expansions of h1 can be computed using Propositions 6.1 and 6.2 and are given by

h1|5M1/6 = h1 = η(τ)6η(2τ)3η(3τ)2η(6τ)−1 = q1/2 +O(q3/2),

h1|5M1/3 = −1

2
η(τ)6η(τ/2)3η(3τ)2η(3τ/2)−1 = −1

2
q1/2 +

3

2
q +O(q3/2),

h1|5M1/2 = −i
√
3

3
η(τ)6η(2τ)3η(τ/3)2η(2τ/3)−1 = −i

√
3

3

(

q1/2 − 2q5/6
)

+O(q3/2),

h1|5M1/1 = i

√
3

6
η(τ)6η(τ/2)3η(τ/3)2η(τ/6)−1 = i

√
3

6

(

q1/3 + q1/2 − 2q5/6 − 3q
)

+O(q4/3).

Therefore the constant coefficient of the pairing of Fβ with h1 is given by

0 = δβ,M2
+ ǫ2

1
√

|D2|
(

−3c1 + 2a2β − c2
)

− ǫ2

√
3

√

|D3|
δβ,M2

−
√
3

√

|D|
(

−3c1 + 2a2β − c2 + c3
)

which is equivalent to

a2β =
3

2
c1 +

1

2
c2 − ǫ2

√

|D2|
2

δβ,M2
− 1

2

(

1− ǫ2

√

|D3|√
3

)−1

c3. (7.2)

If we choose β ∈ M2, then we obtain a2β = 1 for all remaining lattices. The function h2(τ) =

η(τ)7η(2τ)−2η(3τ)7η(6τ)−2 is also a cusp form of weight 5 and character χβ for Γ1(6). The
pairing of Fβ with h2 can be computed similarly and one obtains the following condition.

0 =δβ,M2
− ǫ2

8
√

|D2|
c1 + ǫ2

1

3
√
3
√

|D3|
N2,6
β − ǫ2

7

3
√
3
√

|D3|
δβ,M2

− 16

3
√
3
√

|D|
(

2a2β − c2
)

− 8√
3
√

|D|
c1 −

8

3
√
3
√

|D|
c3,

which gives

N2,6
β =

(

7− ǫ23
√
3
√

|D3|
)

δβ,M2
+

24
√

|D2|

(

ǫ2 +
√
3
√

|D3|
)

c1

+ ǫ2
8

√

|D2|
c3 + ǫ2

16
√

|D2|
(

2a2β − c2
)

.

Letting β ∈M2 and inserting a2β = 1 and the other values gives a negative value for N2,6
β in the

cases where n3 = 3, which is of course impossible. For L1 = II8,2(2
+4
II 3−7) we obtain N2,6

β = 252

and for L2 = II8,2(2
+6
II 3−7) we obtain N2,6

β = 0. Next we let α ∈ D be an element of order 6 and

norm 1/6 mod 1 and let h3(τ) = η(τ)5η(2τ)4η(3τ)5η(6τ)−4. Then h3 is a cusp form of weight
5 and character χα for Γ1(6) and we can compute the pairing of Fα with h3 as above and obtain

0 = δα,M6
+ ǫ2

√
3

√

|D3|
δ3α,M2

− 48
√
3

√

|D|
c1 −

8
√
3

√

|D|
(2a2α − c2)−

2
√
3

√

|D|

(

3

2
a3α − c3

)

. (7.3)

For both L1 and L2 there exists an α ∈M6 with 3α /∈M2, because
∑

β∈M2

N2,6
β < c6.
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For such an α we can compute a2α using (7.2) (note that a2α = a23α) and obtain

a2α =
3 + c2

2
.

Inserting this and the other values into (7.3) shows that

0 = 1− 72
√
3

√

|D|
,

i.e. |D| = 26 · 35, which is not the case. This completes the proof for n = 8 and N = 6.
• If n = 6 and N = 6, then we can compute the pairing of Fβ for β ∈ D of order 2 and norm 1/2
mod 1 with h1(τ) = η(τ)9η(2τ)−3η(3τ)η(6τ) and obtain

0 = δβ,M2
+ ǫ2

12
√

|D2|
c1 + ǫ2

4
√

|D2|
(

2a2β − c2
)

− ǫ2
1

√

|D3|
N2,6
β + ǫ2

1
√

|D3|
δβ,M2

+
12
√

|D|
c1 −

4
√

|D|
(

2a2β − c2
)

+
4

√

|D|
c3

=

(

1 + ǫ2
1

√

|D3|

)(

δβ,M2
+ ǫ2

12
√

|D2|
c1 + ǫ2

4
√

|D2|
(

2a2β − c2
)

)

(7.4)

− ǫ2
1

√

|D3|
N2,6
β − 4

√

|D|
c3.

We describe how this can be used to show that the case L = II6,2(2
−4
II 3+4) with c2 = 1 cannot

occur. Let β /∈M2. Then a
2
β is 0 or 1. If it is 0, then N2,6

β = −2, which is impossible, so a2β = 1.

In this case N2,6
β = 14. There are N(D2, 1) − c2 = 9 such elements β. Therefore c6 ≥ 9 · 14,

which is a contradiction. With a similar argument one can eliminate the other cases, except
those stated in the proposition and the case L = II6,2(2

+6
II 3−4) with c2 = 5. In this case we let

β ∈M2. Then (7.4) gives

N2,6
β = 10a2β − 18.

We then pair Fβ with h2 = η(τ)4η(2τ)−2η(6τ)6 which gives

0 =ǫ2
1

√

|D2|
c1 + ǫ2

1

2
√

|D2|
(

2a2β − c2
)

− ǫ2
1

9
√

|D3|
N2,6
β +

1

18
√

|D|
(

2a6β − c6
)

+
1

√

|D|
c1 +

1

2
√

|D|
(

2a2β − c2
)

− 1

3
√

|D|
c3

=

(

ǫ2 +
1

√

|D3|

)(

1
√

|D2|
c1 +

1

2
√

|D2|
(

2a2β − c2
)

)

− ǫ2
1

9
√

|D3|
N2,6
β (7.5)

+
1

18
√

|D|
(

2a6β − c6
)

− 1

3
√

|D|
c3,

In our case this simplifies to

180a2β − 16N2,6
β + 2a6β = 552.

Using that N2,6
β = 10a2β − 18 this gives

10a2β + a6β = 132,

which is impossible because a2β ≤ c2 = 5 and a6β ≤ c6 = 66.

• For n = 6 and N = 10 we let β ∈ D have order 2 and norm 1/2 mod 1 and we compute the
pairing of Fβ with h(τ) = η(τ)7η(5τ). This gives

0 = 2δβ,M2
− ǫ2

4
√

|D2|
(2a2β − c2)− ǫ2

2
√
5

√

|D5|
δβ,M2

+
4
√
5

√

|D|
(2a2β − c2)

which gives

a2β = ǫ2

√

|D2|
4

δβ,M2
+

1

2
c2.

In the cases we are considering c2 6= N(D2, 1), so we can choose β /∈M2. Then a
2
β = c2/2, so c2

must be even, giving a contradiction.
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• For n = 4 and N = 6 the only possible lattice is L = II4,2(2
−4
II 3−3). We let β ∈ D have order 2

and norm 1/2 mod 1 and pair Fβ with h1(τ) = η(τ)3η(3τ)3 to obtain

0 =
4

3
δβ,M2

+
4

3
a2β − 2

3
c2 −

1

9
N2,6
β − 1

9
a6β +

1

18
c6. (7.6)

If c2 = 1, then c6 = 0 and therefore a6β and N2,6
β are also 0. Then

a2β =
1

2
− δβ,M2

/∈ Z

which is not possible. Therefore c2 = δβ,M2
= a2β = 0.

– If c3 = c6 = 4, then

N2,6
β =

1

2
c6 − a6β = 2− a6β ,

by (7.6). Then N2,6
β ≤ 1 because N2,6

β ≤ a6β . But N2,6
β must be even because if α ∈ M6

projects onto β, then so does −α, which must also be in M6 because Fα = F−α. Therefore

N2,6
β = 0. Since this holds for any β ∈ D of order 2 and norm 1/2 mod 1, it follows that

c6 = 0, which is a contradiction.
– If c3 = 2 and c6 = 8, then we let γ ∈ M3. Then M3 = {±γ}, so γ⊥ ∩M3 = ∅, i.e. a3γ = 0.

Computing the pairing of Fγ with h2(τ) = η(τ)2η(2τ)3η(3τ)2η(6τ)−1 yields

0 =
5

4
δγ,M3

− 5

8
a3γ +

5

24
c3 −

1

8
a6γ +

1

24
c6

= 2− 1

8
a6γ ,

i.e. a6γ = 16, which is impossible because a6γ cannot be larger than c6.
– If c3 = 0 and c6 = 12, then (7.6) gives

N2,6
β =

1

2
c6 − a6β = 6− a6β .

As N2,6
β ≤ a6β and even, it must be 0 or 2. It follows that there are six elements β1, . . . , β6 ∈

D of order 2 and norm 1/2 mod 1 with N2,6
βi

= 2 and a6βi
= 4. Hence, each of the βi is

orthogonal to itself and exactly one of the others. Next we let α ∈ D have order 6 and norm
1/6 mod 1. Computing the pairing of Fα with h3(τ) = η(τ)10η(2τ)−3η(3τ)−2η(6τ) gives

0 = δα,M6
+

3

2
N⊥

3α − 1− 2M⊥
4α +N3,6

4α

where N⊥
3α is the number of elements in M6 ∩ (4α)⊥ that project onto 3α under the natural

projection D = D2 ⊕ D3 → D2 and M⊥
4α is the number of elements in M6 ∩ (3α)⊥ that

project onto 4α under D = D2 ⊕D3 → D3.
Suppose there is an element δ ∈ D of order 3 and norm 2/3 mod 1 such that δ + β /∈ M6

for all β ∈ D of order 2 and norm 1/2 mod 1. Then we let α1 = δ + β1. Then 4α1 = δ, so

both δα1,M6
and N3,6

4α1
are 0. Then of course M⊥

4α1
must also be 0, so N⊥

3α1
= 2/3, which is

not an integer and therefore not possible.
There is therefore no such δ. Since there are N(D3, 2) = 12 = c6 elements of order 3 and
norm 2/3 mod 1 in D, it follows that for every element δ of order 3 and norm 2/3 mod 1
there is exactly one β ∈ D of order 2 and norm 1/2 mod 1 with β + δ ∈ M6. Now let

α ∈ M6. Then N3,6
4α = 1 as just explained, i.e. there is exactly one element in M6 which

projects onto 4α under D → D3. This element is of course α, which is orthogonal to 3α, so
M⊥

4α = 1. Then again N⊥
3α = 2/3, again giving a contradiction. This proves that this case

cannot occur.
• If n = 4 and N = 15, then L = II4,2(3

+35−5) and c3 = 4, so there exists a γ ∈ M3. Pairing Fγ
with h(τ) = η(3τ)η(5τ)7η(15τ)−2 gives

0 =
376

125
− 36

125
a3γ ,

which is a contradiction, because a3γ must be an integer.
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• For n = 4 and N = 30 we let β ∈ D have order 2 and norm 1/2 mod 1. Pairing Fβ with

h(τ) = η(τ)3η(2τ)−1η(5τ)2η(6τ)η(10τ)η(15τ)η(30τ)−1

gives

0 =

(

4− ǫ5
8
√
5

5
√

|D5|
+

4
√
15

5
√

|D15|

)

δβ,M2
−
(

8
√

|D2|
− ǫ5

8
√
3

√

|D6|
+ ǫ5

8
√
5

√

|D10|
+

24
√
15

5
√

|D|

)

c1

+
16

√
15

5
√

|D|
c3 −

4
√
15

5
√

|D15|
N2,6
β +

4
√
15

5
√

|D15|
N2,10
β −

(

ǫ5
8
√
5

5
√

|D10|
+

8
√
15

5
√

|D|

)

c5

+

(

8
√
15

5
√

|D|
− ǫ5

24
√
5

5
√

|D10|

)

(

2a2β − c2
)

− 8
√
15

5
√

|D|
(

2a6β − c6
)

Suppose L = II4,2(2
+4
II 3−35+3). Since c2 = 3 6= 0, we can let β ∈ M2. Then the condition

simplifies to

a2β =
33

4
+

1

8
N2,10
β − 1

8
N2,6
β − 1

8
a6β .

Note that N2,6
β is at most equal to the number of elements of order 3 and norm 2/3 mod 1 in

D, i.e. N2,6
β ≤ N(D3, 2) = 12 and a6β ≤ c6 = 36. Therefore a2β ≥ 3. Since a2β ≤ c2 = 3, it follows

that a2β = 3. Since this holds for any β ∈M2, the three elements in M2 are pairwise orthogonal.
However, one easily checks that it is not possible to choose three pairwise orthogonal elements
of order 2 and norm 1/2 mod 1 in 2+4

II . Therefore, this case cannot occur. A similar argument
also works in the other remaining cases.

�

Proposition 7.3. Let L be an even lattice of squarefree level N and signature (n, 2), n ≥ 4 such that L
splits II1,1 ⊕ II1,1(N) and F a strongly reflective modular form on D = L′/L with [F0](0) = n− 2. If F
is not symmetric, then there exists an isotropic subgroup H ⊂ D such that F is the lift of a symmetric
strongly reflective modular form FH for DH = H⊥/H with [(FH)0](0) = n− 2 on H.

Proof. We already know that L and the numbers cd are one of those from the previous proposition. For
prime level the claim follows from Theorem 6.27 in [Sch17], so we can assume that the level N is 6 or 14.

• Suppose the level is 6. If c2 > 0, then L = II6,2(2
+n2

II 3−4) for n2 = 4 or n2 = 6. Let β ∈ M2.

Using that c1 = c3 = 0 and c2 = 2n2/2−1, (7.4) gives

N2,6
β =

80

2n2/2
a2β − 10.

We then pair Fβ with h2(τ) = η(τ)4η(2τ)−2η(6τ)6. The resulting condition was already stated

in (7.5). Using that c6 = 30 · 2n2/2−1, this gives

N2,6
β =

90

2n2/2
a2β +

1

2n2/2
a6β − 30.

These two conditions together yield

N2,6
β = 150− 8

2n2/2
a6β ≥ 30

because a6β ≤ c6 = 30 · 2n2/2−1. As there are only N(D3, 2) = 30 elements of order 3 and norm

2/3 mod 1, it follows that N2,6
β = 30 and therefore a2β = c2 and a6β = c6, i.e. the elements in

M2 are pairwise orthogonal and

M6 =M2 +A2/3,

where A2/3 is the set of elements of order 3 and norm 2/3 mod 1 in D. Next, we let H be the
set of isotropic elements in D2 that are orthogonal to M2. Let β ∈M2 and µ ∈ H . Then β + µ
obviously has order 2 and norm 1/2 mod 1, but it is also inM2: Suppose it were not. Then (7.4)

gives N2,6
β+µ = 20, which is impossible becauseM6 =M2+A2/3. So β+µ ∈M2 and β+H ⊂M2.

But the other inclusion M2 ⊂ β+H is also true: Let β′ ∈M2. Then β
′ − β is isotropic (because

β′ and β are orthogonal) and in M⊥
2 (because β′ and β are). Hence M2 = β+H . We show that

H is a group: Let µ1, µ2 ∈ H and write µ1 = β1 − β and µ2 = β2 − β with β1, β2 ∈ H . Then
µ1−µ2 = β1−β2 is isotropic and orthogonal toM2 and hence in H . On DH = H⊥/H = 2+23−4
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there is a symmetric strongly reflective modular form FH with [(FH)0](0) = 4, which can be
lifted on H . Then the principal parts of the lift of FH and F coincide, so F must be the lift of
FH .

If c3 > 0, then L = II6,2(2
−4
II 3ǫ3n3) where ǫ3n3 = +4 or −6, c3 = 2 · 3n3/2−1 and c6 =

20 · 3n3/2−1. Let γ ∈M3. Pairing Fγ with η(τ)8 shows that

0 = δγ,M3
+ ǫ2

2
√

|D2|
δγ,M3

− ǫ2
3

√

|D3|

(

3

2
a3γ −

1

2
c3

)

− 6
√

|D|

(

3

2
a3γ −

1

2
c3

)

, (7.7)

which in this case yields a3γ = 0, i.e. no element in M3 is orthogonal to γ. Next we pair γ with

η(τ)−1η(2τ)9η(3τ)3η(6τ)−3. Then

0 =δγ,M3
− ǫ2

1

4
√

|D2|
δγ,M3

− ǫ2
9

√

|D3|
c1 +

9
√

|D|
c1 −

9

2
√

|D|
c2

− 9

4
√

|D|

(

3

2
a3γ −

1

2
c3

)

− 3

4
√

|D|

(

3

2
a6γ −

1

2
c6

)

,

which shows that in our case a6γ = c6, i.e. M3 ⊥M6. Next let δ ∈ D have order 3 and norm 2/3

mod 1. Pairing Fδ with η(τ)9η(2τ)−1η(3τ)−3η(6τ)3 shows that

0 =

(

ǫ2 −
1

√

|D2|

)(

18
√

|D3|
c1 +

3
√

|D3|

(

3

2
a3δ −

1

2
c3

)

)

− ǫ2
1

√

|D2|
N3,6
δ +

9
√

|D|
c2. (7.8)

If N3,6
δ 6= 0, then a3δ = c3 because M3 ⊥M6. In this case (7.8) gives N3,6

δ = 10. This proves that

there are c6/10 = c3 elements δ of order 3 and norm 2/3 mod 1 with N3,6
δ = 10, while N3,6

δ = 0

for all other δ. We let H be the set of isotropic elements in D3 ∩M⊥
3 . Let γ ∈ M3 and µ ∈ H .

Then γ + µ obviously has order 3 and norm 1/3 mod 1 and (γ + µ)⊥ ∩M3 = ∅. Applying (7.7)
to γ+µ shows that this is only possibly if γ+µ ∈M3. Now let γ1, γ2 ∈M3. Since these are not
orthogonal, exactly one of γ1+γ2 and γ1−γ2 is isotropic. By replacing γ2 with −γ2 if necessary,
we can assume that µ = γ1 − γ2 is isotropic. Pairing µ with η(τ)2η(2τ)2η(3τ)2η(6τ)2 gives

0 =ǫ2
1

√

|D3|
c1 − ǫ2

1

3
√

|D3|

(

1

2
a3µ − 1

2
c3

)

− 1
√

|D|
c1 +

1

2
√

|D2|
c2

+
1

3
√

|D|

(

3

2
a3µ − 1

2
c3

)

− 1

6
√

|D|

(

3

2
a6µ − 1

2
c6

)

,

which, using that µ ∈ M⊥
6 , gives a3µ = c3, i.e. µ ∈ M⊥

3 . This proves that µ ∈ H and that
M3 = ±γ +H for any γ ∈M3. Next we show that

M6 = ±δ +A1/2 +H

where δ is any element of order 3 and norm 2/3 mod 1 with N3,6
δ = 10 and A1/2 is the set of

elements of order 2 and norm 1/2 mod 1 in D. First note that since |A1/2| = N(D2, 1) = 10 and

|H | = c3 = 2 · 3n3/2−1 both sides have the same size. It therefore suffices to show that the right
hand side is contained in the left. We let S be the set of elements δ ∈ D of order 3 and norm
2/3 mod 1 with N3,6

δ = 10. Since |A1/2| = N3,6
δ , we only have to show that ±δ +H ⊂ S. Let

µ ∈ H . We have seen that M3 = ±γ +H for γ ∈ M3, so every element in H is the sum of two
elements in M3. Since M3 ⊥M6, this shows that H ⊂M⊥

6 , so in particular µ ∈M⊥
6 . Therefore

µδ = 0 mod 1 and ±δ+µ has norm 2/3 mod 1 for all δ ∈ S. By definition µ is also orthogonal

to M3, so that ±δ+ µ is orthogonal to M3. Then (7.8) gives N3,6
±δ+µ = 10, so ±δ+ µ ∈ S, which

is what we wanted to show. Finally we prove that H is a group: Let µ1, µ2 ∈ H . Then obviously
µ1 − µ2 ∈ M⊥

3 , so we only have to show that µ1 − µ2 is isotropic. Suppose it is not. Then it
has norm 1/3 mod 1 or 2/3 mod 1. By replacing µ2 with −µ2 if necessary, we can assume that
µ1 − µ2 has norm 2/3 mod 1. Then (7.8) shows that it is in S and therefore not in M⊥

6 , which
is impossible. Therefore µ1 − µ2 is isotropic and hence in H , and H is indeed a group. That F
must then be a lift of a symmetric strongly reflective form on DH = H⊥/H can be seen as in
the case with c2 > 0.

• If N = 14, then L = II4,2(2
+4
II 7−3). Let β ∈M2. Pairing Fβ with h1(τ) = η(τ)5η(7τ) gives

0 = 3− 6
1

√

|D2|
(2a2β − c2)− 3

√
7

√

|D7|
+ 6

√
7

√

|D|
(2a2β − c2),
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which in our case gives a2β = 2, i.e. the two elements in M2 are orthogonal. We can also pair Fβ
with h2(τ) = η(τ)−2η(2τ)7η(7τ)2η(14τ), which gives

0 =3− 3

4
√

|D2|
(

2a2β − c2
)

+
21

4
√

|D2|
c1 +

3
√
7

√

|D7|
− 3

√
7

4
√

|D|
(

2a14β − c14
)

− 3
√
7

4
√

|D|
c7 −

3
√
7

4
√

|D|
(

2a2β − c2
)

+
21

√
7

4
√

|D|
c1.

Inserting the known values gives a14β = 112 = c14, i.e. β is orthogonal to M14. Since this holds
for both β ∈ M2, we obtain M2 ⊥ M14. There are exactly 112 elements of order 14 and norm
1/14 mod 1 in D that are orthogonal to M2, namely those in M2 +A4/7, where A4/7 is the set
of elements of order 7 and norm 4/7 mod 1 in D. Let H = {0, β1 − β2}, where β1 and β2 are
the two elements in M2. Then M2 = β1+H and M14 = β1+H +A4/7. As in the previous cases
it then follows that F is the lift of the unique symmetric strongly reflective modular form FH
with [(FH)0](0) = 2 on DH = H⊥/H .

�

We can now prove Theorem 1.2.

Proof of Theorem 1.2. By 4.2, the function Ψ is the image of some strongly reflective modular form F
on D = L′/L. If F is symmetric, then the result follows from Proposition 7.1. If F is not symmetric,
then Proposition 7.3 shows that F is the lift of a symmetric strongly reflective form F ′ on some smaller
discriminant form DH = H⊥/H . In all cases DH can be realised as N ′/N for some sublattice N ⊂ L as
described after Theorem 4.1 and Ψ is therefore the theta lift of F ′. �
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