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Lower bounds and asymptotics
of real double Hurwitz numbers

Johannes Rau

April 19, 2022

We study the real counterpart of double Hurwitz numbers, called

real double Hurwitz numbers here. We establish a lower bound for

these numbers with respect to their dependence on the distribution

of branch points. We use it to prove, under certain conditions, ex-

istence of real Hurwitz covers as well as logarithmic equivalence

of real and classical Hurwitz numbers. The lower bound is based

on the “tropical” computation of real Hurwitz numbers in [MR15].

1 Introduction

Let HC
g (λ ,µ) denote the complex (i.e., usual) double Hurwitz numbers. They

count holomorphic maps ϕ from a compact Riemann surface C of genus g to

CP1 with r given simple branch points and two additional branch points of

ramification profile λ ,µ . Here, r = l(λ )+ l(µ)+2g−2.

A real structure ι for ϕ : C → CP1 is an anti-holomorphic involution on

C such that ϕ ◦ ι = conj ◦ϕ . The real double Hurwitz numbers HR
g (λ ,µ; p)

count tuples (ϕ, ι) of holomorphic maps as above together with a real struc-

ture. Here, we assume that the two special branch points are 0,∞ ∈ RP1, all
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branch points lie in RP1, and 0 ≤ p ≤ r denotes the number of simple branch

points on the positive half axis of RP1 \{0,∞}.

In this paper, we define numbers Zg(λ ,µ) such that

Zg(λ ,µ) ≤ HR
g (λ ,µ; p)≤ HC

g (λ ,µ)

and

Zg(λ ,µ)≡ HR
g (λ ,µ; p)≡ HC

g (λ ,µ) mod 2

for all 0 ≤ p ≤ r. The main results of this paper state that, under certain

conditions, these lower bounds are non-zero and have logarithmic asymptotic

growth equal to HC
g (λ ,µ) (see Proposition 5.2, Theorem 5.7, Theorem 5.10).

The definition of Zg(λ ,µ) is based on the tropical computation of real double

Hurwitz numbers in [MR15].

Note that the real double Hurwitz numbers HR
g (λ ,µ; p) indeed depend on

p, or in other words, on the position of the branch points. This is the typi-

cal behaviour of enumerative problems over R (instead of C). It is therefore

of interest to find lower bounds for real enumerative problems (with respect

to the choice of conditions, the branch points here) and use these bounds to

prove existence of real solutions or to compare the number of real and com-

plex solutions of the problem. Such investigations have been carried out e.g.

for real Schubert calculus [Sot97; MT16], counts of algebraic curves in sur-

faces passing through points [Wel05; IKS04] (see also [GZ15]) and counts of

polynomials/simple rational functions with given critical levels [IZ16; ER17].

In most of these examples, a lower bound is constructed by defining a signed

count of the real solutions (i.e., each real solution is counted with +1 or −1

according to some rule) and showing that this signed count is invariant under

change of the conditions. In this paper, we prove similar results for double

Hurwitz numbers without the explicit constructions of a signed count. We

hope that this rather simple approach can be extended to other situations using

sufficiently nice combinatorial descriptions of the counting problem.

One way of defining Zg(λ ,µ) is as follows: It is the number of those tropical

covers which contribute to the tropical count of HR
g (λ ,µ; p) with odd multi-

plicity. We prove in Theorem 4.10 that these numbers provide lower bounds

for HR
g (λ ,µ; p) as explained above. Next, we give exact numerical criteria on

λ ,µ in order for Zg(λ ,µ) to be non-zero, proving existence of real Hurwitz

covers in these case (see Proposition 5.1, Proposition 5.2 and Remark 5.4).
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We study the asymptotic behaviour of real Hurwitz numbers when the de-

gree is increased and only simple ramification points are added. For example,

consider the sequences

zλ ,µ,g(m) = Zg((λ ,1
2m),(µ,12m)),

hC
λ ,µ,g(m) = HC

g ((λ ,12m),(µ,12m)),

where (λ ,12m) stands for adding 2m ones to λ . We prove:

Theorem 1.1 (Theorem 5.10). Under the existence assumptions for zigzag

covers, the two sequences are logarithmically equivalent,

logzλ ,µ,g(m)∼ 4m logm ∼ loghC
λ ,µ,g(m).

This is consistent with the best known results for Welschinger invariants

and the Hurwitz-type counts of polynomials and rational functions mentioned

before. For better comparison, let us recall the main asymptotic statements

from [IZ16; ER17]. Let Spol(λ1, . . . ,λk) and Srat(λ1, . . . ,λk) denote the signed

counts of real polynomials f (x) ∈ R[x] and real simple rational functions
f (x)
x−p

,

f ∈ R[x], p ∈ R, respectively, with prescribed critical levels and ramification

profiles as defined in [IZ16; ER17]. Set

spol(m) = Spol((λ1,1
2m), . . . ,(λk,1

2m)),

srat(m) = Srat((λ1,1
2m), . . . ,(λk,1

2m)).

Denote by hC
pol(m) and hC

rat(m) the corresponding counts of complex polyno-

mials/complex rational functions.

Theorem 1.2 ([IZ16, Theorem 5]). Assume that each partition λi satisfies the

properties:

(O) At most one odd number appears an odd number of times in λi.

(E) At most one even number appears an odd number of times in λi.

Then we have

logspol(m)∼ 2m logm ∼ loghC
pol(m).

Theorem 1.3 ([ER17, Theorem 1.3]). Assume that each partition λi satisfies

(O) and (E) and that d = |λi| is even (or, an extra parity condition). Then

logsrat(m)∼ 2m logm ∼ loghC
rat(m).

To compare this to our result, note that the non-vanishing assumption for

Theorem 1.1 is satisfied if both λ and µ satisfy (O).
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2 Real double Hurwitz numbers

Fix two integers d > 0, g ≥ 0, and two partition λ ,µ of d. Set r := l(λ )+
l(µ)+2g−2 and fix a collection of r points P = {x1, . . . ,xr} ⊂ CP1 \{0,∞}.

Definition 2.1. A complex ramified cover of genus g, type (λ ,µ) and simply

branched at P is a holomorphic maps ϕ : C → CP1 of degree d such that

• C is a Riemann surface of genus g,

• the ramification profiles of ϕ at 0 and ∞ are λ and µ , respectively,

• the points in P are simple branch points of ϕ .

Let ψ : D → CP1 be another complex ramified cover. An isomorphism of

complex ramified covers is an isomorphism of Riemann surfaces α : C → D

such that ϕ = ψ ◦α . The complex double Hurwitz number

HC
g (λ ,µ) = ∑

[ϕ]

1

|AutC(ϕ)|

is the number of isomorphism classes of complex ramified covers ϕ of genus

g, type (λ ,µ) and simply branched at P , counted with weight 1/AutC(ϕ).

Definition 2.2. Given a complex ramified cover ϕ : C → CP1, a real structure

on ϕ is a antiholomorphic involution ι : C →C such that

ϕ ◦ ι = conj◦ϕ.

The tuple (ϕ, ι) is a real ramified cover. An isomorphism of real ramified

covers (ϕ : C → CP1, ι) and (ψ : D → CP1,κ) is an isomorphism of complex

ramified covers α : C → D such that

α ◦ ι = κ ◦α.
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As above, fix d > 0, g ≥ 0 and two partition λ ,µ of d, and set r := l(λ )+
l(µ)+2g−2. We now fix a collection of r real points P ⊂ RP1 \{0,∞}. We

denote by R+ ⊂ RP1 \ {0,∞} the positive half of the real projective line and

set p := |P ∩R+| the number of positive branch points.

Definition 2.3. The real double Hurwitz number

HR
g (λ ,µ; p) = ∑

[(ϕ,ι)]

1

|AutR(ϕ, ι)|

is the number of isomorphism classes of real ramified covers (ϕ, ι) of genus g,

type (λ ,µ) and simply branched at P , counted with weight 1/|AutR(ϕ, ι)|.

Remark 2.4. Let ϕ : C → CP1 be a complex ramified cover. Let RStr(ϕ) be

the set of real structures for ϕ . The group AutC(ϕ) acts on RStr(ϕ) by conju-

gation. The orbits of this action are the isomorphism classes of real ramified

covers supported on ϕ , and the stabilizer Stab(ι) is isomorphic to the group

of real automorphisms AutR(ϕ, ι). It follows HR
g (λ ,µ; p) can be described

alternatively as

HR
g (λ ,µ; p) = ∑

[ϕ]

|RStr(ϕ)|

|AutC(ϕ)|

where the sum runs through all isomorphism classes of complex ramified cov-

ers. Hence HR
g (λ ,µ; p) is the number of complex ramified covers which ad-

mit a real structure, counted with multiplicity |RStr(ϕ)|/|AutC(ϕ)|. Note

also that we can construct an injection RStr(ϕ) →֒ AutC(ϕ) by fixing any

ι0 ∈ RStr(ϕ) and setting ι 7→ ι ◦ ι0. Hence 0 ≤ |RStr(ϕ)|/|AutC(ϕ)| ≤ 1.

Remark 2.5. Non-trivial automorphisms only occur under rather particular cir-

cumstances. In fact, it is easy to check that the only complex ramified covers

with AutC(ϕ) 6= 1 are ϕd : z 7→ zd (with AutC(ϕd) = Z/dZ) and composi-

tions ϕd ◦ψ where ψ : C → CP1 is a hyperelliptic map (here, AutC(ϕd ◦ψ) =
Z/2Z). We can exclude this by assuming r > 0 and {λ ,µ} 6⊂ {(2k),(k,k)}.

It follows |RStr(ϕ)| = 0,1, so in this case real and complex double Hurwitz

numbers are actual counts of covers and, in particular,

0 ≤ HR
g (λ ,µ; p) ≤ HC

g (λ ,µ).

Remark 2.6. For the sake of completeness, let us briefly discuss the cases with

non-trivial automorphisms.
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(a) g = 0,λ = µ = (d): The only ramified cover in this situation is given

by x 7→ xd . Let χ be a primitve d-th root of unity. There are d au-

tomorphisms generated by x 7→ χx, hence HC
0 ((d),(d)) = 1/d. There

are also d real structures given by x 7→ χ ix̄, i = 0, . . . ,d − 1. Hence

HR
0 ((d),(d);0)= 1. Note that for d odd all real structures are isomorphic

and do not have extra real automorphisms. If d is even, the real structures

fall into two isomorphism classes with real automorphism x 7→ −x.

(b) {λ ,µ} ⊂ {(2k),(k,k)} and r > 0: There exist exactly kr−1 ramified cov-

ers with non-trivial automorphisms, and they can be described in the

form C = {y2 = f (x)},(x,y) 7→ xk. The polynomial f (x) is chosen such

that, for any simple branch point pi ∈ C \ {0}, it has exactly one root

among the k-th roots of pi. This gives kr choices for f , but k of them are

isomorphic via (x,y) 7→ (χx,y) where χ is a k-th primitive root. Each of

these covers has exactly one extra automorphism (x,y) 7→ (x,−y), hence

the total contribution to HC
g (λ ,µ) is kr−1/2.

If k is odd, there is exactly one choice to make f (x) real (choosing

only real roots), and we have two real structures (x,y) 7→ (x̄, ȳ) and

(x,y) 7→ (x̄,−ȳ) (alternatively, use y2 = ± f (x)). Hence, this cover con-

tributes 1 to HR
g (λ ,µ; p). If k is even, then f (x) can be chosen real only

if p = 0 or p = r. Under this assumption, we now have 2r−1 choices

for f (choosing among the two real roots each time, up to switching all

of them). There are two real structures as before and therefore the total

contribution to HR
g (λ ,µ;0/r) is 2r−1.

It follows that HR
g (λ ,µ; p)≤ HC

g (λ ,µ) holds as long as we exclude:

• g = 0,{λ ,µ} ⊂ {(d),(d
2
, d

2
)},

• g > 0,{λ ,µ} ⊂ {(d),(d
2
, d

2
)}, and d = 2 or d = 4.

3 Tropical double Hurwitz numbers

In this section we recall the tropical graph counts from [CJM10; BBM11;

GMR16; MR15] which compute complex resp. real Hurwitz numbers. We

include this summary here for the reader’s convenience, using the occasion to

adapt the definitions to the case of double Hurwitz numbers and introducing a

different convention regarding multiplicities of real tropical covers.
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Throughout the following, the word graph stands for a finite connected

graph G without two-valent vertices. The one-valent vertices of G are called

ends, the higher-valent vertices are inner vertices. The edges adjacent to an

end are called leaves, other edges are inner edges. We use the same letter G to

denote the the topological space obtained by gluing intervals [0,1] according

to the graph structure. We denote by G◦ the space obtained by removing the

one-valent vertices, called the inner part of G. The genus of G is the first Betti

number g(G) := b1(G).
A (smooth, compact) tropical curve C is a graph together with a length

l(e) ∈ (0,+∞) assigned to any inner edge e of C. This induces a complete

inner metric on C◦ such that each half-open leaf is isometric to [0,+∞) and

each inner edge e is isometric to [0, l(e)]. There is one exception: The graph

TP1 which consists of a single edge with two one-valent endpoints, in which

case C◦ is isometric to R. By use of this construction, the data of lengths l(e)
is equivalent to the data of an complete inner metric on C◦.

A piecewise Z-linear map between two tropical curves C,D is a continuous

map ϕ : C → D such that for any edge e ⊂ C and any pair x,y ∈ e∩C◦ there

exists ω ∈ Z such that

dist(ϕ(x),ϕ(y)) = ω dist(x,y).

In particular, ϕ(C◦) ⊂ D◦. By continuity it follows that ω =: ω(e) only de-

pends on e, we call it the weight of e (under ϕ).

An isomorphism ϕ : C → D is a bijective piecewise Z-linear map whose

inverse is also piecewise Z-linear. Equivalently, isomorphisms between C and

D can be described by isometries between C◦ and D◦.

Given a piecewise Z-linear map, by momentarily allowing two-valent ver-

tices, we can find subdivisions of C and D such that for any edge e of C, ϕ(e)
is either a vertex or an edge of D. For any vertex x of C and edge e′ of D such

that ϕ(x) ∈ e′, we can define

dege′(ϕ,x) := ∑
e edge of C

x∈e,ϕ(e)=e′

ω(e). (1)

The map ϕ is a tropical morphism if deg(ϕ,x) := dege′(ϕ,x) does not depend

on e′, for x fixed. In this case, the sum

deg(ϕ) := ∑
e edge of C

ϕ(e)=e′

ω(e)
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is also independent on the choice of e′ is called the degree of ϕ . Note that

isomorphisms are tropical morphisms of degree one.

Fix two integers d > 0, g ≥ 0, and two partition λ ,µ of d. Set r := l(λ )+
l(µ)+2g−2 and fix r points P ⊂ R. We assume r > 0, i.e., we exclude the

exceptional case g = 0,λ = µ = (d).

Definition 3.1. A tropical cover of genus g, type (λ ,µ) and simply branched

at P is a tropical morphism ϕ : C → TP1 of degree d such that

• C is a tropical curve of genus g,

• ϕ−1(R) =C◦, or equivalently, f is non-constant on leaves,

• λ = (ω(e),e ∈ L−∞) and µ = (ω(e),e ∈ L+∞), where L±∞ denotes the

set of leaves such that ±∞ ∈ ϕ(e), respectively,

• each x ∈ P is the image of an inner vertex of C.

Let ψ : D → TP1 be another such tropical cover. An isomorphism of the tropi-

cal covers is an isomorphism α : C →D of tropical curves such that ϕ =ψ ◦α .

The complex multiplicity of ϕ is

multC(ϕ) :=
1

|Aut(ϕ)| ∏
e inner

edge of C

ω(e).

The following properties are easy to check (see e.g. [CJM10, Section 5]).

Given g,(λ ,µ) and P , there is a finite number of isomorphism classes of

tropical covers of that type. Moving the points x1, . . . ,xr changes the met-

ric structure of these covers, but not their combinatorial nor weight structure.

Moreover, any tropical cover ϕ : C → TP1 satisfies the following properties:

• The curve C is three-valent, i.e., all vertices are either ends or three-

valent.

• The map ϕ is non-constant on every edge. In particular, multC(ϕ) 6= 0.

• The curve C has l(λ )+ l(µ) ends and r inner vertices, one in the preim-

age of each x ∈ P .

• All automorphisms of ϕ are generated by symmetric cycles or symmet-

ric forks of ϕ . A symmetric cycle/fork is a pair of inner edges/leaves,

respectively, which share endpoints, have equal weights and the same

image under ϕ .

8



T

Figure 1 The four types of positive vertices. Odd edges are drawn in black, even

edges in colours. Dotted edges are part of a symmetric fork or cycle contained

in T .

T

Figure 2 The four types of negative vertices.

Theorem 3.2 ([CJM10]). The complex Hurwitz number HC
g (λ ,µ) is equal to

HC
g (λ ,µ) = ∑

[ϕ]

multC(ϕ),

where the sum runs through all isomorphism classes [ϕ] of tropical covers of

genus g, type (λ ,µ) and simply branched at P ⊂ R.

We will now present the corresponding statement for real double Hurwitz

numbers. It is convenient to use slightly different definitions than in [MR15],

see Remark 3.5 for a comparison.

Let ϕ : C → TP1 be a tropical cover. An edge is even or odd if its weight

is even or odd, respectively. A symmetric cycle or fork s, we denote by ω(s)
the weight of one of its edges, and s is even or odd if ω(s) is even or odd,

respectively. Moreover, will use the following notation.

• S(ϕ) is the set of symmetric cycles and symmetric odd forks.

• SC(ϕ)⊂ S(ϕ) is the set of symmetric cycles.

• For T ⊂ S(ϕ), C \ T ◦ is the subgraph of C obtained by removing the

interior of the edges contained in the cycles/forks of T .

• E(ϕ) is the set of even inner edges in C \S(ϕ)◦, i.e., those which are not

contained in a symmetric cycle.

Definition 3.3. Let ϕ : C → TP1 be a tropical cover. A colouring ρ of ϕ
consists of a subset Tρ := T ∈ S(ϕ) and the choice of a colour red or green for

9



each component of the subgraph of even edges of C \T ◦. The tuple (ϕ,ρ) is a

real tropical cover. An isomorphism of real tropical covers is an isomorphism

of tropical covers which respects the colouring. The real multiplicity of a real

tropical cover is

multR(ϕ,ρ) = 2|E(ϕ)|−|S(ϕ)| ∏
s∈SC(ϕ)

multT (s), (2)

where

multT (s) :=











ω(s) s ∈ T,

4 s /∈ T,s even,

1 s /∈ T,s odd.

(3)

Given a real tropical cover, a branch point xi ∈ P is positive or negative if

it is the image of a three-valent vertex as displayed in Figure 1 or Figure 2,

respectively, up to reflection along a vertical line. This induces a splitting of

P = P+⊔P− into positive and negative branch points.

Fix d,g, (λ ,µ) and P ⊂ R as before. We now additionally fix a sign for

each point in P . In other words, we fix 0 ≤ p ≤ r and choose a splitting

P = P+⊔P− with |P+|= p.

Theorem 3.4 ([MR15]). The real Hurwitz number HR
g (λ ,µ; p) is equal to

HR
g (λ ,µ; p) = ∑

[(ϕ,ρ)]

multR(ϕ,ρ),

where the sum runs through all isomorphism classes [(ϕ,ρ)] of real tropical

covers of genus g, type (λ ,µ), and with positive and negative branch points

given by P = P+⊔P−.

Remark 3.5. The present definitions differ from [MR15] where T was allowed

to contain even symmetric forks as well. Since this choice does not affect

the sign of the adjacent vertex (see second and forth vertex in Figure 1 resp.

Figure 2), this leads to a factor of 2 in the number of possible colouring for

each such fork. We compensate this by multiplying the real multiplicity from

[MR15] by the same factor. This follows from

|Aut(ϕ)|= 2|S(ϕ)|+k,

where k is the number of even symmetric fork. The present convention de-

scribes somewhat larger packages of real ramified covers and is more conve-

nient in the discussion that follows.
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4 Zigzag covers

In this section we will focus on real tropical covers with odd multiplicity

multR(ϕ) and use them to establish a lower bound for the numbers HR
g (λ ,µ; p)

for 0 ≤ p ≤ r. We restict our attention to the automorphism-free case, i.e., we

assume r > 0 and {λ ,µ} 6⊂ {(2k),(k,k)} from now on (cf. Remark 2.5).

The philosophy behind our approach is as follows: On one hand, in real enu-

merative geometry, lower bounds for the counts in question are typically estab-

lished by introducing a signed count and showing that this alternative count is

invariant under change of the continuous parameters of the given problem (as

long as chosen generically), see e.g. [Wel05; IZ16]. On the other hand, a real

tropical cover ϕ : C → TP1 corresponds to a certain package of multR(ϕ,ρ)
real ramified covers. Therefore, from the tropical point of view, the easiest

conceivable notion of signs is to ask for maximal cancellation in the tropical

packages, meaning that the signed count of the package of ramified covers

tropicalizing to ϕ is
{

0 multR(ϕ,ρ) even,

1 multR(ϕ,ρ) odd,

respectively. In the following, we show that this approach indeed provides an

invariant and analyse under which conditions this lower bound is non-trivial.

The first step is to prove some properties of multR(ϕ,ρ) and express the con-

dition of having odd multiplicity in combinatorial terms.

Definition 4.1. Let ϕ : C → TP1 be a tropical cover. The tropical cover ϕ red :

Cred → TP1 obtained by replacing each symmetric cycle or odd fork (i.e., all

s ∈ S(ϕ)) by an edge or leaf of weight 2ω(s), respectively, is the reduced

tropical cover of ϕ .

In general, ϕ red has smaller branch locus P ′ ⊂ P . Note that S(ϕ red) = /0

and hence multR(ϕ red) = 2|E(ϕ
red)| for any colouring.

Lemma 4.2. For any tropical cover ϕ we have |E(ϕred)|= |E(ϕ)|− |S(ϕ)|.

Proof. From our assumptions r > 0 and {λ ,µ} 6⊂ {(2k),(k,k)} it follows that

Cred 6= TP1. Therefore, Cred contains at least one inner vertex and all its edges

are isometric either to [0, l] or [0,∞].
Let ϕ red =: ϕ0,ϕ1, . . . ,ϕn := ϕ denote the sequence of tropical covers ob-

tained from reinserting the cycles/forks of C, one by one. Since in each step

11



a new even inner edge is created, the difference |E(ϕi)| − |S(ϕi)| is constant

throughout the process. Moreover S(ϕ red) = /0 by construction, which proves

the claim. �

Lemma 4.3. For any real tropical cover (ϕ,ρ) the multiplicity multR(ϕ,ρ) is

an integer whose parity is independent of the colouring ρ .

Proof. By Equation 3 we have multT (s) ≡ ω(s) mod 2 and, in particular,

the parity of multT (s) does no depend on the colouring. Moreover |E(ϕ)| −
|S(ϕ)| ≥ 0 by Lemma 4.2. Hence both claims follow from the definition of

multR(ϕ) in Equation 2. �

Given a tropical curve C, a string S in C is a connected subgraph such that

S∩C◦ is a closed submanifold of C◦. In other words, S is either a simple loop

or a simple path with endpoints in C \C◦.

Let ϕ be a tropical cover. Note that any connected component of the sub-

graph of odd edges is a string in C. This follows from the definition of tropical

morphisms, cf. Equation 1, which implies that at each inner vertex of C the

number of odd edges is either 0 or 2.

Definition 4.4. A zigzag cover is a tropical cover ϕ : C → TP1 if there exists

a subset S ⊂C \S(ϕ) such that

• S is either a string of odd edges or consists of a single inner vertex,

• the connected components of C \S are of the form depicted in Figure 3.

Here, all occurring cycles and forks are symmetric and of odd weight.

Remark 4.5. In Figure 3 as well as in the following, we will use the variables

o,o1,o2, . . . for odd integers and e,e1,e2, . . . for even integers, respectively.

Remark 4.6. Obviously, the set S in the definition of zigzag cover is unique.

Moreover, note that the case where S is a single vertex only occurs for spe-

cial ramification profiles. More precisely, we need λ ∈ {(e),(o,o)} and µ ∈
{(e1,e2),(e1,o2,o2),(o1,o1,o2,o2)}, or vice versa.

Proposition 4.7. The real tropical cover (ϕ,ρ) is of odd multiplicity if and

only if ϕ is a zigzag cover. Moreover, in this case the multiplicity can be

expressed as

multR(ϕ,ρ) = ∏
s∈SC(ϕ)∩T

ω(s).

12



S

S

o

o

2o

S 2e

Figure 3 The admissible tails for zigzag covers. The properties of S (turning

or not) are not important here. In the first two cases the number of symmetric

cycles can be anything including zero. In the third case, no cycles or forks are

allowed.

Proof. By what has been said so far it follows that ϕ has odd multiplicity

if and only if |E(ϕ)| − |S(ϕ)| = 0 and ϕ does not contain even symmetric

cycles. Zigzag covers obviously satisfy these properties, so it remains to show

the other implication.

By Lemma 4.2 the assumption |E(ϕ)|− |S(ϕ)| = 0 implies that ϕ red does

not contain even inner edges. Since Cred is connected, it follows that there is at

most one connected component of odd edges in Cred. Therefore Cred is either

an even tripod (three even leaves meeting in one inner vertex) or consists of a

single odd component S with some even leaves attached to it. By constrcuction

ϕ can be obtained from ϕ red by inserting symmetric cycles and symmetric odd

forks in the even leaves of Cred. Since C does not contain even symmetric

cycles, this leads exactly to the three types of tails displayed in Figure 3. �

Proposition 4.8. Let ϕ be a zigzag cover simply branched at P and choose an

arbitrary splitting P = P+ ⊔P− into positive and negative branch points.

Then there exists a unique colouring ρ of ϕ such that the real tropical cover

(ϕ,ρ) has positive and negative branch points as required.

Proof. Let v ∈ S be the vertex from which a given tail Y emanates. Note that if

S = {v}, the vertex cannot be part of a symmetric fork since this would imply

{λ ,µ} = {(2k),(k,k)}. Hence, the colour rules from Figure 1 and Figure 2

impose a unique colouring around v as follows. All even edges are coloured in

red if ϕ(v) ∈ P− and the two edges on the same side of v are both odd (i.e.,

the string S bends at v), or if ϕ(v) ∈ P+ at least one of the two edges on the
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same side of v is even. In the two opposite cases, all even edges around v are

coloured in green.

The next vertex w on Y , if it exists, splits the tail into an odd symmetric cycle

or fork s. We include s in T if the incoming even edge is red and ϕ(v)∈P+ or

if the incoming even edge is green and ϕ(v) ∈ P−. Otherwise, we set s /∈ T .

The next vertex u on Y , if it exists, closes up an odd symmetric cycle s. We

colour the outgoing even edge in red if s ∈ T and ϕ(v) ∈ P+ or of s /∈ T

and ϕ(v) ∈ P−. Again, in both cases this process describes the unique local

colouring around v compatible with P =P+⊔P−. Therefore, by continuing

this process, we arrive at a compatible colouring of Y and hence all of C, and

uniqueness follows. �

Definition 4.9. The zigzag number Zg(λ ,µ) is the number of zigzag covers of

genus g, type (λ ,µ) and simply branched at P ⊂ R.

It is easy to check that that Zg(λ ,µ) does not depend on the choice of P ⊂
R, see e.g. Remark 5.3.

Theorem 4.10. Fix g, (λ ,µ) and 0 ≤ p ≤ r as before. Then the number of

real ramified covers is bounded from below by the number of zigzag covers

and they have the same parity, i.e.

Zg(λ ,µ)≤ HR
g (λ ,µ; p) ≤ HC

g (λ ,µ),

Zg(λ ,µ) ≡ HR
g (λ ,µ; p)≡ HC

g (λ ,µ) mod 2.

Proof. The statements involving Zg(λ ,µ) and HR
g (λ ,µ; p) follow from The-

orem 3.4 in addition with Proposition 4.7 and Proposition 4.8. The inequal-

ity HR
g (λ ,µ; p) ≤ HC

g (λ ,µ) is explained in Remark 2.5, while Zg(λ ,µ) ≡

HC
g (λ ,µ) mod 2 is provided in Remark 4.11 below for better reference. �

Remark 4.11. The first part of Proposition 4.7 holds analogously for complex

multiplicities: A tropical cover ϕ is of odd multiplicity multC(ϕ) if and only

if ϕ is a zigzag cover. It follows that Zg(λ ,µ) ≡ HC
g (λ ,µ) mod 2 by Theo-

rem 3.2.

To prove the claim, we copy the proof of Proposition 4.7 replacing (momen-

tarily) ϕ red by the “full reduction” ϕ red′ in which also even symmetric forks are

removed. Note that when reinserting a symmetric cycle or fork, the complex

multiplicity changes by ω(s)3 or ω(s), respectively (a factor 2 is cancelled

14



by the automorphism). Hence, if multC(ϕ) is odd, C does not contain even

symmetric cycles and forks and ϕ red′ does not contain even inner edges. The

remaining argument is as before.

Remark 4.12. This result is “optimal” in the following sense.

• In principle, we could count the zigzag covers with their multiplicities as

calculated in Proposition 4.7, but these multiplicities do depend on the

colouring and hence on the signs P = P+⊔P−. In particular, there is

one choice of signs for which T = /0 and hence mult(ϕ,ρ) = 1.

• There are no other covers which contribute to any sign distribution, as

the next lemma shows.

Remark 4.13. It is possible to define (several) refined invariants Rg(λ ,µ) ∈
Z[q±] in the sense of [BG14; BG16]. These are counts of tropical covers with

polynomial multiplicities such that the specializations

Rg(λ ,µ)(1) = HC
g (λ ,µ),

Rg(λ ,µ)(−1) = Zg(λ ,µ)

hold. To understand the properties of these refined counts is work in progress

together with Boulos El Hilany and Maksim Karev.

Lemma 4.14. Let ϕ be a tropical cover which admits a colouring compatible

with P = P+⊔P− for all possible splittings P+⊔P−. Then ϕ is a zigzag

cover.

Proof. Let us consider of yet another version of reducing C, denoted by ϕ red′′ ,

where only odd odd symmetric cycles and odd symmetric forks are removed.

By our previous considerations, zigzag covers can be equivalently described

by the property that ϕ red′′ does not contain even inner edges.

Let ϕ be a non-zigzag cover and let e be an even inner edge e of Cred′′ with

endpoints v1,v2. In C, the edge e corresponds to a sequence of even edges

and odd symmetric cycles. We claim that the signs at the branch points of

this sequence cannot be chosen independently. Indeed, fix the signs for all

branch points except, say, ϕ(v2). Then the same process as in the proof of

Proposition 4.8, starting at v1, shows that there is a unique colouring of the

sequence compatible with the chosen signs. In particular, the sign ϕ(v2) is

already determined by this data. Hence ϕ does not satisfy the condition of the

statement, which proves the claim. �
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Figure 4 The four possible real structures corresponding of a symmetric cycle

(up to switching colours). Here, the green and red curves represent parts of

Fix(ι) which are mapped to R+ and R−, respectively.

Remark 4.15. Recall that a Riemann surface with real structure (C, ι) is called

maximal if b0(Fix(ι)) = g+1. Following the correspondence of real tropical

covers and (classical) real ramified covers from [MR15], it is easy to check that

all real structures obtained from zigzag covers are maximal. Indeed, note that S

accounts for two connected components of the real part if it is a loop (mapping

to R+ and R−, repsectively), and for one connected component otherwise.

Additionally, each symmetric cycle produces another connected component as

displayed in Figure 4. Hence all real ramified covers contributing to the zigzag

count are maximal.

It might also be interesting to specialize to the following type of covers:

A real ramified cover (ψ : C → CP1, ι) is called of weak Harnack type if

it is maximal and if there exists a single component H ⊂ Fix(ι) such that

ψ−1({0,∞})⊂ H (i.e., the fibers of 0 and ∞ are totally real and lie in a single

component of Fix(ι) — we do not impose a condition on the order of appear-

ance of the ramification points in H, however). For zigzag covers, this corre-

sponds to only allowing the upper right lifting shown in Figure 4 (in particular,

T = /0 and multR(ϕ,ρ) = 1). This case occurs for example if p = 0,r and if

all vertices of S are bends. We plan to address these questions and possible

connections to refined invariants (see Remark 4.13) in future work.
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5 Counting zigzag covers

In this section we discuss existence and asymptotic behaviour of zigzag covers.

We start with a simple observation.

Proposition 5.1. If Zg(λ ,µ) > 0, then the number of odd elements which ap-

pear an odd number of times in λ plus the number of elements which appear

an odd number of times in µ is 0 or 2.

Proof. It follows immediately from the three types of tails allowed in a zigzag

cover that this number is at most 2. Since it is even, the statement follows. �

For existence statements we need slightly stronger assumptions. It is useful

to introduce some notation for partitions first. The number of parts in a parti-

tion is called the length and denoted by l(λ ). The sum of the parts is denoted

by |λ |. A partition λ = (λ1, . . . ,λn) is called even or odd if all parts λi are even

or odd numbers, respectively. We denote

2λ := (2λ1, . . . ,2λn),

λ 2 := (λ1,λ1, . . . ,λn,λn),

(λ ,µ) := (λ1, . . . ,λn,µ1, . . . ,µm),

where µ = (µ1, . . . ,µm) is a second partition. Any partition λ can be uniquely

decomposed into

λ = (2λ2e,2λ2o,λ
2
o,o,λ0)

such that

• the partition λ2e is even,

• the partitions λ2o and λo,o are odd,

• the partition λ0 is odd and does not have any multiple entries.

We call this the tail decomposition of λ . Note that l(λ0) ≡ |λ | mod 2. In

terms of this notation, the necessary condition of Proposition 5.1 can be stated

as l(λ0,µ0) = 0,2. Note that l(λ0,µ0) is even since l(λ0,µ0)≡ |λ |+ |µ|= 2d

mod 2.

Proposition 5.2. If l(λ0,µ0) ≤ 2 and (λo,o,µo,o) 6= /0, then there exist zigzag

covers of that type, i.e. Zg(λ ,µ)> 0.
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Remark 5.3. In the following proof, we use a more combinatorial description

of tropical covers. Let C be a graph of genus g with only one- and three-

valent vertices. Fix a orientation on C with no oriented loops and pick positive

integer weights for the edges of Γ such that the balancing condition holds

(i.e., for each inner vertex, the sum of outgoing weights is equal to the sum of

incoming weights). Finally, fix a set P = {x1 < · · ·< xr} ⊂ R, where r is the

number of inner vertices of C. Then for any choice of total order v1, . . . ,vr on

the inner vertices of C extending the partial order induced by the orientation,

there exists a unique tropical cover ϕ : C → TP1 such that for each edge the

orientation agrees with the orientation of TP1 (from −∞ to +∞) under ϕ , the

given weights agree with the ones induced by ϕ , and ϕ(vi) = xi.

Proof. We distinguish the two cases l(λ0,µ0) = 0 and l(λ0,µ0) = 2.

Case l(λ0,µ0) = 2: We first construct the underlying abstract graph of a

zigzag cover. We start from a string graph S and attach tails to S: A tail of the

first, second or third type for each part of (λo,o,µo,o), (λ2o,µ2o) or (λ2e,µ2e),
respectively. The order of appearance of these tails on S can be chosen arbi-

trarily. Moreover, since (λo,o,µo,o) 6= /0, there is at least one tail of the first

type, on which we place g balanced cycles. We obtain a graph C of genus g.

and the next step is to equip C with an orientation and weights.

By construction the leaves of C are labelled by parts of λ and µ (the leaves

of S are assigned to the parts of (λ0,µ0)). We use each part as weight of the

corresponding leaf. Moreover, leaves associated to λ are oriented towards the

inner vertex while leaves associated to µ are oriented towards the end. By

the balancing condition, there is a unique extension of the orientation and the

weight function to all of C. Note that indeed all these weights on S turn out

to be odd (and, in particular, non-zero). Then, by Remark 5.3, any choice of

total order on the inner vertices extending the orientation order gives rise to a

zigzag cover ϕ : C → TP1.

Case l(λ0,µ0) = 0: If l(λo,o,µo,o) > 1, we proceed as before with the fol-

lowing changes. We remove an arbitrary part α from (λo,o,µo,o) and use it as

weight for both leaves of S (instead of a tail of weight (α,α)). If l(λo,o,µo,o)=
1, we need to distinguish two subcases. If g = 0, we can proceed as in the pre-

vious step. This could leave us with tails only of the third type, but since no

balanced cycles have to be added, this is not a problem.

If g > 0, we instead do the following. We construct the abstract graph C as

before, but now we glue the two ends of S to a single inner edge e, obtaining
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a graph C′ with a (closed) string S′. We assign weights to the tail leaves as

before. Then again by the balancing condition any choice of an odd weight

ω(e) (and orientation) for the gluing edge e fixes an orientation and the weights

on all of C′. Moreover, there is a (finite) range of choices for ω(e) such that S′

does not turn into an oriented loop and we can proceed as before. �

Remark 5.4. The exact conditions for existence of zigzag covers are as follows.

We have Zg(λ ,µ) > 0 if and only if l(λ0,µ0) ≤ 2 and none of the following

three cases occurs:

• g = 0, (λo,o,λ0,µo,o,µ0) = /0 and l(λ2e,λ2o,µ2e,µ2o)> 3.

• g = 1, (λ2o,λo,o,µ2o,µo,o) = /0 and (λ0,µ0) 6= /0.

• g > 1, (λ2o,λo,o,µ2o,µo,o) = /0.

Our next goal is to give lower bounds for Zg(λ ,µ). Let ϕ be a zigzag cover.

We denote by

al,ar the number of tails of type o,o to the left and right,

bl,br the number of bends/orientation changes in S, with the peak of

the bend pointing to the left and right,

c the number of unbent vertices of S,

gl,gr the number of symmetric cycles located on tails to the left and

right,

respectively. If S is a vertex, we use the values bl = br = 0, c = 1.

Definition 5.5. A zigzag cover ϕ is unmixed if its simple branch points x1 <
· · ·< xs, grouped in segments of length al,2gl,bl,c,br,2gr,ar, occur as images

of

• the symmetric fork vertices of tails of type o,o to the left,

• the vertices of symmetric cycles located on tails to the left,

• bends of S with peaks to the left,

• unbent vertices of S,

• the symmetric pattern for bends/tails to the right.

Lemma 5.6. Given a weighted and oriented graph C as constructed in Propo-

sition 5.2, there are at least

al! ·ar! ·bl! ·br!
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al 2gl bl c br 2gr ar

Figure 5 A schematic picture of an unmixed zigzag cover with its various groups

of branch points in R. Any permutation of the vertices on top of the branch points

belonging to al,bl ,br,ar, respectively, gives rise to another unmixed zigzag

cover.

possibilities to turn C into an unmixed zigzag cover ϕ : C → TP1.

Proof. We are interested in the number of total orders on the vertices of C

which extend the partial order given by the orientation and, when grouped

from least to greatest in segments of length al,2gl,bl,c,br,2gr,ar, produces

the groups of vertices described in Definition 5.5. It is obvious that such or-

ders exist. Moreover, since the partial order restricts to the empty order on the

subgroups of vertices corresponding to al,bl,br,ar, respectively, any permuta-

tion on these subgroups provides another valid “unmixed” order. This proves

the statement. �

If λ = (λ1,λ2), we write λ1 = λ \λ2. We write k ∈ λ if k is a part of the

partition λ . Given a number k ∈ N and two partitions λ ,µ , consider all (finite)

sequences whose first entry is k and all subsequent entries are obtained by

either adding a part of λ or subtracting a part of µ , using each part exactly

once. We denote by B(k,λ ,µ) the maximal number of sign changes that occur

in such a sequence.

Theorem 5.7. Fix λ ,µ,g such that l(λ0,µ0) ≤ 2 and (λo,o,µo,o) 6= /0. We set

λtail = (λ2e,λ2o,λo,o) and µtail = (µ2e,µ2o,µo,o).

(a) If k ∈ λ0, then

Zg(λ ,µ) ≥ l(λo,o)! · l(µo,o)! · ⌊B/2⌋! · ⌈B/2⌉!,

where B = B(k,2λtail,2µtail).
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(b) If (λ0,µ0) = /0, g = 0 and k ∈ λo,o, then

Zg(λ ,µ) ≥ (l(λo,o)−1)! · l(µo,o)! · ⌊B/2⌋! · ⌈B/2⌉!,

where B = B(k,2(λtail \ (k)),2µtail).

(c) If (λ0,µ0) = /0, g > 0, then

Zg(λ ,µ)≥ l(λo,o)! · l(µo,o)! · (B/2)!2,

where B = B(1,2λtail,2µtail).

Proof. The three cases are in correspondence with the three types of construc-

tions in Proposition 5.2. Here, we may assume by symmetry that λ0 6= /0 when-

ever (λ0,µ0) 6= /0 and λo,o 6= /0 whenever (λo,o,µo,o) 6= /0. To recall, we sum-

marize the three cases in terms of S:

• The leaves of S are weighted by (λ0,µ0).

• The leaves of S are weighted by a part k ∈ λo,o,

• S is a loop.

In each case, B appearing in the statement is the maximal number of bends

we can create in S in the corresponding construction. In the first two cases

this is straightforward. In the loop case, consider a weighted oriented graph C

with maximal number of bends on S. Among the edges of S choose an edge of

minimal weight. Following S in the direction of e we subtract ω(e)−1 from

the weights of the edges oriented coherently, and add ω(e)− 1 to the edges

oriented oppositely. In this way we obtain a new balanced weight function on

C with the same number of bends, but an edge of weight 1. Hence the maximal

number of bends is given by B(1,2λtail,2µtail).
Back to all three cases, we pick a graph C reaching the maximal number of

bends B. It follows that bl = ⌊B/2⌋ and br = ⌈B/2⌉, respectively. One should

note here that B is even if S is a loop, or otherwise, at least one of the ends of

S maps to −∞ by our convention from above. Moreover, the number of tails

of type o,o is al = l(λo,o) and ar = l(µo,o), except for the second case, where

the ends of S occupy a pair of tail weights and hence al = l(λo,o)− 1. The

statement then follows from Lemma 5.6. �

The lower bounds from Theorem 5.7 can be used to derive statements about

the asymptotic growth of the numbers Zg(λ ,µ).
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Definition 5.8. Given g ∈ N and partitions λ ,µ with |λ |= |µ|, we set

zλ ,µ,g(m) = Zg((λ ,1
2m),(µ,12m)),

hC
λ ,µ,g(m) = HC

g ((λ ,12m),(µ,12m)).

Proposition 5.9. Fix g ∈ N, partitions λ ,µ with |λ | = |µ| and assume that

l(λ0,µ0)≤ 2. Then there exists m0 ∈ N such that

zλ ,µ,g(m)≥ (m−m0)!
4

for all m > m0.

Proof. Let λ ′,µ ′ be some even partitions of the same integer and k an odd

integer. We consider the sequence

B(m) = B(k,(λ ′,12m),(µ ′,12m)).

We claim that there exists m0 ∈ N such that B(m) ≥ 2(m−m0) for m ≥ m0.

Indeed, for sufficiently large m0 we can assume that there exists a maximal

sequence (for B(m0)) containing an entry ±1. For m = m0 + 1 we insert a

piece of the form ±1 →∓1 →±1 at the position of ±1, and so on, showing

that B(m) ≥ 2(m−m0). It follows that ⌊B(m)/2⌋,⌈B(m)/2⌉ ≥ m−m0 for

m ≥ m0.

Note that l((λ ,12m)o,o) = l(λo,o)+m and l((µ,12m)o,o) = l(µo,o)+m. By

use of Theorem 5.7 and the previous argument we conclude that

zλ ,µ,g(m)≥ m! ·m! · (m−m0)! · (m−m0)!

≥ (m−m0)!
4

for all m ≥ m0. �

Theorem 5.10. Fix g ∈ N, partitions λ ,µ with |λ | = |µ| and assume that

l(λ0,µ0) ≤ 2. Then zλ ,µ,g(m) and hC
λ ,µ,g(m) are logarithmically equivalent.

More precisely, we have

logzλ ,µ,g(m)∼ 4m logm ∼ loghC
λ ,µ,g(m).

Remark 5.11. Let d and r be the degree and number of simple branch points,

respectively, of the covers contributing to zλ ,µ,g(m). Note that the ratio of

growth is 4m ∼ 2d ∼ r and therefore

4m logm ∼ 2d logd ∼ r logr.

The variables d,r are more commonly used in the literature, e.g. [IZ16; ER17].
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Remark 5.12. When choosing all simple branch points to lie on the positive

half axis (i.e., for p = r), the logarithmic growth of real double Hurwitz num-

bers like HR
0 (λ ,µ;r) can be computed from [GMR16, Section 5, e.g. Theorem

5.7].

Proof. In consideration of Theorem 4.10, it suffices to show that logzλ ,µ,g(m)

grows at least as fast and loghC
λ ,µ,g(m) grows at most as fast as 4m logm, re-

spectively.

The estimate regarding logzλ ,µ,g(m) follows from Proposition 5.9 since

log((m−m0)!)∼ m logm.

The estimate for loghC
λ ,µ,g(m) (probably classical) can be deduced from the

following argument. Let

HC
g (d) := HC

g ((1d),(1d))

be the complex Hurwitz numbers associated to covers with only simple branch

points. The asymptotics of these numbers is computed in [DYZ17, Equation

5] as

HC
g (d)∼Cg

(

4

e

)d

d2d−5+ 9
2 g.

Here, Cg is a constant only depending on g. It follows that

logHC
g (d)∼ 2d logd.

We finish by showing HC
g (λ ′,µ ′) ≤ HC

g (d) for arbitrary partitions λ ′,µ ′ of d.

Then

loghC
λ ,µ,g(m)≤ logHC

g (|λ |+2m)∼ 4m logm

and the claim follows.

To prove HC
g (λ ′,µ ′)≤ HC

g (d) we can use monodromy representations. Let

G and H be the set of monodromy representations corresponding to HC
g (d)

and HC
g (λ ′,µ ′). In particular, |G | = d! ·HC

g (d) |H | = d! ·HC
g (λ ′,µ ′). Let

F ⊂ G be the subset of representations such that

• the product of the first d − l(λ ′) transpositions gives a permutation of

cycle type λ ′,

• the product of the last d − l(µ ′) transpositions gives a permutation of

cycle type µ ′.
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We consider the map F → H given by using as “special” permutations the

products of transpositions as suggested by the definition of F . Since any

permutation of cycle type λ ′ and µ ′ can be factored into a product of d− l(λ ′)
and d − l(µ ′) transpositions, respectively, the map F → H is surjective and

hence |H | ≤ |G |. This proves the claim. �

The argument can be adapted to prove analogous statements for different

types of asymptotics. For example, set

z′λ ,µ,g(m) = Zg((λ ,2
m),(µ,12m)),

z′′λ ,µ,g(m) = Zg((λ ,2
m),(µ,2m)),

and assume in the z′′ case that (λo,o,λ0,µo,o,µ0) 6= /0 or g > 0. A straightfor-

ward adaption of Proposition 5.9 shows the following.

Proposition 5.13. Under the above assumptions, there exists m0 ∈N such that

z′λ ,µ,g(m)≥ (m−m0)!
3,

z′′λ ,µ,g(m)≥ (m−m0)!
2,

for all m > m0.

The corresponding series of complex Hurwitz numbers are denoted by

h′λ ,µ,g(m) = HC
g ((λ ,2m),(µ,12m)),

h′′λ ,µ,g(m) = HC
g ((λ ,2m),(µ,2m)).

Theorem 5.14. Under the above assumptions, we have

logz′λ ,µ,g(m)∼ 3m logm ∼ logh′λ ,µ,g(m),

logz′′λ ,µ,g(m)∼ 2m logm ∼ logh′′λ ,µ,g(m).

Remark 5.15. The statements can be unified by the observation that the loga-

rithmic growth is equal to

r logr

for all z,z′,z′′,h,h′,h′′, where r denotes the number of simple branch points.
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Proof. We can proceed exactly as for Theorem 5.10 replacing Proposition 5.9

by Proposition 5.13. It remains to prove that for fixed k the logarithmic growth

of

H ′
g(m) := HC

g ((1k,2m),(1k+2m)),

H ′′
g (m) := HC

g ((1k,2m),(1k,2m))

is bounded by 3m logm and 2m logm, respectively. Adapting the previous ar-

gument, let G ,H ′,H ′′ be the sets of monodromy representations correspond-

ing to HC
g (k+2m), H ′

g(m) and H ′′
g (m), respectively. Let F ′,F ′′ ⊂ G denote

the subsets of representations for which the first m transpositions (the first m

and the last m transpositions, respectively) are pairwise disjoint. We have sur-

jections F ′ →H ′ and F ′′ →H ′′ whose fibers have size m! and (m!)2, since

the factors in product of m pairwise disjoint transpositions can be permuted

freely. Hence

logH ′
g(m) = log(HC

g (k+2m)/m!)∼ 4m logm−m logm = 3m logm,

logH ′′
g (m) = log(HC

g (k+2m)/m!)∼ 4m logm−2m logm = 2m logm,

which proves the claim. �
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