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ON THE CONGRUENCES OF EISENSTEIN SERIES

WITH POLYNOMIAL INDEXES

SU HU, MIN-SOO KIM, AND MIN SHA

Abstract. In this paper, based on Serre’s p-adic family of Eisen-
stein series, we prove a general family of congruences for Eisenstein
series Gk in the form

n
∑

i=1

gi(p)Gfi(p) ≡ g0(p) mod pN ,

where f1(t), . . . , fn(t) ∈ Z[t] are non-constant integer polynomi-
als with positive leading coefficients and g0(t), . . . , gn(t) ∈ Q(t)
are rational functions. This generalizes the classical von Staudt–
Clausen’s and Kummer’s congruences of Eisenstein series, and also
yields some new congruences.

1. Introduction

1.1. Motivation. Let Ek (k ≥ 4 even) be normalized Eisenstein series
of weight k for the modular group SL2(Z) given by the following q-
expansion:

Ek = 1−
2k

Bk

∞
∑

j=1

σk−1(j)q
j,

where q = e2πiτ , Bk is the k-th Bernoulli number and σk−1(j) =
∑

d|j d
k−1. Ek can be regarded as formal power series in the indeter-

minate q. If f, g ∈ Q[[q]] are power series and N is a natural number,
f ≡ g mod N means that f and g are both N -integral and the con-
gruence holds coefficientwise [2, page 132].
In what follows, we assume that p is an odd prime.
Several well-known congruences of Ek have been given in [4, page

164, Theorem 7.1]. For example, from von Staudt–Clausen’s and Kum-
mer’s congruences for Bernoulli numbers, one can easily obtain (see [2,
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Equation (1.3)])

Ek ≡ 1 mod pr if k ≡ 0 mod (p− 1)pr−1

and

Ek ≡ El mod pr if k ≡ l mod (p− 1)pr,

for k, l ≥ r + 1, and (k, p), (l, p) are regular. The last condition means
that p does not divide (the numerator of) Bk. Since this condition
depends only on the residue class of k mod p − 1, it holds simulta-
neously for k and l (see [2, Equation (1.3)]). By using Serre’s theory
of p-adic moular forms [6] and viewing the coefficients of Eisenstein
series as Iwasawa functions [2, Theorem 4.7], Gekeler [2] proved several
congruences of the shape Ek+l ≡ Ek · El modular prime power.
In this paper, we study congruence relations of Serre’s normalized

Eisenstein series (see [6, page 194])

(1.1) Gk = −
Bk

2k
+

∞
∑

j=1

σk−1(j)q
j, k ≥ 4 even.

For further deductions, we make a convention that

(1.2) Gk = 0, if k ∈ Z but k is not even greater than 2.

Let f(t) ∈ Z[t] have positive leading coefficient and satisfy f(1) =
0. Then, von Staudt–Clausen’s congruence of Bernoulli numbers in
polynomial index (see [5, Equation (1.2)]) implies that

(1.3) 2pf(p)Gf(p) ≡ 1 mod p

for every sufficiently large prime p (note that f(p) is even because
f(1) = 0).
Besides, let f(t), g(t) ∈ Z[t] be distinct non-constant polynomials

with positive leading coefficient, and suppose that f(1) = g(1) 6= 0.
Let d be the largest power of t dividing f(t) − g(t). Then, by using
Kummer’s congruence of Bernoulli numbers in polynomial index (see
[5, Equation (1.3)]), one can obtain

(1.4) Gf(p) ≡ Gg(p) mod pd+1

for every sufficiently large odd prime p.
In order to generalize (1.3) and (1.4), we consider the following prob-

lem:

Question 1.1. Given polynomials f1(t), . . . , fn(t) ∈ Z[t] with positive

leading coefficient, rational functions g0(t), g1(t), . . . , gn(t) ∈ Q(t), and
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a positive integer N , determine whether the congruence
n
∑

i=1

gi(p)Gfi(p) ≡ g0(p) mod pN

is true for any sufficiently large prime p.

This is inspired by a recent work of Julian Rosen [5]. He investigated
a similar problem for Bernoulli numbers [5, Question 1.1], and he also
obtained a very general criterion (see [5, Theorem 1.2]). The main tool
is a Taylor expansion for the Kubota-Leopoldt’s p-adic zeta functions
(see [5, Proposition 2.1]). As pointed out in [5, page 1896], the well-
known Kummer’s and von Staudt–Clausen’s congruences of Bernoulli
numbers in polynomial index which have been given in [1, Sections 9.5
and 11.4.2] can be deduced from this criterion.

1.2. Main results. From now on, let N be a fixed positive integer.
Let f1(t), . . . , fn(t) ∈ Z[t] be non-constant integer polynomials with
positive leading coefficients, and let g0(t), . . . , gn(t) ∈ Q(t) be rational
functions. Write vt for the t-adic valuation on Q(t), and set

M = min
i=1,...,n

{vt(gi(t))}.

Here, we fix a convention that vt(0) = ∞. For the p-adic valuation vp,
as usual we fix the convention vp(0) = ∞.
We define the following four conditions:
C1:

vt

(

g0(t) +
1

2

(

1−
1

t

)

n
∑

i=1
fi(1)=0

gi(t)fi(t)
−1

+
1

2

n
∑

i=1
fi(1) ≥ 4 even

Bfi(1)

fi(1)
(1− tfi(1)−1)gi(t)

)

≥ N ;

C2: for every even integer l ≤ 2 and every 0 ≤ m ≤ N −M − 1,

vt







n
∑

i=1
fi(1)=l

gi(t)fi(t)
m






≥ N −m;

C3: for every even integer l ≥ 4 and every 1 ≤ m ≤ N −M − 1,

vt







n
∑

i=1
fi(1)=l

gi(t)(fi(t)
m − lm)






≥ N −m;
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C4: for every even integer l ≥ 4,

vt







n
∑

i=1
fi(1)=l

gi(t)






≥ N.

We remark that if N −M < 1, then the condition C2 automatically
holds; and if N −M ≤ 1, the condition C3 also holds automatically.
Besides, if fi(1) ≤ 3 for each 1 ≤ i ≤ n, then the conditions C3 and
C4 hold automatically.
In order to make our main result effective, let P be a positive integer

safisfying:

• P ≥ N −M + 3;
• P ≥ |fi(1)|+ 1 for each 1 ≤ i ≤ n;
• for each 1 ≤ i ≤ n and any integer j > P , fi(j) > max{3, N};
• for each 1 ≤ i ≤ n, write gi(t) = tdihi(t) with hi(0) 6= 0 for
some integer di ≥ 0, P is not less than the numerator and de-
nominator of |hi(0)| ∈ Q; (Under this condition, for any prime
p > P we have vp(gi(p)) = vt(gi(t)) for each 1 ≤ i ≤ n; see [5,
Proposition 3.1].)

• for each valuated function, say h(t), in the vt valuation in the
conditions C1, C2, C3 and C4 (for instance, in C4, h(t) =
∑n

i=1
fi(1)=l

gi(t)), write h(t) = tdq(t) with q(0) 6= 0 for some integer

d ≥ 0, P is not less than the numerator and denominator of
|q(0)| ∈ Q. (Under this condition, for any prime p > P we
have vp(h(p)) = vt(h(t)) for each such function h(t); see [5,
Proposition 3.1].)

When the initial data N, f1, . . . , fn, g0, . . . , gn are given, the verifi-
cation of the conditions C1, C2, C3 and C4 is in fact a finite com-
putation, and also it is easy to get an explicit choice for the integer
P .
Our main result is the following congruence relation of Eisenstein

series Gk.

Theorem 1.2. The congruence
n
∑

i=1

gi(p)Gfi(p) ≡ g0(p) mod pN

holds for every odd prime p > P if all the conditions C1, C2, C3 and

C4 hold.

Theorem 1.2 is an analogue of [5, Theorem 1.2] and moreover in an
effective manner.
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The condition that all the polynomials fi are non-constant is for
simplicity. But it is not essential, that is, for each fi that is constant, we
can move the term gi(p)Gfi(p) to the right hand side of the congruence
in Theorem 1.2.

Remark 1.3. Using Theorem 1.2, we can directly recover the congru-
ences (1.3) and (1.4). For proving (1.3), we choose N = 1, n = 1,
f1(t) = f(t) satisfying f(1) = 0, g0(t) = 1 and g1(t) = 2tf(t) in
Theorem 1.2; while for proving (1.4), we choose n = 2, f1(t) = f(t),
f2(t) = g(t), g0(t) = 0, g1(t) = 1, g2(t) = −1 and N = vt(f − g) + 1 in
Theorem 1.2 and notice the condition f(1) = g(1) 6= 0.

The following corollary is a generalization of (1.4).

Corollary 1.4. In Theorem 1.2, choose

N = 1 + min
1≤i,j≤n

vt(fi − fj),

and assume that f1(1) = . . . = fn(1) 6= 0, g0 = 0, g1 + . . . + gn = 0.
Then, for any odd prime p > P , we have

n
∑

i=1

gi(p)Gfi(p) ≡ 0 mod pN .

The following corollary is a direct consequence of Theorem 1.2.

Corollary 1.5. Assume that fi(1) ≤ 3 for each 1 ≤ i ≤ n. Then, The
congruence

n
∑

i=1

gi(p)Gfi(p) ≡ g0(p) mod pN

holds for every odd prime p > P if the following two conditions hold:

(1)

vt

(

g0(t) +
1

2

(

1−
1

t

)

n
∑

i=1
fi(1)=0

gi(t)fi(t)
−1
)

≥ N ;

(2) for every even integer l ≤ 2 and every 0 ≤ m ≤ N −M − 1,

vt







n
∑

i=1
fi(1)=l

gi(t)fi(t)
m






≥ N −m.

From Corollary 1.5, one can get some more examples about congru-
ence of Eisenstein series.
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Example 1.6. In Corollary 1.5, we choose n = 2, g0(t) = 0, g1(t) = 1,
g2(t) = −1 and N = vt(f1 − f2)− 1 such that f1(0)f2(0) 6= 0, f1(1) =
f2(1) = 0 and N ≥ 1, then we have

Gf1(p) ≡ Gf2(p) mod pN

for any sufficiently large prime p.

Example 1.7. In Corollary 1.5, we choose n ≥ 2, fi(t) = ai(t − 1)
for each 1 ≤ i ≤ n, g0(t) =

1
2
( 1
a2

+ . . . + 1
an

− n−1
a1

), g1(t) = (n − 1)t,

gi(t) = −t for each 2 ≤ i ≤ n, and N = 2, then we have for any prime
p > max{4, n− 1},

(n− 1)pGa1(p−1) −

n
∑

i=2

pGai(p−1) ≡
1

2
(
1

a2
+ . . .+

1

an
−

n− 1

a1
) mod p2.

In particular, we have for any prime p > 4,

pGa1(p−1) − pGa2(p−1) ≡
1

2
(
1

a2
−

1

a1
) mod p2.

For the proof of Theorem 1.2, the approach is similar as in [5], but
it indeed needs some extra considerations in the setting of Eisenstein
series. For example, we need a new ingredient, that is, a Taylor ex-
pansion for the non-constant coefficients of p-adic Eisenstein series in
Proposition 3.3, which will play a key role in the proof.
Our paper will be organized as follows. In Section 2, we give a brief

recall of Serre’s p-adic family of Eisenstein series. In Section 3, we
prove Theorem 1.2 and Corollary 1.4.

2. p-adic Eisenstein series

In this section, we recall some facts about Serre’s p-adic family of
Eisenstein series [6]; see also [3]. Recall that p is an odd prime.
Serre’s normalized Eisenstein series has been defined in (1.1). We

pass to the p-adic limit. Let X = Zp × Z/(p − 1)Z, where Zp is the
ring of p-adic integer. The integers Z are embedded into X naturally
by j 7→ (j, j). For k ∈ X and j ≥ 1, define

σ∗
k−1(j) =

∑

d|j
(p,d)=1

dk−1

(see [6, page 205], and see [6, page 201] for the definition of dk−1). If
k is even (that is, k ∈ 2X), there exists a sequence of even integers
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{ki}
∞
i=1 such that |ki| → ∞ and ki → k when i → ∞. Then, the

sequence Gki = −
Bki

2ki
+
∑∞

j=1 σki−1(j)q
j has a limit: (see [6, page 206])

(2.1) G∗
k = a0(G

∗
k) +

∞
∑

j=1

aj(G
∗
k)q

j

with a0(G
∗
k) = 1

2
ζ∗(1 − k) by defining ζ∗(1 − k) = limi→∞ ζ(1 − ki)

and aj(G
∗
k) = σ∗

k−1(j), where ζ(s) is the Riemann zeta function. The
function ζ∗ is thus defined on the odd elements of X \ {1}.
Let χ be a Dirichlet character on Zp, and let Lp(s, χ) be the p-adic

L-function. We have the following result on ζ∗.

Theorem 2.1 (see [6, page 206, Théorème 3]). If (s, u) 6= 1 is an odd

element of X = Zp × Z/(p− 1)Z, then

ζ∗(s, u) = Lp(s, ω
1−u),

where ω is the Teichmüller character.

For k = (s, u) ∈ X and u is even, by Theorem 2.1 the coefficients of
G∗

k = G∗
s,u are given by (see [6, page 245])

(2.2)

a0(G
∗
s,u) =

1

2
ζ∗(1− s, 1− u) =

1

2
Lp(1− s, ωu),

aj(G
∗
s,u) =

∑

d|j
(p,d)=1

d−1ω(d)u〈d〉s,

where 〈d〉 = d/ω(d) ≡ 1 mod p.
Thus, the assignment

(s, u) 7→ G∗
s,u

gives a family of p-adic modular forms parametrized by the group of
weights X .
For any even integer k ≥ 4, we first write

(2.3) Gk = a0(Gk) +

∞
∑

j=1

aj(Gk)q
j ,

where a0(Gk) = −Bk

2k
, aj(Gk) = σk−1(j); and then from (2.2), we have

(2.4)

a0(G
∗
k) = a0(G

∗
k,k) =

1

2
ζ∗(1− k, 1− k)

=
1

2
Lp(1− k, ωk) = −

1− pk−1

2

Bk

k

= (1− pk−1)a0(Gk),
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where we also use the relation between Lp and Bernoulli numbers (see,
for instance, the first paragraph in the proof of [5, Proposition 2.1]),
and

(2.5) aj(G
∗
k) = aj(G

∗
k,k) =

∑

d|j
(p,d)=1

d−1ω(d)k〈d〉k =
∑

d|j
(p,d)=1

dk−1.

The proof of our main result is based on the following relationship
between the p-adic Eisenstein Series G∗

k and the Eisenstein series Gk:

(2.6) Gk ≡ G∗
k mod pk−1, k ≥ 4 even,

which can be easily deduced from (2.1), (2.3), (2.4) and (2.5).
As in (1.2), we also make a convention that

(2.7) G∗
k = 0, if k ∈ Z but k is not even greater than 2.

3. Proofs of the main results

Recall that p is an odd prime. For the proof, we need some prepara-
tions. The first one follows from (2.4) and [5, Proposition 2.1] directly.

Proposition 3.1. Let l be an even residue class modulo p− 1. Then,

there exist coefficients a
(0)
m (p, l) ∈ Qp, m = 0, 1, 2, . . ., such that for

every even integer k ≥ 4 with k ≡ l (mod p− 1), there is a convergent

p-adic series identity

(3.1) a0(G
∗
k) = −

1 − pk−1

2

Bk

k
= −

1

2

∞
∑

m=0

a(0)m (p, l)km−1.

The coefficients a
(0)
m (p, l) satisfy the following conditions:

(1)

a
(0)
0 (p, l) =

{

1− 1
p

if l ≡ 0 mod p− 1,

0 otherwise,

(2) for all m, p and l,

vp(a
(0)
m (p, l)) ≥

p− 2

p− 1
m− 2,

(3) for p ≥ m+ 2 and all l,

vp(a
(0)
m (p, l)) ≥ m− 1.

Using Proposition 3.1, we obtain a congruence relation for the coef-
ficient a0(G

∗
k) in polynomial index.
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Proposition 3.2. The congruence

n
∑

i=1

gi(p)a0(G
∗
fi(p)

) ≡ g0(p) mod pN

holds for every prime p > P if the conditions C1, C2 and C3 hold.

Proof. We extend the proof of [5, Theorem 1.2] to our case.
Since p > P and noticing the choice of P , we know that fi(p) ≥ 4

for each 1 ≤ i ≤ n. In view of the convention (2.7), we consider the
quantity

A(0)(p) = g0(p)−
n
∑

i=1

gi(p)a0(G
∗
fi(p)

).

By Proposition 3.1, we have

A(0)(p) = g0(p) +
n
∑

i=1
fi(p) even

gi(p)

(

1

2

∞
∑

m=0

a(0)m (p, fi(p))fi(p)
m−1

)

= g0(p) +
∑

h∈Z/(p−1)Z
h even, m ≥ 0

n
∑

i=1
fi(p)≡h mod p−1

1

2
gi(p)fi(p)

m−1a(0)m (p, h).

Since fi(p) ≡ fi(1) (mod p− 1) for each 1 ≤ i ≤ n, we have

A(0)(p) = g0(p) +
∑

even l ∈ Z
m≥0

n
∑

i=1
fi(1)=l

1

2
gi(p)fi(p)

m−1a(0)m (p, l)

= g0(p) +
1

2

∑

l≤2 even
l 6=0, m≥0

n
∑

i=1
fi(1)=l

gi(p)fi(p)
m−1a(0)m (p, l)

+
1

2

∑

m≥0

n
∑

i=1
fi(1)=0

gi(p)fi(p)
m−1a(0)m (p, 0)

+
1

2

∑

l≥4 even
m≥0

n
∑

i=1
fi(1)=l

gi(p)fi(p)
m−1a(0)m (p, l),
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which, by Proposition 3.1 (1), becomes
(3.2)

A(0)(p) = g0(p) +
1

2

∑

l≤2 even
l 6=0,m≥0

n
∑

i=1
fi(1)=l

gi(p)fi(p)
m−1a(0)m (p, l)

+
1

2

(

1−
1

p

) n
∑

i=1
fi(1)=0

gi(p)fi(p)
−1 +

1

2

∑

m≥1

n
∑

i=1
fi(1)=0

gi(p)fi(p)
m−1a(0)m (p, 0)

+
1

2

∑

l≥4 even
m≥0

n
∑

i=1
fi(1)=l

gi(p)fi(p)
m−1a(0)m (p, l).

Due to the choice of P and p > P , we have p > |fi(1)| + 1 for
each 1 ≤ i ≤ n. So, for any even l satisfying l = fi(1) for some
1 ≤ i ≤ n, it can not happen that l ≡ 0 (mod p − 1), which together
with Proposition 3.1 (1) implies that

(3.3) a
(0)
0 (p, l) = 0.

Thus, from (2.4), (3.1) and (3.3), for any even l ≥ 4 satisfying l = fi(1)
for some 1 ≤ i ≤ n, we have

a
(0)
1 (p, l) = −2a0(G

∗
l )−

∑

m≥2

a(0)m (p, l)lm−1

= (1− pl−1)
Bl

l
−
∑

m≥2

a(0)m (p, l)lm−1.
(3.4)

Substituting (3.3) and (3.4) into (3.2), we have
(3.5)

A(0)(p) = g0(p) +
1

2

∑

l≤2 even
l 6=0,m≥1

n
∑

i=1
fi(1)=l

gi(p)fi(p)
m−1a(0)m (p, l)

+
1

2

(

1−
1

p

) n
∑

i=1
fi(1)=0

gi(p)fi(p)
−1 +

1

2

∑

m≥1

n
∑

i=1
fi(1)=0

gi(p)fi(p)
m−1a(0)m (p, 0)

+
1

2

∑

l≥4 even

n
∑

i=1
fi(1)=l

Bl

l
(1− pl−1)gi(p)

+
1

2

∑

l≥4 even
m≥2

n
∑

i=1
fi(1)=l

gi(p)(fi(p)
m−1 − lm−1)a(0)m (p, l).
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Under the condition C1 and noticing the choices of p and P , we have

(3.6)

g0(p) +
1

2

(

1−
1

p

) n
∑

i=1
fi(1)=0

gi(p)fi(p)
−1

+
1

2

∑

l≥4 even

n
∑

i=1
fi(1)=l

Bl

l
(1− pl−1)gi(p) ≡ 0 mod pN .

For every even integer l ≤ 2 satisfying l = fi(1) for some 1 ≤ i ≤ n,
under the condition C2 and due to the choices of p and P , for any
1 ≤ m ≤ N −M we have

vp

(

n
∑

i=1
fi(1)=l

gi(p)fi(p)
m−1
)

= vp

(

n
∑

i=1
fi(1)=l

gi(t)fi(t)
m−1
)

≥ N − (m− 1);

and by Proposition 3.1 (3) and noticing p ≥ N −M + 2 ≥ m+ 2 due
to the choice of P , we have

vp(a
(0)
m (p, l)) ≥ m− 1;

and so we obtain

(3.7) vp

(

n
∑

i=1
fi(1)=l

gi(p)fi(p)
m−1a(0)m (p, l)

)

≥ N, 1 ≤ m ≤ N −M.

If m ≥ N −M +1 and p ≥ m+2, then by Proposition 3.1 (3), we have

vp(a
(0)
m (p, l)) ≥ m − 1, which together with vp(gi(p)) = vt(gi(t)) ≥ M

for each 1 ≤ i ≤ n (due to the choices of p and P ) implies that for
m ≥ N −M + 1 and p ≥ m+ 2, for some j with fj(1) = l,

vp

(

n
∑

i=1
fi(1)=l

gi(p)fi(p)
m−1a(0)m (p, l)

)

≥ vp(gj(p)) + vp(a
(0)
m (p, l))

≥ M +m− 1 ≥ N.

(3.8)

If m ≥ N − M + 1 and p ≤ m + 1, then by Proposition 3.1 (2) and
noticing vp(gi(p)) ≥ M and p > P ≥ N −M + 3, we obtain

vp

(

n
∑

i=1
fi(1)=l

gi(p)fi(p)
m−1a(0)m (p, l)

)

≥ M + vp(a
(0)
m (p, l))

≥ M +
p− 2

p− 1
m− 2 ≥ M + p− 4 ≥ N.

(3.9)
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Thus, under the condition C2 and combining (3.7), (3.8) with (3.9),
for every even integer l ≤ 2 satisfying l = fi(1) for some 1 ≤ i ≤ n and
any m ≥ 1, we have

(3.10)

n
∑

i=1
fi(1)=l

gi(p)fi(p)
m−1a(0)m (p, l) ≡ 0 mod pN .

As the above, under the condition C3 and noticing the choices of p
and P , for every even l ≥ 4 and m ≥ 2, we have

(3.11)

n
∑

i=1
fi(1)=l

gi(p)(fi(p)
m−1 − lm−1)a(0)m (p, l) ≡ 0 mod pN .

Finally, by (3.5), (3.6), (3.10) and (3.11) we conclude that A(0)(p) ≡
0 mod pN for any prime p > P . This completes the proof. �

As an analogue of Proposition 3.1, we obtain a convergent p-adic
series identity for each coefficient aj(G

∗
k), j ≥ 1. The approach here is

different from the one in [5, Proposition 2.1].

Proposition 3.3. Let p be an odd prime, l an even residue class

modulo p − 1, and j a positive integer. Then, there exist coefficients

a
(j)
m (p, l) ∈ Qp, m = 0, 1, 2, . . ., such that for every even integer k ≥ 4

with k ≡ l (mod p− 1), there is a convergent p-adic series identity

aj(G
∗
k) =

∞
∑

m=0

a(j)m (p, l)km.

The coefficients a
(j)
m (p, l) satisfy the following conditions:

(1) for all m, p, l,

vp(a
(j)
m (p, l)) ≥

p− 2

p− 1
m,

(2) for p ≥ m+ 2 and all l,

vp(a
(j)
m (p, l)) ≥ m.

Proof. For (s, u) ∈ X and u is even, by (2.2), we have

(3.12) aj(G
∗
s,u) =

∑

d|j
(p,d)=1

d−1ω(d)u〈d〉s.

Write 〈d〉 = 1 + pqd with qd ∈ Zp, we have

〈d〉s =
∞
∑

m=0

(

s

m

)

pmqmd .



ON THE CONGRUENCES OF EISENSTEIN SERIES 13

Substituting the above into (3.12), we have

aj(G
∗
s,u) =

∑

d|j
(p,d)=1

d−1ω(d)u
∞
∑

m=0

(

s

m

)

pmqmd

=

∞
∑

m=0

(

s

m

)

pm
∑

d|j
(p,d)=1

qmd d
−1ω(d)u.

Thus, we obtain

aj(G
∗
k) = aj(G

∗
k,k) =

∞
∑

m=0

(

k

m

)

pm
∑

d|j
(p,d)=1

qmd d−1ω(d)k

=

∞
∑

m=0

(

k

m

)

pm
∑

d|j
(p,d)=1

qmd d−1ω(d)l,

(3.13)

where the last equality comes from the fact that ω(a)k = ω(a)l if k ≡ l
(mod p− 1).
For each 1 ≤ m ≤ k, we have

(

k

m

)

=
k(k − 1) · · · (k −m+ 1)

m!

=
1

m!
(km + bm,m−1k

m−1 + · · ·+ bm,1k)

(3.14)

for some integers bm,1, . . . , bm,m−1 ∈ Z dependings only on m.
Substituting (3.14) into (3.13), we obtain

aj(G
∗
k) =

∞
∑

m=0

a(j)m (p, l)km

for some a
(j)
m (p, l) ∈ Qp satisfying

vp(a
(j)
m (p, l)) ≥ min{vp(p

m/m!), vp(p
m+1/(m+ 1)!), . . .}

≥ m−
m

p− 1
,

where the number of terms in the min function is finite and the last
inequality follows from the fact that vp(m!) ≤ m/(p − 1). This gives
the conclusion (1) of the proposition. The conclusion (2) (in the case

p ≥ m+ 2) follows from (1) directly by noticing vp(a
(j)
m (p, l)) ∈ Z. �

Applying Proposition 3.3, we can also obtain a congruence relation
for the coefficient aj(G

∗
k) in polynomial index.
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Proposition 3.4. For any integer j ≥ 1, the congruence

n
∑

i=1

gi(p)aj(G
∗
fi(p)

) ≡ 0 mod pN

holds for every prime p > P if the conditions C2, C3 and C4 hold.

Proof. We apply the same strategy as in the proof of Proposition 3.2.
Since p > P and noticing the choice of P , we know that fi(p) ≥ 4

for each 1 ≤ i ≤ n. In view of the convention (2.7), we consider the
quantity

A(j)(p) =

n
∑

i=1

gi(p)aj(G
∗
fi(p)

).

By Proposition 3.3, we have

A(j)(p) =
n
∑

i=1
fi(p) even

gi(p)
∞
∑

m=0

a(j)m (p, fi(p))fi(p)
m

=
∑

h∈Z/(p−1)Z
h even, m ≥ 0

n
∑

i=1
fi(p)≡h mod p−1

gi(p)fi(p)
ma(j)m (p, h).

Since fi(p) ≡ fi(1) mod p− 1, we have

(3.15)

A(j)(p) =
∑

even l ∈ Z
m≥0

n
∑

i=1
fi(1)=l

gi(p)fi(p)
ma(j)m (p, l)

=
∑

l≤2 even
m≥0

n
∑

i=1
fi(1)=l

gi(p)fi(p)
ma(j)m (p, l)

+
∑

l≥4 even
m≥0

n
∑

i=1
fi(1)=l

gi(p)fi(p)
ma(j)m (p, l).

For any even integer l ≥ 4 satisfying l = fi(1) for some 1 ≤ i ≤ n,
by Proposition 3.3 we have

a
(j)
0 (p, l) = aj(G

∗
l )−

∞
∑

m=1

a(j)m (p, l)lm.
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Substituting the above equation into (3.15), we have

(3.16)

A(j)(p) =
∑

l≤2 even
m≥0

n
∑

i=1
fi(1)=l

gi(p)fi(p)
ma(j)m (p, l)

+
∑

l≥4 even

aj(G
∗
l )

n
∑

i=1
fi(1)=l

gi(p)

+
∑

l≥4 even
m≥1

n
∑

i=1
fi(1)=l

gi(p)(fi(p)
m − lm)a(j)m (p, l).

As in the proof of Proposition 3.2, under the condition C2 and the
choices of p and P and using Proposition 3.3, for every even integer
l ≤ 2 and m ≥ 0, we obtain

(3.17)
n
∑

i=1
fi(1)=l

gi(p)fi(p)
ma(j)m (p, l) ≡ 0 mod pN .

Similarly, under the condition C3, for every even integer l ≥ 4 and
m ≥ 1, we have

(3.18)
n
∑

i=1
fi(1)=l

gi(p)(fi(p)
m − lm)a(j)m (p, l) ≡ 0 mod pN .

Also, under the condition C4 and noticing aj(G
∗
l ) ∈ Zp by (2.5), for

every even integer l ≥ 4 we have

(3.19) aj(G
∗
l )

n
∑

i=1
fi(1)=l

gi(p) ≡ 0 mod pN .

Finally, by (3.16), (3.17), (3.18) and (3.19), we conclude thatA(j)(p) ≡
0 mod pN for any prime p > P . This completes the proof. �

We are now at the point to prove Theorem 1.2.

Proof of Theorem 1.2. Since p > P and noticing the choice of P , we
have fi(p) > N for each 1 ≤ i ≤ n. Thus, by (2.6), for any 1 ≤ i ≤ n
with even fi(p) we have

(3.20) Gfi(p) ≡ G∗
fi(p)

mod pN .

Otherwise if fi(p) is odd, then by the conventions (1.2) and (2.7), we
have Gfi(p) = G∗

fi(p)
= 0, and so (3.20) still holds. On the other hand,
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by Propositions 3.2 and 3.4, we directly obtain

(3.21)
n
∑

i=1

gi(p)G
∗
fi(p)

≡ g0(p) mod pN

for every prime p > P if all the conditions C1, C2, C3 and C4 hold.
The desired result now follows from (3.20) and (3.21). �

Finally, we prove Corollary 1.4.

Proof of Corollary 1.4. First, by assumption, it is easy to see that the
conditions C1 and C4 hold.
Since f1(1) = . . . = fn(1) and g1 + . . . + gn = 0, for verifying the

conditions C2 and C3, it suffices to show that for any m ≥ 1,

vt

(

n
∑

i=1

gi(t)fi(t)
m
)

≥ N − 1.

Now, we first prove the case m = 1. Let d = min1≤i,j≤n vt(fi − fj).
Then, N = d + 1. The case d = 0 is trivial. Assume d ≥ 1 and
write F (t) =

∑n
i=1 gi(t)fi(t). To prove vt(F ) ≥ d, it suffices to show

that F (k)(0) = 0 for any 0 ≤ k ≤ d − 1, where F (k) denotes the k-th
derivative of F . Note that

F (k)(t) =

k
∑

j=0

(

k

j

) n
∑

i=1

g
(j)
i (t)f

(k−j)
i (t).

Since 0 ≤ k ≤ d− 1, by definition we have f
(k−j)
1 (0) = . . . = f

(k−j)
n (0),

and so
n
∑

i=1

g
(j)
i (0)f

(k−j)
i (0) = f

(k−j)
1 (0)

n
∑

i=1

g
(j)
i (0) = 0,

where we use the assumption g1+. . .+gn = 0. Hence, we have F (k)(0) =
0 for any 0 ≤ k ≤ d− 1. This completes the proof of the case m = 1.
For m ≥ 2, we have

min
1≤i,j≤n

vt(f
m
i − fm

j ) ≥ min
1≤i,j≤n

vt(fi − fj) = d.

Hence, applying the same argument as the above, we obtain

vt

(

n
∑

i=1

gi(t)fi(t)
m
)

≥ N − 1.

The desired result now follows. �
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