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Abstract

We present conditions which guarantee a parametrization of the set of positive equilibria of
a generalized mass-action system. Our main results state that (i) if the underlying generalized
chemical reaction network has an effective deficiency of zero, then the set of positive equilibria
coincides with the parametrized set of complex-balanced equilibria and (ii) if the network is
weakly reversible and has a kinetic deficiency of zero, then the equilibrium set is nonempty
and has a positive, typically rational, parametrization. Via the method of network translation,
we apply our results to classical mass-action systems studied in the biochemical literature,
including the EnvZ-OmpR and shuttled WNT signaling pathways. A parametrization of the
set of positive equilibria of a (generalized) mass-action system is often a prerequisite for the
study of multistationarity and allows an easy check for the occurrence of absolute concentration
robustness (ACR), as we demonstrate for the EnvZ-OmpR pathway.

Keywords: chemical reaction network, chemical kinetics, deficiency, equilibrium
AMS Subject Classifications: 92C42, 34A34

1 Introduction

Networks of biochemical reactions can be represented as directed graphs where the vertices are
combinations of interacting species (so-called complexes) and the edges are the reactions. Under
suitable assumptions, such as spatial homogeneity and sufficient dilution, the networks follow mass-
action kinetics and give rise to a system of polynomial ordinary differential equations in the species
concentrations.

The mathematical study of positive equilibria of mass-action systems is important for estab-
lishing the uniqueness of equilibria in invariant regions of the state space (so-called compatibility
classes) or, conversely, for establishing the capacity for multistationarity (for example, in models
of biological switches). Such analysis, however, is challenging due to the high-dimensionality of the
dynamical system, the significant nonlinearities, and the number of (unknown) parameters. Recent
work has consequently focused on developing network-based methods for parameterizing the set
of positive equilibria. Monomial parametrizations (Laurent monomials) have been established in
[6, 19, 22, 15], while rational parametrizations have been constructed in [24, 11, 18]. Based on
parametrizations, the uniqueness of positive equilibria has been analyzed [4, 21, 20, 5], and regions
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for multistationarity (in the space of rate constants) have been identified for specific models, such
as phosphorylation networks [12, 3].

In this paper, we develop a method for explicitly constructing positive, typically rational,
parametrizations of the set of positive equilibria for a broad class of biochemical reaction net-
works. Our approach is based on an extension of deficiency theory, the concept of generalized
mass-action systems, and the method of network translation. The deficiency of a chemical reaction
network was introduced in [8, 13] in the context of sufficient conditions for weakly reversible net-
works to have complex-balanced equilibria [14]. The notions of deficiency and complex balancing
were subsequently extended to generalized mass-action systems in [21, 22]. Thereby the kinetic
complex determining the reaction rate was allowed to differ from the (stoichiometric) complex de-
termining the reaction vector. Finally, the method of network translation was introduced in [15],
in order to relate a mass-action system to a generalized mass-action system that is dynamically
equivalent, but has a different network structure. In particular, the translated network might be
weakly reversible (even when the original network is not) and have a lower deficiency.

A generalized mass-action system for which the underlying network is weakly reversible and has
deficiency zero is known to have an equilibrium set with a monomial parametrization [21, 22, 15]. In
this paper, we extend this framework to construct positive parametrizations for a significantly wider
class of generalized networks. To this end, we introduce a new notion of deficiency called effective
deficiency based on the condensed network of the generalized network. Our main results state that,
if a weakly reversible generalized network has an effective deficiency and kinetic deficiency of zero,
then the corresponding generalized mass-action system permits a positive parametrization of the
set of positive equilibria. This parametrization can be computed by linear algebra techniques and
does not require tools from algebraic geometry such as Gröbner bases. Via network translation, we
can apply our results to a broad class of mass-action systems.

For example, consider the following two-component signaling system, which is adapted from a
histidine kinase example in [3]:

X Xp

Xp + Y X + Yp

Yp Y

k1

k2

k3

k4

(1)

Thereby X is a histidine kinase, Y is a response regulator, and p is a phosphate group. The network
is not weakly reversible and has deficiency one. Via network translation, the system (1) corresponds
to the following generalized mass-action system:

☛

✡

✟

✠
X + Y
(X)

☛

✡

✟

✠
Xp + Y
(Xp + Y )

☛

✡

✟

✠
X + Yp

(Yp)

☛

✡

✟

✠
X + Yp

(X + Yp)

k1

k2k4 k3

σ

(2)

Thereby we put a box at each vertex of the graph with the stoichiometric complex at the top and
the kinetic complex (in brackets) at the bottom. The red arrow corresponds to a phantom edge, that
is, an edge which connects identical stoichiometric complexes. Phantom edges do not contribute to
the associated system of ordinary differential equations and hence can be labeled arbitrarily. Thus
the edge label σ > 0 can be considered a free parameter.
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Now, the network (2) is weakly reversible and, as it turns out, it has an effective deficiency of zero
and a kinetic deficiency of zero. Our main results guarantee that the set of positive equilibria has
a positive parametrization and, in fact, constructively yield the following rational parametrization:











x =
k4
σ
, xp =

k1(k3 + σ)k4
k2σ2τ

,

y = τ, yp =
k1
σ
,

(3)

where σ, τ > 0. Note that the ‘rate constant’ σ > 0 in the network (2) appears explicitly in the
parametrization (3). Importantly, the construction of (3) via Theorem 14 depends on efficient
methods from linear algebra such as generalized inverses. Our algorithm therefore represents a
significant computational advantage over algebraic geometry methods such as Gröbner bases.

The paper is organized as follows. In Section 2, we review the relevant terminology regarding
generalized chemical reaction networks and introduce several new notions, including effective and
phantom edges, parametrized sets of equilibria, condensed networks, and effective deficiency. In
Section 3, we present the crucial Lemma 12 and the main results of the paper, Theorems 13 and 14.
In Section 4, we discuss the method of network translation, which allows us to apply the results of
Section 3 to networks studied in the biochemical literature, such as the EnvZ-OmpR and shuttled
WNT signaling pathways. In the EnvZ-OmpR example, our parametrization immediately implies
the occurrence of absolute concentration robustness (ACR). In Section 5, we summarize our findings
and present avenues for future work.

Throughout the paper, we use the following notation:

• Vector logarithm: for v ∈ R
n
>0, ln v = (ln v1, . . . , ln vn)

T ∈ R
n.

• Vector exponential: for v ∈ R
n, ev = (ev1 , . . . , evn)T ∈ R

n.

• Vector powers: for v ∈ R
n
>0 and w ∈ R

n, vw =
∏n

i=1 v
wi

i ∈ R.

• Matrix powers: for v ∈ R
n
>0 and A ∈ R

n×m, vA
T

= (
∏n

i=1 v
Ai1
i , . . . ,

∏n
i=1 v

Aim

i )T ∈ R
m.

• Hadamard product: for v,w ∈ R
n, v ◦ w = (v1w1, . . . , vnwn)

T ∈ R
n.

2 Mathematical framework

We give a brief introduction to the relevant terminology regarding generalized chemical reaction
networks (which include classical chemical reaction networks). In particular, we distinguish between
effective and phantom edges and introduce parametrized sets of equilibria. Further, we define
condensed networks and the notion of effective deficiency. Finally, we introduce the helpful concept
of V ∗-directed networks.

2.1 Generalized mass-action systems

A directed graph G = (V,E) is given by a set of vertices V = {1, . . . ,m} and a set of edges
E ⊆ V × V . We denote an edge e = (i, j) ∈ E by i → j to emphasize that is directed from the
source i to the target j. We additionally define the set of source vertices Vs = {i | i → j ∈ E}, that
is, the set of vertices that appear as the source of some edge. We call the connected components
of a graph linkage classes and the strongly connected components strong linkage classes. If linkage
classes and strong linkage classes coincide, we call the graph weakly reversible.
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A generalized chemical reaction network is essentially a graph with two embeddings of the
vertices in R

n. The notion was introduced in [21] and extended to the present form in [22].

Definition 1. A generalized chemical reaction network (GCRN) (G, y, ỹ) is given by a directed
graph G = (V,E) without self-loops and two maps y : V → R

n and ỹ : Vs → R
n. Thereby, G is

called the abstract reaction graph, and y(i), ỹ(i) ∈ R
n are called the stoichiometric and kinetic-order

complexes, respectively, assigned to vertex i.

In contrast to a classical chemical reaction network (see below), a GCRN has two complexes
associated to each vertex. Thereby, the maps y and ỹ are not required to be injective, and the
same stoichiometric or kinetic-order complex may be assigned to several vertices.

When considering examples, we represent complexes y, ỹ ∈ R
n as formal sums of species (often

{X1,X2, . . . ,Xn}). The components of the complexes correspond to the coefficients in the sums,
e.g., y = (1, 0, 1, 0, . . . , 0) is represented as y = X1 +X3.

Definition 2. A generalized mass-action system (GMAS) (Gk, y, ỹ) is given by a GCRN (G, y, ỹ)
with G = (V,E) together with edge labels k ∈ R

E
>0, resulting in the labeled directed graph Gk.

That is, every edge i → j ∈ E is labeled with a rate constant ki→j ∈ R>0.

The ODE system associated with a GMAS is given by

dx

dt
= fG

k (x) =
∑

i→j∈E

ki→j x
ỹ(i) (y(j) − y(i)). (4)

We can rewrite the right-hand side of the ODE as

fG
k (x) = Y IE diag(k)(IsE)

T xỸ = Y AG
k xỸ , (5)

where Y, Ỹ ∈ R
n×V are the matrices of stoichiometric and kinetic complexes, respectively, IE, I

s
E ∈

R
V×E are the incidence and source matrices of the graph G, and AG

k ∈ R
V×V is the resulting

Laplacian matrix of the labeled directed graph Gk. Note that columns ỹj of Ỹ corresponding to
non-source vertices j 6∈ Vs can be chosen arbitrarily since the corresponding columns (IsE)

j of IsE
and hence the columns (AG

k )
j of AG

k are zero vectors.
Notably, the change over time (4) lies in the stoichiometric subspace S = im(Y IE), which

suggests the definition of a stoichiometric compatibility class (c′ + S) ∩ R
n
≥0 with c′ ∈ R

n
≥0. The

stoichiometric deficiency is defined as δ = dim(ker Y ∩ im IE). Equivalently, δ = m− ℓ− s, where
m = |V | is the number of vertices, ℓ is the number of linkage classes of G, and s = dimS is the
dimension of the stoichiometric subspace (for example, see [15]). If V = Vs, that is, if every vertex is
a source, we additionally define the kinetic-order subspace S̃ = im(Ỹ IE) and the kinetic deficiency
δ̃ = dim(ker Ỹ ∩ im IE). Equivalently, δ̃ = m − ℓ − s̃, where s̃ = dim S̃ is the dimension of the
kinetic-order subspace.

Example 3. Consider the GCRN (G, y, ỹ) with the abstract graph G = (V,E) given by

1 2

4 3

(6)

and y and ỹ defined by

y(1) = X1 +X2, y(2) = X2 +X3, y(3) = y(4) = X1 +X4,
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and
ỹ(1) = X1, ỹ(2) = X2 +X3, ỹ(3) = X1 +X4, ỹ(4) = X4.

This generalized network has four vertices in one linkage class and is weakly reversible. It has a
two-dimensional stoichiometric subspace (s = 2) and a three-dimensional kinetic-order subspace
(s̃ = 3). It follows that the stoichiometric deficiency is one (δ = 4 − 1 − 2 = 1) while the kinetic
deficiency is zero (δ̃ = 4 − 1 − 3 = 0). The corresponding generalized mass-action system (Gk, y)
gives rise to the following system of ODEs (5)

dx

dt
= fG

k (x) = Y AG
k x

Ỹ =









1 0 1 1
1 1 0 0
0 1 0 0
0 0 1 1

















−k1→2 0 0 k4→1

k1→2 −k2→3 k3→2 0
0 k2→3 −k3→2 − k3→4 0
0 0 k3→4 −k4→1

















x1
x2x3
x1x4
x4









.

(7)
Alternatively, we represent the abstract graph (6) and the maps y and ỹ together in one graph,

✎

✍

☞

✌

1
∣

∣

∣

∣

∣

X1 +X2

(X1)

✎

✍

☞

✌

2
∣

∣

∣

∣

∣

X2 +X3

(X2 +X3)

✎

✍

☞

✌

4
∣

∣

∣

∣

∣

X1 +X4

(X4)

✎

✍

☞

✌

3
∣

∣

∣

∣

∣

X1 +X4

(X1 +X4)

(8)

where at each vertex we put a box with the vertex of the abstract graph (if required) on the left, the
stoichiometric complex y at the top, and the kinetic complex ỹ (in brackets) at the bottom. Note
that the network (2) in the introduction is essentially the network (8) with specific interpretations
of the species X1,X2,X3, and X4 and of the edge labels ki→j for i → j ∈ E.

2.2 Mass-action systems

Classical chemical reaction networks and mass-action systems, which have been studied extensively
in industrial chemistry and systems biology, can be considered as special cases of Definitions 1
and 2.

Definition 4. A chemical reaction network (CRN) (G, y) is a GCRN (G, y, ỹ) with ỹ = y and
y : V 7→ R

n being injective. A mass-action system (MAS) (Gk, y) is given by a CRN (G, y), where
G = (V,E), together with a vector k ∈ R

E
>0, resulting in the labeled directed graph Gk.

The ODE system associated with a MAS is given by

dx

dt
= fG

k (x) :=
∑

i→j∈E

ki→j x
y(i) (y(j) − y(i)) = Y IE diag(k)(IsE)

T xY = Y AG
k xY (9)

where the matrices Y , IE , I
s
E , and AG

k are as in (5).
For a CRN, the stoichiometric and kinetic-order subspaces coincide (i.e. S = S̃), and the

stoichiometric and kinetic deficiencies are the same (i.e. δ = δ̃). In fact, the deficiency δ =
dim(kerY ∩ im IE) = m− ℓ− s was introduced first in [8, 13] in the context of complex-balanced
mass-action systems [14]. It has been studied extensively since then [9, 10, 7, 23].

In a CRN, the map y is unique and vertices and complexes are in one-to-one correspondence.
It is typical to write the reaction graph G with the complexes as vertices.
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Example 5. Recall the CRN (G, y) (1) from the introduction, where the species and rate constants
k ∈ R

E
>0 have been relabeled as follows:

X1 X3

X2 +X3 X1 +X4

X4 X2

k1→2

k3→4

k4→3

k5→6

(10)

The CRN (10) has six vertices in three linkage classes, and is not weakly reversible. It has a
stoichiometric subspace of dimension two (s = 2), and hence its deficiency is one (δ = 6−3−2 = 1).

The system of ODEs (9) associated with the MAS (Gk, y) (10) is



















ẋ1 = −k1→2x1 + k3→4x2x3 − k4→3x1x4

ẋ2 = −k3→4x2x3 + k4→3x1x4 + k5→6x4

ẋ3 = k1→2x1 − k3→4x2x3 + k4→3x1x4

ẋ4 = k3→4x2x3 − k4→3x1x4 − k5→6x4.

(11)

Notably, after expanding and relabeling the rate constants in the ODE system (7) arising from the
GCRN (6), the ODE system (11) arising from the CRN (10) coincides with (7). Results obtained by
a structural analysis of the GCRN (6) will consequently hold for the CRN (10). In particular, we will
investigate existing methods for corresponding MASs and GMASs with equivalent dynamics, (9)
and (4), respectively, in Section 4.1.

2.3 Effective and phantom edges and parametrized sets of equilibria

For a GCRN, only edges i → j ∈ E with y(j) 6= y(i) contribute to the right-hand side of the
ODE (4). In Example 3, y(3) = y(4), and hence the rate constant k3→4 does not appear in the
ODEs (7), even though 3 → 4 ∈ E. Consequently, we may partition the set of edges E into the set
of effective edges

E∗ = {i → j ∈ E | y(i) 6= y(j)}

and the set of phantom edges

E0 = {i → j ∈ E | y(i) = y(j)}.

Obviously, E∗ ∩ E0 = ∅ and E = E∗ ∪ E0. For a vector k ∈ R
E
>0, we define k∗ = kE∗ ∈ R

E∗

>0 and

k0 = kE0 ∈ R
E0

>0 so that k = (k∗, k0). Further, we introduce the effective graph G∗ = (V,E∗).
From (4) it follows that

fG
k (x) =

∑

i→j∈E

ki→j x
ỹ(i) (y(j) − y(i)) =

∑

i→j∈E∗

ki→j x
ỹ(i) (y(j)− y(i)) = fG∗

k∗ (x). (12)

That is, the GMAS (Gk, y, ỹ) gives rise to the same system of ODEs as the GMAS (G∗
k, y, ỹ),

involving the effective graph G∗. In particular, the dynamics does not depend on k0. From (12)
and (5) it follow that

fG
k (x) = fG

(k∗,k0)(x) = fG
(k∗,σ)(x) = Y AG

(k∗,σ) x
Ỹ , (13)

for arbitrary σ ∈ R
E0

>0. That is, we may replace the rate constants k0 by arbitrary parameters σ.
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For a GMAS (Gk, y, ỹ), the set of positive equilibria is given by

XG
k := {x ∈ R

n
>0 | f

G
k (x) = 0},

while the set of positive complex-balanced equilibria (CBE) is given by

ZG
k := {x ∈ R

n
>0 | A

G
k xỸ = 0} ⊆ XG

k .

Note that XG
k = XG∗

k∗ , and hence the equilibrium set XG
k depends on k∗, but not on k0, while Zk

depends on both k∗ and k0.
Equation (13) motivates another definition. For an arbitrary parameter σ ∈ R

E0

>0, we consider

ZG
(k∗,σ) := {x ∈ R

n
>0 | A

G
(k∗,σ) x

Ỹ = 0} ⊆ XG
k ,

which is the set of positive CBE of the GMAS (G(k∗,σ), y, ỹ). The parameterized set of positive
CBE (PCBE) is given by

Z̄G
k :=

⋃

σ∈RE0
>0

ZG
(k∗,σ) ⊆ XG

k ,

thereby varying over all σ ∈ R
E0

>0.
For a GMAS (Gk, y, ỹ), the set Z̄G

k need not coincide with the set XG
k . In our main results,

however, we give conditions on the underlying GCRN (G, y, ỹ) such that XG
k = Z̄G

k (Theorem 13),
and also conditions under which a positive parametrization of Z̄G

k can be constructed (Theorem 14).

Example 6. Recall the GCRN (6) from Example 3. The edge set E can be partitioned into
effective edges E∗ = {1 → 2, 2 → 3, 3 → 2, 4 → 1} and phantom edges E0 = {3 → 4}. The
equilibrium set Xk is determined by setting the right-hand sides of the ODEs (7) to zero, whereas
the set Zk of CBE is determined by the Laplacian matrix,

AG
k x

Ỹ =









−k1→2 0 0 k4→1

k1→2 −k2→3 k3→2 0
0 k2→3 −k3→2 − k3→4 0
0 0 k3→4 −k4→1

















x1
x2x3
x1x4
x4









=









0
0
0
0









. (14)

Note that these equations depend on the rate constant k3→4, even though it does not appear in
the ODEs (7). By replacing k3→4 with an arbitrary parameter σ in (14), we obtain the new set of
CBE Z(k∗,σ). The set Z̄k of PCBE is obtained by varying over all σ ∈ R>0. A constructive method
for solving systems like (14) for the concentrations xi will be discussed in Section 3.2.

2.4 Condensed networks and effective deficiency

We now consider auxiliary networks with special properties. First, we introduce a network that
condenses stoichiometrically identical vertices and thereby removes phantom edges.

Definition 7. For the GCRN (G, y, ỹ), we define the condensed CRN (G′, y′) given by the digraph
G′ = (V ′, E′), where

1. V ′ = {[i] | i ∈ V } with [i] = {j ∈ V | y(j) = y(i)} for i ∈ V and

2. E′ = {[i] → [j] | i → j ∈ E∗},

and the map y′ : V ′ → R
n, y′([i]) = y(i).

7



For the GCRN (G, y, ỹ), we define the effective deficiency as the deficiency of the condensed
CRN (G′, y′),

δ′ = dim(ker Y ′ ∩ im IE′)

with the incidence matrix IE′ ∈ R
V ′×E′

and the matrix of complexes Y ′ ∈ R
n×V ′

, as defined after
(5) in Section 2.1. Equivalently, δ′ = m′ − ℓ′ − s, where m′ = |V ′| is the number of vertices and ℓ′

is the number of linkage classes of G′. Thereby, we use S′ = im(Y ′IE′) = im(Y IE) = S and hence
s′ = dim(S′) = dim(S) = s.

Finally, we define a section ρ : V ′ → V , assigning to each equivalence class [i] ∈ V ′ a representa-
tive vertex ρ([i]) ∈ [i], that is, we define a set of representative vertices V ∗ = {ρ([i]) | [i] ∈ V ′} ⊆ V ,
containing exactly one representative vertex from each equivalence class.

Example 8. Recall the GCRN (6) from Examples 3 and 6, in particular, that y(3) = y(4) =
X1 +X4. Hence we have the equivalence classes

[1] = {1}, [2] = {2}, [3] = [4] = {3, 4}.

For the GCRN, we obtain the condensed CRN (G′, y′), in particular, the graph G′

{1} {2}

{3, 4}

(15)

and the map y′ with y′({1}) = X1, y
′({2}) = X2 + X3, and y′({3, 4}) = X1 + X4. Note that we

do not associate kinetic complexes to the vertices of the condensed graph. The deficiency of (15)
is δ = 3− 1− 2 = 0, that is, the effective deficiency of the GCRN (6) is δ′ = 0.

2.5 V
∗-directed networks

Second, we introduce a class of GCRNs which is helpful for constructing a positive parametrization
of the equilibrium set.

Definition 9. Let (G, y, ỹ) be a GCRN with G = (V,E) and condensed CRN G′ = (V ′, E′).
Further, let V ∗ ⊆ V be a set of representative vertices. (That is, there is a section ρ : V ′ → V such
that V ∗ = {ρ([i]) | [i] ∈ V ′}.) We say that (G, y, ỹ) is V ∗-directed if

j → i ∈ E∗ implies i ∈ V ∗, that is, i = ρ([i]),

and

E0 = {i → j | i ∈ V ∗, j ∈ [i] \ {i}}, that is, E0 = {ρ([i]) → j | [i] ∈ V ′, j ∈ [i] \ {ρ([i])}}.

A GCRN being V ∗-directed guarantees that effective edges (those between equivalence classes
[i]) enter at the representative vertex ρ([i]) ∈ V ∗, and that phantom edges (those within an equiv-
alence class [i]) lead from ρ([i]) to the other vertices in the class. The representative vertices
ρ([i]) ∈ V ∗ may be thought of as the hubs of the representative equivalence classes through which
all directed paths must travel.

The class of V ∗-directed GCRNs may seem restrictive. The following result, however, guarantees
that, for every GMAS, there is a dynamically equivalent GMAS which is V ∗-directed, that is, the
associated ODEs agree, cf. (4). This will be instrumental in applications, cf. Section 4.
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Lemma 10. Let (G, y, ỹ) be a GCRN with G = (V,E) and representative vertex set V ∗ ⊆ V , and
let k ∈ R

E
>0 be a rate vector. Then there is a GCRN (Ĝ, y, ỹ) with Ĝ = (V, Ê) that is V ∗-directed

and a rate vector k̂ ∈ R
Ê
>0 such that the GMASs (Gk, y, ỹ) and (Ĝ

k̂
, y, ỹ) are dynamically equivalent,

that is, the associated ODEs agree, cf. (4).

Proof. First we define the set Ê0 = {i → j | i ∈ V ∗, j ∈ [i] \ {i}} and associate an arbitrary
k̂i→j > 0 to each edge i → j ∈ Ê0. Then we define the set Ê∗ = Ê∗

1 ∪ Ê∗
2 as follows:

1. If i → j ∈ E∗ and j ∈ V ∗, then i → j ∈ Ê∗
1 and k̂i→j = ki→j.

2. If i → j ∈ E∗ and j 6∈ V ∗, then i → ρ([j]) ∈ Ê∗
2 and k̂i→ρ([j]) =

∑

j′∈[j]\{ρ([j])}

ki→j′ .

Now we consider the GCRN (Ĝ, y, y′) with Ĝ = (V, Ê) and Ê = Ê0 ∪ Ê∗, which is V ∗-directed

by construction. With the vector k̂ ∈ R
Ê
>0 constructed above, we have

fG
k (x) =

∑

i→j∈E∗

j∈V ∗

ki→j x
ỹ(i) (y(j) − y(i)) +

∑

i→j′∈E∗

j′ 6∈V ∗

ki→j′ x
ỹ(i) (y(j′))− y(i))

=
∑

i→j∈Ê∗
1

k̂i→j x
ỹ(i) (y(j) − y(i)) +

∑

i→ρ([j])∈Ê∗
2

∑

j′∈[j]\{ρ([j])}

ki→j′ x
ỹ(i) (y(j′))− y(i))

=
∑

i→j∈Ê∗
1

k̂i→j x
ỹ(i) (y(j) − y(i)) +

∑

i→ρ([j])∈Ê∗
2

k̂i→ρ([j]) x
ỹ(i) (y(ρ([j])) − y(i))

= f Ĝ

k̂
(x),

where we have omitted the edge sets E0 and Ẽ0 according to (12).

Example 11. Recall the GCRN (6) from Examples 3, 6 and 8. Since y(3) = y(4) and hence
[3] = [4] = {3, 4}, we have two possible sections ρ, that is, two possible sets of representative
vertices V ∗, namely, V ∗

1 = {1, 2, 3} and V ∗
2 = {1, 2, 4}.

For the set V ∗
1 , all edges in (6) enter {3, 4} at 3 = ρ({3, 4}), and the phantom edge 3 → 4 leads

from 3 = ρ({3, 4}) to 4. Hence (6) is V ∗
1 -directed.

For the set V ∗
2 = {1, 2, 4}, the edge 2 → 3 in (6) leads to 3 6= ρ({3, 4}). We therefore replace it

by the edge 2 → 4 with 4 = ρ({3, 4}). Further, we replace the phantom edge 3 → 4 by the phantom
edge 4 → 3. This construction yields the following V ∗

2 -directed GCRN (Ĝ, y, ỹ):

✎

✍

☞

✌

1
∣

∣

∣

∣

∣

X1 +X2

(X1)

✎

✍

☞

✌

2
∣

∣

∣

∣

∣

X2 +X3

(X2 +X3)

✎

✍

☞

✌

4
∣

∣

∣

∣

∣

X1 +X4

(X4)

✎

✍

☞

✌

3
∣

∣

∣

∣

∣

X1 +X4

(X1 +X4)

(16)

The corresponding rate vector k̂ ∈ R
Ẽ
>0 is k̂1→2 = k1→2, k̂2→4 = k2→3, k̂3→2 = k3→2, k̂4→1 = k4→1,

and k̂4→3 = k3→4. Hence fG
k = f Ĝ

k̂
, cf. (4).
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3 Main results

In Section 3.1, we consider GCRNs with an effective deficiency of zero (δ′ = 0) and present Theo-
rem 13, stating that the set of positive equilibria coincides with the parametrized set of complex-
balanced equilibria (PCBE). In Section 3.2, we consider GCRNs with a kinetic deficiency of zero
(δ̃ = 0) and higher (δ̃ > 0) and present Theorem 14, explicitly constructing the PCBE.

3.1 Effective deficiency

Lemma 12 below is crucial for the proof of Theorem 13. In the following, we write coneW ⊆ R
n

for the polyhedral cone generated by the columns of the matrix W ∈ R
n×m.

Lemma 12. Let (G, y, ỹ) be a GCRN with G = (V,E) and representative vertex set V ∗ ⊆ V . In
particular, let (G, y, ỹ) be V ∗-directed and have effective deficiency δ′ = 0. Then

kerY ∩ cone IE∗ ⊆ cone(−IE0).

Moreover,
ker Y ∩ relint(cone IE∗) ⊆ relint(cone(−IE0)).

Proof. Let v ∈ (ker Y ∩ cone IE∗) ⊆ R
V , that is, v = IE∗ x =

∑

i→j∈E∗ xi→j (ej − ei) with x ∈ R
E∗

≥0

(nonnegative weights on the effective edges E∗) and

0 = Y v =
∑

i→j∈E∗

xi→j (y(j)− y(i))

=
∑

[i]→[j]∈E′

(

∑

i′→j′∈E∗:
i′∈[i],j′∈[j]

xi′→j′

)

(y′([j]) − y′([i]))

= Y ′
∑

[i]→[j]∈E′

x′[i]→[j] (e[j] − e[i])

= Y ′ IE′ x′ = Y ′ v′.

Thereby, (G′, y′) with G′ = (V ′, E′) is the corresponding condensed CRN and v′ = IE′ x′ ∈ R
V ′

with x′ ∈ R
E′

≥0. Clearly, v
′
[i] =

∑

i′∈[i] vi′ for [i] ∈ V ′.

Now, δ′ = dim(ker Y ′ ∩ im IE′) = 0 implies v′ = 0, that is,

0 = v′[i] =
∑

i′∈[i]

vi′

for [i] ∈ V ′. Using that G is V ∗-directed, reconsider v = IE∗ x ∈ R
V (the fluxes arising from the

effective edges E∗). Let i ∈ V ∗, that is, i = ρ([i]). For i′ ∈ [i] \ {i},

vi′ = −
∑

i′→j∈E∗

xi′→j,

whereas
vi = −

∑

i′∈[i]\{i}

vi′ .

10



Now, choose x̃ ∈ R
E0

≥0 (nonnegative weights on the phantom edges E0) as

x̃i→i′ =
∑

i′→j∈E∗

xi′→j, (17)

where i′ ∈ [i]. Then, for i′ ∈ [i] \ {i},
vi′ = −x̃i→i′ ,

whereas
vi = −

∑

i′∈[i]\{i}

vi′ =
∑

i′∈[i]\{i}

x̃i→i′ =
∑

i→i′∈E0

x̃i→i′ .

That is, −v = IE0 x̃ ∈ R
V (the fluxes arising from the phantom edges E0), and hence v ∈

cone(−IE0).
Finally, let v ∈ (ker Y ∩ relint(cone IE∗)), that is, v = IE∗ x for some x ∈ R

E∗

>0. Then v =

−IE0 x̃ ∈ relint(cone(−IE0)) with x̃ ∈ R
E0

>0 by (17).

We now present the main result of this section, which gives conditions under which the equilib-
rium set XG

k coincides with the parametrized set of complex-balanced equilibria Z̄G
k .

Theorem 13. Let (G, y, ỹ) be a GCRN with effective deficiency δ′ = 0. Further, let (G, y, ỹ) be
V ∗-directed for a set of representative vertices V ∗ ⊆ V . Then, for the GMAS (Gk, y, ỹ), the set of
positive equilibria agrees with the parametrized set of complex-balanced equilibria, that is, XG

k = Z̄G
k .

Proof. Let x ∈ R
n
>0 be a positive equilibrium, that is, x ∈ XG

k . Using G∗ = (V,E∗), G0 = (V,E0),

and σ ∈ R
E0

>0, we may write

AG
(k∗,σ) x

Ỹ = AG∗

k∗ xỸ +AG0

σ xỸ ,

cf. (4). Now x ∈ XG
k = XG∗

k∗ implies Y AG∗

k∗ x
Ỹ = 0 and hence

AG∗

k∗ xỸ ∈ (ker Y ∩ relint(cone IE∗)),

cf. (5). Since δ′ = 0 and (G, y, ỹ) is V ∗-directed, we have AG∗

k∗ xỸ ∈ relint(cone(−IE0)), by
Lemma 12. That is,

AG∗

k∗ xỸ = −
∑

i→j∈E0

αi→j (ej − ei)

for some α ∈ R
E0

>0. On the other hand,

AG0

σ xỸ =
∑

i→j∈E0

σi→j x
ỹ(i) (ej − ei).

We choose σi→j = αi→j/x
ỹ(i) for i → j ∈ E0 such that AG∗

k∗ x
Ỹ = −AG0

σ xỸ and hence AG
(k∗,σ) x

Ỹ = 0,

that is, x ∈ ZG
(k∗,σ) ⊆ Z̄G

k so XG
k ⊆ Z̄G

k . Since Z̄G
k ⊆ XG

k trivially, we have XG
k = Z̄G

k .
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3.2 Kinetic deficiency

We fix the graph G = (V,E) and omit the corresponding superscript, that is, we write AG
k = Ak,

ZG
k = Zk, and Z̄G

k = Z̄k. Recall that x ∈ Zk is equivalent to xỸ ∈ kerAk. Following [15, 22], we
discuss kerAk. First, we introduce the vector of tree constants K ∈ R

V
>0 with entries

Ki =
∑

(V ,E)∈Ti

∏

i′→j′∈E

ki′→j′ , i ∈ V,

where Ti is the set of directed spanning trees (of the respective linkage class) rooted at vertex i.
Clearly, the tree constants K depend on the rate constants k ∈ R

E
>0, that is, K = K(k).

For a weakly reversible GCRN,

kerAk = span{v1, . . . , vℓ}

with nonnegative vectors vl ∈ R
n
≥0 (for l = 1, . . . , ℓ) having support on the respective linkage class l.

In particular, vli = Ki if vertex i is in linkage class l and vli = 0 otherwise. Now, xỸ ∈ kerAk if and
only if

xỸ =

ℓ
∑

l=1

αl v
l

with αl > 0. For any pair of vertices i and j in the same linkage class, we have

xỹ(i)

Ki
=

xỹ(j)

Kj
.

Taking the logarithm gives

(ỹ(i)− ỹ(j))T lnx = ln

(

Ki

Kj

)

. (18)

Now we choose a spanning forest F = (V, E) for G = (V,E), that is, we choose spanning trees
for all linkage classes. Note that F contains the same vertices as G, but not the same edges. Also
note that, in the following results and applications, the choice of the spanning tree is arbitrary.
Clearly, the spanning tree of linkage class l contains ml vertices and ml − 1 edges. Hence, the
spanning forest F contains m vertices and m− ℓ edges. We introduce the matrix M = Ỹ IE ∈ R

n×E

whose m− ℓ columns are given by ỹ(j)− ỹ(i) for i → j ∈ E . Correspondingly, we define the vector
κ ∈ R

E
>0 whose m − ℓ entries are given by κi→j = Ki

Kj
for i → j ∈ E . As for K, we note that κ

depends on k, that is, κ = κ(k). Hence, we can write the system of equations (18) as

MT lnx = lnκ. (19)

Theorem 1 in [22] implies the following result.

Theorem 14. Let (G, y, ỹ) be a GCRN that is weakly reversible, and let (Gk, y, ỹ) be a GMAS.
Further, let M ∈ R

n×E and κ = κ(k) = κ(k∗, k0) ∈ R
E
>0 be defined as above, and let H ∈ R

n×E

be a generalized inverse of MT (that is, MTHMT = MT ). Finally, define B ∈ R
n×(n−s̃) with

imB = kerMT and kerB = {0}, and C ∈ R
E×δ̃ with imC = kerM and kerC = {0}.

1. If the kinetic deficiency is zero (δ̃ = 0), then Z̄k 6= ∅, in particular, Z̄k has the positive
parametrization

Z̄k =
{

κ(k∗, σ)H
T

◦ τB
T

| σ ∈ R
E0

>0, τ ∈ R
n−s̃
>0

}

. (20)
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2. If the kinetic deficiency is positive (δ̃ > 0) and the δ̃ equations

κ(k∗, k0)C = 1δ̃×1 (21)

can be solved explicitly for δ̃ components of k0 ∈ R
E0

>0 (in terms of k∗ ∈ R
E∗

>0 and the remaining

components of k0), that is, if there exists an explicit function h : R
E∗∪(E0\Ẽ0)
>0 → R

Ẽ0

>0 with

Ẽ0 ⊆ E0, |Ẽ0| = δ̃, and k0 = (k̃0, ·) ∈ R
(E0\Ẽ0)∪Ẽ0

>0 such that, for all k∗ ∈ R
E∗

>0 and k̃0 ∈

R
E0\Ẽ0

>0 ,

κ(k∗, (k̃0, h(k∗, k̃0)))C = 1δ̃×1,

then Z̄k 6= ∅, and Z̄k has the positive parametrization

Z̄k =
{

κ(k∗, (σ, h(k∗, σ)))H
T

◦ τB
T

| σ ∈ R
E0\Ẽ0

>0 , τ ∈ R
n−s̃
>0

}

. (22)

Before we prove statements 1 and 2 of Theorem 14, we make two remarks.

• If the generalized inverse H ∈ R
n×E of MT has integer entries, then (20) is a rational

parametrization. Common generalized inverses such as the Moore-Penrose inverse, however,
rarely have this property [2]. In applications, we construct H by determining the matrix of
elementary row operations P that transforms MT to reduced row echelon form. That is, we
find P ∈ R

E×E such that PMT ∈ R
E×n is the reduced row echelon form of MT . Then we de-

termine Q ∈ {0, 1}n×E such that QPMT = I and hence lnx = H lnκ with H = QP ∈ R
n×E .

That is, we perform Gaussian elimination on (19) and then set all free parameters to zero.

• As a special case of statement 2, if Ẽ0 = E0 and equations (21) can be solved explicitly for
k0 (in terms of k∗), that is, if there exists h : RE∗

>0 → R
E0

>0 such that

κ(k∗, h(k∗))C = 1δ̃×1,

then we obtain the monomial parametrization

Z̄k =
{

κ(k∗, h(k∗))H
T

◦ τB
T

| τ ∈ R
n−s̃
>0

}

.

Proof of statement 1. Since (G, y, ỹ) is weakly reversible, x ∈ Zk if and only if lnx satisfies (19).
Now imM = im(Ỹ IE) = im(Ỹ IE) = S̃ and hence rankM = s̃. Since the kinetic deficiency is zero,
we have δ̃ = m − ℓ − s̃ = 0 and hence s̃ = m − ℓ. That is, MT has full rank m − ℓ and hence
lnκ ∈ imMT for any κ ∈ R

m−ℓ
>0 . Equivalently, the linear system (19) has a solution lnx for any

κ ∈ R
E
>0. Following Proposition 3 in [22], we use the generalized inverse H ∈ R

n×E of MT and
obtain

MTH lnκ = MTHMT lnx = MT lnx = lnκ.

That is, lnx∗ = H lnκ is a solution of (19) and hence x∗ = κH
T

∈ Zk. In particular, Zk 6= ∅.
For any x ∈ Zk,

MT (ln(x)− ln(x∗)) = 0

and, since kerMT = imM⊥ = S̃⊥,

ln(x)− ln(x∗) ∈ S̃⊥.
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We use B ∈ R
n×(n−s̃) with imB = S̃⊥, kerB = {0} and obtain

ln(x)− ln(x̃∗) = Bα

with α ∈ R
n−s̃ and

x = x∗ ◦ τB
T

with τ = eα ∈ R
n−s̃
>0 . Equivalently,

Zk =
{

x∗ ◦ τB
T

| τ ∈ R
n−s̃
>0

}

=
{

κ(k∗, k0)H
T

◦ τB
T

| τ ∈ R
n−s̃
>0

}

.

Note that the matrices M , H, and B do not depend on k ∈ R
E
>0, whereas κ = κ(k) = κ(k∗, k0).

Finally,

Z̄k =
⋃

σ∈RE0
>0

Z(k∗,σ) =
{

κ(k∗, σ)H
T

◦ τB
T

| σ ∈ R
E0

>0, τ ∈ R
n−s̃
>0

}

.

Proof of statement 2. If the kinetic deficiency is positive (δ̃ > 0), then MT does not have full rank,

and (19) does not have a solution for all right-hand sides. We use C ∈ R
E×δ̃ with imC = kerM ,

kerC = {0} and find that (19) has a solution if and only if lnκ ∈ imMT = kerM⊥ = imC⊥ =
kerCT . Equivalently, CT lnκ = 0, that is,

κC = κ(k∗, k0)C = 1δ̃×1.

By assumption, these δ̃ equations can be solved explicitly for δ̃ components of k0 ∈ R
E0

>0 (in
terms of k∗ ∈ R

E∗

>0 and the remaining components of k0), that is, there exists an explicit function

h : R
E∗∪(E0\Ẽ0)
>0 → R

Ẽ0

>0 with Ẽ0 ⊆ E0, |Ẽ0| = δ̃, and k0 = (k̃0, ·) ∈ R
(E0\Ẽ0)∪Ẽ0

>0 such that, for all

k∗ ∈ R
E∗

>0 and k̃0 ∈ R
E0\Ẽ0

>0 ,

κ(k∗, (k̃0, h(k∗, k̃0))C = 1δ̃×1.

Hence (19) has a solution for any k∗ ∈ R
E∗

>0 and k̃0 ∈ R
E0\Ẽ0

>0 , and from the proof of statement 1
we obtain the positive parametrization (22).

4 Applications

The process of network translation allows to relate a classical CRN to a GCRN with potentially
stronger structural properties [15]. Using this method, we can apply the main results of this paper,
Theorems 13 and 14, to a broad class of mass-action systems studied in the biochemical literature.

4.1 Translated chemical reaction networks

The following definition was introduced in [15] in order to relate a MAS to a dynamically equivalent
GMAS.

Definition 15. Let (G, y) with G = (V,E) be a CRN. A GCRN (G⊺, y⊺, ỹ⊺) with G⊺ = (V ⊺, E⊺)
if a translation of (G, y) is there exists a map g : E → E⊺ such that g(i → j) = i⊺ → j⊺ with
i → j ∈ E and i⊺ → j⊺ ∈ E⊺ implies (i) y⊺(j⊺)− y⊺(i⊺) = y(j)− y(i) and (ii) ỹ⊺(i⊺) = y(i).
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In other words, a GCRN is a translation of a given CRN if there is a map between reactions of
the two networks which (i) preserves reaction vectors and (ii) relates source complexes in the CRN
to kinetic complexes in the GCRN. Definition 15 is more general than Definition 6 in [15]. In that
work, GCRNs were defined as in [21] which required y⊺ and ỹ⊺ to be injective. Here, GCRNs are
defined as in [22] which allows y⊺ and ỹ⊺ to be noninjective.

Lemma 16. Let (G, y) be a CRN, and let k ∈ R
E
>0 be a rate vector. Further, let the GCRN

(G⊺, y⊺, ỹ⊺) be a translation of (G, y), and let k⊺ ∈ R
E⊺

>0 be a rate vector with k⊺i⊺→j⊺ = ki→j if
g(i → j) = i⊺ → j⊺. Then the MAS (Gk, y) and the GMAS (G⊺

k⊺ , y
⊺, ỹ⊺) are dynamically equivalent,

that is, the associated ODEs agree, cf. (9) and (4).

Proof. The ODEs associated with the MAS (Gk, y) are determined by fG
k (x), cf. (9), whereas the

ODEs associated with the GMAS (G⊺

k⊺ , y
⊺, ỹ⊺) are determined by fG⊺

k⊺ (x), cf. (4). By Definition 15
and the construction of k⊺, we have

fG
k (x) =

∑

i→j∈E

ki→j x
y(i) (y(j) − y(i)) =

∑

i⊺→j⊺∈E⊺

k⊺i⊺→j⊺ x
ỹ⊺(i⊺) (y⊺(j⊺)− y⊺(i⊺)) = fG⊺

k⊺ (x).

Lemmas 16 and 10 provide a framework for parametrizing the set of positive equilibria of a
(classical) MAS (9), by applying Theorems 13 and 14.

Original CRN,
MAS (Gk, y)

Translated GCRN,
MAS (G⊺

k⊺ , y
⊺, ỹ⊺)

V ∗-directed GCRN,

GMAS (Ĝ⊺

k̂⊺
, y⊺, ỹ⊺)

Network translation
(Lemma 16)

Network redirection
(Lemma 10)

Parametrization
(Theorems 13 and 14)

In biochemical applications, a suitable GCRN that corresponds to a given CRN may not be
apparent. In particular, in order to apply Theorem 13, we want the translated network to have
effective deficiency zero, and to apply Theorem 14, we want the kinetic deficiency to be as low as
possible and the translated and V ∗-directed network to be weakly reversible.

A translation scheme involves the addition of linear combinations of species to each side of a
reaction arrow [15]. This operation preserves reaction vectors and establishes a correspondence
between source complexes in the original network and kinetic complexes in the new one. For small
networks, this may suffice to create a suitably well-connected translation; however, it is extremely
challenging for large networks. Computational approaches to optimal network translation have
been conducted in [16] and [25].

4.2 Examples

The following examples are drawn from the biochemical literature.
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Example 17. Recall the histidine kinase network (1) from the introduction and apply the following
translation scheme:

X Xp (+Y )

Xp + Y X + Yp (+0)

Yp Y (+X)

k1

k2

k3

k4

The resulting GCRN together with an additional phantom edge yields a weakly reversible GCRN,
given by the (edge labeled) graph

✎

✍

☞

✌

1
∣

∣

∣

∣

∣

X + Y
(X)

✎

✍

☞

✌

2
∣

∣

∣

∣

∣

Xp + Y
(Xp + Y )

✎

✍

☞

✌

4
∣

∣

∣

∣

∣

X + Yp

(Yp)

✎

✍

☞

✌

3
∣

∣

∣

∣

∣

X + Yp

(X + Yp)

k1

k2k4 k3

σ

(23)

The stoichiometric complex X + Yp appears twice in (23), specifically, [3] = [4] = {3, 4}, and the
network is V ∗-directed for V ∗ = {1, 2, 3}. The network has a stoichiometric deficiency of one (δ = 1)
and a kinetic deficiency of zero (δ̃ = 0). The condensed network is given by the following graph:

{1} {2}

{3, 4}

It has a deficiency of zero (δ′ = 0). Theorem 13 guarantees that the equilibrium set coincides with
the parametrized set of complex-balanced equilibria. Furthermore, since δ̃ = 0 and (23) is weakly
reversible, Theorem 14 guarantees that there is a positive parametrization of the form (20).

By the construction preceding Theorem 14, we compute the matrix M (and further H and B).
In particular, we choose a spanning forest F = (V, E) for the graph (23) with edges 1 → 2, 1 → 3,
and 1 → 4, and we compute the corresponding differences of kinetic complexes Xp + Y − X,
X + Yp −X, and Yp −X:

M =

X
Xp

Y
Yp









−1 0 −1
1 0 0
1 0 0
0 1 1









, H =









0 1 −1
1 1 −1
0 0 0
0 1 0









, B =









0
−1
1
0









.

Thereby MTHMT = MT , that is, H is a generalized inverse of MT , and imB = kerMT .
In order to determine the parametrization (20), it remains to compute the tree constants K =

K(k∗, σ) of the graph (23) and their quotients κ = κ(k∗, σ). We find

K1 = k2k4σ, K2 = k1(k3 + σ)k4, K3 = k1k2k4, and K4 = k1k2σ.

Taking the spanning forest F = (V, E) as above gives

κ1 =
K2

K1
=

k1(k3 + σ)

k2σ
, κ2 =

K3

K1
=

k1
σ
, κ3 =

K4

K1
=

k1
k4

.
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As a consequence, the rational parametrization (20) amounts to







































x = κ12κ
−1
3 · 1 =

k4
σ
,

xp = κ11κ
1
2κ

−1
3 · τ−1 =

k1(k3 + σ)k4
k2σ2τ

,

y = 1 · τ1 = τ,

yp = κ12 · 1 =
k1
σ
,

where σ, τ > 0.

Example 18. Consider the following EnvZ-OmpR signaling pathway, which was first proposed in
[23], together with the translation scheme proposed in [15]:

XD X XT Xp (+XD +XT + Y )

Xp + Y XpY X + Yp (+XD +XT )

XD + Yp XDYp XD + Y (+X +XT )

XT + Yp XTYp XT + Y (+X +XD)

k1

k2

k3

k4

k5

k6

k7

k8

k9

k10

k11

k12

k13

k14

The resulting GCRN together with an additional phantom edge yields a weakly reversible GCRN,
given by the (edge labeled) graph

✎

✍

☞

✌

1
∣

∣

∣

∣

∣

2XD +XT + Y
(XD)

✎

✍

☞

✌

2
∣

∣

∣

∣

∣

XD +X +XT + Y
(X)

✎

✍

☞

✌

3
∣

∣

∣

∣

∣

XD + 2XT + Y
(XT )

✎

✍

☞

✌

9
∣

∣

∣

∣

∣

X +XT +XTYp

(XTYp)

✎

✍

☞

✌

7
∣

∣

∣

∣

∣

XD +X +XDYp

(XDYp)

✎

✍

☞

✌

4
∣

∣

∣

∣

∣

XD +XT +Xp + Y
(Xp + Y )

✎

✍

☞

✌

8
∣

∣

∣

∣

∣

XD +X +XT + Yp

(XT + Yp)

✎

✍

☞

✌

6
∣

∣

∣

∣

∣

XD +X +XT + Yp

(XD + Yp)

✎

✍

☞

✌

5
∣

∣

∣

∣

∣

XD +XT +XpY
(XpY )

k1

k2

k3

k4

k5
k14

k13

k11

k10 k6k12 k9

σ

k8

k7

(24)
Thereby 6 → 8 is the phantom edge (with label σ > 0) since y(6) = y(8) = XD+X+XT+Yp. The
network is V ∗-directed for V ∗ = V \{8}. It can be quickly checked that the condensed graph G′ has
deficiency zero, so that (24) has an effective deficiency of zero (δ′ = 0). It follows from Theorem 13
that every equilibrium point is in the parametrized set of CBE (i.e. Xk = Z̄k). It can also be
checked that (24) has a kinetic deficiency of one (δ̃ = 1). Hence, in order to apply Theorem 14
(statement 2), we need to first determine if there is σ = h(k∗) such that κ(k∗, h(k∗))C = 1.

17



We choose the spanning forest F = (V, E) for the graph (24) consisting of the edges 1 → i for
i = 2, . . . , 9. We compute the following matrices:

M =

XD

X

XT

Xp

Y

XpY

Yp

XDYp

XTYp











−1 −1 −1 −1 0 −1 −1 −1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1











, H =











0 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 −1
0 1 0 0 0 0 0 −1
0 0 1 0 0 0 0 −1
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 −1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0











, B =











0 1
0 1
0 1
−1 1
1 0
0 1
0 0
0 1
0 1











, CT =









0
−1
0
0
−1
0
1
0









And we find the following tree constants:

K1 = (k4 + k5)(((k9 + σ)k14 + k9k13)k11 + σk14k10)k2k6k8k12

K2 = (k4 + k5)(((k9 + σ)k14 + k9k13)k11 + σk14k10)k1k6k8k12

K3 = k6(((k9 + σ)k14 + k9k13)k11 + σk14k10)k12k1k8k3

K4 = (k7 + k8)(((k9 + σ)k14 + k9k13)k11 + σk14k10)k5k1k3k12

K5 = k5(((k9 + σ)k14 + k9k13)k11 + σk14k10)k12k1k6k3

K6 = (k10 + k11)k12(k13 + k14)k1k3k5k6k8

K7 = k1k12k3k5k6k8k9(k13 + k14)

K8 = (k13 + k14)k1k3k5k6k8σ(k10 + k11)

K9 = k1k3k5k6k8σ(k10 + k11)k12

Constructing κ = κ(k∗, σ) according to the spanning forest F = (V, E) as above gives the δ̃ = 1
condition

κ(k∗, σ)C =

(

K3

K1

)−1 (K6

K1

)−1 (K8

K1

)

=
k2(k4 + k5)σ

k1k3k12
= 1,

which can be solved explicitly for σ (in terms of k∗),

σ =
k1k3k12

k2(k4 + k5)
.

By Theorem 14 (statement 2), we have a monomial parametrization of the form (22). In particular,
we obtain:

XD =

(

((k2(k4 + k5)(k13 + k14)k9 + k1k12k14k3)k11 + k1k3k12k14k10)(k4 + k5)k2
(k10 + k11)k12k5k23k

2

1

)

τ1

X =

(

(((k2(k4 + k5)k9 + k1k3k12k14 + k13k2k9(k4 + k5))k11 + k1k3k12k14k10)(k4 + k5)

(k10 + k11)k12k1k5k23

)

τ1

XT =

(

((k2(k4 + k5)k9 + k1k3k12)k14 + k13k2k9(k4 + k5))k11 + k1k3k12k14k10
(k10 + k11)k12k1k3k5

)

τ1

Xp =

(

(((k2(k4 + k5)k9 + k1k3k12)k14 + k13k2k9(k4 + k5))k11 + k1k3k12k14k10)(k7 + k8)

(k10 + k11)k12k3k1k8k6

)

τ1
τ2

Y = τ2

XpY =

(

((k2(k4 + k5)k9 + k1k3k12)k14 + k13k2k9(k4 + k5))k11 + k1k3k12k14k10
(k10 + k11)k12k3k1k8

)

τ1

Yp =

(

((k2(k4 + k5)k9 + k1k3k12)k14 + k13k2k9(k4 + k5))k11 + k1k3k12k14k10
k5k3k1(k13 + k14)(k10 + k11)

)

XDYp =

(

k2(k4 + k5)(k13 + k14)k9
(k10 + k11)k1k3k12

)

τ1

XTYp = τ1

18



over τ1, τ2 ∈ R>0. This parametrization was obtained via alternative methods in [19] and [15].
Note that the concentration of Yp does not depend upon either parameter τ1 or τ2. Hence

it takes the same value at every positive steady state. This property has been called absolute
concentration robustness (ACR) in the literature, and the robust steady state value of Yp has been
obtained by other methods in [23, 17, 25, 19].

Example 19. Consider the model for the Shuttled WNT signaling pathway from [11], which has
a deficiency of four (δ = 4), taken with the following translation scheme:

X1 X2 X3 (+0)

X5 X7 (+0)

X11 +X12 X13 (+0)

X3 +X6 X15 X3 +X7 (+X9)

X7 +X9 X17 X6 +X9 (+X3)

X2 +X4 X14 X2 +X5 (+X8)

X5 +X8 X16 X4 +X8 (+X2)

X4 +X10 X18 X4 (+X6)

X6 +X11 X19 X6 (+X4)

X10 X11

(+X4 +X6)

∅

k1

k2

k3

k4

k5

k6

k7

k8

k9

k10

k11

k12

k13

k14

k15

k16

k17

k18

k19

k20

k21

k22

k23

k24

k25

k26

k27

k29

k28

k31k30

(25)

In the representation above, we have kept the indexing of the species X1 through X19 as in [11],
but renamed the rate constants. Via Lemmas 16 and 10, the network corresponds to a weakly
reversible, V ∗-directed GCRN:

✎

✍

☞

✌
1
∣

∣

∣

∣

∣

X1

(X1)

✎

✍

☞

✌
2
∣

∣

∣

∣

∣

X2

(X2)

✎

✍

☞

✌
3
∣

∣

∣

∣

∣

X3

(X3)

✎

✍

☞

✌
4
∣

∣

∣

∣

∣

X5

(X5)

✎

✍

☞

✌
5
∣

∣

∣

∣

∣

X7

(X7)

✎

✍

☞

✌
6
∣

∣

∣

∣

∣

X11 +X12

(X11 +X12)

✎

✍

☞

✌
7
∣

∣

∣

∣

∣

X13

(X13)

✎

✍

☞

✌
8
∣

∣

∣

∣

∣

X3 +X6 +X9

(X3 +X6)

✎

✍

☞

✌
9
∣

∣

∣

∣

∣

X9 +X15

(X15)

✎

✍

☞

✌
12

∣

∣

∣

∣

∣

X2 +X4 +X8

(X2 +X4)

✎

✍

☞

✌
13

∣

∣

∣

∣

∣

X8 +X14

(X14)

✎

✍

☞

✌
11

∣

∣

∣

∣

∣

X3 +X17

(X17)

✎

✍

☞

✌
10

∣

∣

∣

∣

∣

X3 +X7 +X9

(X7 +X9)

✎

✍

☞

✌
15

∣

∣

∣

∣

∣

X2 +X16

(X16)

✎

✍

☞

✌
14

∣

∣

∣

∣

∣

X2 +X5 +X8

(X5 +X8)

k1

k2

k3

k4

k5

k6

k7

k8

k9

k10

k11

k15

k16

k17

k13

k14

k12

k19

k20

k18

19



✎

✍

☞

✌

16
∣

∣

∣

∣

∣

X4 +X6 +X10

(X4 +X10)

✎

✍

☞

✌

17
∣

∣

∣

∣

∣

X4 +X6 +X10

(X10)

✎

✍

☞

✌

18
∣

∣

∣

∣

∣

X4 +X6 +X11

(X11)

✎

✍

☞

✌

19
∣

∣

∣

∣

∣

X4 +X6 +X11

(X6 +X11)

✎

✍

☞

✌

20
∣

∣

∣

∣

∣

X6 +X18

(X18)

✎

✍

☞

✌

21
∣

∣

∣

∣

∣

X4 +X6

(0)

✎

✍

☞

✌

22
∣

∣

∣

∣

∣

X4 +X19

(X19)

k21

σ1
k27

k29

σ2

k28

k31 k24

k23

k22
k30

k26

k25

(26)
Thereby, 17 → 16 and 18 → 19 (with labels σ1 > 0 and σ2 > 0) are phantom egdes since
y(16) = y(17) = X4 +X6 +X10 and y(18) = y(19) = X4 +X6 +X11. The network is V ∗-directed
for V ∗ = V \ {16, 19}. It can be quickly checked that the GCRN has a stoichiometric deficiency
of two (δ = 2) but effective and kinetic deficiencies of zero (δ′ = 0 and δ̃ = 0). By Theorems 13
and 14 (statement 1), the equilibrium set can be parametrized by (20).

Explicitly, we choose the spanning forest F = (V, E) for the graph (26) consisting of the edges
1 → i for i ∈ {2, 3}, 4 → 5, 6 → 7, 8 → i for i ∈ {9, 10, 11}, 12 → i for i ∈ {13, 14, 15}, and 16 → i
for i ∈ {17, . . . , 22}. Then we compute the corresponding matrix M :

M =

































−1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 −1 −1 −1 0 0 0 0 0 0
0 1 0 0 −1 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1
0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 −1 −1 −1 0 0 0 0 0 1 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 −1 −1
0 0 0 −1 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

































We have rank(M) = 16 and therefore nullity(MT ) = 19 − 16 = 3. A matrix B with with imB =
kerMT and kerB = {0} is given by

BT =
[

1 1 1 0 1 0 1 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0

]

.

By reducing MT to row echelon form, we obtain the following generalized inverse of MT :

H =

































0 −1 0 0 0 −1 0 0 0 0 0 1 −1 0 0 0
1 −1 0 0 0 −1 0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0
1 −1 1 0 0 0 −1 0 0 1 −1 1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0
0 0 0 −1 0 0 0 0 0 0 0 −1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 −1 0 1 0 0 −1 1 −1 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 −1 0 0 1 0 −1 1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1
































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That is, MTHMT = MT . From the graph (26), we obtain the tree constants K = K(k∗, σ):

K1 = k2k4 K8 = (k10 + k11)k12k14 K15 = k15k17k18

K2 = k1k4 K9 = k9k12k14 K16 = (k22 + k23)k24k30((k28 + σ2 + k31)k26 + k25(k28 + k31))σ1

K3 = k1k3 K10 = k9k11(k13 + k14) K17 = k21(k22 + k23)k24k30((k28 + σ2 + k31)k26 + k25(k28 + k31))
K4 = k6 K11 = k9k11k12 K18 = k21(k22 + k23)k24(k25 + k26)k27k30

K5 = k5 K12 = (k16 + k17)k18k20 K19 = k21(k22 + k23)(k25 + k26)k27k30σ2

K6 = k8 K13 = k15k18k20 K20 = k21k24k30((k28 + σ2 + k31)k26 + k25(k28 + k31))σ1

K7 = k7 K14 = k15k17(k19 + k20) K22 = k21(k22 + k23)k24k27k30σ2

K21 = ((((k28 + σ2 + k31)k29 + (σ1 + k27)k31 + σ2k27 + σ1(σ2 + k28))k26 + k25((k28 + k31)k29 + (σ1 + k27)k31 + σ1k28))k23

+k22(((k28 + σ2 + k31)k29 + k27(k31 + σ2))k26 + k25((k28 + k31)k29 + k31k27)))k24k21

As a result, the parametrization (20) amounts to

x1 =
(

K3K10K19

K1K8K18

)

τ1τ3

x2 =
(

K3K10K19

K2K8K18

)

τ1τ3

x3 =
(

K10K19

K8K18

)

τ1τ3

x4 =
(

K17

K16

)

x5 =
(

K5K10

K4K11

)

τ1

x6 =
(

K18

K19

)

x7 =
(

K10

K11

)

τ1

x8 =
(

K3K4K11K12K17K19

K2K5K8K15K18K16

)

τ3
x9 = τ3

x10 =
(

K21

K17

)

x11 =
(

K21

K18

)

x12 =
(

K7K18

K6K21

)

τ2
x13 = τ2

x14 =
(

K3K10K12K17K19

K2K8K13K18K16

)

τ1τ3

x15 =
(

K10

K9

)

τ1τ3

x16 =
(

K3K10K12K17K19

K2K8K14K18K16

)

τ1τ3
x17 = τ1τ3

x18 =
(

K21

K20

)

x19 =
(

K21

K22

)

with K = K(k∗, σ) as above and σ1, σ2, τ1, τ2, τ3 > 0.

5 Outlook

We have presented sufficient conditions for determining whether the set of positive equilibria of a
generalized mass-action system coincides with the parametrized set of complex-balanced equilibria.
We have also presented sufficient conditions for guaranteeing a positive parametrization of the set
of complex-balanced equilibria and for effectively constructing the parametrization. Through an
extension of network translations [15], we have shown how the result can be immediately applied
to biochemical reaction networks, including the EnvZ-OmpR signaling pathway [23] and shuttled
WNT signaling pathway [11].

A number of potential avenues for further research naturally emerge from this work.

1. Recent work on generalized mass-action systems has established sign conditions sufficient for
the uniqueness of equilibrium points in compatibility classes [1, 20]. In particular, when the
steady state set is toric or complex-balanced, uniqueness and multistationarity may be estab-
lished [21, 19]. It is currently unclear, however, whether the extension to rational parametriza-
tions in Theorem 14 might be utilized to guarantee either uniqueness or multistationarity.

2. For GCRNs with nonzero kinetic deficiency (δ̃ > 0), statement 2 in Theorem 14 guarantees
that, if the parameters σ ∈ R

E0
>0 can be chosen to satisfy the δ̃ > 0 conditions for complex-

balancing, then the system has a monomial parametrization. It is currently unclear which
conditions guarantee that a set of free parameters σ ∈ R

E0
>0 may satisfy the δ̃ > 0 algebraic

conditions on the rate parameters required for complex balancing.

3. Even for biochemical networks of moderate size, it is difficult to determine a translation
scheme for constructing a GCRN corresponding to the original CRN. Computational ap-
proaches to network translation have been investigated in [16] and [25]. These works, how-
ever, rely on the definitions of a GCRN in [21] and of network translation in [15]. Using the
more general definitions in [22] would allow to extend the applicability of the computational
approaches to a significantly broader class of networks.
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