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ON ECALLE’S AND BROWN’S POLAR SOLUTIONS TO THE

DOUBLE SHUFFLE EQUATIONS MODULO PRODUCTS

NILS MATTHES AND KOJI TASAKA

Abstract. Two explicit sets of solutions to the double shuffle equations modulo

products were introduced by Ecalle and Brown respectively. We place the two solutions

into the same algebraic framework and compare them. We find that they agree up

to and including depth four but differ in depth five by an explicit solution to the

linearized double shuffle equations with an exotic pole structure.

1. Introduction

In this paper, we compare two explicit sets of solutions to the double shuffle equations

modulo products introduced by Brown [5] and Ecalle [8], respectively. One of our main

purposes is to put the two constructions on an equal footing, thereby highlighting

similarities (and differences) of the two approaches. We first explain the relevance of

the problem under consideration in the context of multiple zeta values and then state

our main results.

1.1. Motivation. Multiple zeta values are defined for positive integers n1, . . . , nr with

nr ≥ 2 by the nested sum

(1.1) ζ(n1, . . . , nr) :=
∑

0<m1<···<mr

1

mn1
1 · · ·mnr

r

.

We call n1+ · · ·+nr the weight and r the depth, and 1 ∈ Q is regarded as the multiple

zeta value of weight 0 and depth 0. One of the ultimate goals of the study of multiple

zeta values is to find a presentation of the Q-algebra Z generated by all multiple zeta

values, or equivalently, to describe all Q-algebraic relations among the numbers (1.1).

This problem is related to explicitly describing the action of the Tannakian fundamental

group of the category of mixed Tate motives over Z on the unipotent fundamental group

of P1 \ {0, 1,∞} [5, 6]. For more details, as well as a relation with the Grothendieck–

Teichmüller group [7] and the Kashiwara–Vergne group [1], we refer to [10].

Now recall the dimension conjecture on Z. Let Zk ⊂ Z be the Q-vector subspace

spanned by all multiple zeta values of weight k. We have Z0 = Q, Z1 = {0} and
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it is easily seen that dimQZk ≤ 2k−2, for k ≥ 2. In [23], Zagier proposed the con-

jecture stating that dimQZk
?
= dk, where the dk are defined by the generating series∑∞

k=0 dkt
k = 1

1−t2−t3
. Goncharov [11] and Terasoma [22] proved independently that

dimQ Zk ≤ dk, i.e. the numbers dk give at least an upper bound for dimQZk. Since

dk ≈ 0.4115 . . . × (1.3247 . . .)k, this shows that there are in fact numerous Q-linear

relations among the numbers (1.1). Several classes of such relations are known, such as

motivic relations [2], associator relations [9] and (regularized) double shuffle relations

[15] which, by results of Drinfeld, Goncharov and Furusho, are related as follows (cf.

[10])

(1.2)

{regularized double shuffle relations} ⊂ {associator relations} ⊂ {motivic relations}.

Moreover, it is known that the inequality dimQZk ≤ dk can be attained using motivic

relations only [2]. However, the definition of the motivic relations is rather technical.

Giving another proof of the inequality dimQ Zk ≤ dk using a different class of relations is

not only a very challenging project, but also particularly important in connection with

motive theory since it might yield a more elementary characterization of the motivic

relations.

1.2. Problem. In this paper, we focus on the regularized double shuffle relations which

can be described as certain functional equations for polynomials in the ring Q〈x0, x1〉

of non-commutative polynomials in two variables x0, x1. Denote by dmr0 the subspace

of Q〈x0, x1〉 consisting of solutions to the regularized double shuffle equations modulo

products and ζ(2) (see [18, §§3.3.1-2] or [9, Appendix A] for the definition). It is

graded by the weight, where x0, x1 both have weight −1. The space dmr0 is a graded

Lie algebra under the Ihara bracket (cf. [18, Proposition 4.A.i]). In this paper, following

[5, 8, 15], we will embed dmr0 into the space P :=
⊕

r≥0Q[x1, . . . , xr] of finite sequences

of polynomials and always consider dmr0 as a subspace of P under this embedding. For

example, the element [x0, [x0, x1]] + [x1, [x1, x0]] ∈ dmr0 corresponds to the sequence

(0, x21,−2x1 + x2, 0, . . .).

Since the numbers (1.1) satisfy the regularized double shuffle relations there is a

non-canonical surjection of Q-algebras

U(dmr0)
∨ ⊗Q Q[ζ(2)] → Z,

which is believed to be an isomorphism (cf. [15, Conjecture 1]). Here, we denote by

U(dmr0)
∨ the graded dual of the universal enveloping algebra of dmr0. We ask for a

presentation of the Lie algebra dmr0 in terms of explicit generators and relations. By

a result of Goncharov [12], we know that gm ⊂ dmr0 where gm denotes the (image

in P of the) motivic Lie algebra (see e.g. [3, Definition 2.3] for the definition) and
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Brown [2] proved that gm is freely generated by non-canonical elements σ2k+1 of weight

−2k−1 (k ≥ 1). It is expected that the equality gm
?
= dmr0 holds. A positive solution to

this would show that the inequality dimQZk ≤ dk can be attained using the regularized

double shuffle relations only. Another consequence would be that all inclusions in (1.2)

are actually equalities which would yield in particular a more elementary characteriza-

tion of the motivic relations. Therefore, one might expect to obtain explicit formulas

for a choice of the generators σ2k+1 by solving the regularized double shuffle equations.

So far, no explicit formula for σ2k+1 is known except for the canonical elements

σ3, σ5, σ7, σ9; the first example is σ3 := (0, x21,−2x1 + x2, 0, . . .). Furthermore, it is also

known that σ2k+1 = (0, x2k1 , . . .) for all k ≥ 3 [3, 13]. The problem we are attacking in

this paper is as follows (see also [4, Problem 1]).

Problem 1.1. Find explicit formulas for (some choice of) the σ2k+1 by solving the

(regularized) double shuffle equations.

1.3. Polar solutions of Ecalle and Brown and our main results. In [5], Brown

introduced a family of explicit solutions to the double shuffle equations modulo prod-

ucts (2.3) in all odd weights ≤ −3, and applied it to the study of σ2k+1. A similar

construction was made by Ecalle [8], and our main result concerns a comparison of the

two approaches.

The solutions constructed by Brown and Ecalle are elements of a certain graded

vector space

Q ⊂
∏

r≥0

Q(x1, . . . , xr)

which contains the polynomial subspace P (see §2 for the precise definition of Q). In

fact the solutions constructed by Ecalle and Brown are not contained in P; they will be

thus called polar solutions. Nevertheless, removing poles, one may well be able to obtain

an expression of σ2k+1 as a kind of “Taylor expansion” (a suitable linear combination)

in terms of their polar solution, so that one can tackle Problem 1.1. This expression is

called “anatomical” decompositions of zeta elements by Brown [5, §11], where a list of

anatomical decompositions of σ2k+1 for k ≤ 4 is provided (see also §6).

To construct their polar solutions, Ecalle and Brown actually worked on slightly

different spaces, so to compare them we need to place their constructions into the same

space. For this, the set dmQ of solutions to the double shuffle equations modulo products

in Q, is introduced in §2.5. This enlarges Brown’s space pdmr defined in [5, Definition

9.1] (see Remark 2.2 for the difference). Note that the space dmQ does not take into

account the regularization, corresponding to the “correction” factor ψcorr in [18, §3.3.1],

and hence dmr0 is not a subspace of dmQ. We also consider the homogenized versions

of the double shuffle equations modulo products, which are known as the linearized
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double shuffle equations [15, §8], and denote by lsQ ⊂ Q the subset of solutions to

the linearized double shuffle equations (see Definition 2.3). The following theorem is

basically due to Racinet, Ecalle and Brown:

Theorem 1.2. The spaces dmQ and lsQ are Lie algebras under the Ihara bracket { , }.

The Ihara bracket will be recalled in §4.1. For the proof of Theorem 1.2, there

is another shorter exposition given by Brown (see Remark 4.7), but we repeat quickly

Ecalle’s theory of moulds [8] from [20, 21], since it already involves Ecalle’s construction

of polar solutions. On this side, another Lie bracket, called the ari bracket { , }ari
(see §3.2), comes into play. We will first show an explicit connection with the Ihara

bracket in Proposition 4.5 and then rephrase Theorem 7.2 of [20] in our notation. As a

consequence, we obtain the explicit Lie isomorphism (see §5.1)

χE : lsQ
∼=

−→ dmQ.

Since lsQ is bigraded by the weight and the depth, it is easier to compute elements

in lsQ for fixed weights and depths. For example, we have x2k1 = (0, x2k1 , 0, 0, . . .) ∈ lsQ

for all k ∈ Z. The map χE is then used to lift these elements to solutions to the double

shuffle equations modulo products, thereby constructing explicit elements of dmQ in all

depths. A crucial feature is that the element χE(f) ∈ dmQ in general will have poles,

even though f ∈ lsQ is a sequence of polynomials.

A similar definition was made by Brown [5, §14.2]; he defines an injective Q-linear

map (see Definition 5.5)

χB : lsQ −→ Q,

and announces that χB(lsQ) ⊂ dmQ.
1 Furthermore, the map χB is expected to be a

Lie isomorphism, which is still open. In any case, we can apply χB to the depth one

elements x2k1 to obtain a second set of explicit solutions to the double shuffle equations

modulo products.

We can now state our main result.

Theorem 1.3. For any f ∈ lsQ, we have

χE(f) ≡ χB(f) mod Q(d+4),

where d is minimal such that f (d) 6= 0 and Q(r) is defined in (2.1).

Theorem 1.3 says that the images χE(f) and χB(f) agree up to depth d + 3. The

proof of Theorem 1.3 is straightforward; one can write down the formulas for χE(f)

and χB(f) explicitly, and then compare them. In particular, for f = x2k1 we obtain

χE(x
2k
1 )(d) = χB(x

2k
1 )(d) for d ≤ 4. On the other hand, χE(x

2k
1 )(5) − χB(x

2k
1 )(5) 6= 0 and

1This would actually imply χB(lsQ) = dmQ, see the discussion after Theorem 5.6 below.
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the difference can be written using a specific solution to the linearized double shuffle

equations in depth four (see Remark 5.8).

One can also wonder about the existence of a “universal” isomorphism between lsQ

and dmQ from which both χE and χB can be obtained as specializations. We hope to

address this problem in a future work (see §5.4).

1.4. Structure of the paper. In §2, we introduce the double shuffle equations in the

setting of rational functions, thereby also fixing some of our notation. In §3, we review

Ecalle’s theory of moulds. In §4, we prove Proposition 4.5: an explicit connection

between the Ihara and the ari bracket. These are then put to use in §5 where, after

reviewing the definition of the maps χE and χB, we prove our main result, Theorem

1.3. §6 will be devoted to a list of anatomical decompositions of σ2k+1 of Ecalle’s polar

solutions.

Acknowledgments. We are grateful to Francis Brown for inspiring and very valuable

discussions, as well as to Leila Schneps for answering our questions about Ecalle’s theory.

We would like to thank Henrik Bachmann, Francis Brown, Hidekazu Furusho, Ulf Kühn

as well as the referee for comments and corrections on earlier versions, and the Hausdorff

Institute for Mathematics and the Max Planck Institute for Mathematics for hospitality.

This work is partially supported by JSPS KAKENHI Grant No. 18K13393, 17F17020

and 16H07115 and was done while N.M. was a JSPS postdoctoral fellow. N.M. would

also like to thank his academic host, Professor Masanobu Kaneko, for his support and

fruitful discussions on this research.

2. The double shuffle equations for rational functions

In this section, we define two spaces dmQ and lsQ, partially following [5].

2.1. Moulds. We consider sequences f = (f (0), f (1)(x1), f
(2)(x1, x2), . . .) of rational

functions where f (r) ∈ Q(x1, . . . , xr) (in particular, f (0) ∈ Q is a constant). In [20],

these objects are called “rational-function valued moulds” and they are a special case of

the moulds introduced by Ecalle [8]; a mould is a sequence of multivariable functions.

For any such sequence, we will call f (r) the depth r component of f . We shall actually

only be interested in a graded subspace of all sequences of rational functions, and

accordingly define

Q :=
⊕

k∈Z

Qk with Qk =

{
(f (r)) ∈

∏

r≥0

Q(x1, . . . , xr)

∣∣∣∣ deg f (r) = k − r, r ≥ 0

}
,

where Q(x1, . . . , xr) is regarded as Q when r = 0. We shall assume that the degree of

0 ∈ Q can be arbitrary. We say that an element f ∈ Qk has weight −k. The space
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Q is naturally a topological Q-vector space whose topology is induced from the depth

filtration Q•, defined for d ≥ 1 by

(2.1) Q(d) := {(f (r)) ∈ Q | f (r) = 0, 0 ≤ r ≤ d− 1}

and Q(0) = Q. Write Q
(d)
k = Q(d)∩Qk. Then we can and will identify the quotient space

Q
(d)
k /Q

(d+1)
k with the subspace {f ∈ Q(x1, . . . , xd) | deg f = k − d} ⊂ Q(x1, . . . , xd).

For the rest of this paper, by a “mould” we will always mean an element of Q.

2.2. Convention. For any mould f = (f (r)) and any non-empty word xn1 · · · xnr
con-

sisting of any letters indexed by positive integers, we write

f(xn1 · · · xnr
) = f (r)(xn1 , . . . , xnr

),

and set f(∅) = f (0) for the empty word ∅. We extend this notation to all linear

combinations of words by linearity with the coefficients in the rational functions. For

example, we have

(2.2) f(x1x2 + x2x1 +
x1 − x2

x1 − x2
) = f (2)(x1, x2) + f (2)(x2, x1) +

f (1)(x1)− f (1)(x2)

x1 − x2
.

This notation is very useful for our purpose. Note that there are exceptions; for example,

if f (2)(x1, x2) has a pole at x1 = x2, then f(x1x1) does not make sense. However, we do

not meet this sort of substitution later.

2.3. Two products. Let X = {x1, x2, . . .} be an infinite set of letters. We also denote

by K := lim
−→
r

Q(x1, . . . , xr), where the transition maps are the obvious inclusions, the

field of rational functions in a countable number of variables. Denote by 〈X〉 the free

monoid of words on X , including the empty word ∅, and for any Q-algebra R we denote

by R〈X〉 the free R-module spanned by the set 〈X〉.

The shuffle product x is defined on Q〈X〉 inductively by

xnw1x xmw2 = xn(w1x xmw2) + xm(xnw1xw2),

and ∅xw = wx∅ = w, for any words w,w1, w2 ∈ 〈X〉 and n,m ≥ 1, and then

extending by Q-bilinearity. For example, we have f(x1x x2) = f (2)(x1, x2)+f
(2)(x2, x1).

We also define the product ∗ on K〈X〉 inductively by

xnw1 ∗ xmw2 =

{
0 n = m

xn(w1 ∗ xmw2) + xm(xnw1 ∗ w2) +
xn−xm

xn−xm
(w1 ∗ w2) otherwise

with ∅ ∗ w = w ∗ ∅ = w, for any words w1, w2 ∈ 〈X〉 and n,m ≥ 1, and then

extending K-bilinearly. In the expansion of xnw1 ∗ xmw2, we shall think of xn and xm
as commutative variables corresponding to xn and xm, respectively. For example, the

right-hand side of (2.2) can be written as a single term f(x1∗x2). Note that the product
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∗ corresponds to the stuffle product on the level of commutative generating series (see

[14, §7] and [5, §5]).

2.4. The sharp operator. We define an injective Q-linear map ♯ : Q → Q, f 7→ f ♯

for each depth r component by

(f ♯)(r)(x1, . . . , xr) := f (r)(x1, x1 + x2, . . . , x1 + · · ·+ xr),

which appears for example in [15, p.331] (where the order of variables is reversed). Let

♭ : Q → Q, f 7→ f ♭ be the injective Q-linear map, given by

(f ♭)(r)(x1, . . . , xr) := f (r)(x1, x2 − x1, . . . , xr − xr−1).

We understand f ♯(∅) = f ♭(∅) = f (0). Since (f ♯)♭ = (f ♭)♯ = f , the maps ♯ and ♭ are

automorphisms on Q.

2.5. Double shuffle equations modulo products. We can now define our funda-

mental object dmQ studied in this paper.

Definition 2.1. Let dmQ be the set of elements f ∈ Q such that (i) f (0) = 0, (ii) its

depth one component is even, i.e. f (1)(−x1) = f (1)(x1), and (iii) for all r ≥ 2 and

1 ≤ i < r, we have

(2.3) f ♯(x1 · · · xix xi+1 · · · xr) = f(x1 · · · xi ∗ xi+1 · · · xr) = 0.

The equations (2.3) are called the double shuffle equation modulo products. By

definition, the space dmQ inherits the weight grading and the depth filtration from

the ambient space Q. Note that the Lie algebra dmr0 introduced by Racinet [18,

§3.3.1] is not embedded into our space dmQ. The difference is that, while the equation

f(w1 ∗w2) = 0 holds on the nose for elements in dmQ, elements in dmr0 are only required

to satisfy the above equation up to a certain correction term.

Remark 2.2. In [5, Definition 9.1], a space pdmr very similar to dmQ is introduced. It

differs in a restriction to poles; the subspace pdmr ⊂ dmQ admits only poles along xi = 0

and xi = xj for i, j ≥ 1. In [5, §10], certain solutions ψ2n+1 ∈ pdmr were constructed

explicitly, which will be different from Ecalle’s solution χE(x
2n
1 ) and Brown’s solution

χB(x
2n
1 ) defined in §5. We point out that there seems to be no restriction on the depth

one component in the definition of pdmr, although this is required in the proof of its

Lie algebra structure [5, Theorem 9.2].

2.6. Linearized double shuffle equations. Observe that f(x1 . . . xi ∗ xi+1 . . . xr) ≡

f(x1 . . . xi x xi+1 . . . xr) modulo terms of depth ≤ r − 1. The equations (2.4), defined

below, which are obtained from (2.3) by discarding all terms of depth ≤ r−1 are called

the linearized double shuffle equations [3, 15].
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Definition 2.3. Let lsQ be a set of elements f ∈ Q such that (i) f (0) = 0, (ii) its depth

one component is even, i.e. f (1)(−x1) = f (1)(x1), and (iii) for all r ≥ 2 and 1 ≤ i < r,

we have

(2.4) f ♯(x1 · · · xi x xi+1 · · · xr) = f(x1 · · · xi x xi+1 · · · xr) = 0.

A prototype of solutions to (2.4) is given by the generating series of regularized

multiple zeta values modulo products and lower depths of a fixed weight k (see [15,

Corollary 7]).

Note that, by definition, the subspace lsQ ⊂ Q is bigraded by the weight and the

depth, namely, we have

lsQ ∼=
∏

r≥0

gr(r) lsQ,

where gr(r) lsQ := ls
(r)
Q /ls

(r+1)
Q with ls

(r)
Q := lsQ ∩ Q(r). Later, for f ∈ lsQ, its depth r

component f (r) is viewed as an element in gr(r) lsQ.

3. Some aspects of Ecalle’s theory

In this section, we briefly review Ecalle’s theory from [8, 20, 21] with our notational

conventions and translate it into our spaces.

3.1. ARI and GARI. The space Q contains two distinguished subsets

L := {f ∈ Q | f (0) = 0}, G := {f ∈ Q | f (0) = 1}

of sequences whose depth zero term f (0) is equal to 0, respectively equal to 1 (note

that L = Q(1) is a graded Q-vector space with respect to the weight). The notations L

and G come from “Lie algebra” and “group”, corresponding to restrictions of ARI and

GARI to rational functions, respectively (see [8, §9] and also [20, §2] for the definition

of ARI and GARI). Below, we will endow L with a Lie bracket which turns it into a

(pro-nilpotent) Lie algebra, and G will be the associated (pro-unipotent) group (more

precisely, its Q-rational points).

3.2. The ari bracket. We now define the ari bracket [8, 20] translated into our setting.

The order of composition is reversed from [20, Eq.(2.10)], for easier comparison with

the Ihara bracket.

Definition 3.1. The preari action is the continuous, Q-bilinear map ◦ari : L×L → L.

The depth d component of f ◦ari g is given by

(f ◦ari g)
(d)(x1, . . . , xr+s) =

∑

r+s=d

(f (r) ◦ari g
(s))(x1, . . . , xr+s),
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where the terms f (r) ◦ari g
(s) are defined by

(f (r) ◦ari g
(s))(x1, . . . , xr+s)

=
s∑

i=0

f (r)(xi+1, . . . , xi+r)g
(s)(x1, . . . , xi,

i+r+1∑

j=i+1

xj , xi+r+2, . . . , xr+s)

−

s∑

i=1

f (r)(xi+1, . . . , xi+r)g
(s)(x1, . . . , xi−1,

i+r∑

j=i

xj , xi+r+1, . . . , xr+s).

The ari bracket { , }ari is then defined to be the antisymmetrization of the preari action,

i.e.

{f, g}ari := f ◦ari g − g ◦ari f.

The space L forms a graded Lie algebra with { , }ari (see [21, Proposition 2.2.2]).

Rephrasing Theorem 3.3 of [20] using our conventions, we now prove that the image

ls
♯
Q := {f ♯ ∈ L | f ∈ lsQ} forms a Lie subalgebra of L.

Theorem 3.2. The space ls
♯
Q is a Lie algebra under the ari bracket { , }ari.

Proof. This follows from the fact that ARIal/al forms a Lie algebra under the ari bracket

{ , }ari [20, Theorem 3.3] and the equivalence of the defining equations of ls
♯
Q and

ARIal/al, which we now check.

Let us first recall ARIal/al from [20, §3], with our convention. Let swap♭ : Q → Q be

the Q-linear map given for each depth r component by

swap♭(f)(r)(x1, . . . , xr) = f (r)(xr, xr−1 − xr, . . . , x1 − x2).

The space ARIal/al is then defined as the set of moulds f such that f (0) = 0, f (1)(x1) =

f (1)(−x1) and for all r ≥ 2 and 1 ≤ i < r the equality f(x1 · · · xi x xi+1 · · · xr) =

swap♭(f)(x1 · · · xix xi+1 · · · xr) = 0 holds. Now let anti : Q → Q be the Q-linear map

given by

(3.1) anti(f)(r)(x1, . . . , xr) = f (r)(xr, . . . , x1).

We easily see that swap♭(f) = anti(f ♭) and that anti(f)(w) = f(w) for any word

w, where w denotes the reverse word of w. We extend the notation w to all lin-

ear combination of words by linearity. Using the well-known identity wxnxw′
xm =

(wxwxm)xn + (wxnxw′)xm, we see by induction on the length of words that

wxw′ = wxw′

holds for any words w,w′. Hence

swap♭(f)(x1 · · · xix xi+1 · · · xr) = f ♭(xi · · · x1x xr · · · xi+1),

which shows that the defining equations of ARIal/al and ls
♯
Q are the same. �
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3.3. The ari-exponential. For f ∈ L and n ≥ 1, define fn
◦ari

recursively by

f 1
◦ari

= f, fn
◦ari

= f ◦ari f
n−1
◦ari

.

Again, we have reversed the order of composition with respect to [20, §5].

Definition 3.3. The ari-exponential expari : L → G is defined for f ∈ L by

expari(f) = 1 +

∞∑

n=1

fn
◦ari

n!
,

where 1 := (1, 0, 0, . . .) ∈ G.

The ari-exponential is bijective, and its inverse is denoted by

logari : G → L.

Note that logari(F ) for F ∈ G is computed inductively by expari(logari(F )) = F .

For instance, one computes logari(F )
(0) = 0, logari(F )

(1) = F (1), logari(F )
(2) = F (2) −

1
2
F (1) ◦ari F

(1) and so on.

Remark 3.4. Due to the non-associativity of ◦ari, we have to be slightly careful about

the definition of the exponential and logarithm map. In particular, logari(F ) is not

given by the standard formula
∑∞

n=1
(−1)n

n
(F − 1)n◦ari . The reason is that the product

⊛ on the universal enveloping algebra U(L) of L is not equal to ◦ari (cf. [16, Definition

2.9]). On the other hand, the definition of expari is fine, because if we identify L as a

subspace of U(L) (via Poincaré–Birkhoff–Witt), then f ⊛ g = f ◦ari g, whenever f ∈ L.

3.4. Adjoint action. Using expari, we can endow G with a group structure using the

Baker–Campbell–Hausdorff formula (cf. [19, Ch. 3]). More precisely, let ch(f, g) denote

the Baker–Campbell–Hausdorff series of f and g (see also [20, §5]). One can define the

group law ◦ari on G for F = expari(f) and G = expari(g) with f, g ∈ L by

F ◦ari G := expari(ch(f, g)).

The group (G, ◦ari) then acts on the Lie algebra (L, { , }ari) via the adjoint action below.

Definition 3.5. The adjoint action Adari : G ×L → L is defined for G ∈ G and f ∈ L

by the formula

Adari(G)(f) :=

∞∑

n=0

1

n!
adn

ari(g)(f),

where we let g = logari(G) and ad0
ari(g)(f) = f and set adn

ari(g)(f) = {adn−1
ari (g)(f), g}ari

for n ≥ 1.2

2 Note that with our convention ad(g) is a right action; it is related to the usual adjoint map ãd(g)(f) :=

{g, f} via ad(g)(f) = ãd(−g)(f).
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It follows that for every fixed G ∈ G we obtain an isomorphism of Lie algebras

Adari(G) : L → L. In Ecalle’s theory, a suitable element P ∈ G is chosen and its

adjoint action induces a Lie isomorphism between ls
♯
Q and dm

♯
Q = {f ♯ ∈ L | f ∈ dmQ},

so that, by Theorem 3.2 the space dm
♯
Q inherits a Lie algebra structure under the ari

bracket.

3.5. Ecalle’s theorem. We follow the exposition of [21, §4] for the choice of P . Let

us define P ∈ G recursively by P (0) = 1 and for r ≥ 1 by

P (r)(x1, . . . , xr) =
1

x1 + · · ·+ xr

r−1∑

i=0

P (i)(x1, . . . , xi)d
(r−i)(xi+1, . . . , xr)

where d(r) ∈ Q(x1, . . . , xr) is defined by d(0) = 0 and for r ≥ 1 by

d(r)(x1, . . . , xr) =
Br

r!

r−1∑

i=0

(−1)i
(
r − 1

i

)
xr−i

x1 · · ·xr
,

and the Br are the Bernoulli numbers. In particular, d(1)(x1) = −1
2
and d(r) vanishes

for odd r ≥ 3. Clearly, P has weight 0. The element P is denoted by pal in both [8]

and [21], and d is denoted by dupal.

For simplicity of notation, we let

φ0 = logari(P ) ∈ L.

The first few values of φ0 = (φ
(r)
0 ) are given by

(3.2)

φ
(1)
0 (x1) = −

1

2x1
, φ

(2)
0 (x1, x2) =

x1 − x2
12x1x2(x1 + x2)

,

φ
(3)
0 (x1, x2, x3) =

−x2x
2
1 + x3x

2
1 − x22x1 + x23x1 + 2x2x3x1 − x2x

2
3 − x22x3

48x1x2x3(x1 + x2)(x2 + x3)(x1 + x2 + x3)
.

Remark 3.6. Combining Proposition 4.12, Theorems 4.2.1 and 4.3.4 of [21], for any

r ≥ 0 and 0 ≤ i ≤ r we have

(3.3)
P (x1 · · · xix xi+1 · · · xr) = P (x1 · · · xi)P (xi+1 · · · xr),

P ♭(x1 · · · xix xi+1 · · · xr) = P ♭(x1 · · · xi)P
♭(xi+1 · · · xr).

From the first equality in (3.3), one can show that

(3.4) φ0(x1 · · · xix xi+1 · · · xr) = 0

holds for all r ≥ 2 and 1 ≤ i < r (see [21, Proposition 2.6.1]). On the other hand, note

that φ♭
0 does not satisfy the equations φ♭

0(x1 · · · xi • xi+1 · · · xr) = 0 for • ∈ {∗,x}, and

hence, φ♭
0 6∈ dmQ and φ♭

0 6∈ lsQ.

With P , one of the main theorems of Ecalle’s theory of moulds is stated as follows.
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Theorem 3.7. For f ∈ ls
♯
Q, we have Adari(P )(f) ∈ dm

♯
Q. In particular, Adari(P ) :

L → L restricts to an isomorphism of Lie algebras

Adari(P ) : ls
♯
Q

∼=
−→ dm

♯
Q,

where both sides are endowed with the ari bracket.

Proof. This follows from [20, Theorem 7.2] (see also [21, Theorem 4.6.1], where they

actually show that ARIal/al ∼= ARIal/il in the first place). We should check that the

defining equations of ARIal/il and dm
♯
Q are the same, but this follows from the same

argument as in the proof of Theorem 3.2. �

As a corollary, we see that

Corollary 3.8. The space dm
♯
Q is a Lie algebra under the ari bracket.

4. Proof of Theorem 1.2

The goal of this section is to give a proof that lsQ, dmQ are Lie algebras with the

Ihara bracket.

4.1. The Ihara bracket. Following [5], we define the Ihara bracket.

Definition 4.1. The linearized Ihara action is the continuous, Q-bilinear map ◦ :

L × L → L. The depth d component of f ◦ g is given by

(f ◦ g)(d)(x1, . . . , xr+s) =
∑

r+s=d

(f (r) ◦ g(s))(x1, . . . , xr+s),

where the terms f (r) ◦ g(s) are defined by

(4.1)

(f (r) ◦ g(s))(x1, . . . , xr+s)

=
s∑

i=0

f (r)(xi+1 − xi, . . . , xi+r − xi)g
(s)(x1, . . . , xi, xi+r+1, . . . , xr+s)

+ (−1)r
s∑

i=1

f (r)(xi+r − xi+r−1, . . . , xi+r − xi)g
(s)(x1, . . . , xi−1, xi+r, . . . , xr+s).

The Ihara bracket { , } is then defined to be the antisymmetrization of the linearized

Ihara action, i.e.

{f, g} := f ◦ g − g ◦ f.
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Note that if f ∈ Lk, i.e. f has weight −k then the right hand side of (4.1) is equal to

s∑

i=0

f (r)(xi+1 − xi, . . . , xi+r − xi)g
(s)(x1, . . . , xi, xi+r+1, . . . , xr+s)

+ (−1)deg f
(r)+r

s∑

i=1

f (r)(xi+r−1 − xi+r, . . . , xi − xi+r)g
(s)(x1, . . . , xi−1, xi+r, . . . , xr+s),

which is precisely the formula for the linearized Ihara action given in [5, §6.3].

The Ihara bracket { , } provides another Lie structure on L (cf. [5, Lemma 6.6]),

and is equivalent to a Lie bracket first considered by Ihara [13] in the polynomial case.

Remark 4.2. A useful way to memorize the definition of the linearized Ihara action is

that the terms appearing in the definition can be identified with the set of all possible

ways of excising from (x1, . . . , xr+s) a sub-tuple (xi+1, . . . , xi+r) of r successive points.

Then one either subtracts from the removed tuple its left neighbor xi, or one subtracts

from the right neighbor xi+r+1 the tuple (in which case there is an additional weighting

factor (−1)r).

4.2. Comparison of Lie brackets. We show an explicit connection between the Ihara

bracket { , } and the ari bracket { , }ari. We begin with the following well-known

lemma.

Lemma 4.3. If a mould f satisfies f(x1 · · · xix xi+1 · · · xr) = 0 for all 1 ≤ i < r, we

have

f(x1x2 · · · xr) + (−1)rf(xr · · · x2x1) = 0.

Proof. This is a standard fact about the shuffle algebra (see e.g. [21, Lemma 2.5.3]). �

Define V ⊂ L to be the Q-vector subspace of elements f which satisfy f + ϕ(f) = 0,

where ϕ is the linear involution of L, given for each depth r component by

ϕ(f)(r)(x1, . . . , xr) = (−1)rf (r)(xr, . . . , x1).

Note that by Lemma 4.3, we see that both dm
♯
Q and ls

♯
Q are subspaces of V. We first

prove that the space V is a Lie subalgebra of L with the ari bracket.

Proposition 4.4. The Q-vector space V is closed under { , }ari.

Proof. We need to show that, given f, g ∈ L such that f + ϕ(f) = g + ϕ(g) = 0, we

have

(4.2) {f, g}ari + ϕ({f, g}ari) = 0.

It is enough to check this for every component f (r) of f and g(s) of g separately, so, for

simplicity of notation, let f = f (r) and g = g(s). Unraveling the definition of { , }ari,
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we see that {f, g}ari + ϕ({f, g}ari) equals

(4.3)(
s∑

i=0

f(xi+1, . . . , xi+r)g(x1, . . . , xi,
i+r+1∑

j=i+1

xj , xi+r+2, . . . , xr+s)

−
s∑

i=1

f(xi+1, . . . , xi+r)g(x1, . . . , xi−1,
i+r∑

j=i

xj , xi+r+1, . . . , xr+s)

−

r∑

i=0

g(xi+1, . . . , xi+s)f(x1, . . . , xi,

i+s+1∑

j=i+1

xj , xi+s+2, . . . , xr+s)

+
r∑

i=1

g(xi+1, . . . , xi+s)f(x1, . . . , xi−1,
i+r∑

j=i

xj , xi+r+1, . . . , xr+s)

)

+ (−1)r+s

(
s∑

i=0

f(xr+s−i, . . . , xs−i+1)g(xr+s, . . . , xr+s−i+1,
r+s−i∑

j=s−i

xj , xs−i−1, . . . , x1)

−

s∑

i=1

f(xr+s−i, . . . , xs−i+1)g(xr+s, . . . , xr+s−i+2,

r+s−i+1∑

j=s−i+1

xj , xs−i, . . . , x1)

−

r∑

i=0

g(xr+s−i, . . . , xr−i+1)f(xr+s, . . . , xr+s−i+1,

r+s−i∑

j=r−i

xj , xr−i−1, . . . , x1)

+
r∑

i=1

g(xr+s−i, . . . , xr−i+1)f(xr+s, . . . , xr+s−i+2,
r+s−i+1∑

j=r−i+1

xj , xr−i, . . . , x1)

)
.

Using that f + ϕ(f) = g + ϕ(g) = 0, we see that the first and the sixth, the second

and fifth, the third and eighth as well as the fourth and the seventh sum simplify, and

therefore (4.3) equals

f(xs+1, . . . , xr+s)g(x1, . . . , xs) + (−1)r+sf(xr, . . . , x1)g(xr+s, . . . , xr+1)

− g(xr+1, . . . , xr+s)f(x1, . . . , xr)− (−1)r+sg(xs, . . . , x1)f(xr+s, . . . , xs+1) = 0,

where we again used that f + ϕ(f) = g + ϕ(g) = 0, and (4.2) follows. �

Proposition 4.5. For all f, g ∈ V, we have {f, g}♭ari = {f ♭, g♭}. In particular, the space

V♭ := {f ♭ ∈ L | f ∈ V} is closed under the Ihara bracket { , } and the map f 7→ f ♭

induces an isomorphism of Lie algebras

(4.4) (V, { , }ari) ∼= (V♭, { , }).

Proof. We will prove the slightly stronger result

(4.5) (f ◦ari g)
♭ = f ♭ ◦ g♭, for all f ∈ V, g ∈ L.
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Computing the left hand side of (4.5) gives

s∑

i=0

f (r)(xi+1:i, . . . , xi+r:i+r−1)g
(s)(x1, . . . , xi:i−1, xi+r+1:i, xi+r+2:i+r+1, . . . , xr+s:r+s−1)

−

s∑

i=1

f (r)(xi+1:i, . . . , xi+r:i+r−1)g
(s)(x1, . . . , xi−1:i−2, xi+r:i−1, xi+r+1:i+r, . . . , xr+s:r+s−1)

where xj:k := xj − xk. On the other hand, the right hand side of (4.5) is equal to

s∑

i=0

f (r)(xi+1:i, xi+2:i+1, . . . , xi+r:i+r−1)g
(s)(x1, . . . , xi:i−1, xi+r+1:i, . . . , xr+s:r+s−1)

+ (−1)r
s∑

i=1

f (r)(xi+r:i+r−1, xi+r−1:i+r−2, . . . , xi+1:i)g
(s)(x1, . . . , xi−1:i−2, xi+r:i−1, . . . , xr+s:r+s−1).

Finally, using that f + ϕ(f) = 0, we get

−f (r)(xi+1:i, xi+2;i+1, . . . , xi+r:i+r−1) = (−1)rf (r)(xi+r:i+r−1, . . . , xi+2;i+1, xi+1:i)

and (4.5) follows. The fact that V♭ is a Lie algebra under the Ihara bracket follows from

this together with Proposition 4.4. �

We note that the isomorphism (4.4) does not extend to an isomorphism between

(L, { , }) and (L, { , }ari), e.g. for f(x1, x2) = x1 + x2 /∈ V and g(x1) = x1, we have

{f, g}♭ari − {f ♭, g♭} = 2(x1 − x3)x3 6= 0.

Remark 4.6. A result similar to Proposition 4.5 was obtained by Racinet [17, Corollaire

A.5.4] in the non-commutative setting, however our conventions for the Ihara and ari

bracket are slightly different so that we cannot use his result here.

4.3. Proof of Theorem 1.2. We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Note that the defining equation of the space V♭ is given by

(4.6) g(r)(x1, . . . , xr) = (−1)r−1g(r)(xr − xr−1, xr − xr−2, . . . , xr − x1, xr).

For f ∈ lsQ, since f
♯(x1 · · · xi x xi+1 · · · xr) = 0 for 1 ≤ i < r, by Lemma 4.3 we have

f ♯(x1 · · · xr) + (−1)rf ♯(xr · · · x1) = 0. Therefore, taking ♭, we get

(f ♯)♭(x1 · · · xr) = (−1)r−1
(
anti(f ♯)

)♭
(x1 · · · xr),

which has the same form as (4.6), where anti is defined in (3.1). Thus, lsQ ⊂ V♭.

Similarly, one has dmQ ⊂ V♭. By Proposition 4.5, the Lie isomorphism ♭ : (V, { , }ari) →

(V♭, { , }) induces isomorphisms

(dm♯
Q, { , }ari)

♭
−→ (dmQ, { , }) and (ls♯Q, { , }ari)

♭
−→ (lsQ, { , })
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of Lie algebras. Thus, Theorem 1.2 follows from Theorem 3.2 and Corollary 3.8. �

Remark 4.7. Another proof of Theorem 1.2 is obtained by a version of Racinet’s theorem

[18, Proposition 4.A.i], together with Brown’s argument [5, §16.1] (see also [5, Theorem

9.2]). Ecalle’s theory gives another approach to Racinet’s theorem.

5. Comparison of Ecalle’s and Brown’s polar solutions

In this section, we first define Ecalle’s and Brown’s polar solutions, and then, prove

Theorem 1.3.

5.1. Ecalle’s polar solutions. Transposing Adari(P ) to a map from lsQ to dmQ via

Proposition 4.5, we arrive at the following definition.

Definition 5.1. Define a morphism of Lie algebras χE : lsQ → dmQ by the following

commutative diagram

ls
♯
Q

Adari(P )
−−−−−→ dm

♯
Q

♯

x ♭

y

lsQ
χE

−−−→ dmQ

.

We can give an explicit formula for χE as follows.

Proposition 5.2. For f ∈ lsQ, we have

(5.1) χE(f) =

∞∑

n=0

1

n!
adn(φ♭

0)(f) = f + {f, φ♭
0}+

1

2
{{f, φ♭

0}, φ
♭
0}+ · · · ,

where ad denotes the adjoint action with respect to the Ihara bracket, i.e. adn(g)(f) =

{adn−1(g)(f), g} for n ≥ 1 and ad0(g)(f) = f .

Proof. Unravelling the definition of χE , we see that

χE(f) =

(
∞∑

n=0

1

n!
adn(φ0)(f

♯)

)♭

= (f ♯)♭ + {f ♯, φ0}
♭
ari +

1

2
{{f ♯, φ0}ari, φ0}

♭
ari + · · · .

By (3.4) and Lemma 4.3, we have φ0 ∈ V. Therefore, using the definition of Adari(P )

together with Proposition 4.5, we get the formula for χE(f) when f ∈ lsQ. �

Combining Theorem 3.7 with Proposition 4.5, we get the next theorem.

Theorem 5.3. The morphism χE is an isomorphism of Lie algebras

χE : lsQ
∼=

−→ dmQ.

�

Applying χE to the canonical depth one element x2k1 ∈ lsQ, we obtain a solution

η2k+1 := χE(x
2k
1 ) to the double shuffle equations modulo products in weight −2k − 1.
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5.2. Brown’s polar solutions. The following definitions are taken from [5, §14]. For

an integer r ≥ 1, define a rational function sr ∈ Q(x1, . . . , xr) by

sr =

r−1∑

i=0

(r − i)
∏

0≤j≤r, j 6=i

1

(xj − xi)
,

where we set x0 = 0. We also define the element ψ0 ∈ L by

ψ
(r)
0 =

(
r + 1

2

)−1

sr.

It is shown in [5, Proposition 14.8] that the sr satisfy the identity {sm, sn} = (m −

n)sm+n. This implies that for r ≥ 3, we have the “Witt identity”.

(5.2) ψ
(r)
0 =

r − 1

(r − 2)(r + 1)
{ψ

(1)
0 , ψ

(r−1)
0 }.

In particular, it follows that ψ
(r)
0 ∈ Q× adr−2(ψ

(1)
0 )(ψ

(2)
0 ). The first few values of ψ

(r)
0

are given explicitly by

(5.3)

ψ
(1)
0 (x1) =

1

x1
, ψ

(2)
0 (x1, x2) =

2x1 − x2
3x1(x1 − x2)x2

,

ψ
(3)
0 (x1, x2, x3) =

3x2x
2
1 − 2x3x

2
1 − 3x22x1 + 2x23x1 − x2x

2
3 + x22x3

6x1x2x3(x1 − x2)(x1 − x3)(x2 − x3)
.

Remark 5.4. It is announced in [5, Theorem 14.2] that the element ψ0 satisfies the double

shuffle equations modulo products (2.3). In particular, this means that ψ0 substantially

differs from Ecalle’s φ♭
0 (see Remark 3.6).

With ψ0, we can now define Brown’s lift χB.

Definition 5.5. For f = f (d) ∈ gr(d) lsQ, define an element χB(f) ∈ L inductively by

χB(f)
(i) = 0 for i < d, χB(f)

(d) := f (d) and

χB(f)
(d+r) :=

1

2r

r∑

i=1

{ψ
(i)
0 , χB(f)

(d+r−i)}

for r ≥ 1. Extending χB to all of lsQ by continuity and linearity, we obtain an injective

linear map

χB : lsQ −→ Q.

The χB(f) is denoted by f̃ in [5, Definition 14.3]. Clearly, the image of χB lies in

the subspace L ⊂ Q. The following theorem is announced in [5, Theorem 14.4].

Theorem 5.6. For f ∈ lsQ, we have χB(f) ∈ dmQ, i.e. the element constructed in

Definition 5.5 solves the double shuffle equations modulo products. �
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Assuming the above theorem, we see that the linear map χB is an isomorphism3,

since its inverse χ−1
B can be described as follows (cf. [5, Theorem 14.9]). Given (f (r)) 6=

0 ∈ dmQ, let d be minimal such that f (d) 6= 0. Then define an element g := χ−1
B (f)

recursively by

g(d+r) :=





0 r < 0

f (d) r = 0

f (d+r) − χB(g)
(d+r) r > 0.

This is well-defined, as the depth r component χB(g)
(r) only involves g(n), for n < d+r.

It is easily seen that (g(r)) ∈ L satisfies the linearized double shuffle equations and that

χB(g) = f . Since χB is obviously injective, this shows that χB is an isomorphism of

Q-vector spaces. We do not know if χB is an isomorphism of Lie algebras, but from

the comparison with χE (which is a Lie algebra isomorphism!), it will follow that this

is true at least in depths ≤ 3.

Remark 5.7. The images χB(x
2k
1 ) of the canonical depth one elements x2k1 ∈ gr(1) lsQ

are denoted by ξ2k+1 in [4, Definition 5.1].4 Interestingly, they satisfy relations; the

first example is {ξ3, ξ9} − 3{ξ5, ξ7} = 0. Moreover, for k ≥ −1, the ξ2k+1 coincide

with the images of certain geometric derivations ε∨2k+2 under a Lie algebra isomorphism

ℓ′ : B1DerΘ Lie(a, b) → (L, {, }) up to depth four (see [4, §6]).

5.3. Comparing the two lifts. We now prove Theorem 1.3.

Proof of Theorem 1.3. Let f ∈ gr(d) lsQ. For r ≥ 1, put ψ
(d)

0 = − 1
2d
ψ

(r)
0 . It follows from

the definition of χB that

χB(f)
(d) = f, χB(f)

(d+1) = {f, ψ
(1)

0 },

χB(f)
(d+2) = {f, ψ

(2)

0 }+
1

2
{{f, ψ

(1)

0 }, ψ
(1)

0 }.

For χB(f)
(d+3), using ψ

(3)

0 = 1
2
{ψ

(2)

0 , ψ
(1)

0 } (see (5.2)) and the Jacobi identity, we have

χB(f)
(d+3) = {{f, ψ

(2)

0 }, ψ
(1)

0 }+
1

3!
{{{f, ψ

(1)

0 }, ψ
(1)

0 }, ψ
(1)

0 }.

On the other hand, by (5.1), we have

χE(f)
(d) = f, χE(f)

(d+1) = {f,
(
φ
(1)
0

)♭
},

χE(f)
(d+2) = {f,

(
φ
(2)
0

)♭
}+

1

2
{{f,

(
φ
(1)
0

)♭
},
(
φ
(1)
0

)♭
}.

3This was pointed out by Brown in a private discussion with the authors.
4There is a typo in the definition of ξ2k+1; s

(2) should be s(2)/2.
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From (3.2) and (5.3), it can be shown that for r = 1, 2, we have (φ
(r)
0 )♭ = ψ

(r)

0 , and

hence, χE(f)
(d+r) = χB(f)

(d+r) for r = 0, 1, 2. It is straightforward to verify that the

element φ0 satisfies the extra identity φ
(3)
0 = 1

2
{φ

(2)
0 , φ

(1)
0 }ari. With this and the Jacobi

identity one computes

χE(f)
(d+3) = {{f,

(
φ
(2)
0

)♭
},
(
φ
(1)
0

)♭
}+

1

3!
{{{f,

(
φ
(1)
0

)♭
},
(
φ
(1)
0

)♭
},
(
φ
(1)
0

)♭
}.

Again, by the equality (φ
(r)
0 )♭ = ψ

(r)

0 for r = 1, 2, we get χE(f)
(d+3) = χB(f)

(d+3), which

completes the proof. �

Remark 5.8. The comparison between χ
(d+4)
B (f) and χ

(d+4)
E (f) is more complicated be-

cause for r ≥ 4, the φ0 does not satisfy the Witt identity (5.2). However, a straightfor-

ward calculation gives

χE(f)
(d+4) − χB(f)

(d+4) =
1

240
{f,Q4} 6= 0

for any f ∈ gr(r) lsQ, so that in particular χB and χE differ in general. Here Q4 is

defined by

Q4(x1, . . . , x4) =
∑

i∈Z/5Z

1

(xi+1 − xi)(xi+3 − xi)(xi+3 − xi+2)(xi+4 − xi)

with x0 = 0, where the sum is over all cyclic permutations of the set {0, 1, . . . , 4}. The

element Q4, which is a solution to the linearized double shuffle equations, will play a

new role in the study of solutions to the double shuffle equations (see also [5, Remark

14.10]).

5.4. A future work. It is natural to ask if there are more isomorphisms between lsQ

and dmQ. We omit the details, but the discussions in §3.4 and §3.5 can be applied to

the linearized Ihara action ◦: the group (G, ◦) acts on the Lie algebra (L, {, }) on the

right via the adjoint action Ad : G × L → L, where ◦ is the so-called Ihara group law

(see e.g. [3, §2.2]). The adjoint action in this case is given for G ∈ G and f ∈ L by the

formula

Ad(G)(f) =

(
∞∑

n=0

adn(ψG)(f)

)
,

where we set ψG = log(G). Note that each Ad(G) is a Lie isomorphism with respect

to the Ihara bracket. We can restrict to Ad(G) : lsQ → L and ask for conditions

on G such that its image is dmQ. The prototype is of course Ecalle’s isomorphism

Adari(P ) : ls
♯
Q → dm

♯
Q in Theorem 3.7, where P is weight 0 and satisfies the equations

(3.3).
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In a similar vein, one can try to write down an explicit element B ∈ G of weight 0

such that

χB(f) = Ad(B)(f).

We make a first step in this direction. Define ψB ∈ Q/Q(6) by ψ
(0)
B = 1 and

ψ
(1)
B = −

1

2
ψ

(1)
0 , ψ

(2)
B = −

1

4
ψ

(2)
0 , ψ

(3)
B = −

1

8
ψ

(3)
0 , ψ

(4)
B = −

1

18
ψ

(4)
0 , ψ

(5)
B = −

11

576
ψ

(5)
0 .

Note that ψ
(r)
B =

(
φ
(r)
0

)♭
for r ≤ 3, but not for r ≥ 4.

Proposition 5.9. For f ∈ gr(d) lsQ, we have

χB(f) ≡

(
∞∑

n=0

adn(ψB)(f)

)
mod Q(d+5).

Furthermore, the element B := exp(ψB) satisfies the equation

(5.4)
B(x1 · · · xi x xi+1 · · · xr) = B(x1 · · · xi)B(xi+1 · · · xr),

B♯(x1 · · · xix xi+1 · · · xr) = B♯(x1 · · · xi)B
♯(xi+1 · · · xr)

for 0 ≤ i ≤ r ≤ 5, where the exp is defined by replacing ◦ari with ◦ in Definition 3.3.

Since Brown’s lift χB : lsQ → dmQ is expected to be a Lie isomorphism, Proposition

5.9 may provide necessary conditions on G (namely (5.4)) such that the adjoint action

Ad(G) induces a Lie isomorphism Ad(G) : lsQ → dmQ. However, (5.4) will not be

sufficient: the unit element 1 = (1, 0, 0, . . .) ∈ G satisfies (5.4) but Ad(1) is the identity.

6. Anatomical decomposition of σ2k+1

In [5], Brown gave anatomical decompositions of σ3, σ5, σ7, σ9 with elements ψ2k+1

(see [5, §11.4]) and with lifting elements ξ2k+1 = χB(x
2k
1 ) (see [5, §14.5]). In this

section, we give anatomical decompositions of Ecalle’s polar solutions which are not in

Brown’s list.

Let η2k+1 = χE(x
2k
1 ) and write {f1, f2, f3} = {f1, {f2, f3}} (in general, we define

{f1, . . . , fn} = {f1, {f2, . . . , fn}} inductively). Then the results are as follows.

σ3 ≡ η3 mod Q(3),

σ5 ≡ η5 −
5

24
{η3, η3, η−1} mod Q(5),

σ7 ≡ η7 −
7

96
{η3, η5, η−1} −

7

48
{η5, η3, η−1}

+
37

86400
{η−1, η−1, η−1, η3, η7}+

3

3200
{η−1, η−1, η3, η7, η−1}

+
1

1920
{η−1, η3, η−1, η7, η−1} −

1

2304
{η−1, η−1, η5, η5, η−1}
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+
5

6912
{η5, η−1, η−1, η5, η−1} −

661

14400
{η3, η−1, η3, η3, η−1}

+
661

28800
{η−1, η3, η3, η3, η−1} mod Q(7),

σ9 ≡ η9 −
5

36
{η7, η3, η−1} −

7

144
{η5, η5, η−1} −

5

108
{η3, η7, η−1} mod Q(5).
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Inst. Hautes Études Sci. No. 95 (2002), 185–231.

[19] C. Reutenauer, Free Lie algebras, London Mathematical Society Monographs. New Series, 7.

Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993.

xviii+269 pp.

http://arxiv.org/abs/1301.3053
http://arxiv.org/abs/1709.02765
http://arxiv.org/abs/math/0103059
http://arxiv.org/abs/math/0202154


22 NILS MATTHES AND KOJI TASAKA

[20] A. Salerno, L. Schneps, Mould theory and the double shuffle Lie algebra structure, Springer Pro-

ceedings in Mathematics and Statistics. Eds H. Gangl, K. Ebrahimi-Fard and J. Burgos Gil.

Periods in Quantum Field Theory and Arithmetic. To appear.

[21] L. Schneps, ARI,GARI, ZIG and ZAG: An introduction to Ecalle’s theory of multiple zeta values,

arXiv:1507.01534v1.

[22] T. Terasoma, Mixed Tate motives and multiple zeta values. Invent. Math. 149 (2002), no. 2, 339–

369.

[23] D. Zagier, Values of zeta functions and their applications, First European Congress of Mathemat-

ics, Vol. II (Paris, 1992), 497–512, Progr. Math., 120, Birkhäuser, Basel, 1994.
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