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EXPLICIT RESOLUTION OF WEAK WILD QUOTIENT

SINGULARITIES ON ARITHMETIC SURFACES

ANDREW OBUS AND STEFAN WEWERS

Abstract. A weak wild arithmetic quotient singularity arises from the quo-
tient of a smooth arithmetic surface by a finite group action, where the in-
ertia group of a point on a closed characteristic p fiber is a p-group acting
with smallest possible ramification jump. In this paper, we give complete ex-
plicit resolutions of these singularities using deformation theory and valuation
theory, taking a more local perspective than previous work has taken. Our
descriptions answer several questions of Lorenzini. Along the way, we give
a valuation-theoretic criterion for a normal snc-model of P1 over a discretely
valued field to be regular.

1. Introduction

A closed point x on an integral normal scheme X is called a quotient singularity
if the local ring A := OX ,x can be written as A = BG, where B is a regular local
ring and G is a finite group of local automorphisms of B. The quotient singularity
x ∈ X is called tame if we can choose B and G such that the order of G is prime to
the residue characteristic of B. Otherwise, we call it a wild quotient singularity. In
this paper we will be exclusively concerned with the case where X has dimension
2.

We assume that there exists a desingularization of X , i.e. a birational and proper
morphism f : X̃ → X such that X̃ is regular (this holds under very mild assump-
tions on X , see [Lip69]). Then we may also assume that the desingularization

f : X̃ → X is minimal with the property that the exceptional divisor E := f−1(x)

is a reduced normal crossing divisor on X̃ . The resolution graph of the singularity
is the dual graph of E, enhanced by the self intersection numbers of the irreducible
components. One of the main questions motivating this work is the problem of clas-
sifying the resolution graphs of wild quotient surface singularities. As this question
remains wide open, a more modest goal is to systematically produce explicit exam-
ples of such singularities with interesting resolution graphs.

There is an extensive literature on quotient singularities on complex surfaces. For
instance, Brieskorn [Bri68] has classified the resolution graphs of such singularities.1

It turns out the resolution graphs are either chains or have a unique node of valency
3. Moreover, quotient singularities on complex surfaces are always rational (see e.g.
[Bri68], Satz 1.7).

Much less is known in the wild case. Lorenzini has shown ([Lor13], Theorem
2.8) that the resolution graph of a quotient singularity in dimension 2 is always a

The first author was supported by NSF Grant DMS-1602054.
1It is expected that this classification carries over to the more general case of tame quotient

singularities as defined above, but we are not aware of any general result in this direction (for the
case of tame cyclic quotient singularities, see [CES03] and [Ste18]).
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tree, and that the irreducible components of the exceptional fiber are smooth of
genus 0. However, wild quotient singularities in dimension 2 need not be rational
(counterexamples were first given by Artin in [Art75]). Schröer and Ito have shown
(see [IS12], Corollary 2.2) that the resolution graph of a wild quotient singularity
has at least one node. In a series of papers ([Lor13], [Lor14], [Lor18]) Lorenzini has
studied certain wild quotient singularities which arise on integral models of curves
over local fields. The present paper is motivated by this work and arose from an
attempt to answer some of the questions posed therein.

In particular, we restrict in this paper to the case of weak wild arithmetic quotient
singularities, see Definition 3.7. These are wild quotient singularities arising from
integral models of curves over local fields where the group action on the special fiber
is weakly ramified, i.e., has smallest possible ramification jump. These singularities
appear, for example, on models of curves with potentially good ordinary reduction,
as is studied in [Lor14]. One can think of these singularities as the “mildest possible”
wild quotient singularities, and they seem to be the most amenable to study. For
instance, Lorenzini showed in [Lor18] that they are rational when they arise from
products of curves in characteristic p. We show, in fact, that every weak wild
arithmetic quotient singularity is rational (Corollary 4.13).

1.1. Results and techniques. In this paper, we give a complete, explicit descrip-
tion of the resolution of any weak wild arithmetic quotient singularity (Theorem
7.8, Corollary 7.10). We show that the resolution graph is a tree with at most
e nodes when the singularity comes from a (Z/p)e-action on a smooth arithmetic
surface. Furthermore, we relate the multiplicities and self-intersection numbers of
components of the special fiber of the resolution to the arithmetic complexity of
a certain extension of local fields, along with a generator of that extension. This
answers (generalizations of) several questions of Lorenzini from [Lor14].

For an example of our results, let K be a complete discretely valued field with
algebraically closed characteristic p residue field. If X is a smooth projective curve
defined overK that has bad reduction, but has good reduction over a Z/p-extension
L/K, and if X is a smooth model of X×K L over OL, then the action of Gal(L/K)
on X gives rise to a model X ′ of X with wild quotient singularities, which are
all weak if X has ordinary special fiber (some might be weak even if X does not
have ordinary special fiber). Lorenzini conjectured that if X is ordinary, then the
resolution graph of each singularity of X ′ contains exactly sp− 1 vertices between
the vertex corresponding to the strict transform of the special fiber of X ′ and the
unique node of the graph, where s is the jump in the ramification filtration for L/K.
We prove this for weak wild Z/p-arithmetic quotient singularities on X individually,
regardless of whether or not the special fiber is ordinary (Corollary 7.13 and Remark
7.15). Our techniques differ significantly from what has been used before for these
types of problems. In particular, we rely less on global intersection theory, and
more on local deformation theory and valuation theory. These local techniques
allow us to obtain information about weak wild arithmetic quotient singularities
independent of the global curves where they appear.

Specifically, we first use a deformation-theoretic argument inspired by work of
Bertin and Mézard ([BM00]) to show that every weak wild arithmetic quotient
singularity over K is formally isomorphic to a singularity arising from a normal
model of P1

K with irreducible special fiber (Corollary 4.11). This has the immediate
consequence mentioned above that all these singularities are rational.
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We then investigate normal models of P1
K using inductive valuations, also known

asMac Lane valuations. These were introduced over 80 years ago in [Mac36], but as
far as we know they were not used to attack problems involving arithmetic surfaces
until the thesis [Rüt14] of Rüth. Mac Lane valuations on the rational function field
K(x) exactly correspond to normal OK-models of P1

K with irreducible special fiber,
and general normal OK-models of P1

K correspond to finite collections of Mac Lane
valuations. Mac Lane valuations are extremely explicit, and we use them to give
regularity conditions for normal models of P1

K , which should be of independent
interest. (This was first used, in one particular example, in [FKW17].) On the
other hand, if a weak wild arithmetic quotient singularity is realized on a normal
model of P1

K with irreducible special fiber, we exhibit various properties necessarily
satisfied by the corresponding Mac Lane valuation (Theorem 6.3). Combining this
all, we obtain our singularity resolutions.

1.2. Outline. In §2, we give some basic results on extensions of discrete valuation
fields. In §3, we give definitions and background on arithmetic quotient singular-
ities, in particular the weak and wild ones that are the subject of this paper. In
§4, we use deformation theory to prove that weak wild singularities can be real-
ized inside models of P1. In §5, we introduce Mac Lane valuations and diskoids,
which can be viewed as rigid-analytic analogs to disks when one is working over
a non-algebraically closed field. Diskoids give a useful geometric way of thinking
about Mac Lane valuations. In §6, we use properties of diskoids to classify weak
wild arithmetic quotient singularities in terms of Mac Lane valuations. Finally,
in §7, we show how to resolve singularities coming from certain collections of Mac
Lane valuations, and we exhibit the resolution of weak wild arithmetic quotient
singularities as a consequence. The appendix introduces the concept of an N -path,
which is related to continued fractions and is used in §7 for describing the valuations
corresponding to our resolutions of singularities.

1.3. Notation. Throughout the paper k is an algebraically closed field of charac-
teristic p, and K is a complete discrete valuation field with residue field k. For any
finite extension L/K, we write πL for a uniformizer of L, and we normalize the
valuation vL on L so that vL(πL) = 1. We write OL for the valuation ring of L.
Note that L/K is totally ramified, a fact that we will use implicitly throughout the
paper. We mainly restrict our consideration to arithmetic surfaces over some OL.
This restriction is standard and is justified in §3.4.

1.4. Acknowledgements. We thank Xander Faber and Jim Stankewicz for useful
conversations, and we thank the referee for insightful comments that have improved
the exposition.

2. Ramification of extensions of local fields

Recall from [Ser68, IV] that if L/K is a G-Galois extension, then for i ≥ −1 we
define the higher ramification groups Gi := {σ ∈ G | vL(σ(πL)−πL) ≥ i+1}. Note
that we do not use the so-called “upper numbering filtration” in this paper. Then
G = G−1 = G0 is the inertia group of L/K, and G1 is the wild inertia group. We
say that L/K is weakly ramified if Gi is trivial for all i ≥ 2. We say that s is a
jump in the higher ramification filtration for L/K if Gs ) Gs+1.

The following proposition is a direct consequence of [Ser68, p. 67, Corollary 3].
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Proposition 2.1. If k[[z]]/k[[t]] is a weakly ramified G-extension with G a p-group,
then G is elementary abelian.

Lemma 2.2. If L/K is a G-Galois extension and L = K(α) for some α ∈ L,
then there exists δ ∈ K such that α = α′ + δ with |G| ∤ vL(α′) and either δ = 0 or
vL(δ) < vL(α

′).

Proof: Write α = a0 + a1πL + a2π
2
L + · · · + a|G|−1π

|G|−1
L with all ai ∈ K. If

vL(α) 6= vL(a0), take δ = 0. Otherwise, take δ = a0. �

Lemma 2.3. If L/K is a G-Galois extension with vL(σ(πL) − πL) = s + 1, then
vL(σ(x)− x) ≥ s+ vL(x) for all x ∈ L. If σ has p-power order and p ∤ vL(x), then
vL(σ(x) − x) = s+ vL(x).

Proof: Let v(x) = ν, and write x = uπν
L with u ∈ O×

L . Then σ(x) − x =
(σ(u)−u)σ(πL)

ν +u(σ(πL)
ν −πν

L). Since the residue field k is algebraically closed,
we can write u = a+ b, with a ∈ K and vL(b) > 0. Thus

vL((σ(u) − u)σ(πL)
ν) = vL((σ(b)− b)σ(πL)

ν) ≥ s+ 1 + ν.

On the other hand, vL(u(σ(πL)
ν − πν

L)) ≥ s + ν, with equality if σ has p-power
order and p ∤ ν. The same therefore holds for σ(x) − x, which proves the lemma.

�

Proposition 2.4. Suppose L/K is a G-extension with G an elementary abelian
p-group, and that α ∈ OL is such that K(α) = L and vL(σ(α)−α) is independent of
the choice of nontrivial σ ∈ G. Let s be maximal such that the higher ramification
group Gs is nontrivial.

(i) If p ∤ vL(α), then s is the unique higher ramification jump for L/K, and
vL(σ(α) − α) = vL(α) + s.

(ii) If p | vL(α), then vL(σ(α) − α) > s+ v(α).

Proof: If p ∤ vL(α), then by Lemma 2.3, vL(σ(πL) − πL) = vL(σ(α) − α)) −
vL(α) + 1. Thus vL(σ(πL)− πL) does not depend on the choice of nontrivial σ, so
there is only one ramification jump (namely s). Since vL(σ(πL)−πL) = s+1, part
(i) follows.

To prove part (ii), let τ ∈ Gs be a nontrivial element, and let M = L〈τ〉. Apply
Lemma 2.2 to L/M to write α = α′ + δ with δ ∈ M and p ∤ vL(α

′). Note that
v(α) < v(α′). Now,

vL(τ(α) − α) = vL(τ(α
′)− α′) = s+ vL(α

′) > s+ vL(α).

By assumption, the same is true after replacing τ by any nontrivial σ ∈ G. �

Proposition 2.5. If L/K is a G-extension with G a p-group and char(K) = p,
then no ramification jump of L/K is divisible by p.

Proof: By [Ser68, IV, Proposition 11], it suffices to show that the first jump is
not divisible by p. Since the (lower numbering) filtration is compatible with taking
subgroups, we may assume G ∼= Z/p, in which case the result is well-known (see,
e.g., [Ser68, p. 72, Ex. 5]). �



EXPLICIT RESOLUTION OF WEAK WILD QUOTIENT SINGULARITIES 5

3. Arithmetic quotient singularities

In this section we state and discuss the key definitions used in this paper. In
particular, we define the notion of arithmetic quotient singularity on an arithmetic
surface.

3.1. For the convenience of the reader we start by recalling some facts on minimal
regular resolution of arithmetic surfaces. Let S be an excellent connected Dedekind
scheme. By an arithmetic surface over S we mean a normal S-curve X → S (so
X → S is of finite type and flat of relative dimension 1).

By [CES03, Theorem 2.2.2] there exists a proper birational morphism π : X reg →
X such that X reg is a regular S-curve, and the fibers of π do not contain any −1-
curves (see [CES03, Definition 2.2.1]). Such an S-scheme is unique up to unique
isomorphism, and every proper birational morphism X ′ → X with a regular S-curve
X ′ admits a unique factorization through π. We call π : X reg → X the minimal
regular resolution of X .

We remark that if X is proper over S and has smooth generic fiber X of genus
≥ 1, X reg is the well-known minimal regular S-model of X (see e.g. [Liu02], §9.3).

We will mainly use the following variant of the minimal regular resolution. Let
x ∈ X be a closed point on an arithmetic surface over S. Let U ⊂ X be an open
neighborhood of x which does not contain any nonregular points except x. We
define the minimal regular resolution of X in x to be the morphism πx : Xx → X
obtained by gluing X −{x} to the part of X reg lying over U (cf. [CES03, Definition
2.2.3]). (Clearly, all points on Xx above x are regular, but there may be nonregular
points on Xx as well.) By [CES03, Corollary 2.2.4], Xx enjoys uniqueness and
minimality properties analogous to X reg.

3.2. Let us fix an arithmetic surface X → S and a singular point x ∈ X . Let s ∈ S
denote the image of x. Let π : X ′ → X denote the minimal regular resolution in x.
The fiber E := π−1(x) is called the exceptional fiber of the resolution. We endow
E with its reduced induced closed subscheme structure. Since X ′ is regular in any
point of E, E is an effective Cartier divisor on X ′, which we may write as a sum

E =
n
∑

i=1

Ei,

where the Ei are the irreducible components of E. Each Ei is a connected curve,
proper over k(s).

Given an arbitrary divisor D on X ′, we can define an intersection number

D ·Ei := degEi
(OEi

(D)) ∈ Z,

see [Lip69], §13. In particular, we obtain an intersection pairing on divisors on X
with support on E, which is codified by the intersection matrix

Mx :=
(

Ei · Ej

)

.

It is well known that Mx is symmetric and negative definite ([Lip69, Lemma 14.1]).
It follows that Ei · Ei < 0. By definition, Ei · Ej ≥ 0 for i 6= j, and Ei · Ej = 0 if
and only if Ei ∩ Ej = ∅.

Let us denote by Xs := X ×S Spec k(s) (resp. X ′
s := X

′×S Spec k(s)) the fiber of
X (resp. X ′) over s ∈ S. Then X ′

s is a Cartier divisor on X ′, and may be written
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as a formal sum

X ′
s =

∑

Z

mZ · Z,

where Z are the irreducible components and mz ∈ Z. We call mZ the multiplicity
of the component Z. We write mi := mEi

.
By [Lip69, Prop. 10.4 (i)],

0 = X ′
s ·Ei =

∑

Z

mZZ · Ei,

which implies

(3.1) Ei ·Ei = −
1

mi
·
∑

Z 6=Ei

mZ · Z · Ei.

Definition 3.2. The extended intersection graph of the desingularization of x ∈ X
is the weighted undirected graph G′

x defined as follows. The vertices of G′
x are

the irreducible components Z of X ′
s with Z ∩ E 6= ∅. Two components Y, Z are

connected by an edge if Y 6= Z and Y ∩ Z 6= ∅, and the weight of this edge is the
intersection number Y · Z. The intersection graph of the singularity x ∈ X is the
(weighted) subgraph Gx of G′

x whose vertices are the irreducible components of E.

Remark 3.3. (i) The graphs Gx and G′
x are connected because E is connected.

(ii) The graph Gx does not depend on the morphism X → S (but G′
x does).

(iii) Formula (3.1) shows that the full intersection matrix Mx is determined by the
extended intersection graph G′

x and the multiplicities mZ .
(iv) Assume that X ′

s is a reduced normal crossing divisor. Then Z · Ei = 1 for
Z 6= Ei and Z ∩ Ei 6= ∅. This means that all edges of G′

x have weight 1.
Formula (3.1) simplifies to

(3.4) Ei · Ei = −
1

mi

∑

Z 6=Ei

Z∩Ei 6=∅

mZ .

3.3. We continue with the previous notation. The following proposition states
that the structure of the exceptional fiber of the minimal regular resolution in x
depends only on the formal neighborhood of x in X .

Proposition 3.5. Let X1,X2 be two arithmetic surfaces and xi ∈ Xi, i = 1, 2 be
closed points. Assume that the complete local rings ÔXi,xi

are isomorphic as OS-
algebras. Then the exceptional fibers of the minimal regular resolutions in x1 and
x2 are isomorphic (including their intersection product).

Proof: This follows from the argument in [Lip78, p.156], used in the proof of
Remark D of the introduction of loc.cit.. Let x ∈ X be a singular point on an
excellent normal surface X . For the proof we may assume that X = SpecR is
local. Let R̂ := ÔX ,x be the complete local ring. Then there exists a minimal

desingularization f̂ : X̂ ′ → Spec R̂. By Remark C of loc.cit., f̂ : X̂ ′ → Spec R̂ is
the blowup of a primary ideal Î ⊳ R̂. Let f : X ′ → X be the blowup of I := R ∩ Î.
Then X̂ ′ = X ′ ⊗R R̂. Now it follows easily that f : X ′ → X is the minimal
desingularization of x. This proves the proposition. �

We also include the following proposition, the exact statement of which we could
not find in the literature (but compare the paragraph before [CES03, Lemma 2.1.1]).
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Proposition 3.6. Let X → S be an arithmetic surface and x ∈ X a closed point
lying over a closed point s ∈ S. Then the minimal regular resolution of X in x
commutes with base change to OS,s, to ÔS,s, as well as to the strict henselization
Osh

S,s.

Proof: The result for OS,s and ÔS,s is [CES03, Theorem 2.2.4] (and it also
follows easily from Proposition 3.5). To prove the result for A := Osh

S,s, we may
assume S is local. By Proposition 3.5, embedding X into a proper arithmetic
surface does not change the minimal resolution in x, so we may assume that X → S
is proper. By [CES03, Lemma 2.1.1], a birational morphism X ′ → X is a regular
resolution of X in x if and only if the same is true of its base change X ′

A → XA. It
remains to show that if X ′ → X is a regular resolution of X in x, then an irreducible
component E of X ′ not contained in the strict transform of X is a −1-curve if and
only if the same is true for all irreducible components F of the base change EA.
Let KA and K be canonical divisors of X ′

A and X ′, respectively. Since X ′
A → X

′ is
unramified, KA is the pullback of K. So K · E < 0 if and only if KA · F < 0 for
each F . Moreover, E ·E < 0 and F ·F < 0 since the intersection matrix is negativ
definite. By [Liu02, Proposition 9.3.10(a)], we are done. �

3.4. From now on we assume that S = SpecOK , where K is a complete discrete
valuation ring with algebraically closed residue field k as in §1.3. By Proposition
3.6, this assumption entails no great loss of generality. In particular, this situation
includes all information about resolution of singularities of arithmetic surfaces over
rings of integers in global fields.

Let X → S be an arithmetic surface. We let X := X ⊗ K denote the generic
and X̄ := X ⊗ k the special fiber. Note that X is a smooth K-curve. If X → S is
proper, then X/K is projective (in fact, even X → S is projective) and we call X
a model of X .

Let L/K be a Galois extension, with Galois group G. We let Y := X̃L denote the
normalization of X in the function field of XL := X⊗K L. Then Y is an arithmetic
surface over S (or over SpecOL). The map Y → X is finite, and G acts on Y in
such a way that X = Y/G.

Definition 3.7. Let X → S be as above, and let x ∈ X̄ be a closed point that is
singular on X .

(a) We call x an arithmetic quotient singularity on X if there exists a finite Galois

extension L/K such that Y := X̃L is smooth over OL at one (equivalently all)
points above x. We say that L/K resolves the singularity x ∈ X .

(b) We say that x is a strict arithmetic quotient singularity if there is a finite Galois
extension L/K giving rise to Y as in (a) such that for one (or for all) points
y ∈ Y above x the action of the stabilizer Gy ⊂ G of y on the special fiber Ȳ
of Y is faithful. We say that L/K faithfully resolves the singularity x ∈ X .

(c) An arithmetic quotient singularity x is called weak and wild if it is strict, and
if for one (equivalently all) points y above x the stabilizer Gy is a p-group

whose action on the complete local ring ÔȲ ,y
∼= k[[z]] is weakly ramified. In

particular, Gy is an elementary abelian p-group (see Proposition 2.1).

Remark 3.8. (i) An arithmetic quotient singularity need not be strict. See Re-
mark 6.2 for an example.
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(ii) Let L/K be a Galois extension which resolves the arithmetic quotient singu-

larity x ∈ X , and let y ∈ Y := X̃L be a point above x. The stabilizer Gy ⊂ G

of y acts naturally on the complete local ring ÔȲ ,y
∼= k[[z]]. Let Iy ⊂ Gy

denote the kernel of Gy → Aut(k[[z]]). Then the quotient singularity x ∈ X is
strict if and only if Iy is a normal subgroup of G and the quotient scheme Y/Iy
is smooth over O

Iy
L at the image of y. If this is the case, then the subextension

L′ := LIy/K faithfully resolves x.
(iii) It follows from (ii) that if x ∈ X is a strict arithmetic quotient singularity

then the Galois extension L/K which faithfully resolves x is unique. This is
implicitly used in Part (c) of the definition.

(iv) In general, Gy 6= G. However, the image of y on the arithmetic surface Y/Gy

over SpecOLGy is then an arithmetic quotient singularity which is faithfully
resolved by the Gy-extension L/LGy . Moreover, it is formally isomorphic to
the original singularity. So in view of Proposition 3.5 we may assume G = Gy

if we are only interested in the structure of the minimal resolution.

Definition 3.9. Let G be a finite group. A strict arithmetic G-quotient singularity
is a strict arithmetic quotient singularity x ∈ X as above such that G ∼= Gal(L/K)
for the unique finite Galois extension L/K which faithfully resolves x (Remark
3.8(iii)).

4. Deformation theory

In this section we prove that every weak wild arithmetic quotient singularity is
formally isomorphic to one such singularity on an integral model of the projective
line X = P1

K .

4.1. Throughout, we fix a finite Galois extension L/K with Galois group G which
is an elementary abelian p-group. We choose prime elements πL of OL and πK of
OK . Note that OK and OL have the same residue field k and hence that G acts
trivially on k.

Set R̂ := OL[[T ]] and let Ã := AutOK
(R̂) denote the group of continuous OK-

linear automorphisms of R̂. Similarly, let A := AutOL
(R̂) denote the subgroup of

OL-linear automorphisms. Then we have a short exact sequence

(4.1) 1→ A → Ã → G→ 1.

We are interested in sections ρ : G→ Ã of (4.1), up to conjugation by an element
of A. We write S for the set of all sections, and S̄ := S/A for the set of conjugacy
classes.

Let ρ ∈ S be a fixed section. Then ρ induces a left action of G on A by
conjugation:

σa := ρ(σ) ◦ a ◦ ρ(σ)−1.

We write Aρ for the group A considered as a G-module, via this action. Then we
have a natural bijection S

∼
−→ Z1(G,Aρ), defined as follows. A section ρ′ : G→ Ã

is mapped to the cocycle

σ 7→ aσ := ρ′(σ) ◦ ρ(σ)−1.

One easily checks that this map descends to a bijection S̄
∼
−→ H1(G,Aρ). Through-

out, we use the notation from [Ser97, Chapter I.5]. Note that H1(G,Aρ) and S̄ are
pointed sets but not groups.
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4.2. For any integer n ≥ 0 we set R̂n := (OL/π
n+1
K )[[T ]] and let An denote the set

of OL-linear continuous automorphisms of R̂n. Then we define Ãn as the pushout
of the extension (4.1) along the surjective morphism A → An:

(4.2) 1 // A //

��

Ã //

��

G //

=

��

1

1 // An
// Ãn

// G // 1.

An element of Ãn is given by a pair (a, σ), where a ∈ AutOK
(R̂n), σ ∈ G such that

a acts on OL ⊆ R̂n via σ.
Let Sn denote the set of sections of the lower row of (4.2). We have natural

maps S → Sn and Sn+1 → Sn such that S = lim
←−n

Sn. These induce maps S̄ → S̄n

and S̄n+1 → S̄n such that S̄ = lim
←−n

S̄n. If we fix a section ρn : G → Ãn then we

have bijections

Sn
∼
−→ Z1(G,Aρn

n ), S̄n
∼
−→ H1(G,Aρn

n ).

From now on, we let ρ̄ : G → Ã0 ∈ S0 be a fixed section. We note that
Ã0 = Autk(k[[T ]])×G and hence ρ̄ is simply a k-linear action of G on k[[T ]]. We
let S ρ̄ denote the set of elements of S which lift ρ̄. Similarly, we obtain subsets S̄ ρ̄,
S ρ̄n and S̄ ρ̄n.

For a given n ≥ 1 we consider the short exact sequence

(4.3) 1→ Θn → An → An−1 → 1.

It is easy to see that the kernel Θn is an abelian and normal (but not a central)
subgroup of An. Elements a ∈ Θn can be identified with k-linear derivations
θ : k[[T ]]→ k[[T ]] via

a = aθ : f 7→ f + πn
Lθ(f̄).

Here f ∈ R̂n and f̄ denotes the image of f in k[[T ]].

If ρn : G → Ãn is a section lifting ρ̄ then we obtain a short exact sequence of
G-modules:

(4.4) 1→ Θn → A
ρn
n → A

ρn−1

n−1 → 1.

Here we denote by ρn−1 the composition of ρn with Ãn → Ãn−1. Also, since the
G-module structure of Θn depends only on ρ̄ which is fixed throughout, Θ = Θn

is independent of n via the identification with Derk(k[[T ]]). Hence we drop the
indices ρ̄ and n. The G-action on Θ is given by

(4.5) σθ := ρ̄(σ) ◦ θ ◦ ρ̄(σ)−1.

By [Ser97, Chapter I.5.6], (4.4) induces a long exact sequence of pointed sets
(4.6)

1→ ΘG → (Aρn
n )G → (A

ρn−1

n−1 )G → H1(G,Θ)
δ
−→ H1(G,Aρn

n )→ H1(G,A
ρn−1

n−1 ).

In particular, the abelian group H1(G,Θ) acts, via δ, transitively on the set of

equivalence classes of sections ρ′n : G → Ãn which lift ρn−1. Note that this action
may not be faithful, because the image of the map (A

ρn−1

n−1 )G → H1(G,Θ) may be
a nontrivial subgroup.
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4.3. Let us now fix a section ρn−1 ∈ Sn−1. We will show that the obstruction
against lifting ρn−1 to a section ρn ∈ Sn is represented by an element in H2(G,Θ).

For this we choose a set theoretic lift ρn : G → Ãn of ρn−1 and define the map
a : G2 → Θ by

aσ,τ := ρn(σ)ρn(τ)ρn(στ)
−1.

A tedious but straightforward computation shows that a is a cocycle, i.e. that
σaτ,η a

−1
στ,η aσ,τη a

−1
σ,τ = 1,

for all σ, τ, η ∈ G. Let ∆(ρn−1) ∈ H2(G,Θ) denote the class of a. We claim that
∆(ρn−1) does not depend on the chosen lift ρn. Indeed, if ρ′n is any other lift, we
set

bσ := ρ′n(σ)ρn(σ)
−1,

and then

a′σ,τ := ρ′n(σ)ρ
′
n(τ)ρ

′
n(στ)

−1

= bσ ρn(σ) bτ ρn(τ) ρn(στ)
−1 b−1

στ

= bσ
σbτ ρn(σ) ρn(τ)ρn(στ)

−1 b−1
στ

=
(

bσ
σbτ b

−1
στ

)

aσ,τ ,

which shows that the cocycles a and a′ differ by a coboundary. Now it follows from
the definition that the class ∆(ρn−1) ∈ H2(G,Θ) is trivial if and only if there exists
a section ρn ∈ Sn lifting ρn−1.

4.4. Let R := R̂ ∩ L(T ) ⊆ L((T )) and let B denote the group of OL-linear auto-
morphisms of R. Then B is a subgroup of A. We may also consider B as a subgroup
of PGL2(OL), namely

B = {

(

a b
c d

)

| b ≡ 0 (mod πL)}.

Similarly, set B̃ = AutOK
(R). Then we have again a short exact sequence

(4.7) 1→ B → B̃ → G→ 1,

which is the pullback of the sequence (4.1) via the inclusion B →֒ A. Also, for every
n ≥ 0 we have quotient groups B → Bn, B̃ → B̃n which are subgroups of An and
Ãn, respectively, which form short exact sequences

1→ Bn → B̃n → G→ 1.

For n ≥ 1 we let Ln denote the kernel of the morphism Bn → Bn−1. Elements of
Ln can be represented by matrices of the form

1 + πn
L

(

a b
c d

)

,

with a, b, c, d ∈ k arbitrary. Thus we have an identification

Ln
∼= L := LiePGL2(k) = M2,2(k)/ < E2 >

(which depends on the choice of πL). In particular, L = Ln is a k-vector space of
dimension 3. The inclusion Bn →֒ An induces an inclusion L →֒ Θ, and this map
identifies L with the space of global sections of the tangent sheaf on P1

k. Thus,

L =<
d

dT
, T

d

dT
, T 2 d

dT
> .
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4.5. From now on, we assume that the section ρ̄ : G→ Ã0 ∈ S0 chosen in §4.2 has

image in B0 = {

(

a b
c d

)

∈ PGL2(k) | b = 0} ⊂ Ã0. Then L ⊂ Θ is stable under the

G-action induced by ρ̄.

Theorem 4.8. Assume that the map Hi(G,L)→ Hi(G,Θ) is surjective for i = 1

and injective for i = 2. Then every section ρ : G → Ã lifting ρ̄ is conjugate to a
section ρ′ : G→ B̃ ⊂ Ã lifting ρ̄.

Proof: We prove by induction that for every n ≥ 0, a section ρn ∈ S ρ̄n is

conjugate to a section ρ′n : G → B̃n lifting ρ̄. For n = 0 the claim is empty, so we
may assume n ≥ 1. We may also assume, by induction, that the reduction ρn−1 of

ρn has image in B̃n−1. Let ρ
′
n : G→ B̃n be a set theoretic lift of ρn−1. Then

aσ,τ := ρ′n(σ)ρ
′
n(τ)ρ

′
n(στ)

−1 ∈ L

defines a cocycle a ∈ Z2(G,L) whose class in H2(G,Θ) vanishes, because of the
existence of the lift ρn. Using our assumption on H2 we conclude that the class
of a in H2(G,L) is trivial. Hence we may assume that ρ′n : G → B̃ is a group
homomorphism.

Set
a′σ := ρ′n(σ)ρn(σ)

−1.

Then a′ ∈ Z1(G,Θ) is a coboundary. The assumption that H1(G,L)→ H1(G,Θ)
is surjective implies that there exists b ∈ Θ such that a′′σ := a′σ

σb b−1 defines a
cocycle in Z1(G,L). But then

ρ′′n(σ) := (a′′σ)
−1 ρ′n(σ) ∈ B̃n

= b σb−1 (a′σ)
−1 a′σ ρn(σ)

= b σb−1 ρn(σ) = b ρn(σ)b
−1

defines a section ρ′′n : G → B̃n lifting ρn−1 and which is conjugate to ρn. This
completes the proof of the theorem.

4.6. Let X̂ = SpecA be a formal weak wild arithmetic quotient singularity over
OK which is faithfully resolved by the extension L/K. Recall that this means the
following:

(1) A is an integral, noetherian, flat, complete local OK-algebra with residue
field k.

(2) The integral closure of A in A ⊗K L is formally smooth over OL. Hence

ÃL
∼= R̂ := OL[[T ]].

(3) The induced action of G on k[[T ]] is faithful and weakly ramified (i.e. the
extension k[[T ]]/K[[T ]]G is weakly ramified).

Let ρ : G→ Â denote the section corresponding to the action on R̂ induced by
the above identification. Let ρ̄ : G→ A0 denote the induced section.

Lemma 4.9. After a a change of the coordinate T we may assume that ρ̄ has image
in B0.

Proof: By the theorem of Katz–Gabber–Harbater (e.g., [Har80, Theorem 2.4]),
the action ρ̄ of G on Spec k[[T ]] extends to an action of G on an algebraic curve X̄/k
with full inertia group at one point and no inertia elsewhere, such that X̄/G ∼= P1.
After a change of variables, we may assume T ∈ k(X̄). Since the G-action is weakly
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ramified, [Ser68, IV, Proposition 4] shows that the ramification divisor has degree
2(|G| − 1). The Riemann-Hurwitz formula then shows that X̄ ∼= P1 as well. Thus
G acts on T via rational functions, and ρ̄ : G →֒ Autk(k(T )) ∼= PGL2(k). Now we
use that any subgroup of PGL2(k) isomorphic to G is conjugate to a subgroup of
B0, the group of lower triangular matrices. �

From now on, we assume that the conclusion of Lemma 4.9 holds. We are then
in the situation of §4.5. In particular, we can consider L as a sub-G-module of Θ.

Proposition 4.10. If ρ̄ : G → B0 is a section corresponding to a weakly ramified
action on k[[T ]] as above, then the map Hi(G,L)→ Hi(G,Θ) is surjective for i = 1
and injective for i = 2.

Proof: By [CK03, Lemma 3.4], L is a direct summand of Θ as a G-module (in
that lemma, M is our L and O is our Θ). Thus Hi(G,L) → Hi(G,Θ) is injective
for all i, which proves the case i = 2. Furthermore, the argument on the top of
[CK03, §3.5] shows that the inclusion L→ Θ induces an isomorphism on H1. �

We recall that the natural action of PGL2(F ) on F (x) for any field F is a right
action, i.e.,

x

(

a b
c d

)

=
ax+ b

cx+ d
.

Corollary 4.11. Every weak wild arithmetic G-quotient singularity over K is for-
mally isomorphic to one coming from a G-action on a smooth model Y of P1

L

with free action on the special fiber except for one point fixed by all of G, where
G = Gal(L/K) and the G-action on the generic fiber P1

L of Y is given purely by the
G-action on L.

Proof: Combining Theorem 4.8 and Proposition 4.10 shows that every weak
wild quotient singularity comes from a semilinear action of G on a smooth model
of P1

L. This can be represented by an element of H1(G,PGL2(OL)), where the G-
action on PGL2(OL) comes from the given action on L. By the non-abelian version
of Hilbert’s Theorem 90 (see, e.g., [Ser68, X, Proposition 3]), H1(G,PGL2(OL))
injects into H2(G,L×), and H2(G,L×) is trivial by [Ser97, Corollary and Example
(c) on p. 80]. Thus the G-action on L(P1

L) = L(x) is given by a coboundary, so
it has the form g(x) = xBgB−1 where B ∈ PGL2(OL) is independent of g ∈ G.
Letting y = xB−1, we see that g(y) = x(Bg)−1BgB−1 = y for all g ∈ G. Thus G
fixes y, and if Y ∼= P1

OL
is the smooth model of P1

L with coordinate y, the G-action
on Y is given purely by the G-action on L.

Since G is a p-group and the special fiber of Y is isomorphic to P1
k, the action of

G on Y is either trivial or free with the exception of one point with inertia group
G. Only the nontrivial case corresponds to a weak wild quotient singularity. This
finishes the proof of the corollary. �

Definition 4.12. A G-action as in Corollary 4.11 is called a purely arithmetic
G-action.

Recall that, according to [Lip69, Definition 1.1], a closed point x of a two-
dimensional scheme X is a rational singularity if OX ,x is normal and if there exists
a desingularization Z of SpecOX ,x such that H1(Z,OZ) = 0. Equivalently, for
every modification f : X ′ → X , the stalk of R1f∗OX ′ at x vanishes (this follows
from [Lip69], Proposition 1.2).
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Corollary 4.13. Every weak wild arithmetic quotient singularity is a rational sin-
gularity.

Proof: By Corollary 4.11, such a singularity can be realized on a quotient of a
smooth model of P1

L by an arithmetic action of Gal(L/K). That is, the singularity
can be realized on a normal model X of P1

K . Since Hi(P1
K ,OP

1

K
) = 0 for all i ≥ 1,

we have Hi(X ′,OX ′) = Hi(X ,OX ) = 0 for all modifications π : X ′ → X (this
follows, for instance, from [Har77, Theorem III.12.11(a)]). If f : X ′ → X is any
modification, then f∗OX ′

∼= OX , since X is normal. The sheafR1f∗OX ′ has support
in the finitely many closed points of X where f is not an isomorphism. The exact
sequence of low-degree terms of the Leray spectral sequence yields

0→ H1(X ,OX )→ H1(X ′,OX ′)→ H0(X , R1f∗OX ′) = ⊕x

(

R1f∗OX ′

)

x
→ 0.

As we have seen above, the first two terms vanish, so the third term vanishes as
well. Thus, the model X has only rational singularities. �

Remark 4.14. In the equicharacteristic case, Corollary 4.13 recovers [Lor18, The-
orem 4.1].

5. Mac Lane’s theory of inductive valuations

We give a brief introduction to the theory of inductive valuations, which was
first developed by Mac Lane in [Mac36]. Our main reference is [Rüt14]. Define a
geometric valuation of K(X) to be a discrete valuation that restricts to vK on K
and whose residue field is a finitely generated extension of k with transcendence
degree 1. By [Rüt14, Proposition 3.4], normal models X of P1

K correspond to
non-empty finite collections of geometric valuations, by sending X to the collection
of geometric valuations corresponding to the local rings at the generic points of
the irreducible components of the special fiber of X , given the reduced induced
subscheme structure.

We place a partial order � on valuations by defining v � w if v(f) ≤ w(f)
for all f ∈ K[x]. Let v0 be the Gauss valuation on K(x). This is defined on
K[x] by v0(a0 + a1x + · · ·anxn) = min0≤i≤n vK(ai), and then extended to K(x).
A particularly useful way of encoding geometric valuations v such that v � v0 is
as so-called inductive valuations. These inductive valuations come from successive
“augmentations” of the Gauss valuation. The idea is that each augmentation of
a given valuation “declares” a certain polynomial to have higher valuation than
expected.

More specifically, if v is a geometric valuation such that v � v0, the concept of a
key polynomial over v is defined in [Rüt14, Definition 4.7]. By definition, these are
monic polynomials in R[x]. In the case v = v0, these are precisely the monic linear
polynomials — see Remark 5.2 below. If φ ∈ R[x] is a key polynomial over v, then
for λ ≥ v(φ), we define an augmented valuation v′ = [v, v′(φ) = λ] on K[x] by

v′(a0 + a1φ+ · · ·+ arφ
r) = min

0≤i≤r
v(ai) + iλ

whenever the ai ∈ K[x] are polynomials with degree less than deg(φ) (we should
think of this as a “base φ expansion”). By [Rüt14, Lemmas 4.11, 4.17], v′ is in fact
a discrete valuation. It extends to K(x).
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Remark 5.1. In [Rüt14], it is required that λ > v(φ). Indeed, if λ = v(φ), then
[v, v′(φ) = λ] is the same as v, but it will sometimes be convenient for us to allow
these “trivially augmented” valuations.

We extend this notation to write inductive valuations

[v0, v1(g1(x)) = λ1, . . . , vn(gn(x)) = λn]

where each gi(x) ∈ R[x] is a key polynomial over vi−1, we have deg gi(x) ≥
deg gi−1(x), and each λi satisfies λi ≥ vi−1(gi(x)) (by abuse of notation we identify
vi−1 with [v0, v1(g1(x)) = λ1, . . . , vi−1(gi−1(x)) = λi−1]). It turns out that set of
inductive valuations on K(x) exactly coincides with the set of geometric valuations
v � v0 ([Rüt14, Theorem 4.31]). Furthermore, every inductive valuation is equal
to one where the degrees of the gi are strictly increasing ([Rüt14, Remark 4.16]),
so we may and do assume this to be the case for the rest of the paper.

Remark 5.2. (i) In [Rüt14, Lemma 4.8], it is shown that a key polynomial φ
over v0 is exactly one such that v0(φ) = 0 and the residue of φ modulo v0 is
irreducible. In particular, since k is algebraically closed in this paper, φ must
be linear. Conversely, any monic linear polynomial is a key polynomial over
v0.

(ii) More generally, [Rüt14, Lemma 4.19] gives a criterion for recognizing a key
polynomial over an inductive valuation v = [v0, v1(g1(x)) = λ1, . . . , vn(gn(x)) =
λn]. As a result of this criterion, if v = [v0, v1(x) = r/pe] where 0 < r < pe

for some e and p ∤ r, then any degree pe polynomial φ with constant term
a0 satisfying v(φ) = vK(a0) = r is a key polynomial. Criteria (i) through
(iv) of [Rüt14, Lemma 4.19] are immediate, and criterion (v) follows from
[Rüt14, Lemma 4.27], using S = p−r and the fact that the residue of xpe

/pr

is a transcendental generator of the residue ring of v over k.

The following lemma contains some basic observations about inductive valua-
tions.

Lemma 5.3. Let v = [v0, v1(g1(x)) = λ1, . . . , vn(gn(x)) = λn] be an inductive
valuation on K(x). Let X be a normal model of P1

K containing an irreducible
component V̄ corresponding to v.

(i) v(gi(x)) = λi for all i.
(ii) If λi = ci/di in lowest terms for all i, then the multiplicity of V̄ in X̄ is

lcm(d1, . . . , dn).
(iii) The subring of K(x) of functions defined at the generic point of V̄ is exactly

the valuation ring of v.
(iv) If n = 1 with g1(x) linear and λ1 ∈ Z≥0, then the normal model of P1

K

corresponding to {v} is smooth. Conversely, if X is a smooth model of P1
K

such that x is generically defined on the special fiber, then X corresponds to
a geometric valuation [v0, v1(g1(x)) = λ1] with g1(x) linear and λ1 ∈ Z≥0.

(v) If n ≥ 2, then V̄ has multiplicity greater than 1.

Proof: Part (i) is [Rüt14, Lemma 4.22]. For part (ii), the multiplicity of V̄ in X̄
is just w(πK) where w is the renormalization of v to have Z as its value group. This
is clearly lcm(d1, . . . , dn). Part (iii) follows immediately from the correspondence
between irreducible components of normal models and inductive valuations. The
first direction of part (iv) follows because if g1(x) = x − a, then the model in
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question is Proj R[πλ1

K X0, X1 − aX0] where X1/X0 = x, and this is isomorphic to
P1
R. The second direction of part (iv) follows because any smooth model where x

is generically defined on the special fiber can be written as Proj R[Y0, Y1] where
x = a+ by with y = Y1/Y0 and a, b ∈ R with vK(b) =: λ1 ≥ 0. This corresponds to
{v}, where v = [v0, v1(x − a) = λ1]. Part (v) follows from part (ii) and the second
part of [Rüt14, Corollary 4.30]. �

5.1. Diskoids. A (rigid) diskoid over K, as introduced in [Rüt14, §4.4], is a
union of conjugate disks over K. More specifically, if φ ∈ K[x] is a monic ir-
reducible polynomial and λ ∈ Q≥0, we define the diskoid D(φ, λ) to be the set

{x ∈ K | vK(φ(x)) ≥ λ}, where, by a slight abuse of notation, we write vK for the
unique extension of vK to K (cf. [Rüt14, Definition 4.40] — note that our K is
already complete with respect to vK and we will have no need of the case λ =∞).

Given a diskoid D, we can form a valuation vD on K[x], where vD(g(x)) =
infy∈D vK(g(y)).

Proposition 5.4 ([Rüt14, Theorem 4.56]). The map D 7→ vD above gives a bijec-
tion between the set of diskoids over K contained in the closed unit disk around 0
and the set of inductive valuations on K[x], whose inverse is given by

v := [v0, . . . , vn(gn(x)) = λn] 7→ Dv := D(gn(x), λn).

Remark 5.5. We need the assumption that the diskoid is in the closed unit disk so
that the corresponding valuation is non-negative on x. This is not explicitly stated
in [Rüt14].

The following application of Proposition 5.4 will be useful for classifying singu-
larities.

Lemma 5.6. Let L/K be a Galois extension of degree d, and suppose α ∈ OL

generates L as a field over K. Let w = [w0, w1(x− α) = λ], where w0 is the Gauss
valuation on L[x]. Suppose vL(α

′ − α′′) = λ for all Galois conjugates α′ 6= α′′ of α
over K. The restriction of w to K[x], after rescaling so that it extends vK , is the
(unique) inductive valuation of the form v = [v0, . . . , vn(gn(x)) = λ], where v0 is
the Gauss valuation of K and gn is the minimal polynomial of α.

Proof: Since the difference of any two Galois conjugates of α has valuation λ,
we have the equivalences (for β ∈ K)

vL(β − α) ≥ λ ⇔ vL

(

∏

α′∼Gal α

(β − α′)

)

≥ dλ

⇔ vL(g(β)) ≥ dλ

⇔ vK(g(β)) ≥ λ.

Thus the diskoid Dw = D(x−α, λ) corresponding to w over L is equal, as a subset
ofK, to the diskoidD(g(x), λ) overK. By the definition of the valuation associated
to a diskoid, the rescaled restriction v of w to K[x] corresponds to the diskoid vD,
where D = D(g(x), λ). By Proposition 5.4, v has the desired form when written as
an inductive valuation. �
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6. Classification of weak wild arithmetic quotient singularities

Lemma 6.1. Every weak wild arithmetic quotient singularity over K is faithfully
resolved by a Galois extension L/K with Galois group Gal(L/K) = (Z/p)e for some
e. Furthermore, the singularity is formally isomorphic to the singularity arising
from the quotient by the purely arithmetic action of Gal(L/K) on the smooth model
Y of P1

L corresponding to a valuation of the form

w = [w0, w1(x− α) = λ],

where α generates L as a field over K and 0 < vL(α) < λ < pe.

Proof: By Corollary 4.11, we know that the singularity is formally isomorphic to
one coming from an action of an elementary abelian group G ∼= (Z/p)e on a smooth
model Y of P1

L, where K = LG, the action on the generic fiber is purely arithmetic,
and there is exactly one fixed point on the special fiber. Let L(x) be the function
field of P1

L, where x is fixed by G. Let w be the valuation of L(x) corresponding to
the special fiber of the model Y, and let v be the restriction of w to K(x). Then
v corresponds to the special fiber of the model X := Y/G of P1

K . After a change
of variable defined over K, which does not change the formal isomorphism class of
the singularity, we may assume that w ≻ w0 where w0 is the Gauss valuation on
L(x) with respect to x. Since Y is smooth, Lemma 5.3(iv) shows that w can be
expressed in the inductive form w = [w0, w1(x − α) = λ], where α ∈ L satisfies
vL(α) > 0 and λ > 0. The unique fixed point on the special fiber of Y under the
G-action is the specialization of those x such that vL(x− α) < λ, so no x ∈ L that
is fixed by any nontrivial element of G can satisfy vL(x−α) ≥ λ. In particular, the
closed disk does not contain the point 0, and we may thus assume that λ > vL(α).
Furthermore, α generates L as a field extension of K.

By Lemma 2.2, there exists δ ∈ K such that replacing x and α with x + δ and
α+δ implies that pe ∤ vL(α). Lastly, by replacing x and α with νx and να for some
ν ∈ K, we may assume 0 < vL(α) < pe. Since neither of the above substitutions
changes the formal isomorphism class of the singularity, the proof is complete. �

Remark 6.2. Suppose Gal(L/K) acts on the smooth model Y of P1
L given by

w = [w0, w1(x − α) = λ] with 0 < vL(α) < λ ≤ vL(σ(α) − α) for all nontrivial
σ ∈ Gal(L/K). Then Gal(L/K) fixes the specialization of x =∞, and the action of
σ ∈ Gal(L/K) on the special fiber of Y is nontrivial if and only if λ = vL(σ(α)−α).
Thus, the resulting arithmetic quotient singularity is strict if and only if the final
inequality is an equality for all nontrivial σ.

We are now able to state our first main theorem.

Theorem 6.3. Every weak wild arithmetic quotient singularity faithfully resolved
by a Galois extension L/K is formally isomorphic to the unique singularity of the
model X of P1

K with irreducible special fiber corresponding to a valuation of the
form
(6.4)

v = [v0, v1(g1(x)) = c1/p
e1 , . . . , vn−1(gn−1(x)) = cn−1/p

en−1 , vn(gn(x)) = cn]

where

(1) All ci are positive integers, and c1, . . . , cn−1 are prime to p. Furthermore,
c1 < pe1 .

(2) g1(x) = x.
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(3) 0 < e1 < e2 < · · · < en−1 = logp([L : K]).
(4) deg gi(x) = pei−1 for 2 ≤ i ≤ n.
(5) gn(x) is irreducible over K and any root of gn(x) generates the extension

L/K.

(6) cn ≥ r + s, where r = c1p
logp([L:K])−e1 = vK(gn(0)) and s is the largest

ramification jump of L/K for the lower numbering. Equality holds if and
only if n = 2 (equivalently, e1 = logp([L : K]), in which case s is the unique
ramification jump for L/K.

Proof: Let e = logp([L : K]). By Lemma 6.1, the valuation v we seek is
1/pe times the restriction of w = [v0, v1(x − α) = λ] to K[x], where w is the
valuation on L[x] from Lemma 6.1. So we need only show that v has the properties
(i)–(vi) of the theorem. First, we make some observations about α and λ. Let
Y be as in Lemma 6.1. Since the action of G := Gal(L/K) is faithful on the
special fiber of Y, we must have vL(σ(y) − y) = λ for all nontrivial σ ∈ G and
all y ∈ L with vL(y − α) = λ. In particular, this is true whenever y is Galois
conjugate to α, so we are in the situation of Lemma 5.6. Thus we can write
v = [v0, v1(g1) = λ1, . . . , vn−1(gn−1(x)) = λn−1, vn(gn(x)) = cn], where the gi are
key polynomials of strictly increasing degree, where gn is the minimal polynomial
for α, and where cn = λ. This proves (v) and that cn is an integer. For 1 ≤ i ≤ n−1,
write λi = ci/p

ei where ci has no p-part. The ci are integers since the value group
of v is (1/pe)Z.

Let r = vL(α). Then r = vK(N(α)) = vK(gn(0)). By Lemma 6.1 we may
assume that 0 < r = w(α) < cn = w(x− α) < pe. Since w(α) < w(x− α), we have
w(x) = w(α), and consequently v(xpe

) = v(N(α)). In other words, v(x) = r/pe <
1. Since x is a key polynomial over v0 and since setting v(x) = r/pe uniquely
determines the evaluation of v on any linear polynomial, we can set g1(x) = x and
λ1 = r/pe. This proves (ii), as well as the assertion in (i) about c1 and the fact
that r = c1p

e−e1 in (vi). In particular, this finishes the proof of (i).
We also note that if p ∤ r, then Proposition 2.4(i) shows that L/K has a unique

ramification jump s and that λ = cn = r+s. If p | r, then Proposition 2.4(ii) shows
that λ = cn > r+ s, where s is the largest lower ramification jump for L/K. Since
p ∤ r exactly when e = e1, this finishes the proof of (vi).

Since k is algebraically closed, [Rüt14, Corollary 4.30]2 shows that for i ≥ 2, we
have

deg(gi)/ deg(gi−1) = lcm(pe1 , . . . , pei−1)/lcm(pe1 , . . . , pei−2),

when we set e0 = 0. Parts (iii) and (iv), except for the statement that en−1 = e,
then follow from this statement and induction. By part (i) and the fact that the
ei are increasing from (iii), the value group of v is (1/pen−1)Z, so en−1 = e. This
finishes the proof of (iii). �

Corollary 6.5. Every weak wild arithmetic Z/p-quotient singularity of an arith-
metic surface over K is formally isomorphic to the unique singularity of a model
X of P1

K with irreducible special fiber corresponding to a valuation of the form

[v0, v1(x) = r/p, v2(g2(x)) = r + s]

2[Rüt14, Corollary 4.30] is incorrect as stated — e(vm|vm−1) should be e(vm−1|vm−2).



18 ANDREW OBUS AND STEFAN WEWERS

where 0 < r < p and g2(x) is an irreducible degree p polynomial, any of whose roots
generates a Z/p-extension L/K with ramification jump s that faithfully resolves the
singularity.

Proof: This follows from Theorem 6.3, since for a strict Z/p-quotient singularity,
part (iii) of the theorem implies that n = 2. �

Definition 6.6. We call a weak wild arithmetic Z/p-quotient singularity with
invariants (r, s) as in Corollary 6.5 a weak wild singularity of type (r, s).

Remark 6.7. If 0 < r < p and s is the ramification jump of some Z/p-extension
L/K, then there exists a weak wild singularity of type (r, s) overK. Namely, we just
take g2(x) to be the minimal polynomial of a generator α of L/K such that vL(α) =
r, and then the model X of P1

K with irreducible special fiber corresponding to
[v0, v1(x) = r/p, v2(g2(x)) = r+ s] contains the desired singularity. By Proposition
2.5, we have p ∤ s. If K has characteristic p, then it is well-known that this is the
only restriction on s. If K has characteristic zero and absolute ramification index
eK , then s ≤ peK/(p − 1) is the only other restriction (see, e.g., [Obu14, Lemma
3.3(ii)]).

Remark 6.8. If X is the model of P1
K associated to r, s, g2 as in Corollary 6.5, but

we only require s to be less than or equal to the ramification jump of L/K, then
we still get an arithmetic quotient singularity x ∈ X which is resolved by L/K. If
s is strictly less then the ramification jump then the singularity is not strict (see
also Remark 6.2). However, we will see later (Corollary 7.13) that the resolution of
x does not depend on this condition, but only on the pair (r, s).

Remark 6.9. In fact, we will see in §7 that the resolution graph of a weak wild
arithmetic quotient singularity as in Theorem 6.3 depends only on n, the ci, and
the ei. It would be interesting to know exactly which n, ci and ei can give rise to
such a singularity for a given field K and group (Z/p)e. This would allow us to
determine all possible resolution graphs. Remark 6.7 gives the answer when e = 1.

7. Resolution of weak wild singularities

7.1. General resolution results. We begin by giving general results about the
locations of singularities on models of P1

K with irreducible special fiber.

Lemma 7.1. Let X be a normal model of P1
K and let V be an irreducible component

of the special fiber X of X with the reduced subscheme structure. Then V ∼= P1
k.

Proof: Let ι : V → X be the inclusion. Restriction gives a natural surjection
OX → ι∗(OV ) of sheaves on X. Since X has dimension 1, this gives rise to a

surjection H1(X,OX) → H1(X, ι∗(OV ))
∼= H1(V ,OV ). Since X → SpecOK is

flat, H1(X,OX) = 0, and thus the same is true for V . Since V is an integral curve
with arithmetic genus 0, it must be P1

k.
�

The first part of the next lemma is well known, but we include a proof for
completeness.

Lemma 7.2. Let X be a normal flat OK-curve with generic fiber X and special
fiber X, let x̄ be a point of X, and let X ′ = SpecOX ,x̄ ⊆ X .



EXPLICIT RESOLUTION OF WEAK WILD QUOTIENT SINGULARITIES 19

(i) If x̄ lies on an irreducible component V of X with multiplicity m, and if there
is closed point of X specializing to x̄ with residue field L where [L : K] < m,
then x̄ is not a regular point of X .

(ii) Assume X ∼= P1
K . Let V 1, . . . , V r be the irreducible components of X contain-

ing x̄, and let D1, . . . , Dr be the prime divisors supporting V 1, . . . , V r. If any
Di is principal when restricted to X ′, then x̄ is a regular point of X .

Proof: Since regularity is a local property, we may replace X with X ′.

Part (i): Assume, for a contradiction, that X ′ is regular. Then the height 1
prime divisor supporting the closure of the given L-point is principal. If w gener-
ates the corresponding prime ideal, then OX ,x̄/(w) ∼= S, where S ⊆ OL satisfies

Frac(S) = L. The prime divisor D supporting the restriction of V to X ′ is also
height 1, and thus principal, say corresponding to an ideal (t). Since V has mul-
tiplicity m, we have (t)m ⊇ (πK). This containment becomes an equality after
taking quotients by (w). Thus, the ideal (πK) has an mth root in S ⊆ OL. Since
[L : K] < m, this is a contradiction.

Part (ii): If i is as in the proposition, then Lemma 7.1 (applied to X ) shows that
Di is smooth, so in particular x̄ is smooth on Di. Since Di is principal, this means
that x̄ is regular in X ′.

�

Lemma 7.3. Let X be the model of P1
K with irreducible special fiber corresponding

to the inductive valuation

v = [v0, v1(g1(x)) = λ1, . . . , vn(gn(x)) = λn].

(i) There is a singularity at the specialization of gn(x) = 0 if and only if λn does
not lie in the additive group generated by 1, λ1, . . . , λn−1.

(ii) There is a singularity at the specialization of x = ∞ unless n = 1 and λ1 is
an integer, in which case there is no singularity.

(iii) There is no singularity at any other point.

Proof: Part (i): Let N > 0 be such that (1/N)Z is the additive group generated
by 1, λ1, . . . , λn−1. Since k is algebraically closed, repeated application of [Rüt14,
Corollary 4.30] shows that N is the degree of gn. So gn(x) = 0 is a point of degree
N on the generic fiber.

If λn /∈ (1/N)Z, then the multiplicity of the special fiber is greater than N , so
the specialization z̄ of gn(x) = 0 is singular by Lemma 7.2(i). If λn ∈ (1/N)Z, then
the multiplicity of the special fiber is N . Furthermore, one can construct a rational
function h = cg1(x)

b1 · · · gn−1(x)
bn−1 with c ∈ K with v(h) = 1/N . Since none of

the zeroes of g1(x), . . . , gn−1(x) have the same specialization as the zeroes of gn(x),
the divisor of h is locally (near z̄) equal to the unique prime divisor of the special
fiber to which z̄ specializes. Lemma 7.2(ii) implies that z̄ is regular.

Part (ii): The point x = ∞ has degree 1 over K. If the multiplicity of the spe-
cial fiber of X is greater than 1, then Lemma 7.2(i) shows that the specialization of
x = ∞ is singular. By Lemma 5.3(ii) and (v), the multiplicity of the special fiber
is 1 if and only if n = 1 and λ1 is an integer. By Lemma 5.3, the specialization of
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x =∞ is regular.

Part (iii): Let z̄ be a point of the special fiber not covered in parts (i) or (ii). Let
N > 0 be such that the additive group generated by 1, λ1, . . . , λn is (1/N)Z. There
is a rational function h = cg1(x)

b1 · · · gn(x)
bn such that v(h) = 1/N . Since none

of the zeroes of g1(x), . . . , gn(x) specialize to z̄, the divisor of h is locally (near z̄)
the prime divisor corresponding to the special fiber. Lemma 7.2(ii) shows that z̄ is
regular in X . �

We now discuss when an intersection point of two irreducible components of the
special fiber of a model can be singular, in a particular case necessary for us.

Lemma 7.4. Let X be the model of P1
K whose special fiber has two intersecting

irreducible components corresponding to

v = [v0, v1(g1(x)) = λ1, . . . , vn−1(gn−1(x)) = λn−1, vn(gn(x)) = λn]

and

w = [v0, v1(g1(x)) = λ1, . . . , vn−1(gn−1(x)) = λn−1, vn(gn(x)) = λ′
n],

where λ′
n > λn. There is a singularity at the intersection point of these two irre-

ducible components if and only if

λ′
n − λn >

N

lcm(N, c)lcm(N, c′)
,

where

• λn (resp. λ′
n) = b/c (resp. b′/c′) in lowest terms,

• N > 0 and 1/N generates the additive group generated by 1, λ1, . . . , λn−1.

Proof: Let y = αg1(x)
a1 · · · gn−1(x)

an−1 be such that v(y) = w(y) = 1/N , with
α ∈ K and the ai ∈ Z. Write m = gcd(N, c) and m′ = gcd(N, c′). Note that
m/Nc = 1/lcm(N, c) generates the value group of v. Let

h = yb
′N/m′

/gc
′/m

n .

Then

(v(h), w(h)) = ((b′c− bc′)/m′c, 0) = ((λ′
n − λn)c

′/m′, 0).

If λ′
n − λn = N/lcm(N, c)lcm(N, c′) = mm′/Ncc′, then the ordered pair above

is (1/lcm(N, c), 0). In other words, h cuts out the principal prime divisor D locally
corresponding to the valuation v near the intersection point. Lemma 7.2(ii) shows
that the intersection point is regular.

Note that it is not possible to have λ′
n − λn < N/lcm(N, c)lcm(N, c′), because

v(h) would be too small to lie in the value group of v.
If λ′

n − λn > N/lcm(N, c)lcm(N, c′), then take a shortest N -path λ′
n = β0/γ0 >

β1/γ1 > · · · > βr/γr = λn, where the βr/γr are in lowest terms. Note that r ≥ 2.
Consider the normal model X ′ of P1

K whose special fiber has r + 1 irreducible

components Xi corresponding to

[v0, v1(g1(x)) = λ1, . . . , vn−1(gn−1(x)) = λn−1, vn(gn(x)) = βi/γi]

for 0 ≤ i ≤ r. The model X ′ is a blow up of X . We claim that X ′ has no −1-
components outside of the strict transforms X0 and Xr of the components of the
special fiber of X . The claim shows that the intersection point of the two irreducible
components of the special fiber of X is not regular, because if it were, we would be
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able to blow down −1-components of the special fiber of X ′ one by one, eventually
obtaining X .

To prove the claim, we observe that for 0 < i < r, the multiplicity µi of X i

is lcm(N, γi). By Lemma A.5, either µi−1 ≥ µi or µi+1 ≥ µi. But, by (3.4), the
self-intersection of X i is −1 if and only if µi = µi−1+µi+1. Since this is impossible,
the claim is proved. �

The above characterizations of singularities yield two corollaries about their ex-
plicit resolutions. These corollaries, and the rest of §7, depend on the concept of
shortest N -path (Definition A.4).

Corollary 7.5. Let X be the model of P1
K from Lemma 7.3, and let N be such that

the additive group generated by 1, λ1, . . . , λn−1 is (1/N)Z. If X has a singularity
at the specialization of gn(x) = 0, the minimal resolution of this singularity is the
normal model X ′ of P1

K whose special fiber has irreducible components corresponding
to

vλ := [v0, v1(g1(x)) = λ1, . . . , vn−1(gn−1(x)) = λn−1, vn(gn(x)) = λ]

as λ runs through a shortest N -path from λ′
n to λn, where λ′

n is the least rational
number greater than λn that is in (1/N)Z.

Proof: By Lemma 7.3, any singularities on the exceptional divisor of X ′ can
only appear on intersections of two irreducible components (in particular, there
is no singularity at the specialization of gn(x) = 0 to the irreducible component
Xλ′

n
corresponding to λ′

n). By Lemma 7.4 and Definition A.4, there are in fact
no singularities at these intersection points, but there will be if any component of
the exceptional divisor other than Xλ′

n
is blown down. Furthermore, our shortest

N -path does not contain any entries in (1/N)Z other than λ′
n, so Lemma 7.3 shows

that blowing down Xλ′

n
also yields a singularity. Thus X ′ is the minimal resolution.

�

Corollary 7.6. Let X be the model of P1
K from Lemma 7.4, and let N be as in

Lemma 7.4. Let X ′ be the normal model of P1
K whose special fiber has irreducible

components corresponding to

vλ := [v0, v1(g1(x)) = λ1, . . . , vn−1(gn−1(x)) = λn−1, vn(gn(x)) = λ]

as λ runs through a shortest N -path from λ′
n to λn. If X has a singularity at the

intersection point of the two irreducible components on the special fiber, then X ′ is
a (and by unicity, the) minimal resolution of this singularity.

Proof: Again, by Lemma 7.3, any singularities on the exceptional divisor of
X ′ can only appear on intersections of two irreducible components. But Lemma
7.4 and Definition A.4 show that these points are not singular, and furthermore
that blowing down any irreducible component of the exceptional divisor yields a
singularity. �

Remark 7.7. Corollary 7.6 shows that if an N -path from λ′
n to λn exists, it is

unique. In fact, one always exists, see Proposition A.14.

7.2. Weak wild quotient singularities. From Theorem 6.3, we know that any
strict weak wild arithmetic quotient singularity over K appears in a normal model
of P1

K . We give here a general resolution of singularities of any such model with
irreducible special fiber.
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✈
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✈vn,λ
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Figure 1. The dual graph of the minimal resolution of a normal
model of P1

K with irreducible special fiber. The white vertex corre-
sponds to the strict transform of the special fiber, while the black
vertices correspond to components of the exceptional fibers. The
intersection graph of a weak wild quotient singularity corresponds
to the complement of the vertices in the right-most vertical column.
The extended intersection graph of the desingularization includes
the white vertex as well.

Theorem 7.8. Let X be the normal model of P1
K with irreducible special fiber

corresponding to a valuation of the form

v = [v0, v1(g1(x)) = λ1, . . . , vn−1(gn−1(x)) = λn−1, vn(gn(x)) = λn].

Write λi = ci/di in lowest terms for 1 ≤ i ≤ n, and write Ni = lcm(d1, . . . , di).
Set λ0 = ⌊λ1⌋ and set N0 = N−1 = 1. The minimal regular resolution of X is the
normal model X ′ of P1

K whose special fiber has irreducible components corresponding
to the following valuations:

• For each 1 ≤ i ≤ n, the valuation vi given as part of the inductive valuation
v.
• The valuation ṽ0 := [v0, v1(x) = λ0] (note: ṽ0 = v0 if 0 < λ1 < 1).
• For each 1 ≤ i ≤ n, the valuations

vi,λ = [v0, v1(g1(x)) = λ1, . . . , vi−1(gi−1(x)) = λi−1, vi,λ(gi(x)) = λ],

as λ ranges through the shortest Ni−1-path from αi to λi, where αi is the
least rational number greater than λi in (1/Ni−1)Z.
• For each 0 ≤ i ≤ n− 1, the valuations

wi,λ = [v0, v1(g1(x)) = λ1, . . . , vi(gi(x)) = λi, vi+1,λ(gi+1(x)) = λ],

as λ ranges through the shortest Ni-path from λi+1 to (Ni/Ni−1)λi.

The dual graph of the exceptional fibers of the minimal resolution X ′ → X is shown
in Figure 1.
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Proof: We first show that X ′ is regular. Consider the normal model X ′′ of
P1
K whose special fiber has irreducible components corresponding to the valuations

ṽ0, v1, . . . , vn. Let Xi be the blow down of X ′′ given by blowing down all irreducible
components on the special fiber other than the one corresponding to vi (or ṽ0, if
i = 0). By applying Lemma 7.3 to each of the Xi, we see that any singularities of
X ′′ must lie at the intersection point zi of the two irreducible components of the
special fiber corresponding to vi (or ṽ0 if i = 0) and vi+1 for some i, or must lie at
the strict transform yi of the specialization of gi(x) = 0 to Xi for some i.

By Corollary 7.5, the minimal resolution of the singularity at yi on X ′′ is
the model of P1

K whose special fiber has irreducible components corresponding
to ṽ0, v1, . . . , vn, as well as the vi,λ. So resolving all of the yi minimally yields a
model X ′′′ whose special fiber has irreducible components corresponding to ṽ0, the
vi and the vi,λ. Write zi again for the strict transform of zi on X

′′′.
Let us resolve all of the zi. We note, since gi+1(x) is a key polynomial over vi (or

ṽ0 if i = 0 and vi(gi(x)) = λi, that vi(gi+1(x)) = (deg(gi+1)/ deg(gi))λi by [Rüt14,
Proposition 4.19(iii)]. By [Rüt14, Corollary 4.30] (but see the footnote in the proof
of Theorem 6.3), deg(gi+1)/ deg(gi) = Ni/Ni−1. So the valuation vi can also be
written as

[v0, v1(g1(x)) = λ1, . . . , vi(gi(x)) = λi, vi+1(gi+1(x)) = (Ni/Ni−1)λi].

By Corollary 7.6, the minimal resolution of the singularities at the zi on X ′′′ is
the given model X ′, whose special fiber has irreducible components corresponding
to ṽ0, the vi, the vi,λ, and the wi,λ. Thus X ′ is regular, and furthermore, it is a
minimal regular resolution of X ′′.

It remains to show that X ′ is a minimal regular resolution of X . To do this,
it suffices to show that the special fiber of X ′ has no −1-curves. Since X ′ is
a minimal resolution of X ′′, it suffices to check that no strict transform of an
irreducible component of the special fiber of X ′′ (other than the one corresponding
to vn) in X ′ is a −1-curve. Such a component corresponds to ṽ0 or a valuation vi,
with 1 ≤ i < n. By (3.4), a component has self-intersection −1 if and only if its
multiplicity is equal to the sum of the multiplicities of its neighboring components.

First, suppose i ≥ 1. The multiplicity of the irreducible component V of the
special fiber corresponding to vi is Ni, and the multiplicity of the irreducible com-
ponent W corresponding to wi,λ and intersecting V is divisible by Ni, as can be

read off directly from wi,λ. Since W is not the only component of the special fiber

of X ′ intersecting V , it is not possible for V to be a −1-curve.
Lastly, if i = 0, then the multiplicity of the irreducible component V correspond-

ing to ṽ0 is 1, and the multiplicity of the unique neighboring component w0,λ is
strictly greater than 1, since λ0 < λ ≤ λ1 < λ0 + 1. This completes the proof. �

Remark 7.9. The special fiber of the resolution X ′ above has simple normal cross-
ings, so X ′ is also the minimal snc-resolution.

We can now specialize Theorem 7.8 to the case of a weak wild arithmetic quotient
singularity, which by Theorem 6.3, is isomorphic to the unique singularity of the
normal model X of P1

K with irreducible special fiber corresponding to a valuation
of the form in (6.4), where n ≥ 2 in (6.4). By Lemma 7.3, the singularity occurs at
the specialization of x =∞.
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Corollary 7.10. The dual graph of the minimal resolution of a weak wild quotient
singularity is as in Theorem 7.8 (Figure 7.2), except that there are no components
corresponding to the vn,λ.

Proof: In light of Theorem 6.3, there is essentially nothing to show. Since
the singularity lies at the specialization of x = ∞ on X , we include only the
exceptional divisor of the resolution of this singularity, and thus not the components
corresponding to the vn,λ (in fact, it is not hard to see that there won’t even be
any vn,λ components in the minimal resolution of X ). �

Recall from Definition 6.6 that a singularity of type (r, s) is a singularity iso-
morphic to the unique singularity of the model of P1

K with irreducible special fiber
corresponding to the valuation

v = [v0, v1(x) = r/p, v2(g(x)) = r + s],

where g(x) is an irreducible polynomial of degree p giving rise to the associated Z/p-
extension L/K. By Corollary 6.5, every weak wild strict arithmetic Z/p-quotient
singularity over K has type (r, s) for some s > 0 and 0 < r < p, and s is the
ramification jump of L/K.

Definition 7.11. Let p be a prime number and r, s integers such that 0 < r < p
and s > 0. Let r/p = [a0, . . . , ak] be the negative continued fraction expansion of
r/p, with convergents bi/ci, i = 0, . . . , k. Similarly, let p/r = [ã0, . . . , ãl] be the

negative continued fraction expansion of p/r, with convergents b̃i/c̃i, i = 0, . . . , l.
Then the (r, s)-graph is the extended arithmetic graph depicted in Figure 2, where
by extended arithmetic graph we mean the a graph whose vertices are labeled with
multiplicity and self-intersection numbers, and one vertex (the “link”) is drawn in
white to represent the strict transform of the component containing the singularity.
The graph has a unique node of valency 3, a unique link and exactly two terminal
vertices.

Remark 7.12. (i) The three vertices of the (r, s)-graph adjacent to the unique
node have multiplicity p, p− t and t, where t is the unique integer such that
0 < t < p and tr ≡ 1 (mod p). In fact, it follows from Proposition A.1 that

bk−1p− rck−1 = 1, 0 < ck−1 < p.

Therefore, ck−1 = p− t. A similar argument shows that b̃l−1 = t.
(ii) The (r, s)-graph is the arithmetic graph defined in [Lor14, Proposition 4.3]

(with t = r(C1)).

Corollary 7.13. (i) The resolution graph of the minimal resolution of a weak
wild singularity of type (r, s) is the (r, s)-graph depicted in Figure 2.

(ii) If such a singularity is realized in a model X of P1
K as in Corollary 6.5,

then the valuations corresponding to the irreducible components of the special
fiber of the minimal resolution are the Gauss valuation (which corresponds to
one of the two terminal vertices of the (r, s)-graph), as well as the following
valuations, written as inductive valuations:
• [v0, v1(x) = r/p]; this is the valuation corresponding to the unique node
of the resolution graph.
• [v0, v1(x) = λ], where either λ is a convergent of the negative continued
fraction expansion of r/p or 1/λ is a convergent of the negative continued
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Figure 2. The (r, s)-graph, i.e., the extended intersection graph
of a singularity of type (r, s). The labels above the vertices are
the multiplicities and the labels below the vertices are the self-
intersection numbers. The total number of −2-vertices in the left-
hand chain is sp.

fraction expansion of p/r. In the first case, the corresponding component
has multiplicity ci−1 and self-intersection −ai, where 1 ≤ i ≤ k. In

the second case, it has multiplicity b̃i−1 and self-intersection −ãi, where
0 ≤ i ≤ l and b̃−1 := 1.
• [v0, v1(x) = r/p, v2(g(x)) = λ], where λ ∈ 1

pN and r < λ ≤ r + s.

When λ < r + s, the valuation corresponds to a −2-component of the
exceptional fiber of multiplicity p and degree 2. When λ = r + s, the
valuation corresponds to the strict transform of the special fiber of X ,
which is the link of the resolution graph.

Proof: The valuations v0, [v0, v1(x) = r/p], and [v0, v1(x) = r/p, v2(g(x)) =
r + s] are the valuations v0, v1, and v2 from Theorem 7.8. By Lemma A.10(i), the
convergents of the negative continued fraction expansion of r/p form the shortest
1-path from 1 to r/p, and thus the valuations [v0, v1(x) = λ] as λ runs through
these convergents are the valuations v1,λ from Theorem 7.8. By Lemma A.10(ii),
the reciprocals of the convergents of the negative continued fraction expansion of
p/r form the shortest 1-path from r/p to 0, and thus the valuations [v0, v1(x) = λ]
as 1/λ runs through these convergents are the valuations v0,λ from Theorem 7.8.
By definition, the values λ ∈ (1/p)Z between r and r + s form the shortest p-path
from r to r+ s, so the valuations [v0, v1(x) = r/p, v2(g(x)) = λ] are the valuations
w1,λ from Theorem 7.8. We have shown that the valuations given in part (ii) are
in one-to-one correspondence with the valuations from Theorem 7.8, which proves
part (ii).

To prove part (i), it remains to compute the self-intersection numbers, which are
determined by the intersection graph and the multiplicities. The multiplicities are
calculated using Lemma 5.3(ii), and the self-intersection numbers are calculated
using (3.4). Using Proposition A.1, it is straightforward to verify that the numbers
in Figure 2 are correct. �
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Corollary 7.14. The three irreducible components of the special fiber of the mini-
mal resolution of a singularity of type (r, s) from Corollary 7.13 that intersect the
component corresponding to [v0, v1 = r/p] have multiplicity p, t and p − t in the
special fiber, where t is the unique integer such that 0 < t < p and tr ≡ 1 (mod p).

Proof: This follows from Remark 7.12(ii). �

Remark 7.15. The resolution given in Corollary 7.13 is consistent with the resolu-
tion given in [Lor14, Theorem 6.8]. Furthermore, our s corresponds to Lorenzini’s
αi/p and our r corresponds to Lorenzini’s r1(i)

−1 (mod p). In particular, Corollary
7.13 confirms Lorenzini’s prediction about αi before [Lor14, Remark 1.1]. Note that
our r and s are completely independent from one another, unlike in the case of a
singularity arising from the product of two algebraic curves, as in [Lor18, Theorem
1.2].

Corollary 7.13 shows that the result of [Lor14, Theorem 6.4(b)] holds for indi-
vidual weak wild arithmetic quotient singularities, regardless of whether they come
from ordinary curves. Corollary 7.13 also answers the question asked in [Lor14,
Remark 6.9] positively. This has the following consequences, paralleling [Lor14,
Corollaries 6.10, 6.14].

Corollary 7.16 (cf. [Lor14, Corollary 6.10]). Let X/K be a curve with poten-
tially good reduction over a (Z/p)e-extension L/K, such that the natural action of
Gal(L/K) on a good model XOL

over X ×K L gives rise to a weak wild arithmetic
quotient singularity. Then X(K) 6= ∅.

Proof: By Theorem 7.8(i), the special fiber of the minimal resolution ofXOL
/(Gal(L/K))

has an irreducible component with multiplicity 1, namely, the component corre-
sponding to the Gauss valuation v0. Since this is a model of X/K, there is a point
of X(K) that specializes to this component. �

Corollary 7.17 (cf. [Lor14, Corollary 6.14], [Lor13, Theorem 4.1])). Fix any prime
p and any e ≥ 1. For each integer m > 0, there exist a two-dimensional regular local
ring B of equicharacteristic p and a two-dimensional regular local ring B′ of mixed
characteristic, each endowed with an action of G := (Z/p)e, such that SpecBG

and Spec (B′)G are singular exactly at their respective closed points, and the graphs
associated with the minimal resolutions of SpecBG and Spec (B′)G have one node
and more than m vertices.

Proof: In either the equicharacteristic or the mixed characteristic case, one
can find K as in our notation and a G-extension L/K with arbitrarily high single
ramification jump s. Let g(x) be the monic minimal polynomial over K for a
uniformizer πL of L. By Theorem 7.8(ii), a weak wild quotient singularity arising
from a model X of P1

K with irreducible special fiber corresponding to the valuation
[v0, v1(x) = 1/pe, v2(g(x)) = 1+s] has resolution graph with one node and at least
ps vertices (there are ps vertices represented among the w1,λ, since the elements of
(1/pe)Z between 1 and 1 + s form a 1/pe-shortest path from 1 + s to 1). Such a
singularity is a G-quotient of a regular two-dimensional local ring, which is our B
(or B′). �
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Appendix A. Negative continued fractions and shortest N-paths

Given a rational number y, there is a unique way of expressing y in the form

y = a0 −
1

a1 −
1

...− 1

an

,

where the ai are integers with ai ≥ 2 for i ≥ 1. This is called the negative continued
fraction expansion of y, and its truncation

a0 −
1

a1 −
1

...− 1

ai

,

at ai is called the ith convergent. For short, we sometimes write such a negative
continued fraction expansion as y = [a0, a1, . . . , an].

Proposition A.1. Let bi and ci satisfy the recurrence relations

bi+2 = ai+2bi+1 − bi, ci+2 = ai+2ci+1 − ci

for i ≥ 0, with

b0 = a0, c0 = 1, b1 = a0a1 − 1, c1 = a1.

Then the ith convergent of y can be written in lowest terms as bi/ci. Furthermore,
we have bici+1 − bi+1ci = 1 for all 0 ≤ i < n. In particular, the convergents form
a decreasing sequence.

Proof: A straightforward proof by induction, see e.g. [JT80, Theorem 2.1],
shows that if bi and ci are defined as in the recursion, then the ith convergent is
bi/ci and bici+1− bi+1ci = 1. This last equality implies that bi and ci are relatively
prime. �

Corollary A.2. If bi/ci is the ith convergent of the negative continued fraction
expansion of some a ∈ Q>0, written in lowest terms, then the sequence of the ci is
strictly increasing. The sequence of the bi is strictly increasing unless all bi equal
1.

Proof: This follows from the recursive formulas in Proposition A.1 using induc-
tion and the fact that ai ≥ 2 for i ≥ 1. �

Corollary A.3. If bi/ci and bj/cj are convergents of the negative continued frac-
tion expansion of y written in lowest terms, and j ≥ i+2, then bi/ci−bj/cj > 1/cicj.

Proof: By Corollary A.2, the ci are monotonically increasing. Thus

bi
ci
−

bj
cj

=

(

bi
ci
−

bi+1

ci+1

)

+

(

bi+1

ci+1
−

bj
cj

)

=
1

cici+1
+

(

bi+1

ci+1
−

bj
cj

)

>
1

cici+1
>

1

cicj
.

�

Definition A.4. If a > a′ ≥ 0 are rational numbers, and N is a positive integer,
an N -path from a to a′ is a sequence a = b0/c0 > b1/c1 > · · · > bn/cn = a′ of
rational numbers in lowest terms such that

bi
ci
−

bi+1

ci+1
=

N

lcm(N, ci)lcm(N, ci+1)
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for 0 ≤ i ≤ n − 1. If, in addition, no proper subsequence of b0/c0 > · · · > bn/cn
containing b0/c0 and bn/cn is an N -path, then the sequence is called a shortest
N -path from a to a′.

The following lemma is useful in the proof of Lemma 7.4, where the quantities
lcm(ci, N) are interpreted as multiplicities of irreducible components of the special
fiber of an arithmetic surface.

Lemma A.5. If a > a′ > 0 are rational numbers, and a = b0/c0 > b1/c1 > · · · >
bn/cn = a′ is a shortest N -path between a and a′, then for 0 < i < n, we have
lcm(N, ci) 6= lcm(N, ci−1) + lcm(N, ci+1).

Proof: By the definition of an N -path,

bi−1

ci−1
−
bi+1

ci+1
=

N

lcm(N, ci−1)lcm(N, ci)
+

N

lcm(N, ci)lcm(N, ci+1)
=

N(lcm(N, ci−1) + lcm(N, ci+1))

lcm(N, ci−1)lcm(N, ci)lcm(N, ci+1)
.

If lcm(N, ci) = lcm(N, ci−1) + lcm(N, ci+1), then the above expression equals
N/(lcm(N, ci−1)lcm(N, ci+1)). But this means that bi/ci can be removed while
keeping the sequence an N -path, contradicting that it is a shortest N -path. �

The remainder of this appendix will be devoted to showing that there always
exists a unique shortest N -path from a to a′ (Proposition A.14). There will also
be a small detour (Corollary A.12 and Example A.13) to show how to compute
shortest N -paths in practice.

Lemma A.6. If b/c ∈ Q>0 is written in lowest terms, and if b/Nc = b̃/c̃, where

b̃/c̃ is in lowest terms, then lcm(N, c̃) = Nc.

Proof: We have Nc = c̃ gcd(N, b), so Nc is a multiple of both N and c̃. Since
Nc/N = c and Nc/c̃ = gcd(N, b) are relatively prime (because b/c is in lowest
terms), Nc is in fact the least common multiple of N and c̃. �

The following lemma allows us to focus on 1-paths.

Lemma A.7. The sequence a = b0/c0 > b1/c1 > · · · > bn/cn = a′ is a shortest
1-path from a to a′ if and only if

a

N
=

b0
Nc0

> · · · >
bn
Ncn

=
a′

N

is a shortest N -path from a/N to a′/N (note that the bi/(Nci) are not necessarily
in lowest terms).

Proof: For 0 ≤ i ≤ n, write bi/Nci in lowest terms as b̃i/c̃i. Since b̃i−1/c̃i−1 −
b̃i/c̃i = (1/N)(bi−1/ci−1 − bi/ci), it suffices to show, for 0 ≤ i ≤ n− 1, that

N

lcm(N, c̃i)lcm(N, c̃i+1)
=

1

N
·

1

cici+1
.

Since lcm(N, c̃i) = Nci for all i (Lemma A.6), we are done. �

The following proposition depends on Corollary 7.6, but Corollary 7.6 uses only
the definition of shortestN -path and Lemma A.7, and there is no circular reasoning.

Proposition A.8. If a′ > a ≥ 0 are rational numbers and N is an integer, a
shortest N -path from a to a′ is necessarily unique.
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Proof: By Lemma A.7, it suffices to prove the corollary for N = 1. Consider
the normal model X of P1

K whose special fiber has two intersecting components
corresponding to v := [v0, v1(x) = a] and w := [v0, v1(x) = a′]. Remark 7.7
applied to this model yields the unicity. �

In light of Proposition A.8, we will now refer to a shortest N -path as the shortest
N -path. We now turn to existence of N -paths. Again, by Lemma A.7, we may
assume that N = 1.

Lemma A.9. Given the shortest 1-path from a to a′, if one takes the reciprocal of
all the elements and reverses the order, one obtains the shortest 1-path from 1/a′

to 1/a.

Proof: Observe that if bi/ci > bi+1/ci+1 are two consecutive entries in a 1-path,
written in lowest terms, then ci+1/bi+1−ci/bi = 1/bibi+1. This shows that inverting
and reversing a 1-path yields a 1-path. But since “inverting and reversing” is an
involution, applying it to the shortest 1-path yields the shortest 1-path. �

Lemma A.10. Let a ∈ Q\Z be positive.

(i) The shortest 1-path from ⌈a⌉ to a is given by the successive convergents in the
negative continued fraction for a.

(ii) If 0 < a < 1, the shortest 1-path from a to 0 is given by taking a shortest 1-path
from ⌈1/a⌉ to 1/a, inverting each entry, reversing the order, and appending
0 at the end. In particular, the nonzero entries are the reciprocals of the
convergents of the negative continued fraction expansion of 1/a.

(iii) For general a, the shortest 1-path from a to ⌊a⌋ is given by adding ⌊a⌋ to each
entry of a shortest 1-path from a−⌊a⌋ to 0, which can be calculated from part
(ii).

Proof: To prove (i), we first note that the first entry in the negative continued
fraction expansion of a is ⌈a⌉. If bi/ci > bi+1/ci+1 are two consecutive conver-
gents written in lowest terms, then Proposition A.1 shows that bi/ci− bi+1/ci+1 =
1/cici+1, so the convergents form a 1-path. Given a proper subsequence of con-
vergents, consider two non-consecutive entries bi/ci > bi+r/ci+r with r > 1. By
Corollary A.3, their difference exceeds 1/cici+r , so the proper subsequence is not a
1-path. Thus the convergents in fact form the shortest 1-path, proving (i).

We now prove (ii). Lemma A.9 shows that the construction in (ii) yields the
shortest 1-path P from a to 1/⌈1/a⌉. Observe that 1/⌈1/a⌉ is the only entry in
this path with a numerator of 1, since ⌈1/a⌉ is the only integral convergent of the
negative continued fraction expansion of 1/a. Appending 0 (= 0/1) at the end of
P keeps it a 1-path, and the fact that 1/⌈1/a⌉ is the only entry with numerator 1
shows that it is the shortest 1-path. This proves (ii). Part (iii) is trivial. �

Corollary A.11. For any non-negative rational numbers a > a′ such that ⌊a⌋ ≥
⌈a′⌉, the shortest 1-path from a to a′ is given by concatenating paths P , Q, and R,
where P is the shortest 1-path from a to ⌊a⌋, Q is the 1-path ⌊a⌋ > ⌊a⌋− 1 > · · · >
⌈a′⌉+1 > ⌈a′⌉, and R the shortest 1-path from ⌈a′⌉ to a′. In particular, there exists
a shortest 1-path from a to a′.

Proof: By construction, the path S given by concatenating P , Q, andR is clearly
a 1-path. It is not possible to remove any element of Q from S while keeping it
a 1-path, as this would leave two consecutive entries that differ by more than 1.
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But no entry from the interior of P or R can be removed either, since P and R are
shortest 1-paths. So S is the shortest 1-path. �

Corollary A.12. For any non-negative rational numbers a > a′ with ⌊Na⌋ ≥
⌈Na′⌉ and any N > 1, a shortest N -path from a to a′ is given by concatenating
paths P , Q, and R, where

• P is obtained by taking the convergents in the negative continued fraction
expansion of 1/(Na−⌊Na⌋), inverting each convergent, reversing the order,
adding ⌊Na⌋ to each entry, appending ⌊Na⌋ at the end, and then dividing
each entry by N .
• Q is the path ⌊Na⌋/N > (⌊Na⌋−1)/N > · · · > (⌈Na′⌉+1)/N > ⌈Na′⌉/N .
• R is obtained by taking the convergents of the negative continued fraction
expansion of Na′ and dividing each convergent by N .

Proof: This follows from Corollary A.11, where path P is constructed using
Lemmas A.7 and A.10(iii), path Q is constructed using Lemma A.7, and path R is
constructed using Lemmas A.7 and A.10(i). �

Example A.13. A shortest 3-path from 26/9 to 2/5 is given by 26/9 > 17/6 >
8/3 > 7/3 > 2 > 5/3 > 4/3 > 1 > 2/3 > 1/2 > 4/9 > 5/12 > 2/5. The paths P ,
Q, and R from Corollary A.12 go from 26/9 to 8/3, from 8/3 to 2/3, and from 2/3
to 2/5, respectively.

Proposition A.14. For any rational numbers a > a′ ≥ 0 and any positive integer
N , there exists a unique shortest N -path from a to a′.

Proof: By Lemma A.7, we may assume N = 1. Uniqueness follows from Propo-
sition A.8. Let a = b/c and a′ = b′/c′ in lowest terms. We use strong induction on
min(c, c′). If either is 1, then either a or a′ is an integer, so ⌊a⌋ ≥ ⌈a′⌉, and existence
follows from Corollary A.11. In any case, if there is an integer between a and a′,
we are done by Corollary A.11, so assume not. Subtracting an integer from each
entry in a given sequence preserves 1-paths, and by assumption, there is no integer
between a and a′ inclusive, so we may assume that 1 > a = b/c > a′ = b′/c′ > 0.
By Lemma A.9, it suffices to exhibit a 1-path from c′/b′ to c/b. Since b < c and
b′ < c′, we are done by induction. �
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[BM00] José Bertin and Ariane Mézard. Déformations formelles des revêtements sauvagement
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