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Expansions of the Riemann Zeta function in the critical strip
B. Candelpergher

Introduction
We introduce the functions defined for ¢ €]0, +oc[ by

t2—1)m 1
24+1" V142

where m > 0 is an integer. Their Mellin transform are

Uin(t) = V2 (

M) (s) = / T, () dt = Vi?_ﬂr@r(l Q)

where @, are polynomials in R[X] with their roots on the line Re(s) = 1/2.
We use these functions ¥, to get the expansion

242 1
Ze‘m P_1- ;= Z aom Vo (t) for t €]0, +00]

nes m>0
with

2—4m

“m = om)!

4m)!
(Z H oy (V21 n)e_m2 — 2—( m) )
(2m)!
nez
where H,, are the Hermite polynomials.

In the strip 0 < Re(s) < 1 the well-known classical result

+Oots—1 —n2t2 1 1 dt =T S —s5/2
[ et e - 1= =)

nez

allows us to conjecture the following expansion of Zeta for 0 < Re(s) < 1

() = —= 7 TE=2) S o Qun(s)

v 2 2 m>0
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1 Functions related to the quantum harmonic oscillator

1.1 Hermite functions

For every integer m > 0 let us consider the Hermite function
®,,(z) = Hp(V2mz)e ™

where H,, € R[X] are the Hermite polynomials defined by the generating
function

e—t2—|—2xt _ Z Hm(x) pm
m!
m>0

or directly by H,,(z) = (—1)"e” 9™ ",
The Hermite functions ®,, € L?(R) are known to form an orthogonal system
of eigenfunctions of the quantum harmonic oscillator

1 1
or(z? — —0%)®,, = (2m + 1)®,, with / ®,,(x))?de = —=2"m)
m(x = ) (2m + 1) wi R( (x))*dx 7 m

The function ®,, has same parity as m. We are interested with the even
functions ®s,,,, we have (cf. [4])

/Re_%”g@gm(x)dx = (—=1)"P2n (&)

Thus for £ =0

m!
The function @4, is bounded (cf. [4]) by
B1) | Doy (z)] < K2™4/(2m)! with K = 1.086435 for x € R

The function @9, is (cf. [5]) oscillating in the interval

—%\/Qm +1, %\/2771 + 1]

and exponentially decreasing when x ¢ I, , more precisely (cf. [4]) we have

Im:[

2m)! o o o
(B2) | Do ()] < @e% 2= for 1> ()
m!



In the series expansions of the following sections we use the normalized sums

22m

2m_ | Zq)2m
m!

nez

Lemma 0
For m — 400 we have

2—2m -
= D Do) = O™
|n|22\/%
and
2—2m 14
S ()| = O(m )
nez
Proof

We have for m > 1
20V 2rm — a’ < —wx for = > 2v2m

thus using inequality (B2) we get
2- 2m 2—2m
|—— Do ()] < # el for |z| > 2v2m
m! (m!)?
Thus by summation for [n| > 2v/2m and with the Stirling formula we get

9—2m 2—2m+1(2m)! 6—7T(2\/%) Ny
m! | |>22;2_|<I>2m(n)| = (m)?  1—e =0l )

From inequality (B1) we deduce that

2- 2m 2— 2m 2—2m
[Pom(n)] = ) | Pom(n)] + > [Bom(n)]
n€Z In|<2v2m  n|>2v2m
2—m+1 / 2 |
< K+v2m '( m) + O(e7™2VEm)
m!

thus by Stirling formula we get Q;R—Q,m > g [ Pam(n)]| = O(mH4).
]



1.2 The functions V,,

The function z — e 277 Re(a?) > —3, expands (cf. [6] p.71-75) as the

following series of Hermite polynomials, for x € R we have

m2m

Multiplying by e ™ we get, with t2 =1+ 2a?

—2ra?x?

H2m(\/% )

T = Y (1) ) P for Rel#) > 0 o

m>0
where we define for t € S = {re’| r > 0,—Z < 6 < I} the function

2 —1 1

\Ilm(t) = \/5 (t2 + 1)mm

Lemma 1
The functions V,, are related to the Hermite functions by
U,

2\/§ —7/x? (I)2m
smo_ (_ w/x ) *
m! x (2m)!

where * is the multiplicative convolution of functions defined on |0, +00]
oot 1

(Fra)®) = [ FC)gla)de

0

Proof
With the classical relation

+oo 2 T b
/ e Ty = \/j et wherea >0, be C
a
—

2
Z2e— —71'172M —z —|—2\/27T:czdx

we get



and using the power series expansion
21997 ™M
e ? +2V2nzz _ E ,—Hm( /271_33)
m!
m>0

we get by identification

i\@(t?—l)m t \/—/+°O s

(V2rz)da

m! 211 Ji+e (2 )!
This gives
_2\[/ 2/t21(1)2m( )dx
(2m)!
and we see that thls last integral is the multlphcatlve convolution
o= [ 1Cg)ia
= — dx
J 0 h T

—

with f(z) = 2v/2 e ™% L and g(z) = q)(gz";n(; :
[l

2 Series expansions

Let z — 4/z the principal determination of the square root, the holomorphic

function
1+ u

1—u
maps the open unit disk D(0,1) = {z € C| |z| < 1} onto the sector

ur>t=

S = {re’| r >0, —%

For any function f holomorphic in S let us define the function

10 = et ()

which is holomorphic in the open disk D(0,1).
For every integer m > 0 we verify immediately that we have

TV, (u) =u™

T
<0<Z}
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For a function f defined on S the expansion

Remark. Note that ¥,,(t) = (=1)"3U,,(1) for all ¢ € S. For a function f
on S the relation

1,1
) =>f(5
£t = )
is equivalent to the parity of the function T'f
Tf(u) = Tf(~u)

in this case the expansion of f is of the form

f0) =Y a2

= (2m)!
Example
For the function f = +t, t €S, we have

Vi+u—+1—u

T _
f(w) -
This gives for t € S
1+ 24m 2m + ) (2m)!



2.1 Expansion of the theta function

The theta function defined for ¢ € S by

Git)y=)Y e™"

nez

is holomorphic in S and we have for u € D(0,1)

TG(u) =

1 _n2ltu
val —u%e 1
— ng%um

m>0
be the power series expansion of the holomorphic function T'G in the open
disk D(0,1). The Jacobi identity (cf.[3])

Let

L6 =)

2m

gives the parity of TG and we get TG(u) =) - gzmﬁu
Thus we have for t € S

Z g2m qj?m .

Lemma 2
We have for t € S = {re’| r > 0,-7 <0 < %}

G t) = Z S4m\l’2m(t) where S4m = ' Z (I)4m

m>0 neZ

Proof
Take the relation (1) with = n € Z, by summation we get

Z e—wn2t2 _ Z Z %2_27”(1)2771(”)\1,771(75)

nez nez m>0
- i ) Y o
m>0 nez



To justify the interchange of summations Y > ~o = > 0D ez We
observe that

and by Lemma 0 we have 2;n—2,m > ez | Pam(n)| = O(mY/4) thus for t € S

Z Z\%m )W, (2)] < +o0

m>0 ! nes

22m

This gives
G(t) =) (=1)"Som Wy (t)
m>0
Since we have seen that the function T'G is even we deduce that in this last
sum, only the constants Sy, are non zero.

O
Remark
We have also (cf. Appendix) for the constants Sy, another expression
( ) LRA2) g, d
Sam = Z (K 4 il)*m
|
SO‘[ (k,l)ez?
Theorem

FortES:{rew\T’>O,—1<8<%}Wehave

274mHL (4m)!
(2m)!(2m)!

G —1—- Z Oégm\llgm with a9y — S4m —

m>0

Proof
Using Lemma 2, to get the expansion of G(¢) — 1 — 1 in terms of U,,(¢) it is
now sufficient to expand 1+ 1. For f(¢) =1+ 1 one has

Tf(u) = —— !

+
Vi+u V1—-u
and we obtain for t € S

22 4m ' \PQm()

4m
= 24m(2m)! (2m)!




Remark
We see that
2—4m

o = s (S () — [0 0) + |

(2m)! 20 R

(I>4m(x)dx]>

This is easily explained if we look at the general Miintz formula (cf. [7]):
let " be an even continuously differentiable function such that ' and F’ are
O(z™), (a > 1) when & — oo, then for 0 < Re(s) < 1 we have

2 ((s)MF(s) = M(G(t) — [F(0) + / F(xt)dx])(s)

R

with G(t) = >, o, F(nt), this is our case with F(x) = e~
If there exist functions a sequence of functions ¢,, and v, such that we have
an expansion

F(zt) = om(@)m(?)

then, at least formally, we get

G(t) — [F(0) + /

R m>0  neZ

—4m

in our case @, = H@m and Y, (t) = o, (t).

3 Mellin transforms

3.1 The polynomials @),

For Re(s) > 0, the Mellin transforms of the Hermite functions ®,,, are
+00

(I)Qm(x) -1 1 —s/2 Qm(S)

Tldp = —a79T(s/2) X222

/0 (2m)! roeEaT (5/2) m!

where @), are polynomials in R[X]. This is simply a consequence of the
relation

00 1 s s S 8 S
—mx?  s+2k—1 -2 —k
e " dr==-mT(=)n " =(=4+1)...(=+k—-1)
/0 2 2 22 2
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We get Qo(s) =1, Q1(s) =2s — 1, Q2(s) = %52 — %s +1,....

More generally we have

m m) 2k
Quls) = Z(—Um_k(m —'/@)! (;k)!s(s +2). (s +2(k—1))

k=0

and (cf. [4]) an expression of @), in terms of the hypergeometric function
Qm(s) = (=1)" o F1(—m,s/2;1/2;2)

The roots of @, are on the line Re(s) = 1/2 (cf. [1], [2]). This can be proved
(cf. [1]) by observing that the orthogonality relation of the Hermite functions
®,,,, implies the orthogonality of the family of polynomials

t— Qm(% + it)

with respect to the Borel measure |I'(1 + i%)|%dt on R.
More explicitly, using the Parseval’s formula for Mellin transform

3 | MR G+ inde = [ (o)
we get
2 m1 &Wma . (I)2m1 (I)ng
47rf/|r ‘ (iﬂ?@v)(z Zt)d’f:/((zml) @mg)) ()3

3.2 Mellin transform of V,,

Lemma 3
For 0 < Re(s) < 1 we have

e s—1 _ L f 2 S
/O t \Ifm(t)dt—mF(2)F( 5 )Qn(s)

Proof
By Mellin transform of the relation of Lemma 1, we get

+00 1 +00 51 +00 1
s—1 _ —m/u® = s—l s—1
/0 t m!\Ifm(t)dt (/0 2v/2¢ ” du)(/o (Qm)!(bgm(x)x d:z:)

10




/+Oot3_1 Ly, (t)dt = V2 S‘lr(l_s)/m—l oy (2)2°~1d
— WV, = 2 m\T )T X
0 m! " > )y Cm) e
O]
Remark
Using
1 1 m
FVm(3) = (=1)"Wn(t)

we get with the change of variable t — %
400 1 +o0 1
s—1 m —8
/ -t Ly (= (<1 / g, (1)
0 m! 0 m!

for 0 < Re(s) < 1.
By the preceding lemma this gives

Qm(1 = s) = (=1)"Qm(s)
As a consequence of this relation we see that for s = % + 1t the polynomials
t = Qam(3 + it) are in R[X].
3.3 Expansion of Mellin transforms in terms of the polynomials @),,
If we have for a function f holomorphic in S an expansion
W, (1)
t) = —
1) Z 2 (2m)!
m>0

and if we can evaluate the Mellin transform of f for 0 < Re(s) < 1 by
integration of the terms of the series :

) m>0

then we get for 0 < Re(s) < 1

+00 1

POt = TN 3 25 0unle

0 Var 20 2 T A= (2m)



A simple condition to justify this calculation is

S Ll o
= (2m)!

Since in this case we have for 0 < Re(s

+o0 - 2
/ Z\ts 1 )\dt |a2 ‘ V2« o
\/1+t2

Example
We have by relation (2)

1+t (2m)! 21m(2m 4 1)

By Stirling formula we have 525 = O(m~ 7) thus > om0 |a2’”)| < +o00.
And for 0 < Re(s) < 1 we get

il 1 1—5 (4m) 4m
sin(rs) — 2v/2r G I 2 )%(zm) (2m+1)2 Qo (s)

1 1 Wy (t) . 4m)!
:§Za2m72 ) with agm = (dm)
m>

3.4 A conjecture for an expansion of Zeta in the critical strip

For 0 < Re(s) < 1 it is known (cf. [3]) that the Mellin transform of the function
t— G(t)—1—1is

oo s—1 1 S —s/2
H(G([) — 1= )dt =T(5)m*"((s)
0 t 2
We have seen in 2.1 that
2—4m+1(4m)
G(t —1—— mYom(t) with ag, = Syn —
Z a9 2 w1 (6%) 4 (2m) (2m)

m>0

If we proceed by integration of the terms of the preceding series we get
S

F(E)ﬂ'_s/2<(3)zﬁr(§)r( 7 )2




Unfortunately it seems that in this case ), - |aom| = +o0o and the justifi-
cation of the preceding section does not work.

Conjecture
For 0 < Re(s) < 1 the evaluation of the Mellin transform of G(t) — 1 — 1 by
integration of the terms of the preceding series is valid and we get

65 = 7= ) 3 Qunls)
' B 2—4m+1(4m)|
with s, = S — @m)i2m)]

As we have seen the polynomials
Qam(s) = 2F1(—2m,s/2;1/2;2)

are related to Mellin transforms of the Hermite functions &4, and they have
their roots on the line Re(s) = 1/2.

Remarks
1) For the Riemann-Hardy function (cf. [3]) defined for ¢ € R by

e D(p+ig) 1

C(= +it)

20 = rarG

the preceding conjecture gives
1
Z(t) e Z @2mf2m(t)
V2T >0
where the functions

fom(t) = 7T%|F(i + i%)\@m(% + it)

are orthogonal in L?(R).
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2) Other expressions of ((s) in the critical strip are obtained by the use of
the Miintz formula (cf. [7]): for a continuously differentiable function F' on
[0, +00[ such that F' and F’ are O(z~%), (a > 1) when z — oo, we have for
0 < Re(s) <1

.¢]

C(s)M <ZF (nt) ——/ F(:z:)d:z:)(s)

We now show that, with our preceding method, we can obtain a simple
expansion of Zeta in the critical strip by applying this formula to the function
F(x) =e 2.

For 0 < Re(s) < 1 we have

—+00

(2m) () (s) = M(Y e ™ — oy = [ poye

7t
n>1 0

where ] ]
t) = -
1) e2mt —1 2t

It is possible to get an expansion of f(t) using the Laguerre functions

Qom(x) - B_ILm(Zf)

defined by the generating function ——e~ T = =D om0 € “Ln(27)u™

These functions are orthogonal in L?(]0, +o0c[) and if .Jy is the Bessel function
of order 0 then (cf.[6])

/ RV ED) (@) = (~1)"(€)

For t > 0 we set 1 5
m(t) = —)m
Ym(?) (t + 1) 1+1¢
Using the generating function of the ¢,, we get

e = 57 (272 (1) (3)

m>0

14



Summing (3) for x = n > 1 we have formally for Re(t) > 0

1 :
i Z SmWUm(t) with s, = Z ©m(2mn)

m>0 n>1

Since 5= = - m=0(—1)"n(t) we get for Re(t) >0

£ = 3 (s = (C1)"52) (1) g

m>0

The functions v, and ¢, are related by the multiplicative convolution

Y = 21"+ g )

The Mellin transform of ¢, is (cf. [4]) for Re(s) > 0

/O " (@) = T(s)gn(s)

where ¢, is the polynomial g,,(s) = 2F1(—m, s;1;2).
By the orthogonality relation of the ¢, we deduce that the polynomials
t — qn(3 + it) are orthogonal with respect to the Borel measure [I'(3 + i%)|%dt

n |0, +oco[. Thus gy, has his roots on the line Re(s) = 3.

By (5) for 0 < Re(s) < 1 we have the Mellin transform of 1,
M(hm)(s) = 20(s)T(1 = 5)(=1)"qm(s)
By Mellin transform of (4) we get formally
((s) = 202m)T(1 — ) 3 (-1~ 5= ()

m>0

A more simple expansion can be obtained using the Mellin transform of the
function g(t) = 1 f(3).
Using the Poisson formula we have

1 P 1 1
t) = = ey = -
9(t) t;e 2 ﬂ;1+n2t2 2t

15



By Miintz formula we get

Mig)(s) = M(5 30 1 = 2 )(9) = )5 TGN - 3)

T
n>1

We now apply our preceding method, to the function F(x) =

= wil4a?”
We verify immediately that
1 1 1
= — > (1) (a) o (t?) (6)

Tl + 222 2r¢

m>0

We have for t > 0

1 1 1
=Y = 5 0 (U onlt) where 0y, = Y ()
n>1

m=>0 n>1
With u = % we have § = 1%2(1 —u?)~1/2 thus we get
1 _ (2n)!
;= Z:Ocmwm(t) with cg,, = 22 ()2 and cg,1 =0
m2=

Finally we have the expansion

LS (1) (o — T () (7)

T or
m>0

g(t)

By Mellin transform of (7) we get formally
s
s) = Om — TCm ) (=
=3 ( Jam(3)

Note that, unlike the preceding expansions related to Hermite and Laguerre
functions, in this expansion the sequence
n? — 1)m 2
n2+1" 1+ n?

m v Oy — TCyy = Z(
n>1
has a very regular oscillation with amplitude near %\/—%, but the polynomials

s+ ¢(5) have their roots on the line Re(s) = 1.

16



References

[1] D.Bump, K.K.Choi, P.Kurlberg, J.Vaaler. A local Riemann hypothesis.
Math. Zeitschrift 233. (2000).

[2] D.Bump , E.K.-S.Ng. On the Riemann Zeta Function. Math. Zeitschrift
192. (1986).

[3] H-M.Edwards. Riemann Zeta function. Dover. (1974).

[4] 1.S.Gradshteyn, I.M.Ryzhik. Tables of Integrals, Series and Products.
Academic Press, Inc. (1994).

[5] E.Hille. A Class of Reciprocal Functions. Annals of Maths. Second
Series. Vol. 27 N4 (1926)

[6] N.N.Lebedev. Revised and translated by R.A.Silverman. Special func-
tions and their applications. Dover (1972).

[7] E.C. Titchmarsh. D.R. Heat-Brown. The theory of the Riemann Zeta
function. Clarendon 1986.

Acknowledgments.
My warmest thanks go to F. Rouviere, M. Miniconi and J.F. Burnol for their
interest and helpful comments.

4 Appendix. Another expression for the constants 5y,

Using Poisson summation formula we deduce that for ¢ € S(R)

Z / —2z7mrk —7(z—1)? dx — Z —ml® Z QO SO Z Qo(k)

(k,ez? leZ keZ keZ

Taking u € C and p(z) = e 2™"e~™"  we have
—2inzk —n(x—1)? _ 1 kl _—mi(k24+1%) imu(k+il) jmu? /2
e e o(r)dr = —(—1)"e "2 e e
J 7
This gives for u € C the relation

Z e—wn2—|—27rnu—ﬂ'u2/2 _ 1 Z (_1)kle—ﬁ%(/{Q—i—lQ)eiﬁu(k—i—il) (8)

ne




Let us now define for every integer m > 0

Tw= Y (—1)He "0 (4 qym
(k,l)ez?

We have clearly 75,1 = 0 since
(_1)—k(—l)e—ﬂ%((—k)Q—i-(—l)z)(_k . il)2m+1 _ _[(_1)kle—7r%(k2+12)(k + il)2m+1]
thus Ty 01 = Tymi3 = 0 and also Ty,,10 = 0 because

(_1)( k)le—w (I2+(—k)? )(_]€ + il)4m+2 _ _[(_1)kle—w%(k2+lz)(l + ik)4m+2]

Thus only the constants T}, are non zero, and by derivation with respect to
u of the holomorphic function defined by the right side of (6) we have

2 _ ’LL
E :6 2 4+2rnu—mru? § :7T4m
50\/_

ne

4m

Now using the generating function of Hermite polynomials we have

e—wn2+27rnu—7m2/2 — Z(g)%q)m(n)u—

m)!
m>0

By summation with n € Z of this relation we deduce that for |u| < 1

S sttt SO (3 )

nez m>0 nez
(the interchange of ) ., and ) - is easily justified using Lemma 0).
Thus we have for |u| < 1

4m

S ) - f > Loy

m=>0 nes

and by identification we get

Z CI)4 2(71) =0 and Z (134 (n) = (27()2ng1
nez " nez " SO\/§ "
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