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Expansions of the Riemann Zeta function in the critical strip

B. Candelpergher 1

Introduction

We introduce the functions defined for t ∈]0,+∞[ by

Ψm(t) =
√
2 (

t2 − 1

t2 + 1
)m

1√
1 + t2

where m ≥ 0 is an integer. Their Mellin transform are

M(Ψm)(s) =

∫ +∞

0

ts−1Ψm(t)dt =
1√
2π

Γ(
s

2
)Γ(

1− s

2
)Qm(s)

where Qm are polynomials in R[X] with their roots on the line Re(s) = 1/2.
We use these functions Ψm to get the expansion

∑

n∈Z
e−πn2t2 − 1− 1

t
=

∑

m≥0

α2mΨ2m(t) for t ∈]0,+∞[

with

α2m =
2−4m

(2m)!

(

∑

n∈Z
H4m(

√
2π n)e−πn2 − 2

(4m)!

(2m)!

)

where Hn are the Hermite polynomials.
In the strip 0 < Re(s) < 1 the well-known classical result

∫ +∞

0

ts−1(
∑

n∈Z
e−πn2t2 − 1− 1

t
)dt = Γ(

s

2
)π−s/2ζ(s)

allows us to conjecture the following expansion of Zeta for 0 < Re(s) < 1

ζ(s) =
1√
2π

π
s

2 Γ(
1− s

2
)
∑

m≥0

α2m Q2m(s)
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1 Functions related to the quantum harmonic oscillator

1.1 Hermite functions

For every integer m ≥ 0 let us consider the Hermite function

Φm(x) = Hm(
√
2πx)e−πx2

where Hm ∈ R[X] are the Hermite polynomials defined by the generating
function

e−t2+2xt =
∑

m≥0

Hm(x)

m!
tm

or directly by Hm(x) = (−1)mex
2

∂me−x2

.
The Hermite functions Φm ∈ L2(R) are known to form an orthogonal system

of eigenfunctions of the quantum harmonic oscillator

2π(x2 − 1

4π2
∂2)Φm = (2m+ 1)Φm with

∫

R

(Φm(x))
2dx =

1√
2
2mm!

The function Φm has same parity as m. We are interested with the even

functions Φ2m, we have (cf. [4])
∫

R

e−2iπxξΦ2m(x)dx = (−1)mΦ2m(ξ)

Thus for ξ = 0
∫

R

Φ2m(x)dx = (−1)mΦ2m(0) =
(2m)!

m!

The function Φ2m is bounded (cf. [4]) by

B1) |Φ2m(x)| ≤ K2m
√

(2m)! with K = 1.086435 for x ∈ R

The function Φ2m is (cf. [5]) oscillating in the interval

Im = [− 1√
π

√
2m+ 1,

1√
π

√
2m+ 1]

and exponentially decreasing when x /∈ Im , more precisely (cf. [4]) we have

(B2) |Φ2m(x)| ≤
(2m)!

m!
e2x

√
2πme−πx2

for x > 0
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In the series expansions of the following sections we use the normalized sums

S2m =
2−2m

m!

∑

n∈Z
Φ2m(n)

Lemma 0
For m→ +∞ we have

2−2m

m!

∑

|n|≥2
√
2m

|Φ2m(n)| = O(e−2π
√
2m)

and
2−2m

m!

∑

n∈Z
|Φ2m(n)| = O(m1/4)

Proof

We have for m ≥ 1

2x
√
2πm− πx2 ≤ −πx for x ≥ 2

√
2m

thus using inequality (B2) we get

|2
−2m

m!
Φ2m(x)| ≤

2−2m(2m)!

(m!)2
e−π|x| for |x| ≥ 2

√
2m

Thus by summation for |n| ≥ 2
√
2m and with the Stirling formula we get

2−2m

m!

∑

|n|≥2
√
2m

|Φ2m(n)| ≤
2−2m+1(2m)!

(m!)2
e−π(2

√
2m)

1− e−π
= O(e−π2

√
2m)

From inequality (B1) we deduce that

2−2m

m!

∑

n∈Z
|Φ2m(n)| =

∑

|n|<2
√
2m

2−2m

m!
|Φ2m(n)|+

2−2m

m!

∑

|n|≥2
√
2m

|Φ2m(n)|

≤ K
√
2m

2−m+1
√

(2m)!

m!
+ O(e−π2

√
2m)

thus by Stirling formula we get 2−2m

m!

∑

n∈Z |Φ2m(n)| = O(m1/4).
�
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1.2 The functions Ψm

The function x 7→ e−2πa2x2

, Re(a2) > −1
2
, expands (cf. [6] p.71-75) as the

following series of Hermite polynomials, for x ∈ R we have

e−2πa2x2

=
1√

1 + a2

∑

m≥0

(−1)ma2m

22m(1 + a2)mm!
H2m(

√
2π x)

Multiplying by e−πx2

we get, with t2 = 1 + 2a2

e−πx2t2 =
∑

m≥0

(−1)m
1

22m
Φ2m(x)

Ψm(t)

m!
for Re(t2) > 0 (1)

where we define for t ∈ S = {reiθ| r > 0,−π
4 < θ < π

4} the function

Ψm(t) =
√
2 (

t2 − 1

t2 + 1
)m

1√
1 + t2

Lemma 1
The functions Ψm are related to the Hermite functions by

Ψm

m!
= (

2
√
2

x
e−π/x2

) ∗ Φ2m

(2m)!

where ∗ is the multiplicative convolution of functions defined on ]0,+∞[

(f ∗ g)(t) =
∫ +∞

0

f(
t

x
)g(x)

1

x
dx

Proof

With the classical relation
∫ +∞

−∞
e−ax2

ebxdx =

√

π

a
e

b
2

4a where a > 0, b ∈ C

we get

ez
2 t

2
−1

t2+1

t√
1 + t2

=

∫ +∞

−∞
e−πx2 t

2
+1

t2 e−z2+2
√
2πxzdx

4



and using the power series expansion

e−z2+2
√
2πxz =

∑

m≥0

zm

m!
Hm(

√
2πx)

we get by identification

1

m!

√
2 (

t2 − 1

t2 + 1
)m

t√
1 + t2

= 2
√
2

∫ +∞

0

e−πx2 t
2
+1

t2
1

(2m)!
H2m(

√
2πx)dx

This gives
1

m!
Ψm(t) = 2

√
2

∫ +∞

0

e−πx2/t2 1

t

Φ2m(x)

(2m)!
dx

and we see that this last integral is the multiplicative convolution

(f ∗ g)(t) =
∫ +∞

0

f(
t

x
)g(x)

1

x
dx

with f(x) = 2
√
2 e−π/x2 1

x and g(x) = Φ2m(x)
(2m)! .

�

2 Series expansions

Let z 7→ √
z the principal determination of the square root, the holomorphic

function

u 7→ t =

√

1 + u

1− u

maps the open unit disk D(0, 1) = {z ∈ C| |z| < 1} onto the sector

S = {reiθ| r > 0,−π
4
< θ <

π

4
}

For any function f holomorphic in S let us define the function

Tf(u) =
1√
1− u

f
(

√

1 + u

1− u

)

which is holomorphic in the open disk D(0, 1).
For every integer m ≥ 0 we verify immediately that we have

TΨm(u) = um

5



For a function f defined on S the expansion

f(t) =
∑

m≥0

am
Ψm(t)

m!

follows the Taylor expansion of Tf

Tf(u) =
∑

m≥0

am
m!

um

Remark. Note that Ψm(t) = (−1)m1
tΨm(

1
t ) for all t ∈ S. For a function f

on S the relation

f(t) =
1

t
f(

1

t
)

is equivalent to the parity of the function Tf

Tf(u) = Tf(−u)

in this case the expansion of f is of the form

f(t) =
∑

m≥0

a2m
Ψ2m(t)

(2m)!

Example

For the function f = 1
1+t, t ∈ S, we have

Tf(u) =

√
1 + u−

√
1− u

2u

This gives for t ∈ S

1

1 + t
=

1

2

∑

m≥0

(4m)!

24m(2m+ 1)!

Ψ2m(t)

(2m)!
(2)

6



2.1 Expansion of the theta function

The theta function defined for t ∈ S by

G(t) =
∑

n∈Z
e−πn2t2

is holomorphic in S and we have for u ∈ D(0, 1)

TG(u) =
1√
1− u

∑

n∈Z
e−πn2 1+u

1−u

Let

TG(u) =
∑

m≥0

gm
1

m!
um

be the power series expansion of the holomorphic function TG in the open
disk D(0, 1). The Jacobi identity (cf.[3])

1

t
G(

1

t
) = G(t)

gives the parity of TG and we get TG(u) =
∑

n≥0 g2m
1

(2m)!u
2m.

Thus we have for t ∈ S

G(t) =
∑

m≥0

g2m
Ψ2m(t)

(2m)!

Lemma 2
We have for t ∈ S = {reiθ| r > 0,−π

4
< θ < π

4
}

G(t) =
∑

m≥0

S4mΨ2m(t) where S4m =
2−4m

(2m)!

∑

n∈Z
Φ4m(n)

Proof

Take the relation (1) with x = n ∈ Z, by summation we get

∑

n∈Z
e−πn2t2 =

∑

n∈Z

∑

m≥0

(−1)m

m!
2−2mΦ2m(n)Ψm(t)

=
∑

m≥0

(−1)m

m!
2−2mΨm(t)

∑

n∈Z
Φ2m(n)

7



To justify the interchange of summations
∑

n∈Z
∑

m≥0 =
∑

m≥0

∑

n∈Z we
observe that

|t
2 − 1

t2 + 1
| < 1 for t ∈ S

and by Lemma 0 we have 2−2m

m!

∑

n∈Z |Φ2m(n)| = O(m1/4) thus for t ∈ S

∑

m≥0

2−2m

m!

∑

n∈Z
|Φ2m(n)||Ψm(t)| < +∞

This gives

G(t) =
∑

m≥0

(−1)mS2mΨm(t)

Since we have seen that the function TG is even we deduce that in this last

sum, only the constants S4m are non zero.
�

Remark
We have also (cf. Appendix) for the constants S4m another expression

S4m =
(π2 )

2m

(2m)!

1

S0

√
2

∑

(k,l)∈Z2

(−1)kle−π 1

2
(k2+l2)(k + il)4m

Theorem
For t ∈ S = {reiθ| r > 0,−π

4 < θ < π
4} we have

G(t)− 1− 1

t
=

∑

m≥0

α2mΨ2m(t) with α2m = S4m − 2−4m+1(4m)!

(2m)!(2m)!

Proof

Using Lemma 2, to get the expansion of G(t)− 1− 1
t in terms of Ψm(t) it is

now sufficient to expand 1 + 1
t
. For f(t) = 1 + 1

t
one has

Tf(u) =
1√
1 + u

+
1√
1− u

and we obtain for t ∈ S

1 +
1

t
= 2

∑

m≥0

(4m)!

24m(2m)!

Ψ2m(t)

(2m)!

�
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Remark
We see that

α2m =
2−4m

(2m)!

(

∑

n 6=0

Φ4m(n)− [Φ4m(0) +

∫

R

Φ4m(x)dx]
)

This is easily explained if we look at the general Müntz formula (cf. [7]):

let F be an even continuously differentiable function such that F and F ′ are
O(x−a), (a > 1) when x→ ∞, then for 0 < Re(s) < 1 we have

2 ζ(s)MF (s) = M
(

G(t)− [F (0) +

∫

R

F (xt)dx]
)

(s)

with G(t) =
∑

n∈Z F (nt), this is our case with F (x) = e−πx2

.
If there exist functions a sequence of functions ϕm and ψm such that we have

an expansion
F (xt) =

∑

m≥0

ϕm(x)ψm(t)

then, at least formally, we get

G(t)− [F (0) +

∫

R

F (xt)dx] =
∑

m≥0

(

∑

n∈Z
ϕm(n)− [ϕm(0) +

∫

R

ϕm(x)dx]
)

ψm(t)

in our case ϕm = 2−4m

(2m)!Φ4m and ψm(t) = Ψ2m(t).

3 Mellin transforms

3.1 The polynomials Qm

For Re(s) > 0, the Mellin transforms of the Hermite functions Φ2m are

∫ +∞

0

Φ2m(x)

(2m)!
xs−1dx =

1

2
π−s/2Γ(s/2)

Qm(s)

m!

where Qm are polynomials in R[X]. This is simply a consequence of the
relation

∫ +∞

0

e−πx2

xs+2k−1dx =
1

2
π−

s

2Γ(
s

2
) π−k s

2
(
s

2
+ 1)...(

s

2
+ k − 1)

9



We get Q0(s) = 1, Q1(s) = 2s− 1, Q2(s) =
4
3s

2 − 4
3s+ 1,... .

More generally we have

Qm(s) =
m
∑

k=0

(−1)m−k m!

(m− k)!

22k

(2k)!
s(s+ 2)...(s+ 2(k − 1))

and (cf. [4]) an expression of Qm in terms of the hypergeometric function

Qm(s) = (−1)m 2F1(−m, s/2; 1/2; 2)

The roots of Qm are on the line Re(s) = 1/2 (cf. [1], [2]). This can be proved

(cf. [1]) by observing that the orthogonality relation of the Hermite functions
Φ2m implies the orthogonality of the family of polynomials

t 7→ Qm(
1

2
+ it)

with respect to the Borel measure |Γ(14 + i t2)|2dt on R.

More explicitly, using the Parseval’s formula for Mellin transform

1

2π

∫ +∞

−∞

(

M(f)M(g)
)

(
1

2
+ it)dt =

∫ +∞

0

(fg)(x)dx

we get

1

4π
√
π

∫

R

|Γ(1
4
+ i

t

2
)|2

(Qm1

m1!

Qm2

m2!

)

(
1

2
+ it)dt =

∫

R

( Φ2m1

(2m1)!

Φ2m2

(2m2)!

)

(x)dx

3.2 Mellin transform of Ψm

Lemma 3
For 0 < Re(s) < 1 we have

∫ +∞

0

ts−1Ψm(t)dt =
1√
2π

Γ(
s

2
)Γ(

1− s

2
)Qm(s)

Proof

By Mellin transform of the relation of Lemma 1, we get
∫ +∞

0

ts−1 1

m!
Ψm(t)dt =

(

∫ +∞

0

2
√
2e−π/u2 1

u
us−1du

)(

∫ +∞

0

1

(2m)!
Φ2m(x)x

s−1dx
)

10



that is
∫ +∞

0

ts−1 1

m!
Ψm(t)dt =

√
2π

s−1

2 Γ(
1− s

2
)

∫ +∞

0

1

(2m)!
Φ2m(x)x

s−1dx

�

Remark
Using

1

t
Ψm(

1

t
) = (−1)mΨm(t)

we get with the change of variable t 7→ 1
t

∫ +∞

0

ts−1 1

m!
Ψm(t)dt = (−1)m

∫ +∞

0

t−s 1

m!
Ψm(t)dt

for 0 < Re(s) < 1.
By the preceding lemma this gives

Qm(1− s) = (−1)mQm(s)

As a consequence of this relation we see that for s = 1
2
+ it the polynomials

t 7→ Q2m(
1
2 + it) are in R[X].

3.3 Expansion of Mellin transforms in terms of the polynomials Qm

If we have for a function f holomorphic in S an expansion

f(t) =
∑

m≥0

a2m
Ψ2m(t)

(2m)!

and if we can evaluate the Mellin transform of f for 0 < Re(s) < 1 by
integration of the terms of the series :

∫ +∞

0

(

∑

m≥0

a2m
Ψ2m(t)

(2m)!

)

ts−1dt =
∑

m≥0

a2m
(2m)!

∫ +∞

0

ts−1Ψ2m(t)dt

then we get for 0 < Re(s) < 1
∫ +∞

0

f(t)ts−1dt =
1√
2π

Γ(
s

2
)Γ(

1− s

2
)
∑

m≥0

a2m
(2m)!

Q2m(s)

11



A simple condition to justify this calculation is

∑

m≥0

|a2m|
(2m)!

< +∞

Since in this case we have for 0 < Re(s) < 1

∫ +∞

0

∑

m≥0

|ts−1a2m
Ψ2m(t)

(2m)!
|dt ≤

∑

m≥0

|a2m|
(2m)!

∫ +∞

0

tRe(s)−1

√
2√

1 + t2
dt < +∞

Example
We have by relation (2)

1

1 + t
=

1

2

∑

m≥0

a2m
Ψ2m(t)

(2m)!
with a2m =

(4m)!

24m(2m+ 1)!

By Stirling formula we have a2m
(2m)! = O(m− 3

2 ) thus
∑

m≥0
|a2m|
(2m)! < +∞.

And for 0 < Re(s) < 1 we get

π

sin(πs)
=

1

2
√
2π

Γ(
s

2
)Γ(

1− s

2
)
∑

m≥0

(4m)!

(2m)!(2m+ 1)!
2−4mQ2m(s)

3.4 A conjecture for an expansion of Zeta in the critical strip

For 0 < Re(s) < 1 it is known (cf. [3]) that the Mellin transform of the function

t 7→ G(t)− 1− 1
t is

∫ +∞

0

ts−1(G(t)− 1− 1

t
)dt = Γ(

s

2
)π−s/2ζ(s)

We have seen in 2.1 that

G(t)− 1− 1

t
=

∑

m≥0

α2mΨ2m(t) with α2m = S4m − 2−4m+1(4m)!

(2m)!(2m)!

If we proceed by integration of the terms of the preceding series we get

Γ(
s

2
)π−s/2ζ(s) =

1√
2π

Γ(
s

2
)Γ(

1− s

2
)
∑

m≥0

α2mQ2m(s)

12



Unfortunately it seems that in this case
∑

m≥0 |α2m| = +∞ and the justifi-
cation of the preceding section does not work.

Conjecture

For 0 < Re(s) < 1 the evaluation of the Mellin transform of G(t)− 1− 1
t by

integration of the terms of the preceding series is valid and we get

ζ(s) =
1√
2π
π

s

2Γ(
1− s

2
)
∑

m≥0

α2m Q2m(s)

with α2m = S4m − 2−4m+1(4m)!

(2m)!(2m)!

As we have seen the polynomials

Q2m(s) = 2F1(−2m, s/2; 1/2; 2)

are related to Mellin transforms of the Hermite functions Φ4m and they have
their roots on the line Re(s) = 1/2.

Remarks

1) For the Riemann-Hardy function (cf. [3]) defined for t ∈ R by

Z(t) = π
−it

2

Γ(14 + i t2)

|Γ(14 + i t2)|
ζ(
1

2
+ it)

the preceding conjecture gives

Z(t) =
1√
2π

∑

m≥0

α2mf2m(t)

where the functions

f2m(t) = π
1

4 |Γ(1
4
+ i

t

2
)|Q2m(

1

2
+ it)

are orthogonal in L2(R).

13



2) Other expressions of ζ(s) in the critical strip are obtained by the use of
the Müntz formula (cf. [7]): for a continuously differentiable function F on

[0,+∞[ such that F and F ′ are O(x−a), (a > 1) when x → ∞, we have for
0 < Re(s) < 1

ζ(s)MF (s) = M
(

∑

n≥1

F (nt)− 1

t

∫ +∞

0

F (x)dx
)

(s)

We now show that, with our preceding method, we can obtain a simple

expansion of Zeta in the critical strip by applying this formula to the function
F (x) = e−2πx.

For 0 < Re(s) < 1 we have

(2π)−sΓ(s)ζ(s) = M(
∑

n≥1

e−2πnt − 1

2πt
) =

∫ +∞

0

f(t)ts−1dt

where

f(t) =
1

e2πt − 1
− 1

2πt

It is possible to get an expansion of f(t) using the Laguerre functions

ϕm(x) = e−xLm(2x)

defined by the generating function 1
1−u

e−x1+u

1−u =
∑

m≥0 e
−xLm(2x)u

m.

These functions are orthogonal in L2(]0,+∞[) and if J0 is the Bessel function
of order 0 then (cf.[6])

∫ +∞

0

J0(2
√

ξx)ϕm(x)dx = (−1)mϕm(ξ)

For t > 0 we set

ψm(t) = (
t− 1

t+ 1
)m

2

1 + t

Using the generating function of the ϕm we get

e−2πxt =
∑

m≥0

ϕm(2πx)ψm(t) (3)

14



Summing (3) for x = n ≥ 1 we have formally for Re(t) > 0

1

e2πt − 1
=

∑

m≥0

smψm(t) with sm =
∑

n≥1

ϕm(2πn)

Since 1
2πt =

1
2π

∑

m≥0(−1)mψm(t) we get for Re(t) > 0

f(t) =
∑

m≥0

(

sm − (−1)m
1

2π

)

ψm(t) (4)

The functions ψm and ϕm are related by the multiplicative convolution

ψm = 2(−1)m(e−
1

x

1

x
) ∗ ϕm (5)

The Mellin transform of ϕm is (cf. [4]) for Re(s) > 0

∫ +∞

0

ϕm(x)x
s−1dx = Γ(s)qm(s)

where qm is the polynomial qm(s) = 2F1(−m, s; 1; 2).
By the orthogonality relation of the ϕm we deduce that the polynomials

t 7→ qm(
1
2
+ it) are orthogonal with respect to the Borel measure |Γ(1

2
+ i t

2
)|2dt

on ]0,+∞[. Thus qm has his roots on the line Re(s) = 1
2 .

By (5) for 0 < Re(s) < 1 we have the Mellin transform of ψm

M(ψm)(s) = 2Γ(s)Γ(1− s)(−1)mqm(s)

By Mellin transform of (4) we get formally

ζ(s) = 2(2π)sΓ(1− s)
∑

m≥0

(

(−1)msm − 1

2π

)

qm(s)

A more simple expansion can be obtained using the Mellin transform of the
function g(t) = 1

t
f(1

t
).

Using the Poisson formula we have

g(t) =
1

t

∑

n≥1

e−2π n

t − 1

2π
=

1

π

∑

n≥1

1

1 + n2t2
− 1

2t
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By Müntz formula we get

M(g)(s) = M
(1

π

∑

n≥1

1

1 + n2t2
− 1

2t

)

(s) = ζ(s)
1

2π
Γ(
s

2
)Γ(1− s

2
)

We now apply our preceding method, to the function F (x) = 1
π

1
1+x2 .

We verify immediately that

1

π

1

1 + x2t2
=

1

2π

∑

m≥0

(−1)mψm(x
2)ψm(t

2) (6)

We have for t > 0

1

π

∑

n≥1

1

1 + n2t2
=

1

2π

∑

m≥0

(−1)mσmψm(t
2) where σm =

∑

n≥1

ψm(n
2)

With u = t2−1
t2+1 we have 1

t =
2

1+t2(1− u2)−1/2, thus we get

1

t
=

∑

m≥0

cmψm(t) with c2n =
(2n)!

22n(n!)2
and c2n+1 = 0

Finally we have the expansion

g(t) =
1

2π

∑

m≥0

(−1)m(σm − πcm)ψm(t
2) (7)

By Mellin transform of (7) we get formally

ζ(s) =
∑

m≥0

(

σm − πcm

)

qm(
s

2
)

Note that, unlike the preceding expansions related to Hermite and Laguerre
functions, in this expansion the sequence

m 7→ σm − πcm =
∑

n≥1

(
n2 − 1

n2 + 1
)m

2

1 + n2
− πcm

has a very regular oscillation with amplitude near
√
π√
2

1√
m
, but the polynomials

s 7→ qm(
s
2) have their roots on the line Re(s) = 1.
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4 Appendix. Another expression for the constants S4m

Using Poisson summation formula we deduce that for ϕ ∈ S(R)

∑

(k,l)∈Z2

∫

R

e−2iπxke−π(x−l)2ϕ(x)dx =
∑

l∈Z
e−πl2

∑

k∈Z
ϕ(k) = S0

∑

k∈Z
ϕ(k)

Taking u ∈ C and ϕ(x) = e−2πxue−πx2

, we have
∫

R

e−2iπxke−π(x−l)2ϕ(x)dx =
1√
2
(−1)kle−π 1

2
(k2+l2)eiπu(k+il)eπu

2/2

This gives for u ∈ C the relation

∑

n∈Z
e−πn2+2πnu−πu2/2 =

1

S0

√
2

∑

(k,l)∈Z2

(−1)kle−π 1

2
(k2+l2)eiπu(k+il) (8)
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Let us now define for every integer m ≥ 0

Tm =
∑

(k,l)∈Z2

(−1)kle−π 1

2
(k2+l2)(k + il)m

We have clearly T2m+1 = 0 since

(−1)−k(−l)e−π 1

2
((−k)2+(−l)2)(−k − il)2m+1 = −[(−1)kle−π 1

2
(k2+l2)(k + il)2m+1]

thus T4m+1 = T4m+3 = 0 and also T4m+2 = 0 because

(−1)(−k)le−π 1

2
(l2+(−k)2)(−k + il)4m+2 = −[(−1)kle−π 1

2
(k2+l2)(l + ik)4m+2]

Thus only the constants T4m are non zero, and by derivation with respect to
u of the holomorphic function defined by the right side of (6) we have

∑

n∈Z
e−πn2+2πnu−πu2/2 =

1

S0

√
2

∑

m≥0

π4mT4m
u4m

(4m)!

Now using the generating function of Hermite polynomials we have

e−πn2+2πnu−πu2/2 =
∑

m≥0

(
π

2
)
m

2 Φm(n)
um

m!

By summation with n ∈ Z of this relation we deduce that for |u| < 1

∑

n∈Z
e−πn2+2πnu−πu2/2 =

∑

m≥0

(
π

2
)
m

2

(

∑

n∈Z
Φm(n)

)um

m!

(the interchange of
∑

n∈Z and
∑

m≥0 is easily justified using Lemma 0).

Thus we have for |u| < 1

∑

m≥0

(
π

2
)
m

2

(

∑

n∈Z
Φm(n)

)um

m!
=

1

S0

√
2

∑

m≥0

π4mT4m
u4m

(4m)!

and by identification we get

∑

n∈Z
Φ4m+2(n) = 0 and

∑

n∈Z
Φ4m(n) =

(2π)2m

S0

√
2
T4m
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