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Abstract

Suppose we assume that in gently curved spacetime (a) causality is not violated
to leading order (b) the Birkoff theorem holds to leading order and (c) CPT invari-
ance holds. Then we argue that the ‘mostly empty’ universe we observe around us
cannot be described by an exact wavefunction Ψ. Rather, the weakly coupled par-
ticles we see are approximate quasiparticles arising as excitations of a ‘fuzz’. The
‘fuzz’ does have an exact wavefunction Ψfuzz, but this exact wavefunction does
not directly describe local particles. The argument proceeds by relating the cos-
mological setting to the black hole information paradox, and then using the small
corrections theorem to show the impossibility of an exact wavefunction describing
the visible universe.
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Consider a crystal. The lattice vibrations may be quantized to yield phonons. If we
focus on the low energy excitations of the crystal, we see a set of weakly interact phonons,
so we might picture the physics as in fig.1(b). But this dynamics is an approximation;
the exact wavefunction of the crystal is a complicated one involving quarks, gluons and
leptons (fig.1(a)).

We will argue that the information paradox implies a similar situation for our uni-
verse. The particles we see around us are like the phonons of fig.1(b), while the exact
wavefunction of the universe describes a very different set of degrees of freedom.

(a) (b)

Figure 1: (a) The complicated exact description of a crystal (b) An approximate effective
description of the dynamics in terms of phonons.

First we recall the rigorous formulation of the information paradox [1]. Hawking [2]
showed that entangled pairs are created at the horizon, which leads to a monotonically
growing entanglement between the emitted radiation and the remaining hole. This leads
to a problem near the endpoint of evaporation: we lose unitarity if the hole disappears, or
we end up with a planck sized remnant having infinitely many possible internal states. In
string theory we must maintain unitarity; further AdS/CFT duality rules out remnants
as the CFT has finitely many states for bounded energy.

Many string theorists harbored the hope that the problem would be resolved by subtle
corrections of order ǫ ≪ 1 to the state of each emitted pair; since there are many such
pairs, the overall entanglement might vanish by the endpoint of evaporation. But in [1]
it was shown, using the strong subadditivity of quantum entanglement entropy, that the
entanglement Sent(N) after N emissions keeps rising

Sent(N + 1) > Sent(N) + ln 2− 2ǫ (1)

Thus we cannot have the standard semiclassical picture of the black hole as a leading
order approximation; there must be an order unity change at the horizon. In string theory
we indeed find the microstates of the hole are horizon sized fuzzballs with no horizon;
such states radiate from their surface like normal warm body, and there is no information
paradox [3].
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Now consider the collapse of a homogeneous dust ball of mass M and radius R(τ).
We state our assumptions and their implications:

(A) We assume that causality holds to leading order in gently curved spacetime. Then
we can never have the situation in fig.2(b), where the ball has collapsed inside Rs = 2GM
to leave a smooth horizon. Indeed, were such a horizon to form, then we cannot escape
the information paradox: information cannot come out of the hole at leading order, and
the entanglement of pairs also keeps growing at leading order. By (1), the corrections
to the field dynamics arising from small violations of causality cannot overwhelm the
relentless growth of entanglement. We are forced to conclude that gravitational collapse
must halt before R(τ) reaches Rs. In string theory this indeed happens [4, 5]: a very
large phase space corresponding to Exp[Sbek[M ]] fuzzballs opens up as R → Rs, and the
wavefunction of the ball spreads over this space instead of continuing on its semiclassical
trajectory to R < Rs (fig.2(c)).

(a) (b) (c)

Figure 2: (a) A collapsing dust ball (b) The ball should never reach the semiclassically expected
configuration (b), else we cannot solve the information puzzle (c) In string theory fuzzballs form
instead when the ball reaches horizon radius.

(B) Now consider a flat dust cosmology

ds2 = −dt2 + a2(t)[dr2 + r2dΩ2

2
] (2)

where a(t) = a0t
2

3 . We assume that CPT invariance holds. Then we can map this
expanding universe (fig.3(a)) to a collapsing one (fig.3(b)).

(a) (b)

t t

Figure 3: (a) An expanding universe can be mapped by CPT to (b) a collapsing universe.
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(C) Assume that the Birkoff theorem holds to leading order even in the full quan-
tum theory. Consider a ball of ball of proper radius R(t) in the collapsing cosmology.
Then we can replace the dust in the exterior region R > R(t) by flat spacetime; by the
Birkoff theorem this should not affect the dynamics of the ball in the region R < R(t)
(fig.4(a,b)). Note that in a dust cosmology there is no pressure across the surface R(t);
this is important to allow the separation of the outer and inner regions in this manner.

(a) (b) (c)

Figure 4: (a) A homogeneous collapsing flat cosmology (b) By the Birkoff theorem, the dynamics
of the marked ball cannot change if we remove the matter outside (c) Semiclassical dynamics
suggests that this ball will pass through its horizon radius, but in actual fact the ball must
tunnel to fuzzballs before this.

(D) In the semiclassical picture of collapse, this dust ball will pass through its horizon
at some time t to a radius satisfying R < 2GM . If we choose our initial ball large enough,
then this happens when the dust density is still very low compared to planck (fig.4(c)).

(E) But in (A) we argued that we cannot reach a situation where a horizon forms;
instead, the dust ball must tunnel into a very quantum state of fuzzballs before it reaches
its horizon radius Rs. Thus the traditional picture of the cosmology where (2) is a good
semiclassical approximation describing particles of dust cannot be correct.

We have reached a startling conclusion based on very simple arguments, so let us
pinpoint the crux of the logic. Steps (B), (D) are standard; in fact it is often said that we
live inside a white hole, which is just the time reverse of a black hole. Quite separately,
we have always had (A), the information paradox, whose resolution we have not known
until recent progress with string theory. The link between the two is (C), where the
Birkoff theorem is used to discard the outside of a collapsing region, and thus convert a
collapsing cosmology to the collapsing dust ball of the black hole problem.

One might argue that the Birkoff theorem is classical, so there can be small quantum
corrections to this theorem. Such corrections could allow the exterior of our dust ball to
have some small quantum effects on the interior, and change cosmological evolution in
the region R < R(τ) slightly away from what we had in the black hole problem. But the
small corrections theorem (1) tells us that such small corrections cannot get us out of the
information paradox. Thus we can still use the Birkoff theorem to argue that just as we
should not form a black hole horizon, we should not get a cosmological horizon either.
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(a) (b)

Figure 5: (a) A normal matter shell of horizon radius is the state represented by the dot
in the center; this evolves to a linear combination of fuzzballs states, with the state moving
out in superspace towards more complicated fuzzballs. (b) This evolution can be mapped,
approximately, to the semiclassical infall of the shell into a region R < Rs.

To summarize the argument, if a collapsing dust ball has to tunnel to fuzzballs when
it reaches horizon radius, it should do that regardless of whether it is sitting in asymp-
totically flat spacetime or as part of a homogeneous isotropic cosmology.

We cannot see past our Cosmlolgical horizon today. But astronomical evidence indi-
cates that the horizon was smaller in the past, and the universe encompassed a dust ball
much larger than horizon size. To reconcile this with our claim above, we are forced to
the picture of ‘fuzzball complementarity’ [6, 5], which gives rise to an approximate emer-
gence of semiclassical physics in interior of a fuzzball. In this picture, a collapsing dust
ball tunnels into a linear combination of fuzzballs as its radius reaches the Schwarzschild
radius, so we never really get a vacuum region inside a horizon. But evolution continues
in superspace – the very large space formed by the Exp[Sbek] fuzzball states. This super-
space is like our crystal, and wwavefunctions on superspace are like phonons. Evolution
of these wavefunctions in superspace can me mapped, in an approximate way to evolution
of the semiclassical dynamics of infalling quanta in a semiclassical picture of the black
hole interior (fig.5).

The crucial fact here is the word approximate: semiclassical infall is obtained for
quanta with energy E ≫ T where T is the temperature of the black hole. The information
and entanglement of the hole is carried by Hawking quanta with energy E ∼ T , and it is
crucial that the approximation fails for such modes; else the semiclassical computation
of Hawking would again be recovered, and (1) would preclude any resolution of the
information paradox. For black hole T ∼ 1/Rs, and the errors in the complementary
description are

∼

(

E

T

)
1

D−2

(3)
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Figure 6: A collapsing dust ball stays at its horizon radius, but approximate effective semi-
classical infall can be obtained (through fuzzball complementarity) for small patches. When
these smaller patches reach their horizon radius, we can get an approximate complementary
description of an even smaller patch etc.

where D is the spacetime dimension. Thus for our 4-dimensional cosmology, we expect
corrections of order

(ERH)
1

2 (4)

where E is the local energy of the quantum being studied, and RH is the radius of the
cosmological horizon.

We thus see that such corrections will be too small to be measured today. But what
is important is the question of principle: the traditional picture of a dust cosmology does
not correspond to an exact wavefunction; the actual exact wavefunction is very different.
To conclude, we note the structure of the exact wavefunction Ψ and its approximations.

Let the collapsing cosmology start with a large ball of mass M and radius R, with
R > Rs = 2GM . The ball collapses semiclassically to size R ≈ Rs, and then tunnels
into fuzzballs. The evolution in superspace – describing the collective excitations of the
fuzzball – maps to an approximate description of semiclassically moving dust particles
that continue their collapse to R < Rs. But this semiclassical approximation can be
applied only to a small patch at a time – a patch smaller that horizon size.

At some point this smaller patch tries to enter its own horizon R′

s, at which point
the particles obtained in the approximate semiclassical description stop behaving like
free particles and make fuzzballs of radius R′

s instead. We must now focus on a smaller
‘subpatch’ to get a semiclassical evolution, and so on (fig.6). Our expanding cosmology
is obtained as a time reverse of this hierarchical set of effective approximate descriptions.

We have been forced to the conclusion that ‘empty space’ should have a highly en-
tropic structure, computable in principle using the fuzzball construction. Low energy
physics emerges as an effective approximate dynamics of collective modes. There is no
cosmological singularity: we are forced to ever smaller patches of effective semiclassi-
cal physics as we approach the singularity, while the exact wavefunction describes the
evolution of a huge fuzzball.
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