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We discuss the existence of knot solitons (Hopfions) in a Skryme-Faddeev-Niemi-type model on
the target space SU(3)/U(1)2, which can be viewed as an effective theory of both the SU(3) Yang-
Mills theory and the SU(3) anti-ferromagnetic Heisenberg model. We derive the knot solitons with
two different types of ansatz: the first is a trivial embedding configuration of SU(2) into SU(3),
and the second is a non-embedding configuration that can be generated through the Bäcklund
transformation. The resulting Euler-Lagrange equations for both ansatz reduce exactly to those of
the CP 1 Skyrme-Faddeev-Niemi model. We also examine some quantum aspects of the solutions
using the collective coordinate zero-mode quantization method.

I. INTRODUCTION

It is of great importance to consider SU(3) generalizations
of the O(3) nonlinear σ-model, because they may possibly
play crucial roles in relevant limits of fundamental theories
— for example, the low-energy limit of the SU(3) pure Yang-
Mills theory and the continuum limit of the SU(3) Heisen-
berg models. The main achievement of the present paper is
that we have successfully constructed novel soliton solutions,
called “Hopfions,” on the flag manifold F2 = SU(3)/U(1)2.
Hopfions are topological solitons with knotted structures char-
acterized by a Hopf invariant. Such knotted structures ap-
pear in various branches of physics: quantum chromodynam-
ics (QCD) [1–3], Bose-Einstein condensates [4, 5], supercon-
ductors [6], liquid crystals, [7] and so on.

A typical theory that includes Hopfions is the Skyrme-
Faddeev-Niemi (SFN) model [2, 8], which is an O(3) nonlinear
σ-model in (3 + 1)-dimensional Minkowski space-time. The
scalar field theory for this model is defined by the Lagrangian
density

L = M2∂µ~n · ∂µ~n−
1

2e2
(∂µ~n× ∂ν~n)2 (1)

where M has the dimension of mass, e is a dimensionless
coupling constant, and ~n is a three-component vector of unit
length; i.e., ~n ·~n = 1. The second term on the right-hand side
in (1), the Skyrme term, was introduced by Faddeev [8] in or-
der for the theory to satisfy Derrick’s criteria for the existence
of stable soliton solutions. Solutions of toroidal shape, which
have the lower Hopf numbers H = 1 or 2, were first found
under an axially symmetric ansatz by Gladikowski and Hell-
mund [9], and by Faddeev and Niemi [1]. Hopfions with higher
charge — including twisted tori, linked loops, and knots —
were subsequently constructed by means of full 3D energy
minimization [10–14].

By means of the Cho-Faddeev-Niemi-Shabanov decomposi-
tion, Faddeev and Niemi showed in detail that the SFN model
(1) can be derived as an effective theory that describes the
confinement phase of the SU(2) pure Yang-Mills theory [2].
From this point of view, Hopfions are considered as natural
candidates for glueballs that can be interpreted as closed flux-
tubes. This model is sometimes referred to as the CP 1 SFN
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model, because it is based on a formula for the Lagrangian
that can be described in terms of a complex scalar field via
the stereographic projection S2 → CP 1; i.e.,

~n =
1

∆

(
u+ u∗,−i (u− u∗) , |u|2 − 1

)
(2)

where u is a complex scalar field and ∆ = 1+|u|2. For a finite-
energy configuration, the field ~n has to approach a constant
vector at spatial infinity. This makes the points at infinity
identical, and the space R3 is compactified to S3. The field
~n defines a mapping S3 → S2, and the field configurations
are characterized by an integer, called a Hopf invariant, that
corresponds to an element of π3(S2) = Z. Since this invariant
is nonlocal, an integral form of the invariant cannot be written
in terms of ~n or u; in order to define it we need introduce the
complex vector ~Z = (Z0,Z1)T , with | ~Z|2 = 1, which satisfies
u ≡ Z1/Z0. Then, the Hopf invariant can be defined as

HCP1 =
1

4π2

∫
A ∧ dA, A = i ~Z†d ~Z. (3)

In this paper, we construct Hopfions in a generalization of
the SFN model for the case of SU(3), the gauge group of
QCD. For SU(N + 1), where N ≥ 2, there are several possi-
bilities for the field decomposition associated with dynamical
symmetry-breaking patterns. Most studies of field decomposi-
tion are based on the following two options: the maximal case
SU(N + 1)→ U(1)N [3] and the minimal case SU(3)→ U(2)
[15, 16]. Depending upon the options chosen, SFN-type mod-
els have been proposed on both the relevant target spaces,
FN = SU(N + 1)/U(1)N and CPN = SU(N + 1)/U(N), in
[3] and [17], respectively. Note that CP 1 = F1 = SU(2)/U(1)
is equivalent to S2, the target space of the standard SFN
model. However, note also that the CPN (N ≥ 2) model
cannot possess knot solitons as a static stable solution in
three-dimensional space, because the corresponding homo-
topy group is trivial; i.e., π3(CPN ) = 0 for N ≥ 2. In
2(N + 1)-dimensional space-time, the existence of Hopfions
associated with π2N+1

(
CPN

)
= Z is discussed in [18]. In ad-

dition, if N is odd, then 3D, time-dependent, non-topological
solitons — called Q-balls and Q-shells — are obtained in a
CPN model with a V-shaped potential [19].

Contrary to the case of CP 2, the third homotopy group
of the flag manifold is nontrivial; i.e., π3(F2) = Z. Thus,
we expect Hopfions to exist in the F2 SFN model, which is
composed of the F2 nonlinear σ-model with quadratic terms
in the derivatives. The main purpose of the present paper
is to confirm the existence of the F2 Hopfions and under-
stand their detailed structures. It has recently been found
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that the 2-dimensional F2 nonlinear σ-model possesses vortex-
like solutions (2D instantons), both of the embedding type
[20] and of the genuine (non-embedding) type [21, 22]. The
Hopfions considered in this paper are probably the vortices
with knot structures. In [21], Bykov introduced the so-called
Kalb-Ramond field and found that the model is integrable for
specific coefficients of the field [23, 24]. Though the Kalb-
Ramond field appears naturally for some continuum limits of
the SU(3) antiferromagnetic spin chain, for the moment we
do not consider this field. The reason is that, if one derives
F2 nonlinear σ-models from other fundamental theories, it is
unclear whether the field can appear naturally. The genuine
solutions are constructed by using the CP 2 Din-Zakrzewski
tower generated by the Bäcklund transformation [25] which
implies that the solution is a composite of solitons and anti-
solitons.

The F2 nonlinear σ-model has been derived from the SU(3)
antiferromagnetic Heisenberg model as an effective model on
a square lattice [26], a triangular lattice [27], and a 1D chain
[28]. It has also been proposed to describe some phenomena
of a quantum spin-nematic system [27] and of a color su-
perconductor in high-density quark matter [29]. The present
work can thus be applied to several areas of condensed matter
physics as well as to QCD.

This paper is organized as follows. In Sec.II we introduce
the model and some important quantities, together with a
particularly nice parametrization that makes the computa-
tions transparent. In Sec.III, we derive the formal Euler-
Lagrange equation, which we solve with some ansatz. We
give a brief analysis of some quantum aspects of the solutions
in Sec.IV, and we conclude with Sec.V.

II. THE MODEL

A. The static energy, topological charge and
torsion

The fundamental degrees of freedom of F2 nonlinear σ-
models are given by su(3)-valued fields, called “color-direction
fields” in the context of QCD. They are defined by

na = UhaU
†, a = 1, 2 (4)

where U is an element of SU(3), and the matrices ha are the
Cartan generators in su(3). The F2 SFN model is defined
by the following Lagrangian density in (3+1)-dimensional
Minkowski space-time [3]:

L =
2∑
a=1

{
M2 〈∂µna, ∂µna〉 −

1

e2
F aµνF

aµν

}
(5)

where the angle brackets denote the inner product on su(3);
i.e. 〈A,B〉 = Tr

(
A†B

)
for A,B ∈ su(3). The second-rank

tensors are defined as

F aµν = − i
2

2∑
b=1

〈na, [∂µnb, ∂νnb]〉 (6)

and the 2-forms F a = 1
2
F aµνdx

µ ∧ dxν are called the Kirillov-
Kostant (KK) symplectic forms. The Lagrangian (5) is invari-
ant under the left global SU(3) transformation U → gU, g ∈
SU(3), and the local U(1)2 transformation U → Uk, k ∈

U(1)2. From these symmetries, one can understand that the
target space of this model is the coset space SU(3)/U(1)2,
which is equivalent to the flag manifold F2.

The static energy functional associated with (5) is given by

E =

∫
d3x

2∑
a=1

{
〈∂ina, ∂ina〉+ F aijF

a
ij

}
. (7)

where for simplicity we use the length unit (Me)−1 and the
energy unit 4M/e. Since the energy consists of both quadratic
and quartic terms, three dimensional particle-like configura-
tions evidently evade Derrick’s no-go theorem.

We reformulate the energy functional (7) into a more
tractable form that is given solely in terms of the off-diagonal
components of the Maurer-Cartan form U†∂µU . We decom-
pose the Maurer-Cartan form in terms of the SU(3) Cartan-
Weyl basis as

U†∂µU = iAaµha + iJpµep (8)

where we use a basis of the form

h1 =
1√
2
λ3, h2 =

1√
2
λ8,

e±1 =
1

2
(λ1 ± iλ2) , e±2 =

1

2
(λ4 ∓ iλ5) , e±3 =

1

2
(λ6 ± iλ7) .

Since the basis set is orthonormal, the currents can be written
as

Aaµ = −i
〈
ha, U

†∂µU
〉
, Jpµ = −i

〈
ep, U

†∂µU
〉
. (9)

Note that Aaµ are real and J−pµ =
(
Jpµ
)∗

. Under the gauge
transformation U → Uk, with k = exp (iθaha), Aaµ transforms
as a gauge field and Jpµ as a charged particle; i.e.,

Aaµ → Aaµ + ∂µθ
a, Jpµ → Jpµe

−iθaαp
a (10)

where αpa is the a-th component of the root vector correspond-
ing to ep. Now the root vectors are given by

α1 =

( √
2

0

)
, α2 =

−1√
2

(
1√
3

)
, α3 =

1√
2

(
−1√

3

)
(11)

with α−p = −αp for p = 1, 2, 3.
For the nonlinear σ-model, the quadratic term in (5), can

be written using only the off-diagonal components of Jpµ.
In addition, one can write the KK forms as F a = dAa =
−i
∑
p α

p
aJ

p ∧ J−p where Aa = Aaµ dxµ, and Jp = Jpµ dxµ.
Thus the static energy can be written as

E =

∫
d3x

3∑
q=1

[
Jqi J

−q
i − 1

4

(
Jq[iJ

−q
j] − J

q+1
[i J

−(q+1)

j]

)2
]

(12)

where q is a mod 3 number; i.e. q ≡ q+ 3 (mod 3). Note that
Jp[iJ

−p
j] ≡ Jpi J

−p
j − Jpj J

−p
i is purely imaginary, and therefore

the energy functional is positive definite. It is worth not-
ing that, similar to the CP 1 case [30], the energy functional
(12) can be interpreted as a gauge-fixing functional for a non-
linear maximal Abelian gauge, without making the Abelian
subgroup components fixed.

To ensure the finiteness of the energy functional the fields
na must approach constant matrices at spatial infinity, so that
the space R3 is topologically compactified to S3, and the fields
na define the map S3 → F2 = SU(3)/U(1)2. Consequently,
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the finite energy configurations can be characterized by ele-
ments of the homotopy group π3

(
SU(3)/U(1)2

)
= Z. The

corresponding topological charge, the Hopf invariant, is given
by

HF2 =
1

8π2

∫
d3x

{
εijk

2∑
a=1

Aai F
a
jk

}
− Γ (13)

where

Γ =
−i
8π2

∫
d3x εijk

{
J1
i J

2
j J

3
k − J−1

i J−2
j J−3

k

}
. (14)

The Hopf invariant (13) is nonlocal, since Aaµ cannot be writ-
ten in terms of the fields na, and therefore (13) does not
possess local U(1)2 symmetry. Note that both the Abelian
Chern-Simons (CS) terms and Γ are not topological. The
Hopf invariant can be constructed by means of Novikov’s pro-
cedure [31] via the isomorphism between π3

(
SU(3)/U(1)2

)
and π3 (SU(3)), which indicates HF2 = Q[U ], where Q[U ] =

1
24π2

∫
Tr
(
U†dU

)3
is the winding number of the map U :

S3 → SU(3).
The winding number is equivalent to the CS term for the

SU(3) flat connection U†dU . Therefore, similar to the CP 1

Hopf invariant (3) discussed in [30, 32], the F2 Hopf invariant
(13) can also be given by the non-Abelian CS term with the
SU(3) flat connection.

The Kähler form can be defined as

λ =
i

2π

3∑
p=1

BpJ
p ∧ J−p (15)

where the coefficients Bp are real constants [23]. For non-
symmetric manifolds, like the flag space F2, the Kähler form
λ in general is not closed, i.e., dλ 6= 0. The so-called skew
torsion T = dλ is given by the form

T =
1

2π

∑
p

Bp
(
J1 ∧ J2 ∧ J3 + J−1 ∧ J−2 ∧ J−3) . (16)

Under the local U(1)2 transformation, both the Kähler form
and the torsion are invariant. Note that in the 2-dimensional
F2 nonlinear σ-model, the solutions of the Euler-Lagrange
equation make the Kähler form closed, and the torsion then
disappears identically. By analogy, in this paper we consider a
class of configurations that satisfies the torsion-free condition
T = 0.

B. Parametrization

In order to make the analysis transparent, let us
parametrize the SU(3) matrix U in terms of complex scalar
fields which are equivalent to the local coordinates of the tar-
get space F2. The coordinates can be introduced naturally
via the inverse of a generalization of stereographic projection;
i.e., by the mapping SL(3,C)/B+ → SU(3)/U(1)2, where B+

is the Borel subgroup of upper triangular matrices (see, e.g.,
[33]). However, we need two additional degrees of freedom in
order to describe the Hopf invariant, because it is nonlocal
and requires 8 = dimSU(3) degrees of freedom rather than
6 = dimF2. Therefore, we begin the parametrization not
with a 3× 3 lower triangular matrix in which all the diagonal

components are unity which is an element of SL(3,C)/B+

but instead with a lower triangular matrix in SL(3,C) of the
form

X =

 χ1 0 0
χ2 χ4 0

χ3 χ5 (χ1χ4)−1

 ∈ SL(3,C) (17)

where the χi are complex functions, with χ1 and χ4 being
finite. Note that the matrix (17) has ten degrees of freedom.

The parametrization can then be obtained by using the
Gram-Schmidt orthogonalization process. We write X in
terms of column vectors as X = (~c1,~c2,~c3), and we introduce
the mutually orthogonal vectors ~vj :

~v1 = ~c1 ,

~v2 = ~c2 −
(~c2, ~v1)

(~v1, ~v1)
~v1 ,

~v3 = ~c3 −
(~c3, ~v2)

(~v2, ~v2)
~v2 −

(~c3, ~v1)

(~v1, ~v1)
~v1 .

(18)

Normalization of the vectors ~vj is achieved under the two
conditions

|χ1|2 + |χ2|2 + |χ3|2 = 1,

|χ1|2
(
|χ4|2 + |χ5|2

)
+ |χ3χ4 − χ2χ5|2 = 1 .

(19)

Then we write
U = (~v1, ~v2, ~v3) . (20)

This is a unitary matrix with eight degrees of freedom, be-
cause the vectors ~vj form a complete basis set, and they
are described by the five complex scalars χi with the two
constraints (19). Finally, we parametrize the ~vi in terms
of three complex scalar fields, which correspond to the lo-
cal coordinates of the flag manifold. We introduce them as
(u1, u2, u3) = (χ2/χ1, χ3/χ1, χ5/χ4), where we also write
arg (χα) = ϑα for α = 1, 4. Then the SU(3) matrix (20) can

be written as U =
(
ZAe

iϑ1 , ZBe
iϑ4 , ZCe

−i(ϑ1+ϑ4)
)

where

ZA =
1√
∆1

 1
u1

u2

 ,

ZB =
1√

∆1∆2

 −u∗1 − u∗2u3

1− u1u
∗
2u3 + |u2|2

−u∗1u2 + u3 + u3|u1|2

 ,

ZC =
1√
∆2

 u∗1u
∗
3 − u∗2
−u∗3

1


(21)

with

∆1 = 1 + |u1|2 + |u2|2 ,
∆2 = 1 + |u3|2 + |u1u3 − u2|2.

(22)

The unitarity of U is guaranteed by the orthonormalization
condition and the completeness relation between the complex
vectors:

Z†aZb = δab , (23)

ZA ⊗ Z†A + ZB ⊗ Z†B + ZC ⊗ Z†C = 13 . (24)

These identities are helpful for all the computations in this
study. Note that the triplet {ZA, ZB, ZC} plays the role of an
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order parameter if the model is viewed as an effective theory
of the SU(3) antiferromagnetic Heisenberg model [20, 27].

As mentioned earlier, we require eight degrees of freedom
to describe the Hopf invariant. However, the two degrees
of freedom corresponding to ϑ1 and ϑ4 are canceled out in
the energy, the Euler-Lagrange equation and so on, although
these variables make the calculations much more complicated.
Therefore it is useful to introduce the matrix W without the
phase factors; i.e.,

W = (ZA, ZB, ZC) . (25)

This can also be written as W = U exp [iΘaha] with Θ1 =

−ϑ1−ϑ4√
2

and Θ2 = −
√

3(ϑ1+ϑ4)√
2

. By virtue of the local

symmetry, the Lagrangian satisfies L [na] = L [ma] where
ma = WhaW

†. In addition, the static energy can be written
in terms of the off-diagonal components of the Murer-Cartan
form W †∂µW . We again decompose it as

W †∂µW = iCaµha + iKp
µep (26)

and (10) then yields the relations

Caµ = Aaµ + ∂µΘa, Kp
µ = Jpµe

−iαp
aΘa

. (27)

Since J−pµ = (Jpµ)∗, we can replace Jpi in the energy (12)
with Kp

i : The static energy thus can also be written as

E =

∫
d3x

3∑
q=1

[
Kq
iK
−q
i −

1

4

(
Kq

[iK
−q
j] −K

q+1
[i K

−(q+1)

j]

)2
]
.

(28)

Also, the KK form, Kähler form and skew torsion can be
written as

F a = −2i

3∑
p=1

αpaK
p ∧K−p, (29)

λ =
i

2π

3∑
p=1

BpK
p ∧K−p, (30)

T =
1

2π

3∑
p=1

Bp
(
K1 ∧K2 ∧K3 +K−1 ∧K−2 ∧K−3) .

(31)

Hereinafter we use W rather than U , except for the Hopf
invariant.

III. EQUATION OF MOTION AND HOPFIONS

First we derive the formal Euler-Lagrange equation, and
we then consider two classes of configurations that satisfy the
torsion-free condition T = 0. The Euler-Lagrange equation is
equivalent to the conservation law for the Noether current Jµ
associated with the global SU(3) transformation; i.e., ∂µJ µ =
0. The current takes the form

Jµ =

2∑
a=1

(
[ma, ∂µma]− i

2∑
b=1

F aµν [ma, [mb, ∂
νmb]]

)
. (32)

where ma = WhaW
†. If we factorize the current as Jµ =

WBµW †, the equations of motion can be written as

∂µBµ +
[
W †∂µW,Bµ

]
= 0 . (33)

The current Bµ consists of just the off-diagonal components
of the Murer-Cartan form:

Bµ = i
∑
p

(
Kp
µ − i

2∑
a=1

αpaF
a
µνK

pν

)
ep . (34)

To simplify the notation, we introduce Rpµ =
∑
a α

p
aC

a
µ and

Gpµν =
∑
a α

p
aF

a
µν . Then, equation (33) can be written explic-

itly as

∂µ
(
Kq
µ − iGqµνKqν)

+ iRqµ
(
Kq
µ − iGqµνKqν)+GqµνK−q−1

µ K−q+1
ν = 0

(35)

for ∀q ≡ 1, 2, 3 (mod 3) and their complex conjugations.
The normal route to confirm the existence of knot solitons

consists of solving equation (35) with some symmetric ansatz
for the complex scalar fields ui. However, since (35) is highly
nonlinear and very complicated, this seems quite a hard task.
Here, we instead employ a different strategy. That is, we first
introduce configurations that satisfy the torsion-free condition
T = 0 and then, as we shall see, the Euler-Lagrange equation
(35) simplify into a solvable form.

A. Trivial CP 1 reduction

The first class we consider is a trivially embedded config-
uration; i.e., an F1 = CP 1 Hopfion into F2 space. It can be
obtained by requiring two of the three scalar fields to be triv-
ial. Without loss of generality, we here set u1 = u3 = 0 and
write u2 = u. Then, the complex vectors Za can be written
in terms of the function u(x) as

ZA =
1√
∆

 1
0
u

 , ZB =

 0
1
0

 , ZC =
1√
∆

 −u∗0
1


(36)

where ∆ = 1 + |u|2. The currents Kp
µ are given by

K1
µ = K3

µ = 0, K2
µ =

i

∆
∂µu (37)

and the skew torsion T vanishes. It can be checked directly
that the equations of motion (35) for q ≡ 1 and 3 are auto-
matically satisfied and that for q ≡ 2 reduces to

∂µ [∂µu− iGµν∂νu]

+ (iRµ − ∂µ log ∆) (∂µu− iGµν∂νu) = 0
(38)

where for convenience we have introduced Rµ and Gµν , which
take the forms

Rµ ≡
i

∆
(u∗∂µu− u∂µu∗) , (39)

Gµν ≡ −
2i

∆2
(∂µu∂νu

∗ − ∂µu∗∂νu) . (40)

The static energy for the configuration (36) is given by

Etri =

∫
d3x

(
∂iu∂iu

∗

∆2
− (∂iu∂ju

∗ − ∂iu∗∂ju)2

2∆4

)
. (41)

Both the equation of motion (38) and the energy (41) are
exactly the same as those of the CP 1 SFN model (1) with
(2). Next we determine the Hopf invariant. First we plug
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the configuration (36) into the SU(3) matrix U and define

Z0 = eiϑ1/
√

∆, Z1 = ueiϑ1/
√

∆ with ϑ4 = 0. Then we
obtain

A1 = − 1√
2
A, A2 =

√
3

2
A, (42)

where

A = i ~Z†d ~Z, ~Z =

(
Z0

Z1

)
. (43)

Therefore we find that the F2 Hopf invariant (13) of the em-
bedding configuration coincides with the CP 1 version (3), i.e.,

Htri =
1

4π2

∫
A ∧ dA. (44)

This coincidence is obviously due to the fact that (36) is just
a trivial embedding configuration. Next we examine another
class of configuration which has a more nontrivial nature, and
see what happens to the Euler-Lagrange equation, the energy,
and the Hopf invariant.

B. Nontrivial CP 1 reduction

For the trivial embedding (36), we observed that two pairs
of the currents Kp

µ vanished; i.e., K±1
µ = K±3

µ = 0. Here
we relax these conditions and examine the case where just
one pair of the currents vanishes; i.e., K±2

µ = 0, while both
K±1
µ and K±3

µ remain finite. This automatically satisfies the
torsion-free condition. Note that the result is independent of
the choice of the components; for a different pair, one just
repeats the same prescription by permuting the vectors Za.
The condition K±2

µ = 0 reads

u3∂µu1 − ∂µu2 = 0, µ = 0, 1, 2, 3. (45)

This is satisfied if u2 is a function of u1 — i.e., u2 = f(u1)
— and u3 is given by u3 = f ′(u1) where the prime stands for
the derivative with respect to u1. This means that the only
independent field is u1, so that the Euler-Lagrange equation
seems to be an overdetermined system. In order to reduce the
number of independent equations, we consider the case where
the Euler-Lagrange equations for q ≡ 1 and 3 are proportional
to each other. This is the case when the ratio ∆1/∆2 is a
constant. Note that we leave the equation for q ≡ ±2 intact
because q ≡ 2 is now special due to the constraint K2

µ = 0.
By comparing the order of u1 in ∆i’s, one finds that this
condition requires

|u1|2 = |f ′(u1)|2, |f |2 = |u1f
′ − f |2 . (46)

Since we are not interested in embedding solutions here, we
omit the case where u1 is a constant and obtain

f(u) =
1

2
u2eiϕ (47)

where ϕ ∈ [0, 2π] is a constant. Note that due to U(1) sym-
metries, the constant ϕ can take an arbitrary value. For sim-
plicity, we choose ϕ = π and write u1 =

√
2u. Then, the

triplet vectors become

ZA =
1

∆

(
1,
√

2u,−u2
)T

, ZC =
1

∆

(
−u∗2,

√
2u∗, 1

)T
,

ZB =
1

∆

(
−
√

2u∗, 1− |u|2,−
√

2u
)T

.

(48)

It is worth noting that the three vectors are linked by the
Bäcklund transformation, i.e.,

ZB =
P+ZA

|P+ZA|
, ZC =

P+ZB

|P+ZB|
(49)

where P+Za = ∂uZa−
(
Z†a∂uZa

)
Za. Similar relations among

the triplet vectors are observed for the non-embedding solu-
tions of the two-dimensional F2 nonlinear σ-model [21, 22].
The currents Kp

µ are given by the form

K1
µ =

√
2i

∆
∂µu

∗, K2
µ = 0, K3

µ = −
√

2i

∆
∂µu

∗. (50)

With the forms (50), the Euler-Lagrange equation (35) for
q ≡ 2 is automatically satisfied. In addition, we obtain R1

µ =
R3
µ = −Rµ and G1

µν = G3
µν = −Gµν , and one then observes

easily that equations (35) for both q ≡ 1 and 3 reduce to the
complex conjugates of (38). To see this, one can use the fact
that Rµ and Gµν are real. This yields a somewhat surprising
observation: These results clearly mean that it is not only
in the trivial embedding case but also in the non-embedding
case that all the known Hopfion solutions u in the CP 1 SFN
model solve the Euler-Lagrange equation.

Though the Euler-Lagrange equations in both classes are
solved by the same function, they are clearly inequivalent.
The configuration (48) possesses a static energy that is exactly
four times greater than (36); i.e.,

Enontri[u] = 4Etri[u]. (51)

To evaluate the relevant Hopf number, we write u =
Z1/Z0, e

iϑ1 = Z2
0/|Z0|2, and ϑ4 = 0. This yields A1 =

−
√

2A, A2 =
√

6A, and therefore

Hnontri =
1

π2

∫
A ∧ dA = 4Htri. (52)

It is worth noting that the F2 Hopf invariant is equivalent to
a non-Abelian CS term with an SU(3) flat connection, but
that of the solutions is given by the sum of just the Abelian
CS terms, because the configuration (36) satisfies Γ = 0.

According to (51) and (52), the F2 nontrivial Hopfion with
Hnontri = 4n (where n is an integer) can be viewed as a molec-
ular state of four embedding solutions with the Hopf number
H = n which are sitting on top of each other with no bind-
ing energy. Such a situation has been observed in an SU(N)
Skyrme model [34]. Since our solutions of equation (38) are
not of the BPS type, it is probably impossible to remove one of
them from the others without changing the energy. However,
this should be confirmed by studying the moduli parameters
of the solutions. This will be reported in subsequent papers.

IV. ISO-SPINNING HOPFIONS

We have seen that the Euler-Lagrange equations are solved
by the same function u both for the trivial embedding and
for the non-embedding ansatz. Their energies and Hopf in-
variants are respectively proportional, as shown in (51) and
(52). In the previous sections, we saw that they are inequiv-
alent, although they look similar. Here we shall show that
their quantum natures are quite different. In this section, we
give a brief analysis to demonstrate the notable differences
in some quantum aspects based on the collective coordinate
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quantization of the zero modes. We consider an adiabatic
iso-rotation associated with the SU(3) global symmetry, i.e.,
with the time-dependent transformation ma(~x)→ ma(t, ~x) =
β(t)ma(~x)β†(t), where β(t) ∈ SU(3). Then the Lagrangian
can be written as

L =− Ecl

+ r2
0

∫
d3x

[
Tr
([
β†β̇,ma

] [
β†β̇,ma

])
+ 2F a0iF

a
0i

] (53)

where Ecl is the static energy of the Hopfion, the dot denotes
the time derivative — i.e., β̇ = dβ/dt — and

F a0j = − i
2

Tr
(
ma
[[
β†β̇,mb

]
, ∂jmb

])
. (54)

The energy collection depends on the length scale r0 =
(Me)−1.

In order for the integral in (53) to be finite, β†β̇ and ma
must commute with each other at spatial infinity. Since the
fields ma(~x) approach constant elements of u(1) × u(1) as x

goes to infinity, β†β̇ must also be in u(1)×u(1) and therefore
can be written as

β†β̇ =
√

2i

(
ω1

2
h1 +

ω2√
3
h2

)
(55)

where ωa denotes the angular velocity in iso-space. We chose
the coefficients in (55) to be consistent with the definition of
the SU(3) Euler angle [35].

The quantum Lagrangian (53) can be written as a
quadratic form of the angular velocities,

L = −Ecl +
1

2
ωTIω (56)

where ωT = (ω1, ω2) and

I =

(
I11 I12

I12 I22

)
. (57)

The moments of inertia are explicitly obtained as follows:
• For the non-trivial reduction case,

I11 = 2r2
0

∫
d3x

1

∆4

[(
10− 7|u|2 + 10|u|4

)
|u|2

+4
(
7− 13|u|2 + 7|u|4

)
(∂i log ∆)2]

I12 = −4r2
0

∫
d3x

1

∆4
(3−∆) (3− 2∆)

×
[
|u|2 + 4 (∂i log ∆)2]

I22 = 8r2
0

∫
d3x

1

∆4

[(
2 + |u|2 + 2|u|4

)
|u|2

+4
(
1− |u|2 + |u|4

)
(∂i log ∆)2] .

(58)

• For the trivial reduction case,

I11 =
I12

2
=
I22

4
= 2r2

0

∫
d3x
|u|2 + (∂i log ∆)2

∆2
. (59)

Using a Legendre transformation of the Lagrangian (53), we
obtain the Hamiltonian H = ωiPi − L with the canonical
momentum defined by

Pi ≡
∂L

∂ωi
= Iijωj , i, j = 1, 2. (60)

In the nontrivial reduction case, the Hamiltonian is obtained
straightforwardly as

H = Ecl +
1

2

1

DetI
{
I22P

2
1 − 2I12P1P2 + I11P

2
2

}
(61)

where we have used the commutation relation [P1, P2] = 0,
because the operators are associated the Abelian subgroup of
SU(3). Since the operators are already diagonalized, the Hop-
fions can be assigned two quantum numbers associated with
the two zero-modes when the Hamiltonian operates a relevant
wave function. On the other hand, in the embedding case, we
are allowed to define only one operator because the SU(3) ma-

trixW satisfies the commutation relation
[
W,h1 − 1√

3
h2

]
= 0

and therefore [
β̇β,ma

]
=
i (ω1 + 2ω2)√

2
[h1,ma] . (62)

This implies that the embedding Hopfions can rotate around
only one axis in isospace. Actually, we can obtain from (60)
only one operator, which has the form

P1 =
P2

2
= I (ω1 + 2ω2) ≡ P (63)

where we have written I11 = I. Therefore the Hamiltonian
becomes

H = Ecl +
P 2

2I
. (64)

Consequently, Hopfions of the embedding type inherit the
quantum properties of the CP 1 Hopfions; they can possess
at most one quantum number after (64) acts on a proper
wave function. The quantum properties of the two types of
Hopfion solutions seem quite different, at least qualitatively,
which is a reflection of their different symmetries.

V. CONCLUSION

We have studied Hopfions in the SFN model on the tar-
get space F2 = SU(3)/U(1)2 which is an SU(3) generaliza-
tion of the standard SFN model, for which the target space
is CP 1 = SU(2)/U(1). By analogy with the 2-dimensional
F2 nonlinear σ-model, we introduced two classes of configu-
rations that satisfy the torsion-free condition; i.e., a trivial
embedding of the CP 1 Hopfions and the SU(3) genuine one,
which can be constructed through the Bäcklund transforma-
tion. For both cases, the Euler-Lagrange equation reduces to
that of the CP 1 SFN model. In addition, though the Hopf
invariant is equivalent to the CS term for the SU(3) flat con-
nection, we showed that the invariant of the solutions is also
given by the CS terms for the Abelian components of the flat
connection.

The most important open problem is probably the stabil-
ity of the genuine solutions. Their energy and Hopf invariant
are exactly four times greater than those of the embeddings,
comparing the two configurations given by the same scalar
function. On the other hand, since the embedding Hopfions
are essentially equivalent to the CP 1 Hopfions, their energy
with H = 4n is less than four times the energy of one with
H = n; i.e., EH=4n < 4× EH=n [14]. Therefore, the genuine
solutions with H = 4n are likely to decay into the embedding
solution with H = 4n, rather than into four solutions with
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H = n. It is well worth confirming whether or not the gen-
uine solutions are stable, and if not, what they decay into.
Note that even if they are unstable, these solutions prob-
ably play an important role in some branch of physics, like
the known saddle-point solutions: the electro-weak sphaleron,
and the meron in the pure Yang-Mills theory. However, the
stability may restrict the potential for applications. It is also
important to understand the mathematical implications of the
torsion-free condition in detail and to confirm whether there
exist Hopfions outside this condition.

We also examined some quantum aspects of the Hopfions
based on collective coordinate quantization and found that
they are quite different for different ansätze as a result of the
difference in their symmetries.

To determine the physical spectra of glueballs, we need to

perform a more complete analysis of the collective coordinate
quantization, including rotational modes, and also to discuss
their statistical properties. The analysis of this subject is now
in progress and the results will be reported in a subsequent
paper.
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