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The flavor dependence of the QCD phase diagram presents universal properties in the heavy
quark limit. For the wide class of models where the quarks are treated at the one-loop level, we
show, for arbitrary chemical potential, that the flavor dependence of the critical quark masses—for
which the confinement-deconfinement transition is second order—is insensitive to the details of the
(confining) gluon dynamics and that the critical temperature is constant along the corresponding
critical line. We illustrate this with explicit results in various such one-loop models studied in the
literature: effective matrix models for the Polyakov loop, the Curci-Ferrari model, and a recently
proposed Gribov-Zwanziger-type model. We further observe that the predictions which follow from
this one-loop universality property are well satisfied by different calculations beyond one-loop order,
including lattice simulations. For degenerate quarks, we propose a simple universal law for the flavor
dependence of the critical mass, satisfied by all approaches.

Understanding the properties of strongly interacting
matter in extreme conditions of temperature, density,
magnetic field, etc., is a question of topical interest with
various implications, e.g., in early universe cosmology
and astrophysics [1]. This relates to some of the most
profound aspects of quantum chromodynamics (QCD),
namely, the physics of (de)confinement and of chiral sym-
metry breaking/restoration. Past, present, and upcom-
ing heavy-ion collision experiments at RHIC, CERN,
FAIR, NICA and J-PARC, accompanied by an intense
theoretical effort, aim at unravelling the phase diagram
and the thermodynamic properties of QCD [2, 3].

First-principle calculations based on numerical lattice
simulations have demonstrated a crossover between a
mostly confined to a mostly deconfined phase as the tem-
perature T is increased [4]. Such calculations are, how-
ever, restricted to small baryon chemical potential µB
due to the infamous sign problem that prevents the use
of standard Monte Carlo algorithms [5]. A major open
question of both theoretical and experimental research
programs concerns the possible existence of a first order
transition line in the (T, µB) plane, ending at a critical
point [6, 7]. Continuum approaches can avoid the strong
sign problem of the lattice but necessarily rely on ap-
proximations or model building that must be tested in
situations where lattice results are under control.

In this context, it is of interest to study QCD–like the-
ories, by varying parameters such as the number of col-
ors and flavors (Nf ), the quark masses, etc. Investigating
the phase structure of the theory in such an extended pa-
rameter space, beyond its own theoretical interest, may
contribute to our understanding of the phase diagram of
the physical theory. An example is the investigation of
the Columbia plot, which aims at describing the phase
structure of the SU(3) color theory with two degener-
ate quark flavors u and d and one strange quark s, as a
function of the quark masses Mu = Md and Ms [8–10].

The most commonly accepted scenario at zero chemi-
cal potential and in the limit of vanishing quark masses
is that of a first order transition governed by the restora-
tion of chiral symmetry at large temperatures [8]. This
transition weakens as one increases the quark masses and
it eventually becomes second order for critical values of
the latter. The physical point lies beyond this critical line
in the Columbia plot, where the transition is a crossover.
A question is, therefore, to study how this critical line
evolves with nonzero chemical potential [9].

Also of interest is the limit of infinite quark masses,
corresponding to the pure Yang-Mills theory. For three
colors, the latter presents a first order confinement-
deconfinement phase transition in temperature [11].
Again, this transition weakens for large but finite quark
masses and eventually becomes second order for critical
values of the quark masses [12]. Contrarily to the light
quark case, the heavy quark system can be simulated
also at nonzero chemical potential because the sign prob-
lem can be evaded by using a large mass expansion [13].
In that case, the critical line is known to shrink toward
larger quark masses as the chemical potential increases.

Not only does QCD with heavy quarks provide a frame-
work where one can explicitly study the role of the chem-
ical potential, but it also yields a stringent test case for
approximate continuum approaches based either on first
principle calculations or on models of the QCD dynamics.
Existing calculations include truncations of the Dyson-
Schwinger equations (DSE) or functional renormaliza-
tion group techniques [14], one- and two-loop perturba-
tive calculations in the Curci-Ferrari (CF) model (a mas-
sive extension of the Faddeev-Popov (FP) Lagrangian in
the Landau gauge) [15, 16], and effective models for the
Polyakov loop, the order parameter of the confinement-
deconfinement transition [7, 17, 18].

In the present article, we discuss generic features of
the phase diagram of QCD with heavy quarks. It has
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been observed, both in lattice simulations [12, 13] and
in matrix models [18, 19], that the critical temperature
is approximately independent of the quark content and
that the flavor dependence of the critical quark masses
(which defines the critical line/surface in the Columbia
plot) is essentially independent of the details of the gluon
dynamics. We recall how the latter comes about for the
wide class of models where the quarks are treated at the
one-loop level and we explicitly show, in that case, that
both the critical temperature and the critical values of
the order parameters are constant along the critical line.
We further show that these observations extend to finite
chemical potential.

We illustrate these features on various results from the
literature, such as the CF model at one-loop [15] and
the matrix model of Ref. [18]. We also provide results
for a model of the glue dynamics recently proposed in
Refs. [20, 21], based on the Gribov-Zwanziger (GZ) quan-
tization scheme [22]. We further show that our generic
findings for the critical line extend beyond one-loop as
exemplified by the results of the CF model at two-loop
order [16] and by the DSE results of Ref. [14]. Regulator
and renormalization effects complicate the comparison
between the various continuum and lattice results. We
fabricate an observable which suppresses these differences
and which exhibits a simple Nf dependence that is sat-
isfied by all existing continuum and lattice results in the
large mass limit. This predicts the critical quark masses
for increasing Nf—provided confinement is not lost—in
all these approaches.

Let us first consider the case of a vanishing quark chem-
ical potential µ = 0 and Nf degenerate heavy quark fla-
vors of mass M for simplicity. Descriptions of the QCD
dynamics where quarks are included at the one-loop level
yield the potential

β4V (`, β,M) = vglue(`, β)− 2Nf f(βM) ` , (1)

with f(x) = (3x2/π2)K2(x), where K2(x) is the modi-
fied Bessel function of the second kind and β−1 is the
temperature. The Polyakov loop ` is related to the free
energy Fq of a static quark in the thermal bath of gluons
as ` ∝ exp(−βFq) and vanishes identically in the con-
fined phase, where Fq =∞. Here, we assume that the
potential vglue is confining, that is, it admits a minimum
at ` = 0 at zero temperature.

For each value of Nf , the critical values for `, β and
M on the upper boundary line of the Columbia plot are
determined by solving the system of equations ∂`V =
∂2
`V = ∂3

`V = 0, that is,

∂`vglue = 2Nff(βM) , (2)

∂2
` vglue = ∂3

` vglue = 0 . (3)

The critical values for ` and β are determined from the
two equations in (3), which only involve vglue, and are,
thus completely blind to the quark content of the theory
[More precisely, corrections to this statement are sup-

pressed by exp(−βM)]. This explains the fact that the
critical temperature β−1

c is essentially constant along the
critical line in the Columbia plot [12, 13, 18]. The critical
value (βM)c ≡ RNf can be determined from Eq. (2) for
each value of Nf . Since the left-hand side does not de-
pend on Nf , the flavor dependence of RNf is determined
by the relation [18]

Nff(RNf ) = N ′ff(RN ′
f
) . (4)

We deduce, in particular, that, even though the critical
values `c, βc and RNf depend on vglue, Eq. (4) is model
independent at one-loop order.

The above discussion easily generalizes to the case of
nondegenerate quark masses, where one concludes that
the equation determining the critical surface in the space
of quark masses is universal, i.e., independent of vglue.
For instance, the critical line in the plane (Mu = Md,Ms)
of the Columbia plot for 2 + 1 (heavy) flavors is deter-
mined by

2f(βMu) + f(βMs) = 3f(R3) , (5)

where only the number on the right-hand side, which de-
termines the location of the critical line, depends on vglue,
through Eq. (2). We can use, alternatively, 3f(R3) =
2f(R2) = f(R1). This trivially generalizes to more fla-
vors.

The same strategy applies to the case of nonzero quark
chemical potential µ = µB/3. The effective potential now
depends separately on the Polyakov loops ` and ¯̀ cor-
responding to quarks and antiquarks, respectively, and
reads

β4V = vglue(`, ¯̀, β)−Nff(βM)(e−βµ`+ eβµ ¯̀) . (6)

For given values of Nf and µ, the critical point
(`c, ¯̀

c, βc,Mc) is determined by the set of equations1

∂`V = ∂¯̀V = 0 , (7)

∂2
`V ∂

2
¯̀V − (∂`∂¯̀V )

2
= (a∂` − b∂¯̀)

3
V = 0 , (8)

with a = ∂2
¯̀V |c and b = ∂`∂¯̀V |c. The first two equations

rewrite

Nff(βM) = eβµ ∂`vglue = e−βµ ∂¯̀vglue . (9)

As in the previous case, the last two equations in (8),
involving two or more ` and ¯̀ derivatives, only concern
vglue and define two functions `(β) and ¯̀(β) independent
of both Nf and µ. Together with these, the ratio of the
two equations (9),

e−2βµ = ∂`vglue/∂¯̀vglue , (10)

1 For µ ∈ R, the physical values of ` and ¯̀are real. Therefore, it is
enough to consider V (`, ¯̀) with real and independent variables.
For µ ∈ iR, one can conveniently work instead with ¯̀= `∗ [23].
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determines an Nf -independent value for βc(µ) – or, more
directly, µc(β) – and in turn Nf -independent critical val-
ues `c(µ) = `(βc(µ)) and ¯̀

c(µ) = ¯̀(βc(µ)). As before, the
only source of flavor dependence comes from the prefac-
tor of the function f in Eq. (9). Taking the ratio of any
of these for two different values of Nf , we conclude that
Eq. (4) still holds, for any value of µ.

Again, this can be generalized to the case of nondegen-
erate quark masses and we conclude, following the same
lines, that the critical values `c(µ), ¯̀

c(µ), and βc(µ) are
constant along the whole critical surface and that the fla-
vor dependence of the latter is insensitive to vglue and µ.
For instance, in the 2 + 1 flavor case, the critical line is
defined by Eq. (5). Only the actual location of the critical
line depends on vglue and µ, through the determination
of R3 in Eq. (5). This is demonstrated in Fig. 1.

Finally, Eq. (9) gives the µ dependence of RNf in
terms of the functions βc(µ), `c(µ) and ¯̀

c(µ), defined
above. We also emphasize that the above discussion
is valid for both real and imaginary chemical poten-
tial. In this respect, it is interesting to mention that
the phase diagram at imaginary chemical potential fea-
tures a tricritical point, which results in a particular scal-
ing of both βc and RNf when approaching βµ = iπ/3
[24]. The latter can be analytically continued to real µ
and is actually well reproduced by lattice data and by
various continuum approaches. The existence of a tri-
critical point is intimately related to the Roberge-Weiss
symmetry of the potential for βµ = iπ/3, which reads
V (`, ¯̀) = V (ei2π/3 ¯̀, e−i2π/3`). To see this, it is conve-
nient to change to the real variables x and y defined
by ` = eiπ/3(x− iy) and ¯̀= e−iπ/3(x+ iy), in terms of
which the Roberge-Weiss symmetry rewrites y → −y.
Defining x(y) from the condition ∂xV = 0 and evaluat-
ing the potential along this line, one obtains a reduced
potential Vr(y) with Z2 symmetry y → −y. The tricrit-
ical point corresponds to the cancellation of both the
second and the fourth derivatives of Vr(y) at y = 0. Be-
low, we determine the tricritical point both by following
the boundary line of the Columbia plot as βµ approaches
iπ/3 or directly from the reduced potential at βµ = iπ/3.

It is interesting to test the above considerations on
various one-loop approaches available in the literature.
These include the matrix model of Ref. [18], the CF
model at one-loop order [15], as well as the GZ–type
model of Refs. [20, 21]. In this latter case, no results
are available for the Columbia plot. We produce them
here after briefly reviewing the approach.

The model for the glue potential proposed in Refs. [20,
21] is inspired from the GZ quantization in the vacuum,
where the restriction of the path integral to the first Gri-
bov region is implemented by means of a suitably ad-
justed Gribov parameter. The extension of this approach
to finite temperature proposed in [20, 21] yields a glue
potential in the form vglue(`, ¯̀, β) = β4W (`, ¯̀, β, {γκ}),
where the Gribov parameters γκ can be, a priori dif-
ferent for each color mode κ and are functions of `, ¯̀,
and T , determined from the gap equations ∂γκW = 0.
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FIG. 1. Top right corner of the Columbia plot. The squares
represent the Nf = 3 model-dependent initial values for RNf ,
with βµ ≈ 0.2n and n ∈ N, here obtained from GZ1. The
curves are determined uniquely from Eq. (5) and lie on top of
those obtained from the numerical solution of the model.

The function W has been computed to one-loop order
in these references, where it was expressed in terms of
a background gauge field βĀµ(x) = δµ0rjt

j , with tj the
generators of the Cartan subalgebra of the gauge group.
For SU(3), these are the two diagonal Gell-Mann matri-
ces λ(3)/2 and λ(8)/2. At this order of approximation,
the background field is related to the Polyakov loops as

`(r) = ¯̀(−r) =
1

3

[
e
−i r8√

3 + 2e
i
r8

2
√

3 cos(r3/2)
]
. (11)

The color modes κ correspond either to one of the Car-
tan directions j or to any of the roots α of the gauge
algebra. In Ref. [21], three scenarios for the color depen-
dence of the Gribov parameters have been proposed, all
compatible with the symmetries of the problem:

GZ1: γκ = γ , ∀κ .
GZ2: γκ = γ1 if κ = j and γα = γ2 , ∀α .
GZ3: γκ = γ1 if κ = j and γα = γ−α .

We stress that, when computing the derivatives of the
glue potential in Eqs. (7) and (8), one needs to take into
account the ` and ¯̀dependence of the Gribov parameters.
Taking derivatives of the gap equation ∂γW = 0, one
gets, for example in the case GZ1, ∂`γ = −∂2

`,γW/∂
2
γ,γW

and similarly for other derivatives.
We compute the values of RNf for various Nf in each

scenario and compare them to lattice results. At the or-
der of approximation considered here, these quantities do
not depend on the value of the Gribov parameter at zero
temperature and are, therefore, a stringent test for the
various scenarios. Our results are gathered in Table I
and compared to other approaches. We observe that,
among the various one-loop approaches considered here,
the degenerate GZ approach (GZ1) gives the best results
as compared to the lattice values. Neglecting the back-
ground dependence of the γκ’s yields the values referred
to as GZ0. We also note that the nondegenerate case
(GZ3) is completely discarded : For Nf = 1, we find a
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µ = 0 R1 R2 R3 R2/R1 R3/R2 Y3

Lattice [13] 7.23 7.92 8.33 1.10 1.05 1.59

GZ1 7.09 7.92 8.40 1.12 1.06 1.58
GZ2 9.45 10.25 10.72 1.08 1.05 1.58
GZ3 · · · 1.33 2.12 · · · 1.59 · · ·
GZ0 4.66 5.56 6.07 1.20 1.09 1.59

Matrix [18] 8.04 8.85 9.33 1.10 1.05 1.59
CF1 [15] 6.74 7.59 8.07 1.12 1.06 1.58

CF2 [16] 7.53 8.40 8.90 1.11 1.06 1.57
DSE [14] 1.42 1.83 2.04 1.29 1.11 1.51

TABLE I. RNf for Nf = 1, 2, and 3 degenerate quark flavors,
as computed in various approaches. CF1 and CF2 refer to
the one- and two-loop results within the CF model. The last
two lines of the table gather results beyond one-loop order.

first order phase transition irrespectively of the value of
the quark mass and the values for R2 and R3 are way too
small.

One easily checks that the universal equation (4) is
accurately satisfied, given the precision, for all one-loop
results in Table I. In contrast, the lattice values do not
satisfy the scaling (4) well. As we discuss below, they
follow a somewhat different scaling, where the function
f(x) is replaced by a simple exponential.

In Table I, we also quote the results from two calcula-
tions beyond one-loop order, namely, the two-loop per-
turbative calculation in the CF model of Ref. [16] and
the DSE results of Ref. [14]. In this case, the direct com-
parison of critical masses is complicated by nontrivial
mass renormalization beyond leading order. As argued
in Ref. [16], this can be partially absorbed in the ratios
RNf /RN ′

f
. In particular, these ratios for DSE agree well

with the other continuum approaches despite the low val-
ues of RNf . Note that the same argumentation does not
save the scenario GZ3, first, because there is no reason to
expect such mass renormalization effect at one-loop or-
der and, second, because the ratio R3/R2 is bad anyway
as compared to all other continuum approaches.

In the same vein, as discussed in Ref. [16], the lat-
tice also brings additive mass renormalizations because
it explicitly breaks chiral symmetry. Such effects are sup-
pressed by taking ratios of differences, e.g.,

YNf =
RNf −R1

R2 −R1
. (12)

In Table I, we quote the results for Y3, which is sur-
prisingly stable for all the approaches (continuum and
lattice). As far as continuum models of the form (1) are
concerned, this is a simple consequence of the scaling law
(4) and the large values of RNf . Using the asymptotic
expansion of the Bessel function, one easily checks that

YNf ≈
lnNf
ln 2

, (13)

up to relative corrections of O(R−2
1 ). This yields Y3 ≈

1.58, in excellent agreement with our results in Table I.

It is remarkable that the results for Y3 for all ap-
proaches beyond one-loop agree well with the prediction
(13). We can understand the lattice value from the Nf
scaling observed in Ref. [13]

Nfe
−RNf cosh(βcµ) ≈ 0.00075 , (14)

valid for all values of µ. This yields the scaling law
exp(RN ′

f
−RNf ) = N ′f/Nf , from which one immediately

obtains Eq. (13) using the fact that the lattice value of
βc is found insensitive to Nf . Similarly, at leading order
in the hopping (i.e., large quark mass) expansion, the
lattice results satisfy the law (5) with f(x)→ e−x [12].

We conclude that the scaling law (13) is quite robust
and universal (independent of the actual gluon dynam-
ics) and can thus be used to predict the values of RNf for
Nf ≥ 3, given R2 and R1 in the various approaches. We
have checked that these predictions describe well the ac-
tual results in the one-loop models GZ1, GZ2, and CF1,
as expected. We have also verified that the same holds
for the two-loop values of RNf in CF2.

βµ = iπ/3 R1 R2 R3 R2/R1 R3/R2 Y3

Lattice [13] 5.56 6.25 6.66 1.12 1.07 1.59

GZ1 5.02 5.91 6.42 1.18 1.09 1.57
GZ2 7.51 8.34 8.82 1.11 1.06 1.58

Matrix [19] 5.00 5.90 6.40 1.18 1.08 1.56
CF1 [15] 4.72 5.63 6.14 1.19 1.09 1.57

CF2 [16] 5.47 6.41 6.94 1.17 1.08 1.57
DSE [14] 0.41 0.85 1.11 2.07 1.31 1.59

TABLE II. RNf at βµ = iπ/3, for Nf = 1, 2 and 3 degenerate
quark flavors, as computed in various approaches.

The results for an imaginary chemical potential, and
more precisely along the tricritical line at βµ = iπ/3, are
gathered in Table II. We verify that the law (4) and its
consequences as described above are well verified by the
values of RNf for one-loop models. Again, the GZ1 sce-
nario seems to be giving the best values to date, although
they are in this case pretty close to the ones from the ma-
trix model of Ref. [19].

As anticipated, the values of Y3 from all approaches
agree well with the prediction (13). This is to be expected
from the above discussion for both one-loop models and
Lattice results. The DSE value is strikingly good despite
the low values of RNf and the not so good values of the
ratios RNf /RN ′

f
. This supports the conjecture of the

universal character of YNf .
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