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1 Introduction

Holographic dualities involving higher-spin gravities in AdSd+1 and vector model Conformal

Field Theories (CFTs) on its d-dimensional boundary have been explored on a variety of

fronts. As is well known by now, the single trace sector in the large-N expansion of free

vector models in d dimensions with Lagrangian densities

L = φ∗i�φi and L = ψ̄i /∂ ψi , (1.1)

are respectively dual to the type-A [1–3] and type-B Vasiliev theories in AdSd+1 [4, 5]. Here

φ is a complex scalar, ψ is a Dirac spinor, and the index i is a vector index of U(N) (i.e.

both fields are in the fundamental representation of U(N)). If we restrict to real scalars

and Majorana fermions, U(N) is replaced by O(N) and the AdS dual is the minimal type-A

and type-B theory. In AdS4, one can also consider the large N limit of the critical O(N)

model, which is obtained by a double trace deformation [4, 6]. We refer the reader to [7–10]

for reviews of the duality.

It turns out that if we relax the criterion of unitarity, it is natural to consider the

following one-parameter extension of the CFTs in (1.1), given by

L = φ∗i � ℓ φi and L = ψ̄i /∂ 2ℓ−1 ψi . (1.2)

It was conjectured in [11] for the bosonic case that (1.2) is the CFT dual of an interact-

ing AdS theory containing both massless and partially-massless higher-spin fields [12–14]

(which should be dual to partially-conserved currents [15]). On the one hand, the bulk side

of this duality corresponds to the partially-massless higher-spin gravity, which is also re-

ferred to as the type-Aℓ theory. Cubic interactions for partially-massless field were derived

in the metric-like formulation in [16, 17] 1 whereas the unfolded equations for the type-Aℓ

theory were constructed first in [19], and recently studied in more details in [20] for ℓ = 2.

On the other hand, the CFT on the boundary was discussed in [21, 22] (see also [23, 24] for

a more detailed study of its critical counterparts). The symmetry algebra underlying the

kinematics of this correspondence was analyzed in [11, 19, 25], whereas its Eastwood-like

characterization was provided in [26–28]. For the fermionic vector models (1.2), the puta-

tive dual theories are the type-Bℓ gravities about which much less is known. For instance,

a set of formal non-linear equations was proposed only recently for the massless (ℓ = 1)

case in [29].

Let us briefly review the systematics of testing the duality for the one-loop free energy, 2

following the arguments of [42, 43]. For definiteness we focus on the type-Aℓ theories, but

the same arguments apply to the type-Bℓ case. The free energy of the CFTd is simply

given by

FCFT = kN Fℓ, (1.3)

1See also [18] concerning the non-unitary nature of an interacting theory for the partially massless spin-2

field.
2See [30–35] for other tests of the duality between Vasiliev’s type-A theory and the free O(N) vector

model. See [36–41] for the attempts of reconstructing higher-spin gravity action from the CFT data.
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where Fℓ is the free energy of the free 2 ℓ-derivatives scalar theory, 3 and k = 2 for the

U(N) vector model and k = 1 for the O(N) vector model. For even d, by the free energy

of CFT, we actually mean the a-anomaly coefficient. Meanwhile on the AdSd+1 side the

free energy has the expansion around the AdS saddle point

FAdS = g−1 Γ(0) + Γ(1) + . . . , (1.4)

where Γ(0) and Γ(1) are respectively the renormalized 4 semi-classical and one-loop contri-

butions to the AdS free energy and g is the bulk coupling constant. Since the AdS/CFT

dictionary indicates g−1 ∼ N , requiring that FAdS = FCFT leads us to expect that i)

the background evaluation of the type-Aℓ higher-spin gravity action should completely re-

produce FCFT, and ii) the one-loop free energy of the type-Aℓ higher-spin gravity, which

corresponds to the (vanishing) N0 contribution in FCFT of the dual free CFT, should simply

vanish. Since we do not know the classical action of the higher-spin gravity, we cannot

test the first point, but the second point about the one-loop free energy can be examined.

Besides the usual UV divergence, the one-loop free energy of higher-spin gravity has an-

other source of divergence arising from summing over an infinite number of particles in the

spectrum. This may be regularized in various ways [42–44] (see also [45] in the context

of conformal higher-spin), among which the zeta function regularization was particularly

appealing as the UV regulator turns out to regularize the divergence from the infinite spec-

trum as well. In the ℓ = 1 case, it was found in [42, 43] that the one-loop free energy of

the non-minimal theory indeed vanishes. However, the result of the minimal theory does

not vanish, giving a number which coincides with the free energy of the real scalar on the

Sd boundary. This result was interpreted as an indication that the relation between the

bulk coupling constant g and the boundary N should be modified to g−1 = N − 1 . Then

the sum of the semi-classical and the one-loop contributions match the CFT free energy.

It is tempting to expect that similar statements would hold for the ℓ ≥ 2 cases. Indeed,

the computations for ℓ = 2 carried out for various values of d (up to d = 18 and d = 7 for

even and odd d, respectively, in [46]) seem to support this expectation. However, testing it

for a larger ℓ becomes highly non-trivial because the field content itself becomes increasingly

complicated as ℓ grows. For instance, the field content of the type-Aℓ=3 higher-spin gravity

involves three series:

Anon-min
ℓ=3

∼=
∞⊕

s=0

D
(
s+ d− 2; s

)
⊕

∞⊕

s=0

D
(
s+ d− 4; s

)
⊕

∞⊕

s=0

D
(
s+ d− 6; s

)
. (1.5)

About the type-Bℓ theory, already the ℓ = 1 case has rather complicated spectrum as it

starts to involve mixed-symmetry fields in d ≥ 4. In spite of the complexity of the field

content, its one-loop free energy has been computed up to d = 20 and d = 15 for even

3The scalar field of this class of free theories will be referred to, in the rest of the paper, as the order-ℓ

scalar singleton.
4The bulk free energy is divergent due to the infinite volume of AdS. However the divergence may be

renormalized in accordance with general principles of AdS/CFT duality. Practically, this requires us to

replace the infinite volume of AdS that appears in the free energy with a well-known finite quantity.
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and odd d, respectively [42, 43, 47, 48], confirming the aforementionned expectations. 5

However, if we consider higher ℓ’s and the minimal theory, then the spectrum of the type-

Bℓ theory becomes almost untreatable: for general ℓ and d, the spectrum does not have

a simple form but a rather lengthy expression which can be found in Appendix A. For

instance, the minimal type-Bℓ=2 theory spectrum reads

Bmin
ℓ=2

∼= D
(
d− 3; 0

)
⊕D

(
d− 1; 0

)
⊕D

(
d; 0

)
⊕D

(
d+ 1; 0

)
(1.6)

⊕
⊕

m=1,2 mod 4

∞⊕

s=2,4,...

2D
(
s+ d− 2; s, 1m

)
⊕D

(
s+ d− 4; s, 1m

)

⊕
⊕

m=0,3 mod 4

∞⊕

s=1,3,...

2D
(
s+ d− 2; s, 1m

)
⊕D

(
s+ d− 4; s, 1m

)

⊕
r−1⊕

m=0

∞⊕

s=1

D
(
s+ d− 3; s, 1m

)
,

for d = 5 mod 8. To reiterate, as one can see from the field contents (1.5) and (1.7), com-

puting the one-loop free energy for arbitrary ℓ and d using the usual methods of spectrum

summations would be almost impossible.

In this paper, we apply the method of the character integral representation of zeta

function (CIRZ) to calculate the one-loop free energy of the partially-massless higher-spin

gravities in AdSd+1, and match the result with the free energy of the corresponding CFT on

the Sd boundary. The CIRZ was originally devised in [52] to study the one-loop free energy

of a stringy theory in AdS4 and AdS5 dual to free matrix CFTs. It proved useful in several

related applications [53–56] and generalized to arbitrary dimensions in the companion paper

[57]. In the latter paper, the CIRZ was obtained as a contour integrals of the character

of the representation underlying the AdS theory. This contour integral expression allows

us to handle the dependence on d and ℓ of the partially-massless higher-spin gravity in

an analytic manner. Moreover, both the AdS and CFT quantities reduce to a compact

integral and the match can be demonstrated at the level of the integral, thereby extending

the result of [58] dedicated to the type-Aℓ=1 theory to that of ℓ > 1. As a result, we provide

a test of the type-Aℓ and type-Bℓ dualities for all d and ℓ.

The organization of the paper is as follows. In Section 2, we give a brief overview

of the CIRZ method derived in [57]. In Section 3, we then turn to a review of some key

facts about the field content of type-Aℓ and type-Bℓ theories. We next apply the CIRZ

method to type-Aℓ and type-Bℓ theories to compute the one-loop free energy in Section 4

and Section 5, while a few generalizations of these theories are considered in Section 6.

We finally conclude with a discussion of our results. Appendix A contains the explicit

spectrum of the minimal type-Bℓ theory.

5The test of higher-spin holographic dualities was also extended to the type-C theory [48–51], but we

will not address this case in this paper.
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2 CIRZ Formula and One-Loop Free Energy

In this section we will briefly recollect the CIRZ formulas obtained in the companion paper

[57]. We shall mainly focus on the application of these formulas to extracting the one-loop

free energy of the AdSd+1 theory.

2.1 CIRZ in arbitrary dimensions

To recapitulate briefly, the contribution of a given particle, carrying an so(2, d) irrep

[∆;Y], 6 to the one-loop free energy of the theory is given in terms of the spectral zeta

function ζ[∆;Y](z) as

Γ(1)

[∆;Y] = − ǫ
2
ζ[∆;Y](0) ln(RΛUV)−

ǫ

2
ζ ′[∆;Y](0) , (2.1)

where ǫ is the sign +/− for boson/fermion and R and ΛUV are the AdS radius and an ul-

traviolet (UV) cutoff, respectively. An integral representation of the zeta function ζ[∆;Y](z)

is derived by Camporesi and Higuchi in [59]. The CIRZ reformulates this zeta function as

an integral transform of the character χ
so(2,d)
(∆;Y) (β, ~α). In this way, the CIRZ allows to sum

the zeta functions over fields in a theory using the corresponding characters. If an AdS

theory has a field content carrying a reducible representation H of the isometry algebra

so(2, d), then the zeta function of the theory is given as follows: when d = 2r, it is

ζH(z) = lnR

∫ ∞

0

dβ

Γ(z)2

(
β

2

)2(z−1)

fH(z, β), (2.2)

with

fH(z, β) =

r∑

k=0

∮

C
µ(α)

(

1 +
(
αk

β

)2
)z−1 ∏

06j6r
j 6=k

cosh β − cosαj

cosαk − cosαj
χ
so(2,d)
H (β; ~αk) . (2.3)

We can use this expression to prove, for example, that ζ[∆;Y](0) vanishes identically, which

corresponds to the well-known absence of logarithmic divergences in AdS2r+1 free energy.

This is due to the presence of the 1
Γ(z)2

factor in the expression for ζH(z) above. When

d = 2r + 1, the primary contribution of the zeta function is given by

ζ1,H(z) =

∫ ∞

0

dβ β2z−1

Γ(2z)
f1,H(β), (2.4)

with

f1,H(β) =

r∑

k=0

∮

C
µ(α)

sinh β
2 (cosh

β
2 )

1+ǫ
2 (cos αk

2 )
1−ǫ
2

cosh β − cosαk

×
∏

06j6r
j 6=k

cosh β − cosαj

cosαk − cosαj
χ
so(2,d)
H (β; ~αk) .

(2.5)

6A field in AdSd+1 is labelled by a lowest weight [∆;Y] of so(2, d), the isometry algebra of spacetime.

Here ∆ denotes the minimum energy (or the conformal dimension of the dual CFTd operator), and Y =

(s1, . . . , sr) with r = [ d
2
] (where [x] denotes the integer part of x) is an so(d) lowest weight, i.e. the ‘spin’

of the field.

– 4 –



The difference between the primary contribution and the full zeta function, referred to as

the secondary contribution, can be computed to order z1. In [57], it was shown to be absent

if the character of the spectrum is an even function of β. The higher-spin theories considered

in this work fall into this category, so we will concentrate on the primary contribution in

the following discussions, and omit the subscript 1 in ζ1,H(z) .

2.2 Evaluation of the CIRZ Formula

The expressions of the CIRZ presented above — (2.2) and (2.3) for even d and (2.4) and

(2.5) for odd d — may look rather implicit compared to the explicit derivative expansions

also presented in [57], as the α integrals are left unperformed. In fact, they prove to be

much more useful in actual applications in this paper, with the help of a few tricks that we

shall introduce now. One of the complications in evaluating the αi integral is the presence

of the cyclic permutations over α0, . . . , αr. Each permutation has poles of different orders

in αi and hence contributes differently. These permutations can be simplified if the αi

dependent part of the character can be completely factorized as

χ
so(2,d)
H (β, ~α) = ηH(β)

r∏

i=1

ξH(β, αi) , (2.6)

with a function ξH(β, α) analytic at α = 0. This is the case for the scalar and spinor

representations and their tensor products, thereby applicable to the higher-spin gravity

theories we shall consider in the following sections. With (2.6), the α integral part of the

CIRZ formula can be treated for d = 2r as

r∑

k=0

∮

C
µ(α)

((β
2

)2
+

(
αk

2

)2
)z−1 ∏

06j6r
j 6=k

[
cosh β − cosαj

cosαk − cosαj
ξH(β, αj)

]

=
1

2

∮

C
µ(α)

∮
dw

2π i

((β
2

)2 −
(
w
2

)2
)z−1

sinhw

(cosh β − coshw) ξH(β, iw)

r∏

j=0

[
cosh β − cosαj

coshw − cosαj
ξH(β, αj)

]

=
1

2

∮
dw

2π i

((β
2

)2 −
(
w
2

)2
)z−1

sinhw

(cosh β − coshw) ξH(β, iw)

[
cosh β − 1

coshw − 1
ξH(β, 0)

]r+1

, (2.7)

where the w integration contour encloses w = αi anti-clockwise while excluding ±β. As a
consequence, when the theory under consideration lies in an odd dimensional AdS back-

ground (d + 1 = 2r + 1) and has the character χ
so(2,d)
H (β, ~α) which can be factorized as

(2.6), the zeta function of the theory is

ζH(z) =
lnR

2Γ(z)2

∫ ∞

0
dβ

∮
dw

2π i

((β
2

)2 −
(
w
2

)2
)z−1

sinhw ηH(β)

(cosh β − coshw) ξH(β, iw)

[
cosh β − 1

coshw − 1
ξH(β, 0)

]r+1

,

(2.8)

where the anti-clockwise w contour encloses the origin but excludes ±β. Using the result

of [57], one can further express the first derivative of the zeta function in terms of contour
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integrals, namely

ζ ′H(0) = lnR

∮
dβ

2i π

∮
dw

2π i
ηH(β)

[
ξH(β, 0)

]r+1 ×

× sinhw
(
β2 − w2

)
(cosh β − coshw) ξH(β, iw)

[
cosh β − 1

coshw − 1

]r+1

. (2.9)

For d = 2r + 1, we introduce an analogous trick:

r∑

k=0

∮

C

µ(α)
(
cos αk

2

) 1−ǫ
2

cosh β − cosαk

∏

06j6r
j 6=k

[
cosh β − cosαj

cosαk − cosαj
ξH(β, αj)

]

=

∮

C
µ(α)

∮
dw

2π i

(
w+1
2

) 1−ǫ
4

(cosh β − w)2 ξH(β, arccosw)

r∏

j=0

[
cosh β − cosαj

w − cosαj
ξH(β, αj)

]

=

∮
dw

2π i

(
w+1
2

) 1−ǫ
4

(cosh β − w)2 ξH(β, arccosw)

[
cosh β − 1

w − 1
ξH(β, 0)

]r+1

, (2.10)

where the w contour now encircles w = cosαi but excludes w = cosh β. For the last

equalities in (2.7) and (2.10), the αi integrals are evaluated independently. Consequently,

if the theory is in an even dimensional AdS space (d + 1 = 2r + 2) and has only bosonic

fields, then the primary contribution of the zeta function is

ζH(z) =

∫ ∞

0

dβ

Γ(2z)
β2z−1 sinh β

2

(
cosh β

2

) 1+ǫ
2 ηH(β) ×

×
∮

dw

2π i

(
w+1
2

) 1−ǫ
4

(cosh β − w)2 ξH(β, arccosw)

[
cosh β − 1

w − 1
ξH(β, 0)

]r+1

, (2.11)

where the anti-clockwise w contour encloses w = 1 but excludes w = cosh β. As noted

before, the above zeta function is actually the primary contribution. The secondary con-

tribution can also be arranged in a similar manner, but its contribution always vanishes in

the applications we consider in this paper.

3 Partially Massless Higher-Spin Gravities

For ℓ = 1, the type-Aℓ theory coincides with the usual type-A higher-spin gravity. For ℓ ≥ 2

the theory involves infinitely many partially-massless fields besides the massless ones. In

analogy to the ℓ = 1 case, there are two subclasses: 1) the non-minimal theory containing

fields of all integer spins and 2) the minimal one containing even spin fields only. Similarly,

the type-Bℓ theory coincides with the usual type-B for ℓ = 1 and also admits a minimal

version.

3.1 Type-Aℓ field content and characters

The precise field content of the type-Aℓ higher-spin gravities is dictated by a generalization

of the Flato-Fronsdal theorem [11], that is, the tensor product decomposition rule of the

so-called order-ℓ Rac or scalar singleton module,

Racℓ ≡ D
(
d−2ℓ
2 ; 0

)
, (3.1)
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where D(∆;Y) denotes the irreducible so(2, d) module with lowest weight [∆;Y]. Its char-

acter reads

χ
so(2,d)
Racℓ

(β, ~α) = e−
d−2ℓ

2
β Pd(iβ; ~α) (1− e−2 ℓ β)

=
sinh(ℓ β)

2d−1−r (sinh β
2 )

d−2r

r∏

i=1

1

cosh β − cosαi
, (3.2)

where

Pd(α0; ~α) =
e−i d

2
α0

2d−r

r∏

k=1

1

cosα0 − cosαk
×







1 [even d]

i

sin α0
2

[odd d]
. (3.3)

If one considers applying the CIRZ to the Racℓ itself — even though the module cannot

be realized as an AdS field — we can use the trick introduced in Section 2.2, because the

character of Racℓ can be written as (2.6) with

ηRacℓ(β) =
sinh(ℓ β)

2d−1−r (sinh β
2 )

d−2r
, ξRacℓ(β, α) =

1

cosh β − cosα
. (3.4)

For the quadratic tensor products of Racℓ, the only irreps appearing in the decompo-

sition are D
(
s+ d− t− 1; s

)
, which is the spin-s irrep with the lowest energy s+ d− t− 1.

Its character depends on the value of t as

χ
so(2,d)
[s+d−t−1;s](β; ~α) = e−(s+d−t−1) β Pd(iβ; ~α) ×

×







χ
so(d)
(s) (~α) [ t /∈ {1, . . . , s} ]

χ
so(d)
(s) (~α)− e−β t χ

so(d)
(s−t)(~α) [ t ∈ {1, . . . , s} ]

. (3.5)

This representation corresponds to the spin-s (or totally-symmetric rank-s tensor) field

ϕs = ϕµ1···µs in AdSd+1 whose mass depends on the value of t. For t = 1, . . . , s — where a

submodule structure appears in (3.5) — the gauge symmetry of the field have the schematic

form

δε ϕs = ∇tεs−t , (3.6)

and it is referred to as the spin-s partially-massless field of depth t [12–14, 60–62].7 The

t = 1 case corresponds to the massless field and it is the only unitary irrep.

Non-minimal theory The field content of the non-minimal type-Aℓ higher-spin gravity

is given by the Hilbert space Anon-min
ℓ , isomorphic to the tensor product of two order-ℓ Rac

modules [11],

Anon-min
ℓ

∼= Racℓ
⊗2 ∼=

2ℓ−1⊕

t=1,3,...

∞⊕

s=0

D
(
s+ d− t− 1; s

)
. (3.7)

7The unfolded equation for the free partially-massless fields has been analyzed in [63]. Their cubic

interactions have been studied in [16, 17, 64].
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This spectrum contains the spin s and depth t fields corresponding to D
(
s+ d− t− 1; s

)
.

Note that depending on the value of t, it can be either (partially-)massless or not. The

above decomposition rule can be derived from that of the characters,

χ
so(2,d)

Anon-min
ℓ

(β, ~α) =
(

χ
so(2,d)
Racℓ

(β, ~α)
)2

=

2ℓ−1∑

t=1,3,...

∞∑

s=0

χ
so(2,d)
[s+d−t−1;s](β, ~α) . (3.8)

The above character can be also written as (2.6) with

ηAnon-min
ℓ

(β) =
sinh2(ℓ β)

22(d−1−r) (sinh β
2 )

2(d−2r)
, ξAnon-min

ℓ
(β, α) =

1

(cosh β − cosα)2
, (3.9)

so we can apply the trick of Section 2.2 for the application of the CIRZ method to this

theory.

Minimal theory The field content of the minimal type-Aℓ higher-spin gravity is given

by the Hilbert space Amin
ℓ , isomorphic to the symmetrized tensor product of two order-ℓ

Rac modules,

Amin
ℓ

∼= Racℓ
⊙2 ∼=

2ℓ−1∑

t=1,3,...

∞∑

s=0,2,...

D
(
s+ d− t− 1; s

)
. (3.10)

This spectrum is a truncation of the non-minimal one and contains only even spin fields.

The above decomposition rule can be derived from that of the characters,

χ
so(2,d)

Amin
ℓ

(β, ~α) =
1

2

(

χ
so(2,d)
Racℓ

(β, ~α)
)2

+
1

2
χ
so(2,d)
Racℓ

(2β, 2~α) =

2ℓ−1∑

t=1,3,...

∞∑

s=0,2,4,...

χ
so(2,d)
[s+d−t−1;s](β, ~α) .

(3.11)

Thanks to the linearity between the zeta function and the character, we can separately

apply the CIRZ to the first and second terms after the first equality, then sum the re-

sults. The first term is nothing but the half of the non-minimal theory character, so its

contribution to the zeta function is also the half of the non-minimal one. The second term,

χ
so(2,d)

Amin
ℓ,2nd

(β, ~α) =
1

2
χ
so(2,d)
Racℓ

(2β, 2~α) , (3.12)

can also be written as (2.6) with

ηAmin
ℓ,2nd

(β) =
sinh(2 ℓ β)

2d−r (sinhβ)d−2r
, ξAmin

ℓ,2nd
(β, α) =

1

cosh 2β − cos 2α
. (3.13)

3.2 Type-Bℓ field content and characters

As in the type-Aℓ case, the spectrum of the higher-spin theory is obtained by generalizing

the Flato-Fronsdal theorem [65] to the tensor product of two order-ℓ spin-12 singletons 8

Diℓ ≡ D
(
d+1−2ℓ

2 ; 1
2

)
, (3.14)

8As we shall soon use, in the CFTd this can be realized as an on-shell free conformal (Dirac) spinor ψ

of conformal weight d+1−2ℓ
2

, subject to the polywave equation /∂
2ℓ−1

ψ = 0.
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with

1

2
:=

{

(12 , . . . ,
1
2 ,+

1
2)⊕ (12 , . . . ,

1
2 ,−1

2 ) [d = 2r]

(12 , . . . ,
1
2) [d = 2r + 1]

. (3.15)

In other words, we will consider the parity-invariant spin-12 singleton, the character of

which reads

χ
so(2,d)
Diℓ

(β, ~α) = e−β(d+1−2ℓ
2

)(1− e−(2ℓ−1)β)χ
so(d)
1

2

(~α)Pd(iβ; ~α)

=
sinh(β 2ℓ−1

2 )

2d−2r−1 (sinh β
2 )

d−2r

r∏

i=1

cos αi

2

cosh β − cosαi
. (3.16)

This character can be also written as (2.6) with

ηDiℓ(β) =
sinh(β 2ℓ−1

2 )

2d−2r−1 (sinh β
2 )

d−2r
, ξDiℓ(β, α) =

cos α
2

cosh β − cosα
. (3.17)

The tensor product of two Diℓ decomposes into a direct sum of irreps D
(
s+d−t−1; s, 1m

)
.

Here (s, 1m) with s ≥ 1 and m = 0, . . . , r − 1 is a shorthand notation used to denote the

so(d) weight

(s, 1m) := ( s, 1, . . . , 1
︸ ︷︷ ︸

m terms

, 0, . . . , 0
︸ ︷︷ ︸

r−1−m terms

) . (3.18)

Fields of spin (s, 1m) with m ≥ 1 are the simplest types of mixed-symmetry fields. Note

that this contrasts with the type-Aℓ theories, whose spectrum do not contain any mixed-

symmetry representations. The character of such fields is given by

χ
so(2,d)
[s+d−t−1;s,1m](β; ~α) =e

−β(s+d−t−1) Pd(iβ; ~α)

×







χ
so(d)
(s,1m)(~α) [ t /∈ {1, . . . , s}]

χ
so(d)
(s,1m)(~α)− e−βt χ

so(d)
(s−t,1m)(~α) [ t ∈ {1, . . . , s}]

.
(3.19)

As in the type-Aℓ case, these irreps are unitary only for the t = 1 case. The latter

corresponds to mixed-symmetry massless fields whose study was initiated by Metsaev in

[66–68] (see also [69–80] and references therein). When 1 < t ≤ s, the irreps correspond

to mixed-symmetry partially-massless depth-t AdSd+1 fields [81, 82] which are dual to

partially-conserved mixed-symmetry CFTd currents [83–85]. Finally, when s < t, these

modules correspond to massive AdS fields of minimal energy s+ d− t− 1.

The spectrum of the non-minimal type-Bℓ higher-spin theory is given by the tensor

product of two spin-12 singleton of order-ℓ [65]:

D
(
d+1−2ℓ

2 ; 1
2

)⊗2 ∼=
2(ℓ−1)
⊕

t=−2(ℓ−1)

D
(
d− t− 1; 0

)
⊕

2ℓ−1⊕

t=1

∞⊕

s=1

r−1⊕

m=0

D
(
s+ d− t− 1; s, 1m

)

⊕
2(ℓ−1)
⊕

t=1

∞⊕

s=1

r−1⊕

m=0

D
(
s+ d− t− 1; s, 1m

)
. (3.20)
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The spectrum of the minimal type-Bℓ theory is given by the antisymmetric tensor product

of two spin-12 singleton of order-ℓ. Its explicit content is however more complicated and the

closed form expression is relegated to Appendix A. For the purposes of our computations,

it is sufficient to specify their characters:

χ
so(2,d)

Bnon-min
ℓ

(β, ~α) = χ
so(2,d)

Di⊗2
ℓ

(β, ~α) =
(

χ
so(2,d)
Diℓ

(β, ~α)
)2
, (3.21)

χ
so(2,d)

Bmin
ℓ

(β, ~α) = χ
so(2,d)

Di∧2
ℓ

(β, ~α) = 1
2

(

χ
so(2,d)
Diℓ

(β, ~α)
)2

− 1
2χ

so(2,d)
Diℓ

(2β, 2~α) . (3.22)

From (3.16) and (3.21), we may read off the functions

ηBnon-min
ℓ

(β) =
sinh2(2ℓ−1

2 β)

22(d−2r−1) (sinh β
2 )

2(d−2r)
, ξBnon-min

ℓ
(β, α) =

cos2 α
2

(cosh β − cosα)2
, (3.23)

for the non-minimal type-Bℓ theory. Similarly to the case of the minimal type-Aℓ, the zeta

function of the minimal type-Bℓ is given by two terms corresponding to the last expression

in (3.22). The first one is simply half of the zeta function of the non-minimal theory, and

hence it will prove useful to introduce the quantities

ηBmin
ℓ,2nd

(β) = − sinh
(
(2ℓ− 1)β

)

2d−2r (sinhβ)d−2r
, ξBmin

ℓ,2nd
(β, α) =

cosα

cosh 2β − cos 2α
, (3.24)

for the contribution of the second term.

4 Type-Aℓ higher-spin gravities

Now, we are ready to apply the CIRZ method to the type-Aℓ higher-spin gravity theories.

Using the tricks introduced in Section 2.2, the zeta function can be simplified to the form

of (2.9) and (2.11). In the following, we divide the task into two parts: first, the case of

even d, and then that of odd d.

4.1 AdS2r+1

In odd dimensional AdS, we can use the expression (2.9) for the zeta function. As discussed

in Section 2.2, the zeta function manifestly vanishes at z = 0 due to the presence of

1/Γ(z)2, which is consistent with the well-known fact that odd dimensional theories have

no logarithmic divergences. On the other hand, the derivative of the zeta function at z = 0

is given by a contour integral in β around the origin. In the following, we shall directly

focus on the derivative of the zeta function.

Non-minimal theory Inserting the functions (3.9) into (2.9), we obtain

ζ ′
Anon-min

ℓ

(0) =
lnR

22r−2

∮
dβ

2π i

∮
dw

2π i

1

β2 − w2

sinh2(ℓ β) sinhw (cosh β − coshw)

(cosh β − 1)r+1 (coshw − 1)r+1
. (4.1)

Due to the fact that the integrand is an even function of β, the contour integral trivially

vanishes, and hence we conclude that

ζ ′Anon-min
ℓ

(0) = 0 . (4.2)
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Let us remark one subtlety in transforming the real β integral (2.9) to the contour one

(4.1): the integrand behaves as e−β(d
2
−2ℓ) when β → ∞, and therefore the integral over

real β would diverge unless ℓ < d
4 .

9 This divergence can be traced back to the Camporesi-

Higuchi formula [59] where the u-integral diverges as u → 0 for ∆̄ = ∆ − d
2 = 0. In the

type-Aℓ higher-spin gravity theories, the spin-s and depth-t fields have ∆ = s + d − t − 1

with t = 1, 3, . . . , 2ℓ− 1. Therefore, this type of singularity arises unless ∆ > d
2 for all spin

s, which is equivalent to ℓ < d
4 . The remedy we adopt for this divergence, both on the AdS

and the CFT side, is to work with a value of ℓ such that the β integrals converge, and then

analytically continue the obtained results to arbitrary values of ℓ. This regularization is

consistent with the one used in [42, 43] for the ℓ = 1 case.

Minimal theory The zeta function of the minimal type-Aℓ higher-spin gravity has two

parts. The first part is equal to the half of the zeta function of the minimal theory. Since

we have just shown that the minimal theory gives a vanishing zeta function, up to the

physically relevant order of O(z2) , we focus on the second part with the character (3.12).

Substituting (3.13) into (2.9), we arrive at

ζ ′
Amin

ℓ

(0) =
lnR

22r

∮
dβ

2π i

∮
dw

2π i

1

β2 − w2

sinh(2 ℓ β) sinhw (cosh β + coshw)

(cosh β + 1)r+1 (coshw − 1)r+1
. (4.3)

The contour integral with respect to w contains an order 2r + 2 pole at w = 0, and hence

is rather cumbersome to evaluate for an arbitrary r. Instead, we can first perform the β

contour which contains only two simple poles at β = ±w. Then, we end up with the w

integral

ζ ′
Amin

ℓ

(0) =
lnR

22r−1

∮
dw

2π iw

sinh(2 ℓw) coshw

(sinhw)2r+1
. (4.4)

The evaluation of the above gives a polynomial in ℓ of order 2r + 1. Later, we will show

that the same contour integral appears from the CFT zeta function.

Order-ℓ Rac module It is interesting to compare the result (4.4) of the minimal theory

with that of the order-ℓ Rac module Racℓ. Since the CIRZ formula is defined for any

so(2, d) character, one can consider the AdS zeta function of Racℓ by treating the module

as if it can be realized as an AdS field. Inserting (3.4) into (2.9), the derivative of the zeta

function for Racℓ is given by

ζ ′Racℓ
(0) =

lnR

2r−1

∮
dβ

2π i

∮
dw

2π i

1

β2 −w2

sinh(ℓ β) sinhw

(coshw − 1)r+1
. (4.5)

Again evaluating the β integral first, we obtain

ζ ′Racℓ
(0) =

lnR

22r−1

∮
dw

2π iw

sinh(ℓw) cosh w
2

(sinh w
2 )

2r+1
, (4.6)

which coincides with (4.4) upon the rescaling of the variable w.

9This bound is somewhat surprising, as it is in fact more constraining than the bound ℓ < d
2
found on the

CFT side for the convergence of the zeta function (see the discussion below (4.25) in the next subsection).
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4.2 AdS2r+2

We now turn to the case of even dimensional AdS where we will use the expression (2.11) for

the zeta function. We emphasize again that in general there is an additional contribution

to the zeta function, which identically vanishes to O(z2) for the Type-Aℓ theories as their

character is an even function of β.

Non-minimal theory Inserting the functions (3.9) into (2.11), we obtain

ζAnon-min
ℓ

(z) =
1

22r+1

∫ ∞

0

dβ

Γ(2z)

∮
dw

2π i

β2z−1 sinh β sinh2(ℓβ)

sinh2 β
2 (cosh β − 1)r+1(w − 1)r+1

. (4.7)

It is simple to check that the w integral vanishes. Consequently, the (primary contribution)

of the zeta function simply vanishes:

ζAnon-min
ℓ

(z) = 0 . (4.8)

Minimal theory The character for the minimal theory is given by (3.11). From the

analysis for the non-minimal theory we saw already that the contribution to the zeta

function vanishes up to O
(
z2
)
terms. We only need to apply the CIRZ to the second term

(3.12) to obtain the zeta function for the minimal theory. Applying (3.13) to (2.11) we

obtain

ζAmin
ℓ,2nd

(z) =
1

22r+2

∫ ∞

0

dβ

Γ(2z)

∮
dw

2π i

β2z−1 sinh(2 ℓ β) (cosh β +w)

(cosh β − w) (cosh β + 1)r+1 (w − 1)r+1
. (4.9)

We can evaluate the w integral (for r > 1) as

∮
dw

2π i

cosh β + w

cosh β − w

1

(w − 1)r+1
=

2 cosh β

(cosh β − 1)r+1
. (4.10)

Hence, the zeta function for the non-minimal theory reduces to

ζAmin
ℓ

(z) =
1

22r+1

∫ ∞

0

dβ

Γ(2z)

β2z−1 sinh(2 ℓ β) cosh β

(sinh β)2r+2
. (4.11)

Therefore, one can easily conclude that the zeta functions vanish at z = 0,

ζAmin
ℓ

(0) = 0 , (4.12)

from the fact that the integrand is an even function of β for z = 0. Let us postpone the

extraction of the derivative of the zeta function from the integral (4.11) for a while, because

the integral (4.11) itself can be matched to the CFT side.

Order-ℓ Rac module As a prelude to the explicit computation on the CFT, we also

follow the AdS2r+1 analysis and formally treat the Racℓ module as a field in AdS2r+2 and

compute its one-loop determinant and hence free energy. Substituting (3.4) into (2.11), we

obtain

ζRacℓ(z) =
1

2r+1

∫ ∞

0

dβ

Γ(2z)

∮
dw

2π i

β2z−1 sinh(ℓ β) sinhβ

sinh β
2 (cosh β − w) (w − 1)r+1

. (4.13)
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After the w integral, it becomes

ζRacℓ(z) =
1

22r+1

∫ ∞

0

dβ

Γ(2z)

β2z−1 sinh(ℓ β) cosh β
2

(sinh β
2 )

2r+2
, (4.14)

and hence can be related to the minimal model zeta function as

ζRacℓ(z) = 4z ζAmin
ℓ

(z) . (4.15)

Since these zeta functions vanish at z = 0, the above implies that their first derivatives at

z = 0 coincide with each other.

4.3 CFTd

In the previous subsection, we have shown that for any d, the zeta function of the non-

minimal type-Aℓ higher-spin gravity in AdSd+1 vanishes up to O(z2), and hence so does

its one-loop free energy. This confirms the AdS/CFT duality that we reviewed in the be-

ginning of the current section. We obtained an integral expression for the zeta function of

the non-minimal theory, which coincides with that of the order-ℓ Rac module. Since it is

not obvious whether or not the AdSd+1 free energy for Racℓ would be the same as the Sd

free energy of the order-ℓ free scalar, we calculate hereafter the free energy of the latter.

Notice that this calculation has been carried out previously 10 in [21] for odd dimensions up

to d = 13 and ℓ = 1, 2, 3 (whereas previous computations for the unitary conformal scalar

field, i.e. ℓ = 1, can be found in e.g. [88–90]). We will start by revisiting the computation

of the Racℓ zeta function, so as to express it in term of the character of the order-ℓ scalar.

The order-ℓ scalar singleton in d-dimensions can be realized as a free conformal scalar

field defined by a 2ℓ-derivative action. In flat space, the action reads

SRacℓ [φ] =

∫

ddxφ�ℓ φ , (4.16)

where we can see that the conformal weight of φ is d−2ℓ
2 . When the background is a

d-dimensional sphere, the action becomes 11

SRacℓ [φ] =

∫

ddx
√
g φ

ℓ∏

k=1

(

∇2
Sd − (d2 − k)(d−2

2 + k)
)

φ . (4.17)

where ∇2
Sd is the Laplace-Beltrami operator on the d-dimensional unit sphere. The eigen-

values of ∇2
Sd acting on scalar fields on Sd are −n(n + d − 1) with n ∈ N, and hence the

eigenvalues λ
(ℓ)
n of the order-2ℓ wave operator in the action are the product

λ(ℓ)n =

2ℓ−1∏

k=0

λ
(ℓ)
n,k , λ

(ℓ)
n,k := d−2ℓ

2 + n+ k . (4.18)

10See also [86] for computations of the Rényi entropies and central charges of the higher-order scalar and

spinor singletons, as well as [87] for computations of their Casimir energy.
11For generic Einstein manifolds, the action requires specific conformal couplings, which have been de-

termined in [91–94].
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The degeneracies dn for a given n is independent of ℓ and given by

dn =
(d+ 2n − 1) (d+ n− 2)!

n! (d− 1)!
≡ dim

so(d+1)
(n) . (4.19)

This information implies that the free energy of (4.17) is a divergent series:

FRacℓ =
1

2

∞∑

n=0

dn lnλ(ℓ)n =
1

2

2ℓ−1∑

k=0

∞∑

n=0

dim
so(d+1)
(n) lnλ

(ℓ)
n,k . (4.20)

We can regularize the series through the zeta function method as in the bulk theory. Hence,

we will consider the zeta function 12

ζ (d)

Racℓ
(z) =

2ℓ−1∑

k=0

∞∑

n=0

dim
so(d+1)
(n)

(

λ
(ℓ)
n,k

)−z
. (4.21)

Following (2.1), the free energy can be related to the zeta function as

FRacℓ = −1

2
ζ (d)

Racℓ
(0) ln (RΛUV)−

1

2
ζ (d)

Racℓ

′
(0) . (4.22)

Here ΛUV is a UV cutoff which is multiplied to the radius R of Sd for dimensional reasons.

It is suppressed in the expressions that follow. We have used the notation ζ (d)

Racℓ
(z) to stress

that the zeta function is computed on Sd. This is a priori different from the AdS zeta

function ζRacℓ(z).

Now, we shall re-express the zeta function (4.21) as a Mellin integral form. First, we

transform it into

ζ (d)

Racℓ
(z) =

∫ ∞

0

dβ

Γ(z)
βz−1

2ℓ−1∑

k=0

∞∑

n=0

dim
so(d+1)
(n) e−(d−2ℓ

2
+n+k)β , (4.23)

then perform the summation over k and n using the identity,

∞∑

n=0

dim
so(d+1)
(n) e−nβ = (1− e−2β)Pd+1(iβ; 0) = (1 + e−β)Pd(iβ; 0) . (4.24)

Finally, the zeta function can be written as

ζ (d)

Racℓ
(z) =

∫ ∞

0

dβ

Γ(z)
βz−1 e−β(d−2ℓ

2
) 1− e−2βℓ

1− e−β
(1 + e−β)Pd(iβ; 0)

=

∫ ∞

0

dβ

Γ(z)
βz−1 coth β

2 χ
so(2,d)
Racℓ

(β,~0), (4.25)

12Remark also that the replacement of lnA by A−z in the zeta function regularization can be done at

various stages. For instance, ln(A1A2 · · · ) can be directly replaced by (A1A2 · · · )−z or first decomposed

into ln(A1) + ln(A2) + · · · then replaced by (A1)
−z + (A2)

−z + · · · . Different choices sometimes give

different results, and this phenomenon is referred to as “multiplicative anomaly”. The choice we make is

the replacement after full decomposition of the logarithms. See e.g. [46] and references therein.
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or more explicitly

ζ (d)

Racℓ
(z) =

1

2d−1

∫ ∞

0

dβ

Γ(z)

βz−1 sinh(ℓ β) cosh β
2

(sinh β
2 )

d+1
. (4.26)

The above integral behaves as e−
d−2ℓ

2
β asymptotically for large β, and hence it is convergent

as long as ℓ < d
2 , or equivalently, the conformal weight of Racℓ is positive. One can still

consider the case with the negative conformal weight as an analytic continuation in ℓ or d.

Furthermore, we can explicitly evaluate (4.25) in terms of the Lerch transcendent Φ(p, z, a):

ζ (d)

Racℓ
(z) =

1

d!

( ∂

∂p

)d [

Φ(p, z,−d+2 ℓ
2 )− Φ(p, z,−d−2 ℓ

2 )

+Φ(p, z, 1− d+2 ℓ
2 )− Φ(p, z, 1− d−2 ℓ

2 )
]

p=1
. (4.27)

Note that the above expression holds for both even and odd d. Since ∂np Φ(p, z, a)|p=1

reduces to a sum of Hurwitz-zeta function ζ(z − k, a) with k = 0, . . . , n, the right hand

side of the equality in (4.27) can be expressed as a linear combination of Hurwitz zeta

functions. Eventually, we can take the first derivative in z. For the further analysis, we

need to distinguish again the case in even dimensions from that in odd dimensions.

4.3.1 CFT2r

In even boundary dimensions, i.e. when d = 2r, we can obtain ζ (2r)

Racℓ
(0) from (4.25) as the

contour integral

ζ (2r)

Racℓ
(0) =

1

22r−1

∮
dβ

2π i β

sinh(ℓ β) cosh β
2

(sinh β
2 )

2r+1
. (4.28)

By comparing it with ζ ′
Amin

ℓ

(0) in (4.4), we find that the two contour integral expressions

coincide up to lnR :

ζ ′Amin
ℓ

(0) = lnRζ (2r)

Racℓ
(0) = −2 lnRaRacℓ , (4.29)

where ζ (2r)

Racℓ
(0) is related to the Weyl anomaly a coefficient by aRacℓ = −1

2 ζ
(2r)

Racℓ
(0). We do

not need the explicit values of the integrals (4.4) and (4.28), but they can be evaluated

readily by computing the residue of the integrand in (4.28)

ζ (2r)

Racℓ
(0) =

1

(2r)!

( d

dβ

)2r
[

β2r

22r−1

sinh(ℓ β) cosh β
2

(sinh β
2 )

2r+1

] ∣
∣
∣
∣
∣
β=0

. (4.30)

The corresponding a-anomaly coefficients in a few low-d cases are summarized in Table 1.

4.3.2 CFT2r+1

In odd boundary dimensions, i.e. when d = 2r + 1, we first find that the zeta function of

the order-ℓ scalar on Sd is related to the primary contribution of the zeta function of the

type-Aℓ minimal higher-spin gravity as

ζAmin
ℓ

(z) = 2−2z−1 ζ (2r)

Racℓ
(2z) . (4.31)
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d aRacℓ

2 −1
3ℓ

3

4 1
180ℓ

3(5− 3ℓ2)

6 − 1
7560ℓ

3(28 − 21ℓ2 + 3ℓ4)

8 1
907200 ℓ

3(540 − 441ℓ2 + 90ℓ4 − 5ℓ6)

10 − 1
59875200 ℓ

3(6336 − 5412ℓ2 + 1287ℓ4 − 110ℓ6 + 3ℓ8)

Table 1: Summary of a-anomaly coefficients for the order-ℓ real scalar in low dimensions.

These zeta functions vanish at z = 0 because the integrand of the contour integral is an

even function:

ζ (2r+1)

Racℓ
(0) = 0 . (4.32)

This is of course a general property of even dimensional theories. Moving to the derivative

of the zeta function, we find

ζ ′
Amin

ℓ

(0) = ζ (2r+1)

Racℓ
′(0) . (4.33)

As already noticed in [21], the free energy of the minimal type-Aℓ higher spin gravity

or the order-ℓ scalar CFT develops an imaginary part for ℓ > d
2 . For instance, in d = 3

dimensions, we find

ζ ′
Amin

ℓ

(0) = ζ (3)

Racℓ
′(0) = −1

8

(
2
3 ℓ (4ℓ

2 − 1) ln 2− 3ℓ

π2
ζ(3)

)

− i
π

12
ℓ2(ℓ2 − 1) . (4.34)

From the CFT point of view, the imaginary number arises from the terms in the summand

with negative eigenvalue λ(ℓ)

n,k (4.18) in the free energy (4.20) or equivalently, in the zeta

function (4.21). Clearly, this happens when d−2ℓ
2 = r − ℓ + 1

2 < 0. By introducing

m = ℓ− r − 1, we can write the imaginary part as the finite sum

i Im(FRacℓ) = i
π

2

m∑

k=0

m−k∑

n=0

dim
so(2r+2)
(n) . (4.35)

Performing the summation, we obtain

i Im(FRacℓ) = i
π

(2r + 2)!

r∏

n=0

(ℓ2 − n2) . (4.36)

Notice that the imaginary part vanishes for 1 6 ℓ 6 r, which is consistent with the previous

discussion. From the AdS point of view, the imaginary part appears from the finite subset

of the spectrum with negative ∆. For such fields, the β integral in the zeta function is not

convergent in the large β region.
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4.4 “Generalized” free energy from the AdS perspective

An expression for the “generalized” sphere free energy F̃ was (defined and) proposed in

[95] (see also [96] for a generalization). It interpolates between (−1)d/2 π
2 times the Weyl

anomaly coefficient in even dimensions and (−1)(d−1)/2 times the free energy in odd dimen-

sions. For the unitary conformal scalar, i.e. whose conformal weight is d−2
2 , this quantity

is given by

F̃ =
1

Γ(d+ 1)

∫ 1

0
dxx sin(πx) Γ(d2 − x) Γ(d2 + x) . (4.37)

It was shown in [58] that the free energy of the minimal type-A theory in AdSd+1 was

simply related to the above quantity. On top of that, this expression is analytic in the

d and therefore admits an extension to non-integer dimensions. Below, we will present

another derivation of (4.37) from AdS and extend it to the case of the partially-massless

type-Aℓ theories
13.

Our derivation is based on the observation that the one-loop free energy of the minimal

type-Aℓ theories coincides with that of the Racℓ singleton in AdSd+1,

ζ ′Amin
ℓ

(0) = ζ ′Racℓ
(0) , (4.38)

in all dimensions, as shown previously in (4.6) and (4.15). This field corresponds to the

so(2, d) module defined as the following quotient

D
(
d−2ℓ
2 ; 0

) ∼=
V
(
d−2ℓ
2 ; 0

)

V
(
d+2ℓ
2 ; 0

) , (4.39)

and hence its zeta function in anti-de Sitter spacetime reads

ζRacℓ(z) = ζ[ d−2ℓ
2

;0](z)− ζ[ d+2ℓ
2

;0](z) . (4.40)

As recalled in [57], we can express the first derivative of the AdSd+1 zeta function as a

spectral integral. More precisely, for d = 2r,

ζ ′[∆;Y](0) = − lnR

∫ ∆− d
2

0
dx dim

so(d+2)

(−x− d
2
,Y)

= −ζ ′[d−∆;Y](0) , (4.41)

whereas for d = 2r + 1

ζ ′[∆;Y](0)− ζ ′[d−∆;Y](0) = π

∫ ∆− d
2

0
dx tan(π x) dim

so(d+2)

(−x− d
2
,Y)
, (4.42)

for a bosonic representation. Applying the above expressions to the Racℓ singleton yields

• For d = 2r,

ζ ′
[ d−2ℓ

2
;0]
(0) = lnR

∫ ℓ

0
dx dim

so(d+2)

(−x− d
2
,0)

= −ζ ′
[ d+2ℓ

2
,0]
(0) , (4.43)

which leads to

ζ ′Racℓ
(0) = 2 lnR

∫ ℓ

0
dx dim

so(d+2)

(−x− d
2
,0)

; (4.44)

13Notice that the same result was obtained differently in [97] for arbitrary dimensions and ℓ.

– 17 –



• For d = 2r + 1,

ζ ′Racℓ
(0) = −π

∫ ℓ

0
dx tan(π x) dim

so(d+2)

(−x− d
2
,0)
. (4.45)

One can recast the Weyl dimension formula involved in the above integrals as

dim
so(d+2)

(−x− d
2
,0)

= (−1)r+1 2x

π Γ(d+ 1)
Γ(d2 − x) Γ(d2 + x)

{

sin(π x) [d = 2r]

cos(π x) [d = 2r + 1]
, (4.46)

so that we obtain

ζ ′Racℓ
(0) =

2 vd
Γ(d+ 1)

∫ ℓ

0
dxx sin(π x) Γ(d2 − x) Γ(d2 + x) , (4.47)

with

vd =







(−1)
d
2
+1 2

π
lnR [d = 2r]

(−1)
d−1
2 [d = 2r + 1]

. (4.48)

Note that (4.47) reproduces the generalized free energy (4.37) up to the factor 2 vd, which

distinguishes even and odd d. 14 It is possible to unify the two cases and even extend it to

any real values of d by replacing vd as

vd → ṽd =
1

sin(π d
2 )

, (4.49)

as was done in [58, 95]. In the limit d goes to an odd integer, the new factor ṽd reproduces

vd without any divergence. However, ṽd diverges in the even d limit. If we identify the

pole with the factor − lnR in vd, then the residue correctly reproduces the other factor

(−1)
d
2

2
π in vd. As explained in [58], the replacement (4.49) amounts to taking an alternative

regularization for the AdS volume. Hence, the zeta function (4.47) with ṽd (and the

corresponding one-loop free energy) reproduces the usual results for any integer d and is

generalized to non-integer values of d.

5 Type-Bℓ higher-spin gravities

We now turn to the holographic duality involving the type-Bℓ higher-spin gravity. We will

follow the discussion of the previous section.

5.1 AdS2r+1

Non-Minimal Theory We begin with the non-minimal case. Inserting the functions

(3.23) into (2.9), we find that

ζ ′
Bnon-min

ℓ

(0) = lnR

∮
dβ

2π i

∮
dw

2π i

4 sinh2
(
2ℓ−1
2 β

)
sinhw (cosh β − coshw)

(β2 − w2) cosh2 w
2 (coshw − 1)r+1 (cosh β − 1)r+1

.

(5.1)

14The integral in (4.47) is finite but the integrand diverges due to the poles of the Gamma function at

x −
d
2
∈ N which arise for ℓ > d

2
and d /∈ 2N. These poles are in fact responsible for the imaginary part of

the free energy.
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For the same reason as in the type-Aℓ case, i.e. the fact that the integrand of the above

integral is an even function of β, we have

ζ ′
Bnon−min

ℓ

(0) = 0 , (5.2)

and hence the one-loop free energy vanishes for the non-minimal type-Bℓ theory. Notice

that the β integrand behaves as e−β(d
2
−2ℓ+1) when β → ∞ and therefore converges for

ℓ < d+2
4 . As in the case of the type-Aℓ theory, this source of divergence can be traced back

to the fact that the Camporesi-Higuchi zeta function is singular for ∆̄ = 0. Indeed, the

scalar fields in the spectrum of the type-Bℓ theory have a minimal energy ∆ given by

∆ = d− t− 1 , 0 6 |t| 6 2(ℓ− 1) , (5.3)

whereas for fields with spin-(s, 1m) and s > 1 this minimal energy reads

∆ = s+ d− t− 1 , 1 6 t 6 2ℓ− 1 , (5.4)

therefore in order for the spectrum to be devoid of fields with ∆̄, one has to require ℓ < d+2
4 .

We will consider the analytic continuation in ℓ of the zeta function.

Minimal theory We now turn to the minimal type-Bℓ theory for which the character

is given by (3.22). The contribution of the first term in (3.22) has already been shown to

vanish, which leaves us with the contribution of the second term alone. Using (3.24), the

relevant contour integral to be computed, meaning the contribution of −1
2 χ

so(2,d)
Diℓ

(2β; 2~α),

reads

ζ ′Bmin.
ℓ

(0) = − lnR

2r

∮
dβ

2πi

∮
dw

2πi

sinh
(
(2ℓ− 1)β

)
tanhw (cosh β + coshw)

(β2 − w2) (coshw − 1)r+1 (cosh β + 1)r+1
. (5.5)

Again we carry out the β integral and find that

ζ ′Bmin.
ℓ

(0) = − lnR

2r−1

∮
dw

2πiw

sinh
(
(2ℓ− 1)w

)

(sinhw)2r+1
, (5.6)

which reduces to a polynomial in ℓ of order 2r+1 after evaluation, as in the type-Aℓ case.

Chiral type-Bℓ,± For d = 2r, one can consider a chiral Diℓ singleton, i.e. Weyl spinor

carrying spin (12 , . . . ,
1
2 ,±1

2 ) instead of the direct sum of the two, namely Dirac spinor. The

character of such a conformal field reads

χ
so(2,d)
Diℓ,±

(β, ~α) = sinh(2ℓ−1
2 β)

r∏

j=1

cos
αj

2

cosh β − cosαj
± cosh(2ℓ−1

2 β)

r∏

j=1

i sin
αj

2

cosh β − cosαj
. (5.7)

The type-Bℓ,± model or its minimal version is the higher-spin theories whose spectrum

are respectively given by the tensor product or plethysm of the above character (see

Appendix A.2.1). One can already see that the computation of their zeta functions will

only involve the first part of (5.7). This is because the second term takes the form

η(β) = cosh(2ℓ−1
2 β) , ξ(β, α) =

i sin α
2

cosh β − cosα
. (5.8)
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Inserting this into (2.9) we see that the resulting contribution to the zeta function vanishes

due to the fact that ξ (β, 0) = 0. Consequently, only the first term in (5.7) will contribute.

This term is actually half of the character of the parity-invariant Diℓ singleton used in the

previous computations, and hence we can conclude that

ζ ′Bℓ,±
(0) = 0 , ζ ′

Bmin.
ℓ,±

(0) =
1

2
ζ ′
Bmin.

ℓ

(0) . (5.9)

This generalizes the result of [48].

Order-ℓ Di module Paralleling the discussion in the previous section, let us compute

the one-loop free energy of the Diℓ singleton in AdS2r+1. Substituting (3.16) into (2.9)

yields

ζ ′Diℓ
(0) = 4 lnR

∮
dβ

2π i

∮
dw

2π i

sinh w
2 sinh(2ℓ−1

2 β)
(
β2 − w2

)
(coshw − 1)r+1

. (5.10)

After evaluating the β integral, we end up with

ζ ′Diℓ
(0) =

lnR

2r−1

∮
dw

2π i

sinh(2ℓ−1
2 w)

w (sinh w
2 )

2r+1
(5.11)

which is related to ζ ′
Bmin

ℓ

(0) by a simple minus sign (up to a rescaling of the integration

variable of the above contour integral).

5.2 AdS2r+2

Non-Minimal Theory We next turn to the case of (non-minimal) type-Bℓ theories in

even dimensional AdS space, whose character is given by the square of the order-ℓ spin-
1
2 singleton χ

so(2,d)
Diℓ

(β; ~α) defined in (3.16). Using (3.23) in (2.11), we find that the zeta

function is given by

ζBnon-min
ℓ

(z) =
(−1)r

22r+1

∫ ∞

0
dβ

β2z−1

Γ(2z)

cosh β
2 sinh2(2ℓ−1

2 β)

(sinh β
2 )

2r+3
. (5.12)

In terms of derivatives of the Lerch transcendent, the above zeta function reads

ζBnon-min
ℓ

(z) =
(−1)r

2 (d + 1)!
∂d+1
p

[

Φ(p, 2z,−2ℓ− r) + Φ(p, 2z, 1 − 2ℓ− r)

− 2Φ(p, 2z,−1 − r)− 2Φ(p, 2z,−r) + Φ(p, 2z,−2 + 2ℓ− r)

+ Φ(p, 2z,−1 + 2ℓ− r)
]∣
∣
∣
p=1

.

(5.13)

The derivative of the above zeta function does not vanish, so it does not follow the pattern

of the holographic dualities of the other higher-spin theories. Moreover, by comparing

the above expression15 with the CFT results below, (5.31) and (5.32), we do not find any

simple relation between the one-loop free energies of AdS and CFT.

15Let us mention one subtlety in evaluating ζ′
Bnon-min

ℓ

(0) from (5.13). The right hand side of the equality

in (5.13) can be further expanded as a linear combination of ζ(2z − n, a) for some n and a. However, the

Hurwitz zeta function ζ(z, a) is not defined for Re(z) > 0 and −a ∈ N, and hence the derivative of the zeta

function should be evaluated by taking the limit z → 0 from the negative Re(z).
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Minimal Theory The zeta function of the minimal type-Bℓ theory can be obtained by

adding the contribution of the second term in (3.22) to half of the non-minimal theory zeta

function. This second contribution can be computed by inserting (3.24) into (2.11) so as

to give

ζBmin
ℓ,2nd

(z) = − 1

2r+2

∫ ∞

0

dβ

Γ(2z)
β2z−1 sinh

(
(2ℓ− 1)β

)

(cosh β + 1)r+1

∮
dw

2π i

cosh β + w

(cosh β − w)w

1

(w − 1)r+1
.

(5.14)

The previous contour integral is given by the residue in w = 1 of the above integrand,

which reads
∮

dw

2π i

cosh β + w

(cosh β − w)w

1

(w − 1)r+1
= (−1)r +

2

(cosh β − 1)r+1
, (5.15)

and hence we end up with

ζBmin
ℓ,2nd

(z) = − 1

22z+r+1

∫ ∞

0

dβ

Γ(2z)
β2z−1 sinh

(
2ℓ−1
2 β

)

(sinh β
2 )

2r+2

(

1 + (−2)r (sinh β
4 )

2r+2
)

. (5.16)

As in the previous cases, one can recast the above expression into a linear combination of

derivatives of the Lerch transcendent, namely

ζBmin
ℓ,2nd

(z) = − 2−2z+r

(2r + 1)!

( ∂

∂p

)2r+1
[

Φ(p, 2z,−r + 1
2 − ℓ)− Φ(p, 2z,−r − 1

2 + ℓ) (5.17)

+
(−1)r

2r+2

2r+2∑

k=0

(−1)k
(
2r + 2

k

)
(
Φ(p, 2z, k−3r

2 − ℓ)− Φ(p, 2z, k−3r
2 + ℓ− 1)

)
]

p=1

.

This formula reproduces the previously obtained results [47, 48], but unfortunately does

not seems to coincide with any CFT quantity.

Order-ℓ Di module To conclude the story in the AdS side, let us compute the zeta

function with the character of Diℓ. Substituting (3.17) into (2.11), we obtain

ζDiℓ(z) =

∫ ∞

0

dβ

Γ(2z)

∮
dw

2π i

β2z−1 sinh(2ℓ−1
2 β)

(cosh β − w) (w − 1)r+1
. (5.18)

After the w integral, it becomes

ζDiℓ(z) =
1

2r+1

∫ ∞

0

dβ

Γ(2z)

β2z−1 sinh(2ℓ−1
2 β)

(sinh β
2 )

2r+2
. (5.19)

Notice that the above zeta function does not enjoy a relation like (4.15) of the Racℓ case be-

cause of the second term proportional to (−2)r in (5.18). Strangely, the latter contribution

can be removed by including the pole at w = 0 in (5.15).
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5.3 CFTd

In the previous subsection, we have shown that the zeta function of the non-minimal type-

Bℓ higher-spin gravity in AdS2r+1 is of order O(z2), which implies that its one-loop free

energy vanishes and therefore confirms the AdS/CFT duality reviewed previously. We were

also able to obtain an integral expression for the zeta function of the minimal theory, which

coincides with that of the order-ℓ Di module. We will relate this expression to that of the

a-anomaly coefficient of the Diℓ singleton in the following subsection. Besides the even d

analysis, we will also compute the free energy of the order-ℓ spin-12 singleton on the odd-

dimensional sphere and thereby show that it is not simply related to the (non-vanishing)

one-loop free energy of the non-minimal type-Bℓ theory in AdS2r+2 computed previously.

The order-ℓ spin-12 singleton in d-dimensions is a free conformal spinor field of confor-

mal weight d+1−2ℓ
2 , described by the action

SDiℓ [ψ] = i

∫

ddx ψ̄ /∂
2ℓ−1

ψ . (5.20)

For Einstein manifolds, the extension of this order-(2ℓ− 1) Dirac operator was worked out

in [98, 99] and in the case of the d-dimensional sphere it can be factorized as follows:

/∂
2ℓ−1 →

2(ℓ−1)
∏

k=0

(
/∇Sd − (ℓ− 1− k)

)
, (5.21)

where /∇Sd is the Dirac operator on the d-sphere. The eigenvalues of /∇Sd acting on a Dirac

spinor are ±(n+ d
2) for n ∈ N, where the sign ± refers to the upper and lower components

of the spinor field [100]. The eigenvalues to be considered in the definition of the zeta

function are therefore

λ
(ℓ)
n,± = ±

2(ℓ−1)
∏

k=0

λ
(ℓ)
n,k , λ

(ℓ)
n,k := d+1−2ℓ

2 + 1
2 + n+ k , (5.22)

whose degeneracies are given by

d
λ
(ℓ)
n,±

=
2r (n+ d− 1)!

n! (d− 1)!
≡ dim

so(d+1)

(n+ 1
2
, 1
2
)
. (5.23)

Notice that (n+ 1
2 ,

1
2 ) in the above equation denotes the so(d+1) irreducible representation

defined by the highest weight

(n+ 1
2 ,

1
2 , . . . ,

1
2

︸ ︷︷ ︸

r−1

) , for d = 2r, (5.24)

and

(n+ 1
2 ,

1
2 , . . . ,

1
2

︸ ︷︷ ︸

r−1

,±1
2) , for d = 2r + 1 . (5.25)

This leads to the following zeta function

ζ
(d)
Diℓ

(z) = 2

2(ℓ−1)
∑

k=0

∞∑

n=0

dim
so(d+1)

(n+ 1
2
, 1
2
)

(

λ
(ℓ)
n,k

)−z
. (5.26)
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Notice that the overall factor 2 in the above equation comes from the fact that we take

into account the contribution of both the upper and lower components, i.e. we hereafter

consider a complex spinor. Results for a Majorana spinor (available in d = 2, 3, 4, 8, 9 mod

8) follow simply by dividing the quantities computed in this section by 2. The free energy

of the Diℓ singleton is given by

FDiℓ = −2

2(ℓ−1)
∑

k=0

∞∑

n=0

dim
so(d+1)

(n+ 1
2
, 1
2
)
lnλ

(ℓ)
n,k , (5.27)

and is therefore related to the zeta function (5.30) through:

FDiℓ = ζ
(d)
Diℓ

′
(0) . (5.28)

Upon using
∞∑

n=0

e−βn χ
so(d+1)

(n+ 1
2
, 1
2
)
(~α)

∣
∣
~α=~0

=
[

Pd+1(iβ; ~α)χ
so(d)
1

2

(~α)
]

~α=~0
, (5.29)

we can also express the zeta function (5.30) as a Mellin transform:

ζ
(d)
Diℓ

(z) = 2

2(ℓ−1)
∑

k=0

∞∑

n=0

[
χ
so(d+1)

(n+ 1
2
, 1
2
)
(~α)

]

~α=~0

∫ ∞

0

dβ

Γ(z)
βz−1 e−βλ

(ℓ)
n,k

= 2

∫ ∞

0

dβ

Γ(z)
βz−1 e−β/2

1− e−β
e−β(d+1−2ℓ

2
)(1− e−β(2ℓ−1))

[
χ
so(d)
1

2

(~α)Pd(iβ; ~α)
]

~α=~0

=

∫ ∞

0

dβ

Γ(z)
βz−1 1

sinh β
2

χ
so(2,d)
Diℓ

(β,~0) . (5.30)

More explicitly, we have

ζ
(d)
Diℓ

(z) =
1

2d−r−1

∫ ∞

0

dβ

Γ(z)
βz−1 sinh(

2ℓ−1
2 β)

(sinh β
2 )

d+1
. (5.31)

Now using the Lerch transcendent, we can rewrite the above expression as

ζ
(d)
Diℓ

(z) =
2r+1

d!

( ∂

∂p

)d [

Φ(p, z,−d
2 + 1− ℓ)− Φ(p, z,−d

2 + ℓ)
]∣
∣
∣
p=1

(5.32)

As in the Racℓ singleton case, the above integral can be divergent for two possible reasons.

Firstly in the limit β → ∞, the integrand behaves as e−β(d+1−2ℓ)/2 and as a consequence the

integral is not convergent when the conformal weight of the Diℓ singleton becomes negative,

i.e. when ℓ > d+1
2 . As in the scalar case we resolve this issue by simply analytically

continuing the zeta function in ℓ. Secondly, the integral (5.30) possesses a pole at β = 0,

and this singularity can be handled as in the scalar case. In addition, the character of the

Diℓ singleton obeys

χ
so(2,d)
Diℓ

(−β; ~α) = (−1)d+1 χ
so(2,d)
Diℓ

(β; ~α) , (5.33)

and as a result the integrand of (5.30) for z = 0 is odd/even in even/odd dimensions, which

in turn implies that it has a non-vanishing residue only in even dimensions. This residue

is related the the conformal anomaly coefficient.
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5.3.1 CFT2r

In analogy to the scalar case, the a-coefficient of the Weyl anomaly of the Diℓ singleton

on the d-sphere of radius R (previously computed for ℓ = 1 in e.g. [101, 102]) corresponds

to the coefficient of the lnR term in the free energy, and hence it is related to the zeta

function (5.30) through

aDiℓ = ζ
(2r)
Diℓ

(0) . (5.34)

This coefficient is therefore given by the contour integral

aDiℓ =

∮
dβ

2π i β

sinh(2ℓ−1
2 β)

2d/2−1 (sinh β
2 )

d+1
. (5.35)

By comparing it with ζ ′
Bmin

ℓ

(0), we see that the two quantities are related through

ζ ′
Bmin

ℓ

(0) = − lnRζ
(2r)
Diℓ

(0) = − lnRaDiℓ . (5.36)

Notice that the above relation implies that the one-loop free energy of the minimal type-Bℓ

theory in AdS2r+1 is given by half of the a-anomaly coefficient of the Diℓ singleton on

S2r. As mentioned previously, this is a consequence of the fact that we computed here the

anomaly coefficient for a complex spinor. In other words, the one-loop free energy of the

minimal type-Bℓ theory is given by the a-anomaly coefficient of a Majorana spinor. Finally,

let us point out that the residue (5.35) can be computed using the formula:

aDiℓ =
1

(2r)!

( d

dβ

)2r[ β2r

2r−1

sinh(2ℓ−1
2 β)

(sinh β
2 )

2r+1

]∣
∣
∣
β=0

. (5.37)

Some examples in low dimensions can be found in Table 2.

d aDiℓ

2 1
3(1− 6ℓ2 + 4ℓ3)

4 − 1
90(11 − 60ℓ2 + 20ℓ3 + 30ℓ4 − 12ℓ5)

6 1
3780 (191 − 1008ℓ2 + 224ℓ3 + 630ℓ4 − 168ℓ5 − 84ℓ6 + 24ℓ7)

8 − 1
113400 (2497 − 12960ℓ2 + 2160ℓ3 + 8820ℓ4

−1764ℓ5 − 1680ℓ6 + 360ℓ7 + 90ℓ8 − 20ℓ9)

10 1
7484400 (73985 − 380160ℓ2 + 50688ℓ3 + 270600ℓ4 − 43296ℓ5

−60060ℓ6 + 10296ℓ7 + 4950ℓ8 − 880ℓ9 − 132ℓ10 + 24ℓ11)

Table 2: Summary of a-anomaly coefficients for the order-ℓ Dirac spinor in low dimensions.
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5.3.2 CFT2r+1

By comparing the zeta function of the Diℓ singleton on S2r+1 given in (5.30) with the zeta

function of the non-minimal type-Bℓ theory (5.6), it is clear that the free energy on both

sides are unrelated. This discrepancy was already noticed in [47, 48] for the case ℓ = 1, and

is therefore not surprising. Let us nevertheless elaborate on a property of the free energy

of the Diℓ CFT. Similarly to the case of the scalar singleton, the conformal weight of the

order-ℓ spin-12 singleton can become negative for sufficiently large values of ℓ, namely when

ℓ > d+1
2 . As a consequence, the free energy of the Diℓ singleton,

FDiℓ = −2

2(ℓ−1)
∑

k=0

∞∑

n=0

dim
so(d+1)

(n+ 1
2
, 1
2
)
ln

(
d+1−2ℓ

2 + 1
2 + n+ k

)
, (5.38)

develops an imaginary part. For example, one finds for d = 3

FDiℓ =
1

16

(

− 2
3(2ℓ−3)(2ℓ−1)(2ℓ+1) ln 2+3(2ℓ−1) ζ(3)π2

)

− iπ

6
(ℓ−2)(ℓ−1)ℓ(ℓ+1) . (5.39)

This imaginary part can be computed as in the scalar singleton case. By introducing

m = ℓ− r − 2 we are led to the sum

i Im(FDiℓ) = −2i π

m∑

k=0

m−k∑

n=0

dim
so(d+1)

(n+ 1
2
, 1
2
)
= (−1)r 2r+1 iπ

(d+ 1)!
(1− ℓ)r+1 (ℓ)r+1 . (5.40)

6 Generalizations of higher-spin theories

The type-Aℓ and -Bℓ higher-spin gravities can be generalized to a few simply related models.

6.1 Type-ABℓ

The spectrum of the non-minimal and minimal type-ABℓ theory can be obtained by con-

sidering the “weighted partition function” of the direct sum of the Racℓ and Diℓ modules:

ZDiRacℓ := χ
so(2,d)
Racℓ

− χ
so(2,d)
Diℓ

. (6.1)

Note that the minus sign is not related to the submodule structure, but the plethysm

of fermionic modules.16 Then, the weighted partition function of the non-minimal and

minimal type-ABℓ theory reads

ZABnon-min
ℓ

(β, ~α) = [ZDiRacℓ(β, ~α)]
2

= χ
so(2,d)

Anon-min
ℓ

(β, ~α) + χ
so(2,d)

Bnon-min
ℓ

(β, ~α)− 2χ
so(2,d)
Racℓ

(β, ~α)χ
so(2,d)
Diℓ

(β, ~α) ,

ZABmin
ℓ

(β, ~α) =
1

2
[ZDiRacℓ(β, ~α)]

2 +
1

2
ZDiRacℓ(2β, 2~α)

= χ
so(2,d)

Amin
ℓ

(β, ~α) + χ
so(2,d)

Bmin
ℓ

(β, ~α)− χ
so(2,d)
Racℓ

(β, ~α)χ
so(2,d)
Diℓ

(β, ~α). (6.2)

16We refer the reader to [56] for the appearance of the weighted partition function in the plethysm of

fermionic modules.
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Therefore, to compute the zeta function for the type-ABℓ theory it is sufficient to add

the contribution of the term χ
so(2,d)
Racℓ

(β, ~α)χ
so(2,d)
Diℓ

(β, ~α) to the zeta function ζ
A

(non-)min
ℓ

+

ζ
B

(non-)min
ℓ

. This is the contribution corresponding to the fermionic partially-massless fields

of depth t = 1, . . . , 2ℓ − 1, and hence one should compute the zeta function with the

fermionic measure in AdS2r+2 (i.e. using (2.5) with ǫ = −1).

• In AdS2r+1, the contribution of the fermionic tower of partially-massless higher-spin

fields to ζ ′ABℓ
(0) is proportional to

∮
dβ

2i π

sinh(ℓβ) sinh(2ℓ−1
2 β)

(cosh β − 1)r+1

∮
dw

2i π

sinh w
2 (cosh β − coshw)

(β2 − w2) (coshw − 1)r+1
. (6.3)

The integrand of the above integral being an even function of β, this contribution

identically vanishes.

• In AdS2r+2 the contribution of the tower of fermionic fields to ζ ′ABℓ
(0) is proportional

to (using the fermionic measure for the zeta function (2.10))

1

(cosh β − 1)r+1

∮
dw

2i π

1

(w − 1)r+1
= 0 , (6.4)

and hence this contribution also identically vanishes.

Therefore, we can see that the tower of fermionic fields does not contribute to the zeta

function of the type-ABℓ theory in any dimensions. The same fact was obtained for the

ℓ = 1 case in [47, 48].

6.2 Higher power of Racℓ

Here we consider the higher-spin theory whose spectrum is given by the tensor product of

n order-ℓ scalar singletons (that we will denote type-An
ℓ ). Its character therefore reads

χ
so(2,d)
An

ℓ
(β, ~α) =

[

χ
so(2,d)
Racℓ

(β, ~α)
]n

. (6.5)

This spectrum corresponds to that of the n-linear operators on the boundary and may be

considered to be multi-particle states in higher-spin gravity or the states in higher Regge

trajectory in a string-like theory dual to a matrix model CFT. For such a character, we

can use the trick introduced in (2.7) and (2.10) with

ηAn
ℓ
(β) =

sinhn(ℓ β)

2n(d−1−r) (sinh β
2 )

n(d−2r)
, ξAn

ℓ
(β, α) =

1

(cosh β − cosα)n
. (6.6)

AdS2r+1

Using the expression (2.9) with the above function yields

ζ ′An
ℓ
(0) =

lnR

2n(r−1)

∮
dβ

2π i

∮
dw

2π i

sinhn(ℓβ) sinhw (cosh β − coshw)n−1

(β2 − w2) (cosh β − coshw)(n−1)(r+1) (coshw − 1)r+1
.

(6.7)
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Due to the fact that both (6.7) and ηAn
ℓ
are even functions of β when n is even, their

product does not have any residue at β = 0 and therefore one can conclude that

ζ ′An
ℓ
(0) = 0 , for n ∈ 2N . (6.8)

In particular, the usual non-minimal type-Aℓ theory, which corresponds to the case n = 2,

falls into this category.

AdS2r+2

Using the trick (2.10) with ξAn
ℓ
(β, α) produces the following contour integral

1

(cosh β − 1)(r+1)(n−1)

∮
dw

2iπ

(cosh β − w)n−2

(w − 1)r+1
=

(2− n)r
r!

1

(cosh β − 1)nr+1
, (6.9)

so that the zeta function for the type-An
ℓ theory is given by

ζAn
ℓ
(z) =

(2− n)r

22(nr+1) r!

∫ ∞

0

dβ

Γ(2z)
β2z−1 sinhβ sinhn(ℓβ)

(sinh β
2 )

nd+2
. (6.10)

The Pochhammer symbol in the above expression ensures that

ζAn
ℓ
(z) = 0 for 2 6 n 6 r + 1 . (6.11)

In particular, we recover that the partially-massless type-Aℓ theories (n = 2) have a van-

ishing free energy in all dimensions as we observed in the previous section.

6.3 A Stringy Version of Type Aℓ dualities

Let us now briefly turn our attention to the free SU(N) matrix model CFT with a Racℓ
scalar in d = 2r, treated for ℓ = 1 and d = 4 (as well as d = 3) in [52]. Our discussion

follows that paper quite closely. The reader may consult [54] for a review.

For this model, the spectrum the theory is given by the direct sum of the cyclic tensor

product of n Racℓ modules (denoted cycn) for n > 2. The relevant character of the nth

cyclic tensor product of Racℓ reads

χ
so(2,d)
cycn (β, ~α) =

1

n

∑

k|n

ϕ(k)
[

χ
so(2,d)
Racℓ

(kβ, k~α)
]n/k

, (6.12)

where the notation k|n indicates that k is a divisor of n. The n = 2 case corresponds to

the partition function of the minimal type-Aℓ higher-spin theory already considered above.

Let us now turn to the higher n’s.

The contribution of cycn to the first derivative of the zeta function is given by the

contour integrals

ζ ′cycn(0) = lnR

∮
dβ

2i π

∮
dw

2i π

sinhn/k(kℓβ) (cosh kβ − cosh kw)n/k

(2r−1[cosh kβ − 1]r+1)n/k
(6.13)

× sinhw

(β2 − w2)(cosh β − coshw)

( cosh β − 1

coshw − 1

)r+1
.

As in the previously studied cases, the β integral is easier to perform first. The potential

poles are at β = ±w and at β = 0, but their contribution does not vanish only when certain

conditions are met.
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• To examine the point β = ±w, it is sufficient to consider the following part of (6.13):

1

β2 − w2

(cosh kβ − cosh kw)n/k

cosh β − coshw
. (6.14)

Due to the first factor the above has a pole at β = ±w unless the second factor has

a zero at the same point. This happens when n/k ≥ 2, that is, unless k = n. To

repeat, the β integral of (6.13) receives the contribution from the pole at β = ±w if

and only if k = n.

• If n/k is an even integer, then the integrand of (6.13) becomes an even function of

β which is free of pole at β = 0. Hence, the contribution from the pole at β = 0 can

arise only for odd n/k. Yet when n/k = 1, the pole disappears again due to the zero

of the numerator at β = 0.

While the contribution coming from the pole in β = 0 is quite difficult to extract in

full generality, the contribution from the poles in β = ±w can be computed in arbitrary

dimensions. In this case, the contour integral to perform reads

lnR

2r−1

ϕ(n)

n

∮
dβ

2πi

∮
dw

2πi

sinhw sinhnℓβ (cosh nβ − coshnw)

(w2 − β2)(cosh nβ − 1)r+1(coshw − cosh β)
. (6.15)

As in Equation (4.3), we carry out the β integral first by picking up the poles at β = ±w.
We find

lnR

2r−1
ϕ(n)

∮
dw

2πiw

sinhnw sinh(ℓnw)

2r+1 (sinhnw
2 )

2r+2

= ϕ(n)
lnR

22r−1

∮
dw

2πiw

cosh w
2 sinh ℓw

(sinh w
2 )

2r+1
= ϕ(n) ζ

(2r)
Racℓ

(0) ,

(6.16)

where we have rescaled w in the last step to make contact with (4.28).

Notice that when n = 2m for an integer m, the divisors k of n are k = 2p for 0 6 p 6 m,

so that the only odd integer n/k is 1. According to the previous discussion, the sum over

k in (6.12) then reduces to the term k = n, and the computation of ζ ′cycn(0) boils down to

the contribution of (6.16). In this way, we prove that

Γ(1)

cycn = ϕ(n) Γ(1)

Racℓ
[n = 2m] . (6.17)

This behavior was first observed in [52] for m = 1 to 5 in ℓ = 1 and d = 4. Our analysis

provides a proof of this for arbitrary ℓ, d = 2r and m.

As mentioned above, evaluation of the contour integral form of CIRZ is generically

complicated because the β = 0 pole can contribute. For this reason, to evaluate the free

energy contribution from cycn for generic n, we fix d = 4 and use the derivative form of

CIRZ obtained in [52], which reads (in the notations of [57])

ζ ′H(0) = ln R

∮
dβ

2π i

2∑

n=0

(−1)n
22n+1 n!

β2(n+1)
f
4,(n)
H (β) , (6.18)
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with

f
4,(0)
H (β) =

[

1− sinh2 β
2 (

1
3 sinh

2 β
2 − 1) (∂21 + ∂22) (6.19)

−1
3 sinh4 β

2

(
∂41 + ∂42 − 12 ∂21 ∂

2
2

)]

χ
so(2,4)
H (β, ~α)

∣
∣
~α=~0

,

f
4,(1)
H (β) = sinh2 β

2

[
1
3 sinh

2 β
2 − 1− sinh2 β

2 (∂
2
1 + ∂22)

]

χ
so(2,4)
H (β, ~α)

∣
∣
~α=~0

, (6.20)

and

f
4,(2)
H (β) = 1

2 sinh4 β
2 χ

so(2,4)
H (β,~0) . (6.21)

After straightforward computations for n = 3, 4, we find

Γ(1)

cyc3
=
ℓ3

(
4026 ℓ8 − 20500 ℓ6 + 37128 ℓ4 − 572118 ℓ2 + 914375

)

16329600
lnR , (6.22)

and

Γ(1)

cyc4
=

1

90
ℓ3

(
5− 3ℓ2

)
lnR . (6.23)

In general, expressions for the vacuum energy Γ(1)

cycn are rather complicated functions of ℓ,

for instance Γ(1)

cyc5
is already a polynomial of order 21 in ℓ. This can be traced back to the

fact whenever the order n has divisors k such that n/k is odd, the pole in β = 0 of (6.13)

contributes, and the order of this pole depends on n and k. As a consequence, the order

of the resulting polynomial ℓ grows with these parameters. In order to better illustrates

5 10 15 20 25 30

-8

-6

-4

-2

Figure 1: Γ(1)

cycn plotted in units of logR, from

n = 1 to 32. The blue line is for ℓ = 1 while the

purple line is for ℓ = 2.
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Figure 2: Γ(1)

cycn plotted in units of Γ(1)

Racℓ
, from

n = 1 to 32. The blue line is for ℓ = 1 while the

purple line is for ℓ = 2.

the behavior of the one-loop free energy of cycn with respect to n and ℓ, we also display in

Figure 1 a plot of Γ(1)

cycn for ℓ = 1 and ℓ = 2 for n = 1 to 32 (plotted in units of lnR). We

see that the two curves are quite well separated, with the magnitudes of Γ(1)

cycn being much

larger for ℓ = 2 than those for ℓ = 1. At first sight this simply reflects the high sensitivity

to ℓ in these expressions, already visible in (6.22). On the other hand, if we consider the

behaviour of Γ(1)

cycn/Γ
(1)

Racℓ
for ℓ = 1 and ℓ = 2, displayed in Figure 2, we see that the two

graphs almost coincide with each other.

Finally, we turn to the vacuum energy contribution from the full stringy spectrum, i.e.

the spectrum encoded in the character obtained from summing (6.12) from n = 2 to ∞.
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The resulting character is given by [103]

χ
so(2,4)
SU(N);Racℓ

(β, ~α) = −χso(2,4)
Racℓ

(β, ~α)−
∞∑

k=1

ϕ(k)

k
log

[

1− χ
so(2,4)
Racℓ

(kβ, k~α)
]

. (6.24)

Applying the formulae (6.19), (6.20) and (6.21) to

χ
so(2,4)
H (β, ~α) = χ

so(2,4)
log,k (β, ~α) = − log

[

1− χ
so(2,4)
Racℓ

(kβ, k~α)
]

, (6.25)

yields

f
4,(0)
log,k(β) = −1

2
sinh4 β

2 log
[
1− sinh(kℓβ)

8 sinh4 kβ
2

]
, (6.26)

f
4,(1)
log,k(β) = −1

3
sinh2 β

2

(
sinh2 β

2 − 3) log
[
1− sinh(kℓβ)

8 sinh4 kβ
2

]

+
k2 sinh4 β

2 sinh(kℓβ)

sinh2 kβ
2

(
8 sinh4 kβ

2 − sinh(kℓβ)
) ,

(6.27)

f
4,(2)
log,k(β) = − log

[
1− sinh(kℓβ)

8 sinh4 kβ
2

]
+

k4 sinh4 β
2 sinh2(kℓβ)

2 sinh4 kβ
2

(
8 sinh4 kβ

2 − sinh(kℓβ)
)2

− 1

3
k2
(
(k2 − 1) sinh2 β

2 + 3
) sinh2 β

2 sinh(kℓβ)

sinh2 kβ
2

(
8 sinh4 kβ

2 − sinh(kℓβ)
) ,

(6.28)

One can check that by expanding the above expression around β = 0 they are devoid

of terms of order β1, β3 and β5 respectively. Hence, by virtue of (6.18), χ
so(2,4)
log,k never

contributes to the one-loop free energy of the SU(N) matrix model. As a consequence, we

eventually find that

Γ
(1)
SU(N);Racℓ

= −Γ
(1)
Racℓ

. (6.29)

Notice finally that some tacit assumptions in this prescription are discussed in [52, 56].

7 Discussion

In this paper we have applied the arbitrary dimensional CIRZ formula obtained in [57] to

partially-massless higher-spin gravities. Firstly, we found that all the theories considered

in this paper do not have any UV divergence in its one-loop free energy. Concerning the

finite part, the non-minimal type-Aℓ theories in d+ 1 dimensions have

Γ(1)

Anon-min
ℓ

= 0 , (7.1)

which is consistent with the CFT expectation. On the other hand, the minimal type-Aℓ

theories have

Γ(1)

Amin
ℓ

=

{

lnRaRacℓ [d = 2r]

FRacℓ [d = 2r + 1]
. (7.2)

Concerning the type-Bℓ theories, we find an analogous result for even d

Γ(1)

Bnon-min
ℓ

= 0 , Γ(1)

Bmin
ℓ

= 1
2 lnRaDiℓ , (7.3)
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but for odd d, we do not find a relation between the AdS one-loop free energy and the

free energy of the order-ℓ free fermion. These results have been obtained previously in the

ℓ = 1 case [42, 43] and for the type-A2 case for d up to 20 [46]. The results about the

minimal theories may fit in with the holographic conjecture by introducing a shift in the

dictionary between the bulk coupling constant g and the number of conformal fields N

[42, 43]: g−1 = N − 1 . Meanwhile, the results for the putative stringy dualities seem to

suggest the relation g−1 = N2 [52]. We suggest the same interpretation for our results,

which have been derived for arbitrary d and ℓ.

In obtaining our results for partially-massless higher-spin theories using CIRZ, we could

reconfirm that the zeta function regularization renders finite not only the divergences from

UV but also those from the sum over spectrum. However, as we are considering non-unitary

theories, several signs of non-unitarity show up in the form of IR divergences. They arise

in the β integral for the large β region. The parameter β has a clear meaning of the inverse

energy scale, as one can see from its role in the character: small β corresponds to high

energy and large β to small energy. The lowest energy of the theory decreases as ℓ increases,

and we could see that the β integral starts to diverge for ℓ ≥ d
4 and ℓ ≥ d+2

4 in the type-Aℓ

and type-Bℓ theories, respectively. From the AdS perspective, the divergences arising for

higher ℓ are caused by the fields with vanishing ∆̄ = ∆ − d
2 , which can be interpreted as

the AdS counterpart of the IR divergence of the massless fields in flat spacetime. This

kind of IR divergence could be removed by an analytic continuation in ℓ. As ℓ increases

further, the theory contains fields with negative ∆ (hence negative energy states) for ℓ ≥ d
2

and ℓ ≥ d+1
2 in type-Aℓ and type-Bℓ theories, respectively. Interestingly, these bounds

correspond to that for the IR divergence of the CFT, meaning the divergence of the CFT

zeta function in the large β region. Above this bound, the even d free energy develops

an imaginary part, which could be exactly calculated. It would be interesting to better

understand the physical implications of these issues for both AdS and CFT sides.
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A Type-Bℓ minimal model

In this appendix, we spell out the decomposition of the antisymmetrized tensor product of

two Diℓ singletons in arbitrary dimensions, which corresponds to the spectrum of the min-

imal type-Bℓ theory. To do so, we will use the previously introduced characters expressed

– 31 –



in terms of the variables

q := e−β , and xk := eiαk , k = 1, . . . , r , (A.1)

instead of β and ~α. For instance, the character of the Diℓ singleton then reads

χ
so(2,d)
Diℓ

(q, x̄) = q
d+1−2ℓ

2 (1− q2ℓ−1)χ
so(d)
1

2

(x̄)Pd(q, x̄) , (A.2)

with x̄ = (x1, . . . , xr) and

Pd(q, x̄) =
1

(1− q)d−2r

r∏

k=1

1

(1− qxk)(1 − qx−1
k )

. (A.3)

Characters of the so(d) algebra can be found in [57] or the textbooks [104, 105]. For more

details on character of the conformal algebra, see e.g. [106–108].

A.1 Odd d

In order to decompose the plethysm of two Diℓ singletons using characters, we need to

decompose
1

2

(
χ
so(2,d)
Diℓ

(q, x̄)
)2 ± 1

2
χ
so(2,d)
Diℓ

(q2, x̄2) (A.4)

into a sum of characters of irreducible so(2, d) modules. Knowing the decomposition of

the tensor product of two Diℓ singletons, i.e. the first term in the above equation, we can

simply focus on the second term. To deal with it, we will need a few key identities, namely:

• The Pd function evaluated in (q2, x21, . . . , x
2
r) can be factorized into a product of two

such functions

Pd(q
2, x̄2) = Pd(q, x̄)Pd(−q, x̄) , (A.5)

which can in turn be expanded as the series

Pd(±q, x̄) =
1

1− q2

∞∑

s=0

(±q)s χso(d)
(s) (x̄) . (A.6)

• The character of the spin-12 so(d) representation can be expanded as

χ
so(d)
1

2

(x̄2) =
r∑

m=0

ǫmχ
so(d)
(1r−m)

(x̄) , ǫm := (−1)m(m+1)/2 . (A.7)

• Finally, the product of two so(d) characters can be decomposed according to the

tensor product rule.

Using the above properties, one ends up with the decomposition

χ
so(2,d)
Diℓ

(q2, x̄2) = ǫr

ℓ−1∑

t=−ℓ+1

χ
so(2,d)
[d−2t−1;0](q, x̄) + ǫr−1

2ℓ−3∑

t=1,3,...

[

χ
so(2,d)
[d+t−1;0](q, x̄)− χ

so(2,d)
[d−t−1;0](q, x̄)

]

−
r−1∑

m=0

ǫm

2ℓ−1∑

t=1,3,...

∞∑

s=1

(−1)sχ
so(2,d)
[s+d−t−1;s,1r−1−m]

(q, x̄)

−
r−1∑

m=0

ǫm

2ℓ−3∑

t=1,3,...

∞∑

s=1

(−1)sχ
so(2,d)
[s+d−t−1;s,1r−1−m]

(q, x̄) . (A.8)

– 32 –



Due to the presence of the alternating signs ǫm in the above expression, the spectrum

of the minimanl type-Bℓ model depends on the parity of the integer part of the rank r.

Introducing
⊕

t odd

:=
2ℓ−1⊕

t=1,3,...

⊕
2ℓ−3⊕

t=1,3,...

, (A.9)

the four possible cases read as follow:

• Even rank r = 2n with n = 2p:

Di∧2ℓ
∼=

2ℓ−3⊕

t=1,3,...

D
(
d− t− 1; 0

)
⊕

2ℓ−2⊕

t=2

r−1⊕

m=0

∞⊕

s=1

D
(
s+ d− t− 1; s, 1m

)

⊕
⊕

t odd

⊕

m=0,3 mod4

∞⊕

s=2,4,...

D
(
s+ d− t− 1; s, 1m

)
(A.10)

⊕
⊕

t odd

⊕

m=1,2 mod4

∞⊕

s=1,3,...

D
(
s+ d− t− 1; s, 1m

)
;

• Even rank r = 2n with n = 2p+ 1:

Di∧2ℓ
∼=

ℓ−1⊕

t=−ℓ+1

D
(
d− 2t− 1; 0

)
⊕

2ℓ−3⊕

t=1,3,...

D
(
d+ t− 1; 0

)

⊕
⊕

t odd

⊕

m=1,2 mod 4

∞⊕

s=2,4,...

D
(
s+ d− t− 1; s, 1m

)

⊕
⊕

t odd

⊕

m=0,3 mod 4

∞⊕

s=1,3,...

D
(
s+ d− t− 1; s, 1m

)

⊕
2ℓ−2⊕

t=2

r−1⊕

m=0

∞⊕

s=1

D
(
s+ d− t− 1; s, 1m

)
; (A.11)

• Even rank r = 2n+ 1 with n = 2p:

Di∧2ℓ
∼=

ℓ−1⊕

t=−ℓ+1

D
(
d− 2t− 1; 0

)
⊕

2ℓ−3⊕

t=1,3,...

D
(
d− t− 1; 0

)

⊕
⊕

t odd

⊕

m=0,1 mod 4

∞⊕

s=2,4,...

D
(
s+ d− t− 1; s, 1m

)

⊕
⊕

t odd

⊕

m=2,3 mod 4

∞⊕

s=1,3,...

D
(
s+ d− t− 1; s, 1m

)

⊕
2ℓ−2⊕

t=2

r−1⊕

m=0

∞⊕

s=1

D
(
s+ d− t− 1; s, 1m

)
; (A.12)
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• Even rank r = 2n+ 1 with n = 2p+ 1:

Di∧2ℓ
∼=

2ℓ−3⊕

t=1,3,...

D
(
d+ t− 1; 0

)
⊕

2ℓ−2⊕

t=2

r−1⊕

m=0

∞⊕

s=1

D
(
s+ d− t− 1; s, 1m

)

⊕
⊕

t odd

⊕

m=0,1 mod4

∞⊕

s=1,3,...

D
(
s+ d− t− 1; s, 1m

)
(A.13)

⊕
⊕

t odd

⊕

m=2,3 mod4

∞⊕

s=2,4,...

D
(
s+ d− t− 1; s, 1m

)
.

A.2 Even d

As recalled previously, in odd-dimensional AdS space (i.e. when d = 2r) one can consider

a chiral Diℓ singleton, that is, a Weyl spinor subject to a higher-order Dirac equation on

the d-dimensional conformal boundary. As a consequence, a first truncation, before the

minimal model, of the type-Bℓ theory is the chiral type-Bℓ,± whose spectrum is given by

the tensor product of two Diℓ singleton of same chirality. This decomposition is presented

hereafter.

A.2.1 Chiral Flato-Fronsdal

The main ingredient in obtaining the decomposition displayed below is the so(2) ⊕ so(d)

decomposition of a chiral singleton module, namely

χ
so(d)
Diℓ,±

(q, x̄) =

∞∑

s=0

q
d+1−2ℓ

2
+s

( ℓ−1∑

k=0

q2k χ
so(d)

(s+ 1
2
, 1
2±

)
(x̄) +

ℓ−2∑

k=0

q2k+1 χ
so(d)

(s+ 1
2
, 1
2∓

)
(x̄)

)

, (A.14)

where the second term appears only for ℓ > 1. With this identity at hand, one can show

that

• Rank r = 2n: The tensor product of two Diℓ singleton of the same chirality decom-

poses as follows:

Di⊗2
ℓ,± =

2ℓ−2⊕

t=−2ℓ+2,−2ℓ+4,...

D
(
d− t− 1; 0

)
⊕

n⊕

m=1

2ℓ−1⊕

t=1,3,...

∞⊕

s=1

D
(
s+ d− t− 1; s, 12m−1

±

)

⊕
n⊕

m=1

2ℓ−3⊕

t=1,3,...

∞⊕

s=1

D
(
s+ d− t− 1; s, 12m−1

∓

)

⊕2

n−1⊕

m=0

2ℓ−2⊕

t=2,4,...

∞⊕

s=1

D
(
s+ d− t− 1; s, 12m

)
. (A.15)
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Notice in particular that there is no graviton in this spectrum, but the massive scalars

are present. The tensor product of two opposite chiralities Diℓ singleton reads

Diℓ,+ ⊗Diℓ,− =
2ℓ−3⊕

t=−2ℓ+3,−2ℓ+5,...

D
(
d− t− 1; 0

)
⊕

n⊕

m=1

∞⊕

s=1

2ℓ−2⊕

t=2,4,...

D
(
s+ d− t− 1; s, 12m−1

±

)

⊕
n⊕

m=1

∞⊕

s=1

2ℓ−2⊕

t=2,4,...

D
(
s+ d− t− 1; s, 12m−1

∓

)

⊕
n−1⊕

m=0

∞⊕

s=1

( 2ℓ−1⊕

t=1,3,...

⊕
2ℓ−3⊕

t=1,3,...

)

D
(
s+ d− t− 1; s, 12m

)
. (A.16)

• Rank r = 2n+ 1: Contrary to the previous case, the tensor product of two Diℓ sin-

gletons of the same chirality which reads

Di⊗2
ℓ,± =

2ℓ−3⊕

t=−2ℓ+3,−2ℓ+5,...

D
(
d− t− 1; 0

)
⊕

n⊕

m=0

2ℓ−1⊕

t=1,3,...

∞⊕

s=1

D
(
s+ d− t− 1; s, 12m±

)

⊕
n⊕

m=0

2ℓ−3⊕

t=1,3,...

D
(
s+ d− t− 1; s, 12m∓

)

⊕2
n⊕

m=1

∞⊕

s=1

2ℓ−2⊕

t=2,4,...

D
(
s+ d− t− 1; s, 12m−1

)
. (A.17)

The above does contain a graviton but no longer include the massive scalars. The

tensor product of two Diℓ singletons of opposite chiralities displays the complement

of the previous content with respect to the spectrum of the (full) type-Bℓ theory:

Diℓ,+ ⊗Diℓ,− =

2ℓ−2⊕

t=−2ℓ+2,−2ℓ+4,...

D
(
d− t− 1; 0

)
⊕

n⊕

m=0

∞⊕

s=1

2ℓ−2⊕

t=2,4,...

D
(
s+ d− t− 1; s, 12m±

)

⊕
n⊕

m=0

∞⊕

s=1

2ℓ−2⊕

t=2,4,...

D
(
s+ d− t− 1; s, 12m∓

)

⊕
n⊕

m=1

∞⊕

s=1

( 2ℓ−1⊕

t=1,3,...

⊕
2ℓ−3⊕

t=1,3,...

)

D
(
s+ d− t− 1; s, 12m−1

)
.(A.18)

A.2.2 Minimal model

In order to decompose χ
so(2,d)
Diℓ,±

(q2, x̄2) into a sum of characters appearing in (A.15) and

(A.17), we need the identity

χ
so(d)
1
2±

(x̄2) =

[r/2]
∑

m=0

(−1)m χ
so(d)

(1r−2m
± )

(x̄) . (A.19)
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Using the above property, one can show that for r = 2n,

χ
so(2,d)
Diℓ,±

(q2, x̄2) = (−1)n
2ℓ−2∑

t=−2ℓ+2,−2ℓ+4,...

χ
so(2,d)
[d−t−1;0](q, x̄)

+
n∑

m=1

(−1)n+m+1
∞∑

s=1

(−1)s
[ 2ℓ−1∑

t=1,3,...

χ
so(2,d)

[s+d−t−1;s,12m−1
± ]

(q, x̄)

+
2ℓ−3∑

t=1,3,...

χ
so(2,d)

[s+d−t−1;s,12m−1
∓ ]

(q, x̄)
]

, (A.20)

whereas for r = 2n+ 1,

χ
so(2,d)
Diℓ,±

(q2, x̄2) = (−1)n
2ℓ−3∑

t=1,3,...

[

χ
so(2,d)
[d+t−1;0](q, x̄)− χ

so(2,d)
[d−t−1;0](q, x̄)

]

+
n∑

m=0

(−1)n+m+1
∞∑

s=1

(−1)s
[ 2ℓ−1∑

t=1,3,...

χ
so(2,d)

[s+d−t−1;s,12m± ]
(q, x̄)

+
2ℓ−3∑

t=1,3,...

χ
so(2,d)

[s+d−t−1;s,12m∓ ]
(q, x̄)

]

, (A.21)

and hence

• Even rank r = 2n with n = 2p:

Di∧2ℓ,±
∼=

⊕

m=3 mod 4

∞⊕

s=2,4,...

2ℓ−1⊕

t=1,3,...

D
(
s+ d− t− 1; s, 1m±

)
(A.22)

⊕
⊕

m=3 mod 4

∞⊕

s=2,4,...

2ℓ−3⊕

t=1,3,...

D
(
s+ d− t− 1; s, 1m∓

)

⊕
⊕

m=1 mod 4

2ℓ−1⊕

t=1,3,...

∞⊕

s=1,3,...

D
(
s+ d− t− 1; s, 1m±

)

⊕
⊕

m=1 mod 4

∞⊕

s=1,3,...

2ℓ−3⊕

t=1,3,...

D
(
s+ d− t− 1; s, 1m∓

)

⊕
n−1⊕

m=0

∞⊕

s=1

2ℓ−2⊕

t=2,4,...

D
(
s+ d− t− 1; s, 12m

)
;
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• Even rank r = 2n with n = 2p+ 1:

Di∧2ℓ,±
∼=

2ℓ−2⊕

t=−2ℓ+2,−2ℓ+4,...

D
(
d− t− 1; 0

)
(A.23)

⊕
⊕

m=1 mod 4

∞⊕

s=2,4,...

2ℓ−1⊕

t=1,3,...

D
(
s+ d− t− 1; s, 1m±

)

⊕
⊕

m=1 mod 4

∞⊕

s=2,4,...

2ℓ−3⊕

t=1,3,...

D
(
s+ d− t− 1; s, 1m∓

)

⊕
⊕

m=3 mod 4

∞⊕

s=1,3,...

2ℓ−1⊕

t=1,3,...

D
(
s+ d− t− 1; s, 1m±

)

⊕
⊕

m=3 mod 4

∞⊕

s=1,3,...

2ℓ−3⊕

t=1,3,...

D
(
s+ d− t− 1; s, 1m∓

)

⊕
n−1⊕

m=0

2ℓ−2⊕

t=2,4,...

∞⊕

s=1

D
(
s+ d− t− 1; s, 12m

)
;

• Even rank r = 2n+ 1 with n = 2p:

Di∧2ℓ,±
∼=

2ℓ−3⊕

t=1,3,...

D
(
d− t− 1; 0

)
(A.24)

⊕
⊕

m=0 mod 4

∞⊕

s=2,4,...

2ℓ−1⊕

t=1,3,...

D
(
s+ d− t− 1; s, 1m±

)

⊕
⊕

m=0 mod 4

∞⊕

s=2,4,...

2ℓ−3⊕

t=1,3,...

D
(
s+ d− t− 1; s, 1m∓

)

⊕
⊕

m=2 mod 4

∞⊕

s=1,3,...

2ℓ−1⊕

t=1,3,...

D
(
s+ d− t− 1; s, 1m±

)

⊕
⊕

m=0 mod 4

∞⊕

s=1,3,...

2ℓ−3⊕

t=1,3,...

D
(
s+ d− t− 1; s, 1m∓

)

⊕
n⊕

m=1

∞⊕

s=1

2ℓ−2⊕

t=2,4,...

D
(
s+ d− t− 1; s, 12m−1

)
;
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• Even rank r = 2n+ 1 with n = 2p+ 1:

Di∧2ℓ,±
∼=

2ℓ−3⊕

t=1,3,...

D
(
d+ t− 1; 0

)
(A.25)

⊕
⊕

m=0 mod 4

∞⊕

s=1,3,...

2ℓ−1⊕

t=1,3,...

D
(
s+ d− t− 1; s, 12m±

)

⊕
⊕

m=0 mod 4

∞⊕

s=1,3,...

2ℓ−3⊕

t=1,3,...

D
(
s+ d− t− 1; s, 12m∓

)

⊕
⊕

m=2 mod 4

∞⊕

s=2,4,...

2ℓ−1⊕

t=1,3,...

D
(
s+ d− t− 1; s, 12m±

)

⊕
⊕

m=2 mod 4

∞⊕

s=2,4,...

2ℓ−3⊕

t=1,3,...

D
(
s+ d− t− 1; s, 12m∓

)

⊕
n⊕

m=1

∞⊕

s=1

2ℓ−2⊕

t=2,4,...

D
(
s+ d− t− 1; s, 12m−1

)
.
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