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TROPICAL CURVES, GRAPH COMPLEXES, AND TOP WEIGHT
COHOMOLOGY OF M,

MELODY CHAN, SOUREN GALATIUS, AND SAM PAYNE

ABSTRACT. We study the topology of a space Ay parametrizing stable tropical curves
of genus g with volume 1, showing that its reduced rational homology is canonically
identified with both the top weight cohomology of M, and also with the genus g part
of the homology of Kontsevich’s graph complex. Using a theorem of Willwacher relat-
ing this graph complex to the Grothendieck—Teichmiiller Lie algebra, we deduce that
H*976(M,; Q) is nonzero for g = 3, g =5, and g > 7, and in fact its dimension grows at
least exponentially in g. This disproves a recent conjecture of Church, Farb, and Putman
as well as an older, more general conjecture of Kontsevich. We also give an independent
proof of another theorem of Willwacher, that homology of the graph complex vanishes
in negative degrees.
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1. INTRODUCTION

Fix an integer ¢ > 2. In this paper, we study the topology of a space A, that
parametrizes isomorphism classes of genus g tropical curves of volume 1. Tropical curves
are certain weighted, marked metric graphs; see §2.1] for the precise definition.

Interest in the space A, is not limited to tropical geometry. Indeed, A, may be identified
homeomorphically with the following spaces:

(1) the link of the vertex in the tropical moduli space M;™P [ACP15, BMVTI];

(2) the dual complex of the boundary divisor in M,, the algebraic moduli space of
stable curves of genus g (Corollary [5.7);
(3) the quotient of the simplicial completion of Culler—Vogtmann outer space by the

action of the outer automorphism group Out(F,) [CV03| §5.2], [Vogl5|, §2.2];
1


http://arxiv.org/abs/1805.10186v2

2 MELODY CHAN, SOREN GALATIUS, AND SAM PAYNE

(4) the topological quotient of Harvey’s complex of curves on a surface of genus g by
the action of the mapping class group [Har81]; and

(5) the topological quotient of Hatcher’s complex of sphere systems in certain a 3-
manifold by the action of the mapping class group of that manifold [Hat95].

Our primary focus will be on the interpretations (1) and especially (2) from tropical and
algebraic geometry: we apply combinatorial topological calculations on A, to compute
previously unknown invariants of the complex algebraic moduli space M,. One such
application gives a lower bound on the size of H* (M, Q), as follows.

Theorem 1.1. The cohomology H*~5(M,; Q) is nonzero for g =3, g =5, and g > 7.
Moreover, dim H*~%(M,; Q) grows at least exponentially. More precisely,

dim HY (M ,; Q) > B9 + constant
for any B < By, where By ~ 1.3247 ... is the real Toot of 2 —t — 1 = 0.

The nonvanishing for ¢ = 3 was known previously; Looijenga famously showed that the
unstable part of H%(Ms3; Q) has rank 1 and weight 12 [Loo93)].

To put Theorem [L.Tlin context, recall that the virtual cohomological dimension of M,
is 49 — 5 [Har86]. Church, Farb, and Putman conjectured that, for each fixed k& > 0,
H*=47k(M,; Q) vanishes for all but finitely many g [CEP14, Conjecture 9]. While this
is true for k = 1 |[CFP12| [MSS13], Theorem [[.T] shows that it is false for & = 2. Further-
more, as observed by Morita, Sakasai, and Suzuki [MSS15, Remark 7.5], the Church-Farb-
Putman conjecture is implied by a more general statement conjectured by Kontsevich two
decades earlier [Kon93, Conjecture 7C], which we now recall. In the same paper where
he introduced the graph complex, Kontsevich studied three infinite dimensional Lie alge-
bras, whose homologies are free graded commutative algebras generated by subspaces of
primitive elements. Each contains the primitive homology of the Lie algebra sp(200) as a
direct summand. For one of these Lie algebras, denoted a., the complementary primitive
homology is

PHy(ax)/PHy(sp(200) = @ HY ™ H(M,,./5,:Q),

m>0,29—24+m>0

where S,, denotes the symmetric group acting on the moduli space M, ,,, of curves with
m marked points by permuting the markings. See [Kon93, Theorem 1.1(2)].

Kontsevich conjectured that the homology of each of these Lie algebras should be
finite dimensional in each degree. In particular, for each k, the cohomology group
H*%=27%(M, 1; Q) should vanish for all but finitely many g. Note that the composition

H*(Mg; @) - H*(Mg,l; @) — H*+2(Mg,1;Q)>

where the second map is cup product with the Euler class, is injective. This is because
further composing with Gysin pushforward to H*(M,; Q) gives multiplication by 2 —
2g < 0. Therefore, Theorem [[.T] shows that PHs(a) is infinite dimensional, disproving
Kontsevich’s conjecture and giving a negative answer to [MSS15, Problem 7.4].
Theorem [I.1, and further applications discussed in Section [6, will be established via
combinatorial topological calculations on the space A,, which may be identified with the
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dual complez of the Deligne-Mumford stable curve compactification M, of M,. Through-
out, we work with varieties and Deligne-Mumford stacks over C. Recall that Deligne has
defined a natural weight filtration on the rational singular cohomology of any complex
algebraic variety which gives, together with the Hodge filtration on singular cohomology
with complex coefficients, a mixed Hodge structure [Del71l, [Del74]. The graded pieces of
the weight filtration on the cohomology of a d-dimensional variety are supported in degrees
between 0 and 2d, and we refer to the 2d-graded piece, denoted Grgz , as the top weight
cohomology. We will use the interpretation of A, as the dual complex of the boundary
divisor in the Deligne-Mumford compactification of M, to give an identification of its
reduced rational homology with the top weight-graded piece of the cohomology of M.

Theorem 1.2. There is an isomorphism
Griy_g H ™M (M; Q) = Hy-1(Ay; Q),

identifying the top graded piece of the weight filtration on the cohomology of M, with the
reduced rational homology of A,.

Our proof of Theorem produces a specific isomorphism, which is in fact induced by a
proper map of topological spaces

>\ ro
(1.0.1) My 25 P,

defined using the hyperbolic model for M, see §.Il Compactly supported cohomology
is functorial with respect to proper maps, so (L0 induces maps A\*: Hf(M;mp;Q) —
H*¥(M,;Q). Using Poincaré duality for M, and that A, is the link of the cone point in
M™P, this gives

HY ™ (M Q) = (HE(My; Q)Y 25 (HE(M Q)Y = Hia (A3 Q).

We will see that this is a surjection, factoring over the isomorphism stated in Theorem [I.2]
In this sense (L.O.J]) will be a space-level refinement of the map in rational cohomology.

The space A, is glued out of standard simplices AP in a way that resembles A-
complexes, except simplices may be glued to themselves along permutations of their
vertices. We call such objects symmetric A-complezes, briefly reviewed in Section [Bl
In particular, its rational homology may be calculated by a cellular chain complex. We
will relate the cellular chain complex computing reduced rational homology of A, to the
commutative graph complez G9), introduced by Kontsevich [Kon93| [Kon94]. The precise
definition of G is recalled in Section 24l and shall not be needed here in the introduction.
The graph complex G has been studied intensively, including in the past few years. See,
e.g., [CV03, [CGV05, DRW15|, Will5].

_We will construct a quasi-isomorphism from the cellular chain complex computing
H.(A,) to GY. Passing to homology gives the following:

Theorem 1.3. For g > 2, there is an isomorphism
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Combining Theorems [.2 and [[.3] then gives a surjection H*~5%(M,; Q) — Hy(G9).
In particular, nonvanishing graph homology groups yield nonvanishing results for coho-
mology of M,. The full structure of the homology of the graph complex remains mys-
terious, but several interesting substructures and many nontrivial classes are known and
understood. In particular, the linear dual of €@ g Hy(G9) carries a natural Lie bracket,
and is isomorphic to the Grothendieck-Teichmiiller Lie algebra grt; by the main result of
[Wil15]. The Lie algebra grt; is known to contain a free Lie subalgebra with a generator
in each odd degree g > 3 ([Brol2]). These results let us deduce Theorem [L11

To the best of our knowledge, the only previously known nonvanishing top weight co-
homology group on M, is Grjy H%(Ms,Q), which has rank 1 by the work of Looijenga
mentioned above [Loo93]. Once the general setup of the paper is in place, the result of
Looijenga’s computation of this top weight cohomology group can be recovered immedi-
ately. It corresponds to the 1-dimensional subspace of graph homology spanned by the
complete graph on four vertices. Note in general that the top weight cohomology of M,
is non-tautological and unstable, since stable and tautological classes are of weight equal
to their cohomological degree. Thus, the method presented here probes one piece of the
unstable cohomology of M, that is especially suited to combinatorial study.

The identification of top weight cohomology of M, with graph homology, provided
by Theorems and Theorem [[.3] also yields interesting nonvanishing results in de-
grees other than 4g — 6. For instance, the nontrivial classes in H3(G®), H3(G®), and
H,(G19) discovered by Bar-Natan and McKay [BNM] prove nonvanishing of H'®(Mg; Q),
H?(Ms;Q), and H?"(M4; Q). It appears that the only previously known example of a
nonvanishing odd-degree cohomology group of M, is H5(My; Q) which has rank 1 (and
weight 6) by [Tom05]. The interest and difficulty in exhibiting odd cohomology classes
on M, was highlighted by Harer and Zagier over three decades ago. They observed that
no such classes were known at the time of their writing, and standard methods could
produce classes only in even degree, while their Euler characteristic computations showed
that such classes are abundant when g > 0 is even: (—1)9"'y(M,) grows like g%9. See
[HZ86l, p. 458] and [Har88|, p. 210].

Finally, we may also use the connection between cohomology of M, and graph homol-
ogy to give an application in the other direction, namely from M, to graph complexes.
Using Harer’s computation of the virtual cohomological dimension of M, [Har86] and
the vanishing of H*°(M,; Q) [CEP12, [MSS13], we give an independent proof of the
following recent result of Willwacher [Will5l Theorem 1.1].

Theorem 1.4. The graph homology groups Hy(G9) vanish for k < 0.

Relations between graph (co)homology and (co)homology of moduli spaces of curves
were also considered by Kontsevich, but the relationships he studied are conceptually
quite different. For example, he relates genus g curves to genus 2¢g graph homology where
we relate genus g curves to genus g graph homology. The three different Lie algebras
mentioned above correspond to three different types of decorations on graphs, and each
comes with a corresponding graph complex that computes homology (or cohomology)
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of an appropriate moduli space of decorated graphs. The Lie algebra a,, corresponds to
graphs decorated with ribbon structure, and moduli spaces of ribbon graphs are homotopy
equivalent to moduli spaces of curves with marked points. This is related to the fact that
a punctured Riemann surface deformation retracts to a graph, which remembers a ribbon
structure from the deformation. The cohomology of M, injects into the cohomology of
My 1, via pullback to the universal curve, and M, ; is homotopy equivalent to a moduli
space of ribbon graphs of first Betti number 2¢g that bound exactly 1 open disk. Forgetting
the ribbon structure gives a proper map from this moduli space of ribbon graphs to
a moduli space of undecorated graphs. The rational homology of the latter space is
computed by the graph complex G?9 [Kon93|, Section 3].

Here, however, we relate the cohomology of M, to the graph complex G not G%9).
The graphs appear not as deformation retracts of punctured curves, but rather as dual
graphs of stable degenerations. For a (partially conjectural) picture that reproves our main
results and relates G to ribbon graph complexes, via hairy oriented graph complexes,
see [AWZ20)].

The combinatorial structure of A, and M, ;mp is intricately related to both the compact-

ification of M, and to the graph complex G, These topological spaces are not strictly
needed for proving the main results of this paper; one could instead work in rational chain
complexes throughout and define a map directly from G to the top weight row of the
weight spectral sequence associated to the Deligne-Mumford stable curves compactifica-
tion of M,. Equivalently, one may relate G'9 to the Feynman transform of the modular
operad that associates the vector space H°(M,,; Q), with its trivial S,-action, to each
pair (g,n) with 2g — 24+ n > 0, as in [AWZ20, §6].

Nevertheless, the spaces A, and M, ;mp provide an intuitive way to visualize and motivate
the corresponding constructions with chain complexes. Moreover, it is well-known in
algebraic topology that maps of spaces carry more information than the induced maps of
rational chain complexes or homology groups. In particular the proper map (LO.]) should
carry more information than the induced map in compactly supported cohomology.

We note also that our combinatorial topological methods should apply more generally.
Any toroidal compactification X D X of a variety or DM stack gives rise to a combinatorial
dual complex whose simple homotopy type is independent of the choice of compactification
[Pay13| [Harl7]. The reduced homology of this dual complex computes the top weight
cohomology of X, but the space itself encodes more information. Moreover, if X and X
are moduli spaces and the universal family of X is a toroidal compactification of that of
X, then the dual complex of X \ X typically has a natural interpretation as a tropical
moduli space. In this way, one may expect the methods presented here to apply to other
moduli spaces, such as moduli of spin curves, moduli of curves with level structure, and
moduli of abelian varieties.
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2. GRAPHS, TROPICAL CURVES, AND MODULI

In this section, we recall in more detail the construction of the topological space A,
as a moduli space for tropical curves, which are marked weighted graphs with a length
assigned to each edge.

2.1. Weighted graphs and tropical curves. Let G be a finite graph, possibly with
loops and parallel edges. All graphs in this paper will be connected. Write V(G) and
E(G) for the vertex set and edge set, respectively, of G. A weighted graph is a connected
graph G together with a function w: V(G) — Z>, called the weight function. The genus
of (G,w) is
9(Gw) =bi(G) + Y w(v),
veV(Q)

where b1 (G) = |E(G)| — |V(G)| + 1 is the first Betti number of G.

The walence of a vertex v in a weighted graph, denoted val(v), is the number of half-
edges of GG incident to v. In other words, a loop edge based at v counts twice towards
val(v), once for each end, and an ordinary edge counts once. We say that (G, w) is stable
if for every v € V(G),

2w(v) — 2 + val(v) > 0.
For g > 2, this is equivalent to the condition that every vertex of weight 0 has valence at
least 3.

2.2. The category [,. The connected stable graphs of genus g form the objects of
a category which we denote ;. The morphisms in this category are compositions of
contractions of edges G — (/e and isomorphisms G — G’. For the sake of removing any
ambiguity about what that might mean, let us give a formal and precise definition of [',.

Formally, then, a graph G is a finite set X(G) = V(G) U H(G) (of “vertices” and
“half-edges”), together with two functions sg,rg: X(G) — X(G) satisfying s% = id and
r% = rg and that

{r € X(GQ) | re(z) =2} ={z € X(G) | s¢(x) =z} =V(G).

Informally: s sends a half-edge to its other half, while r4 sends a half-edge to its incident
vertex. We let E(G) = H(G)/(z ~ sg(x)) be the set of edges. The definition of weights,
genus, and stability is as before.

The objects of the category [, are all connected stable graphs of genus g. For an object
G = (G, w) we shall write V(G) for V(G) and similarly for H(G), E(G), X(G), sg and
rg. Then a morphism G — G’ is a function f: X(G) — X(G’) with the property that

forg=rgofand fosg=sqgof,
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and subject to the following three requirements:

e Bach e € H(G') determines the subset f~'(e) C X(G) and we require that it
consists of precisely one element (which will then automatically be in H(G)).

e Each v € V(G’) determines a subset S, = f~!(v) C X(G) and S, = (S,,7]s,, ss,)
is a graph; we require that it be connected and have ¢(S,, w|s,) = w(v).

Composition of morphisms G — G’ — G” in [, is given by the corresponding composition
X(G) - X(G') — X(G”) in the category of sets.

Our definition of graphs and the morphisms between them is standard in the study of
moduli spaces of curves and agrees, in essence, with the definitions in [ACG11], X.2] and
[ACP15| §3.2], as well as those in [KM94] and [GK98]. In particular, our [, agrees with
the category denoted I'((g,0)) in [GK9S].

Remark 2.1. We also note that any morphism G — G’ can be alternatively described
as an isomorphism following a finite sequence of edge collapses: for e € FE(G) there
is a morphism G — G/e where G/e is the marked weighted graph obtained from G by
collapsing e together with its two endpoints to a single vertex [e] € G/e. If e is not a loop,
the weight of [e] is the sum of the weights of the endpoints of e and if e is a loop the weight
of [e] is one more than the old weight of the end-point of e. If S = {ey,...,ex} C E(G)
there are iterated edge collapses G — G/e; — (G/e;)/es — ... and any morphism
G — G’ can be written as such an iteration followed by an isomorphism from the resulting
quotient of G to G'.

We shall say that G and G’ have the same combinatorial type if they are isomorphic
in [,. In fact there are only finitely many isomorphism classes of objects in [, since
any object has at most 6g — 6 half-edges and 2g — 2 vertices; and for each possible set
of vertices and half-edges there are finitely many ways of gluing them to a graph, and
finitely many possibilities for the weight function. In order to get a small category I, we
shall tacitly pick one object in each isomorphism class and pass to the full subcategory
on those objects. Hence [, is a skeletal category. (Although we shall usually try to use
language compatible with any choice of small equivalent subcategory I',.) It is clear that
all Hom sets in [, are finite, so [, is in fact a finite category.

Replacing [, by some choice of skeleton has the effect that if G is an object of [,
and e € E(QG) is an edge, then the marked weighted graph G/e is likely not equal to an
object of [',. Given G and e, there is a morphism ¢: G — G’ in [, factoring through
an isomorphism G/e — G’. The pair (G, ¢) is unique up to unique isomorphism (but
of course the map ¢ or the isomorphism G/e — G’ on their own need not be unique).
By an abuse of notation, we shall henceforward write G/e € ', for the codomain of this
unique morphism, and similarly G /e for its underlying graph.

Definition 2.2. Let us define a functor
E: TP — (Finite sets, injections)

as follows. On objects, E(G) = E(G) is the set of edges of G = (G, w) as defined above.
A morphism f: G — G’ determines an injective function E(f) sending ¢ € E(G’) to
the unique element e € E(G) with f(e) = €. This clearly preserves composition and
identities, and hence defines a functor.
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2.3. Moduli space of tropical curves. We now recall the construction of moduli spaces
of stable tropical curves, as the colimit of a diagram of cones parametrizing possible lengths
of edges for each fixed combinatorial type. The construction follows [BMV11], [Cap13].

Fix an integer g > 2. A length function on G = (G,w) € [, is an element ¢ € Rf(()G),
and we shall think geometrically of /(e) as the length of the edge e € E(G). A genus g
stable tropical curve is then a pair I' = (G, /) with G € [, and /¢ € Rf(()G), and we shall
say that (G, () is isometric to (G', (') if there exists an isomorphism ¢: G — G’ in [,
such that ¢/ = Lo ¢~": E(G') — Rug. The volume of (G, () is 3. pq) £(€) € Rao.

We can now describe the underlying set of the topological space A,, which is the main
object of study in this paper. It is the set of isometry classes of genus ¢ stable tropical
curves of volume 1. We proceed to describe its topology and further structure as a closed

subspace of the moduli space of tropical curves.
Definition 2.3. Fiz g > 2. For each object G € [, define the topological space
7(G) =RE® = {1: B(G) = Rx}.
For a morphism f: G — G’ define the continuous map of: 0(G') = o(G) by
(0 f)(l) = £: E(G) = Ry,

where £ is given by

(e) = {El(e/) if f sends e to e € E(G'),

0 if f collapses e to a vertex.

Ths defines a functor o: [P — Spaces and the topological space Mg“rOp is defined to be
the colimit of this functor.

In other words, the topological space M ;mp is obtained as follows. For each morphism
f: G — G/, consider the map Ly: 0(G') — o(G) that sends ¢': E(G’) — Ry to the
length function ¢: F(G) — R.( obtained from ¢’ by extending it to be 0 on all edges of G
that are collapsed by f. So Ly linearly identifies o(G’) with some face of o(G), possibly
o(G) itself. Then

g = (TTo(G)) {6 ~ Ly},

where the equivalence runs over all morphisms f: G — G’ and all ¢’ € o(G).

As we shall explain in more detail in Section [3] M;mp naturally comes with more
structure than a plain topological space; it is an example of a generalized cone complex,
as defined in [ACP13], §2]. This formalizes the observation that M{™P is glued out of the
cones 0(Q).

The volume defines a function v: o(G) — Rxg, given explicitly as v(€) = 3 ¢ pq) £(e),
and for any morphism G — G’ in [, the induced map o(G’) — o(G) preserves volume.
Hence there is an induced map v: M ;mp — Ry, and there is a unique element in M;mp
with volume 0 which we shall denote e,. The underlying graph of e, consists of a single
vertex with weight g.
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Definition 2.4. We let A, be the subspace of M;mp parametrizing curves of volume 1,
i.e., the inverse image of 1 € R under v : MJ™P — Rx.

Thus A, is homeomorphic to the link of M;mp at the cone point e,. Moreover, it in-
herits the structure of a symmetric A-complex, as we shall define in Section [B] from the
generalized cone complex structure on M, ;r"p. See Remark [3.15]

2.4. Kontsevich’s graph complex. Let us briefly recall the (commutative) graph com-
plex, defined by Kontsevich in [Kon93|. This chain complex comes in two versions, differ-
ing by some important signs. Kontsevich’s original paper is mostly focused on what he
calls the “even” version of the graph complex; it is related to invariants of odd-dimensional
manifolds and by Willwacher’s results to deformations of the operad e, for odd n. This
is the same version as considered by e.g. [CV03] and [CGV05]. The other version, called
“odd” in [Kon93|, is related to invariants of even-dimensional manifolds, deformations
of the operad e, for even n, and by the main theorem of [Will5] to the Grothendieck-
Teichmiiller Lie algebra. It is the latter version which is relevant to our paper and shall
be recalled here. Both are considered in [BNM]| where they are called the “fundamen-
tal example” and the “basic example” of graph homology, respectively (the assertion of
op.cit. that the basic example does not occur in nature is of course no longer true).

The graph complex is defined by letting G be the rational vector space generated by
[I', w] where I is a connected graph of genus g all of whose vertices have valence at least 3,
in other words an object of [, in which w(v) = 0 for all v € V(I'). The “orientation” w is
a total ordering on F(I'), and this notation is subject to the relation [I', w] = sgn(o)[I", ']
if there exists an isomorphism of graphs I' 2 IV under which the total orderings are related
by a permutation o. It follows from this relation that [I,w] = 0 if I" has at least two
parallel edges, since then there is an automorphism of I' inducing an odd permutation of
its edge set. The boundary map in this chain complex is induced by

2.4.) oI, w] = 3 (10 evseol )

i=0
where w = (eg < €1 < -+ < €,) is the total ordering on the set E(I') of edges of T,
the graph I'/e; is the result of collapsing e; C I' to a point, and w|g(r/e,) is the induced
ordering on the subset E(I'/e;) = E(I') \ {e;} € E(I'). In case e; € E(T') is a loop, we
interpret the corresponding term in (2.4.1]) as zero.

Example 2.5. For g > 3, let W, € G9) be the “wheel graph” with ¢ trivalent vertices,
one g-valent vertex, and 2g edges arranged in a wheel shape with g spokes, and with some
chosen ordering of its edge set. The graph underlying Wy is depicted in Figure [l Then
OW, = 0. This gives a non-zero cycle for odd g, which we also denote W,.

Indeed, any contraction of a single edge e, spoke or non-spoke, leads to a graph W, /e
with two parallel edges, which then represents the zero element in the graph complex.
The automorphism group of Wy is isomorphic to Sy when g = 3 and is isomorphic to the
dihedral group Dy, when g > 3, and it is easy to verify that it acts by even permutations
on E(W,) when g is odd. Hence W, # 0 € G for odd g. (Notice that so far we are only
making the elementary claim that it is non-zero on the chain level, although it in fact
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FiGURE 1. The graph Wj.

turns out to represent a non-zero homology class.) On the other hand, the involutions in
the dihedral group act by odd permutations on E(W,) for even g, and hence W, = 0 in
this case.

Grading conventions differ from author to author. In Kontsevich’s original paper, the
grading of this chain complex is by number of vertices |V(I')]. We shall instead use
conventions better suited for comparison with [Will5], in which the degree of I" is |V(I')| —
(g+1). In this grading the wheel graph has degree 0. As we shall see later, it also has the
effect of making G9 a connective chain complex, i.e., its homology vanishes in negative
degrees. Willwacher’s paper [Will5] considers the linearly dual cochain complex which
he denotes GC or GC,, so that

GC = [[Hom(G¥,Q),

9=2

where Hom(—, Q) denotes the graded dual. For example, for odd g there is a cochain W,/
given by sending the wheel graph (W,,w) — =£1 (sign depending on w) and any other
graph to 0. In Willwacher’s grading convention, the differential on GC raises the degree
by 1, the cohomological degree of (the dual basis element corresponding to) [I',w] being
V()| = (g+1) = |E(T")| — 2g. The differential on GC is then given by precomposing with

As explained in ([Will5, Proposition 3.4]), GC carries a natural combinatorially defined
Lie bracket, making it a differential graded Lie algebra. The main result of Willwacher’s
paper gives an isomorphism between the Grothendieck—Teichmiiller Lie algebra and graph
cohomology in degree 0

H°(GC) = grt,.
A connected genus g graph gives a degree-0 cochain if it has precisely 2¢g edges (and
hence g + 1 vertices). Any element of H°(GC) may be evaluated on the cycle W,. The
dual basis element W;/ has cohomological degree 0 in GC, but is likely not a cocycle. By
definition, the Lie algebra grt; consists of elements ¢ of the completed free Lie algebra on
two elements, satisfying certain explicit equations which we shall not recall (see [Will5,
§6.1]). An important consequence of this isomorphism is the following.

Theorem 2.6 ([Will5]). For any odd g > 3 there exists an element o, € H°(GC) with
(04, W) # 0. Hence [W,] # 0 € Hy(GY), i.e., the wheel cycle W, is not a boundary.

Proof sketch. Starting from a suitable Drinfeld associator, Willwacher in [Will5l §9] trans-
lates the corresponding element o, € grt; into GC and proves that the resulting cocycle
in GC has non-zero coefficient of ng. U
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Theorem 2.7. The group Hyo(G9)) is nonzero for g =3, g = 5, and g > 7. Moreover,
dim Hy(G9) grows at least exponentially. More precisely,

dim Hy(G9) > B9 + constant
for any B < By, where By ~ 1.3247 ... is the real root of t> —t —1 =10 .

Proof. Let V' denote the graded Q-vector space generated by symbols 09,11 in degree
2i+1 for each i > 1, and let Lie(V') be the free Lie algebra on V. As explained in [Will5],
the result of [Brol2] implies that the classes 09,11 € grt; together with the Lie algebra
structure on grt; gives rise to an injection

(2.4.2) Lie(V) < grt, = H°(GQ) (@HO (GY9) )

g>2

Thus o3, 05 # 0 € grt,, and since any even number g > 8 may be written as g = 3+ (g—3)
with ¢ — 3 > 3, we also have [03,0,_3] # 0 € grt;, which gives rise to a non-zero
homomorphism Hy(GYW) — Q. More specifically, for g > 8 even, Hy(G¥) contains a
non-zero homology class whose Lie cobracket contains a term W5 @ W,_s.

For the asymptotic statement, we shall compute the Poincaré series (i.e., the generating
function for dimension of graded pieces) of Lie(V'), using a variant of Witt’s formula for the
dimension of the graded pieces of a free, finitely generated Lie algebra that is generated
in degree 1, and then appeal to ([Z4.2). The Poincaré series of V is f(t) = t3/(1 —
t?). The universal enveloping algebra U(Lie(V)) is isomorphic to the free associative
algebra @@, ., V®", so has Poincaré series 1/(1 — f). Now let S(Lie(V')) denote the free
commutative Q-algebra on Lie(V); it has Poincaré series

T—r
_ 4+d\A,’
dzo(l td)Aa

where Ay := dim Lie(V'), are the sought-after coefficients of the Poincaré series for Lie(V).
The Poincaré-Birkhoff-Witt theorem implies that U (Lie(V)) =~ S(Lie(V)) as graded vector
spaces, so 1/(1 — f) =[[,501/(1 - t™)4n. Applying t< log(- ) to both sides yields

(2.4.3) p(t) == 1- ;)((31—_1;2 — 1) ZdAd 1 —td

Write p(t) = >, <o ant™. To analyze the a,, notice that p(t) has five simple poles, at the
roots of (1 —2)(1 — > — #3) = 0. There is a unique root o ~ 0.75488 . .. having smallest
absolute value, and Res, p(t) = —a (the exact value of the residue is not important).
Therefore p(t) = —a/(t —a) +D_,50 but" = Zn>0( + b, )t", where ) o b,t" converges
on a disc centered at 0 of radius > . Therefore b,a™ — 0 and a,a" = = (& +by)a™ — 1.

Setting Sy = 1/a ~ 1.32472. .., then a,, — £§.
Now equating coefficients in ([2.4.3) yields a, = >_,, dA4, so

ey

din
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by Mobius inversion. Since a,, grows exponentially, the summand when d = n, namely
a,/n, eventually dominates the other terms in the sum, and A, grows faster than 5" for

any 3 < fp. O

Remark 2.8. While the exponential growth rate in Theorem [2.7] relies crucially on the
main results of [Will5] and [Brol2], there are easier and more direct proofs of Theorem [2.6]
constructing an element of H%(GC) detecting [IV,] using configuration space integrals as
in [RW14] §6]. This nonvanishing of [IV,] for odd ¢ > 3 is sufficient for disproving [Kon93,
Conjecture 7C] and [CEP14] Conjecture 9].

3. SYMMETRIC A-COMPLEXES

Definition 3.1. For p > —1 an integer, we set

[p] ={0,...,p}.
This notation includes [—1] = () by convention.

As usual we write AP C RPF! for the standard simplex, i.e., the convex hull of the
standard basis vectors e, ..., e,; its points are t = (to,...,t,) = Y t;e; with t; > 0 and
> t; = 1. Associating the standard simplex AP to the number p may be promoted to
a functor from finite sets to topological spaces; for a finite set S define A = {a: S —
[0,00) | > a(s) =1} in the Euclidean topology and for any map of finite sets 0: S — T,

define 6, : AS — AT by
B.a)(t)= 3 als).
0(s)=t
The usual p-simplex is recovered as A? = AlPl with [p] = {0,...,p}.

3.1. Recollections on A-complexes. Let us write e; € AP for the ith vertex, 0 < i < p.
We order the set of vertices in AP as ey < --- < e,. Let A;,; be the category with one
object [p] = {0,...,p} for each integer p > 0, in which the morphisms [p] — [g] are the
order preserving injective maps. We shall take the following as the official definition of a
A-complex (sometimes known as “semi-simplicial set” in the more recent literature).

Definition 3.2. A A-complex is a functor X : A® — Sets.

inj

The geometric realization of a A-complex X is
(3.11) x| = (LT x &%)/ ~,
p=0

where ~ is the equivalence relation generated by (x,0.a) ~ (0*z,a) for x € X([q]),
0: [p] = [¢] in Ay, and a € AP. Each element z € X([p]) determines a map of topo-
logical spaces r: AP — |X|, and the functor X: AP — Sets may be recovered from the
topological space |X| together with this set of maps from simplices.

As is customary, we shall usually write X, = X ([p]). We also write 6*: [p— 1] — [p] for
the unique order preserving injective map whose image does not contain ¢, and d;: X, —
X,_1 for the induced map. There is also a category of augmented A-complexes, which
are functors (Ay; U {[—1]})°® — Sets, where [—1] = () is added to Ay, as initial object.
The geometric realization | X| then comes with a continuous map e: | X| — X_;.
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3.2. Symmetric A-complexes. The notion of A-complexes may be generalized to allow,
in their geometric realizations, gluing along maps A? — AP that do not preserve the
ordering of the vertices. This includes gluing along maps from AP to itself induced by
permuting the vertices.

Definition 3.3. Let I be the category with the same objects as Ay U {[—1]}, but whose
morphisms [p] — |[q] are all injective maps {0,...,p} — {0,...,¢}. A symmetric A-
complex (or symmetric semi-simplicial set) is a functor X : I°® — Sets.

Such a functor is given by a set X, for each p > —1, actions of the symmetric group
Sp+1 on X, for all p, and face maps d;: X, = X,_1 for 0 < ¢ < p. The face maps satisfy
the usual simplicial identities as well as a compatibility with the symmetric group action.
We have chosen the name in analogy with the “symmetric simplicial sets” in the literature
(e.g., [Gra01]), which is a similar notion also including degeneracy maps. The geometric
realization of X is given by formula (B.1.1]), where the equivalence relation now uses all
morphisms 6 in [.

Symmetric A-complexes also come with a set X_; = X () and there is an augmentation
map |X| — X_;. (So strictly speaking “augmented symmetric A-complexes” would be a
more accurate name, but we use “symmetric A-complexes” for brevity.)

The standard orthant Rg}o =[1%_,[0, 00) is functorial in [p] € I by letting 6 € I([p], [¢])
act as 0.(to,...,tp) = Y _tiegu), where ¢; € R denotes the ith standard basis vector.

Replacing AP by the standard orthant in the definition of | X | we arrive at the cone over
X:

(3.2.1) CX = ( ﬁ Xp X IR[ﬁ’]o)/ ~)

p=—1
where ~ is the equivalence relation generated by (z,6.a) ~ (6*z,a) for p,q > —1, v € X,

a € R[g), and 6 € I([p,[g]). The maps ¢: Rg]o — R given by (to,...,t,) — > t; are
compatible with this gluing, and induce a canonical map

gxi cCX — RZO,

so that X — CX naturally takes values in the category of spaces over R>o. We have
canonical homeomorphisms ¢3'(1) = |X| and ¢3'(0) = X_;, and from £'([0, 1]) to the
mapping cone of the augmentation |X| — X_;. The inclusions X_; C £%'([0,1]) C
CX are both deformation retractions. It follows that the quotient CX/|X| deformation
retracts to the mapping cone of | X| — X _;. When X _; = {x} the space C' X deformation
retracts to the cone over |X| (hence the name) and C'X/|X| deformation retracts to the
unreduced suspension S|X]|.

Example 3.4. The representable functor I(—, [p]): I°° — Sets has geometric realization
[1(= [p])] = AP.

Example 3.5. An (abstract) simplicial complex K with vertex set V' determines a sym-
metric A-complex Xy : [P — Sets, sending [p] to the set of injective maps f: [p] = V
whose image spans a simplex of K. The realizations of K as a simplicial complex and
Xk as a symmetric A-complex are canonically homeomorphic.
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Example 3.6. A typical example of a symmetric A-complex in which the symmetric
groups do not act freely is the half interval given as a coequalizer of the two distinct
morphisms

X = colim(I(—, [1]) = I(—,[1])),

where X_;, Xo, and X; are one-element sets and X, = () for p > 2. The unique element
in X; gives a map A! — |X| which is not injective; it identifies | X | with the topological
quotient of A! by the action of Z/2Z that reverses the orientation of the interval.

3.3. Cellular chains. The rational homology of | X'| and the relative homology of (C X, | X|)
may be calculated by cellular chain complexes, functorially associated to X : I°P — Sets.

Definition 3.7. Let R be a commutative ring and write RX, for the free R-module
spanned by the set X,,. The group of cellular p-chains C,(X; R) is

Cp(X; R) = (R®" ORSp11 RXp)
where R*8" denotes the action of Sp41 on R via the sign.

The boundary map 0 : Cp(X) — C,—1(X) is the unique map that makes the following
diagram commute:

—1)%(d;)«
RXp > (=1)*(di) RXp_l

i ’

Co(X;R) —2 - C,_1(X;R).

It is easily verified that such a homomorphism O exists, and satisfies 9? = 0.
Similarly, we define cochains

CP(X; R) = Homy(C,(X;Z), R) = Homgg, ., , (RX,, R*®"),

with coboundary 6 = (—1)P™19": C?(X; R) — CP™(X; R). In other words, C?(X; R) is
the R-module consisting of all set maps ¢: X, — R which satisfy ¢(oz) = sgn(o)¢(x) for
all z € X, and all 0 € 5.

To compare this cellular chain complex to singular homology, write 1, € C5™8(AP)
for the chain given by the identity map of AP, and ¢, € C5™8(AP) for its barycentric
subdivision (in the sense of e.g. [Hat02, p. 122] or [Bre93) §IV.17]). Any element = € X,
gives a map z: AP — |X|, and we define a natural transformation

Cp(X;Z) — C3"8(1X|; Z)

(3.3.1) v o)

This is well defined because ¢, satisfies 0. (1;,) = sgn(o)y, for all 0 € S,;; and a defines
a chain homomorphism C,(X;Z)so — C*"8(|X|; Z) where we write C.(X;Z)so for the
quotient by ZX_;. By applying R ®z (—) or Homz(—, R) to (3.3.I]) we obtain natural
natural transformations of chains and cochains with coefficients in R.
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Proposition 3.8. The homomorphisms
H,(C.(X; R)>0,0) — Hy"(|X|; R)
HP(C*(X; R)>0,6) + HE, (|X]; R)
induced by the (co)chain homomorphisms defined above are isomorphisms, provided the

orders of stabilizers of S,11 on X, are invertible in R (e.g., if the actions are all free or
if Q C R). Under this assumption, there are induced isomorphisms
Hy(C.(X; R),0) = HYIH(CX, |X]: R)
. ~ +1 .
HP(C.(X; R),0) = HE,, (CX,[X] R).
When X_y is a singleton, the right hand sides here are reduced homology and cohomology
H"(|X[; R) and HE (IX]; R).

sing

Proof. The symmetric A-complex X is filtered by subcomplexes X® C X defined by
setting X = X, for ¢ < p and X" = () for ¢ > p. The quotient space |X®|/|X P~
may be identified with the orbit space

X, x AP

(p) (P—1)| o~
X0 = (2255 S

and the induced map
R QRS 41 RXp — H;ing((Xp X Ap)/Sp—i—lv (Xp X 8Ap)/SpH; R)

is an isomorphism under the assumption. Now proceed by induction on skeleta, using the
five-lemma and the long exact sequences associated to the pairs (X ®), X®=1) exactly as
in the proof of [Hat02, Theorem 2.2.27].
For the augmented statement use |X| — X_; to add one more term to the singular
chain complex . .
o CP(X] R) = (X R) — RX 4 — 0

This complex calculates H"$(C'X, | X|; R), since the inclusion X_; C CX is a deformation
retraction. The claim is now easily deduced from the absolute case, and cohomology is
similar. 0J

Henceforth we shall use the same notation H,(—; R) and H*(—; R) for the singular and
cellular theories.

Definition 3.9. For a symmetric A-complex X define
Hy(X; R) = Hy(C.(X; R), 0)
HP(X;R) = HP(C*"(X;R),0).
When X_4 is a singleton these agree with flp(|X|; R) and H?(|X|; R) respectively, provided
orders of stabilizers of S,11 on X, are invertible in R.

In practice the cellular homology may be studied using the following observation.

Lemma 3.10. Let X be a symmetric A-complex, and let R be a commutative ring. Sup-
pose we are given subsets T, C X, for some p, and suppose that either
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e the induced map S,+1 x T, = X, is a bijection for all p, or

e Q C R, the composition T, — X, — X,,/Sp+1 is injective, the stabilizer of any
x € T, is contained in Api1, and any point x € X, whose stabilizer is contained
in Ay is in the Spyq-orbit of some o' € T),.

Then the map
RT, — C,(X; R)
s an isomorphism of R-modules. O

Thus H.(|X|; Q) may be calculated from a chain complex with one generator for each
element in a set of representatives for orbits of elements with alternating stabilizers.

Remark 3.11. A similar construction was used in [HV98] to find a small model for the
rational chains of a certain space, except that instead of our A?/H for H < S, their
basic building blocks are of the form [0, 1]"/H for certain subgroups H of the symmetry
group of a cube. There is also a general construction used by [Ber99], in which simplices
are replaced by polysimplicial sets.

3.4. Colimit presentations and subdivision. Any symmetric A-complex is isomor-
phic to the colimit of a diagram consisting of representable functors I(—, [p]): I°? — Sets
and morphisms between them. This is a special case of a general fact about presheaves
of sets on a small category, cf. [MLI8| §II1.7], but let us recall how it works in our case.

Given X: I°? — Sets, define a category Jx whose objects are pairs ([p],z) with = €
X([p]) and whose morphisms ([p], z) — ([p'], ') are the 6 € I([p'], [p]) with X (0)(z) = «'.
For later use we point out that 6 is an isomorphism in Jx if and only if p = p’. Note that
there is a canonical morphism of symmetric A-complexes

(341) COlim([pLx)EJx [(_7 [p]) - X7

assembled from the morphisms x: I(—, [p]) — X. Using that colimits in the category of
symmetric A-complexes are calculated object-wise, it is easy to verify that this morphism
is in fact always an isomorphism.

We sometimes use this to reduce a statement about all symmetric A-complexes to a
statement about representable ones, when the statement is preserved by taking colimits.

Lemma 3.12. The functor X — |X| from symmetric A-complexes to topological spaces
preserves all small colimits.

By (B.41]), the geometric realization functor is characterized by Lemma and the
homeomorphisms |I(—, [p])| = AP, natural in [p] € I. Similarly for X — CX.

Proof. For a topological space Z we let Sing(Z) be the symmetric A-complex which sends
[p] to the set of all continuous maps AP — Z. Tt is easily verified that the resulting functor
Sing is right adjoint to the geometric realization functor, which therefore preserves all
small colimits ([MLI8, V.5]). O

Let us briefly discuss a barycentric subdivision functor, from symmetric A-complexes to
(augmented) A-complexes. We first define the barycentric subdivision of the symmetric
A-complex I(—, [p]) by sending [q] € Ai; U {[—1]} to the set of all flags of subsets (0 C
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Ay € --- C A, C[p]). The subdivision sd(X) of a general X : I°® — Sets is then defined
as the colimit in augmented A-complexes

sd(X) = colimp) e sA( (=, [p]))-
Explicitly, this spells out to the formula

sd(X)([a]) = (] % x sd(= D))/ ~,

where ~ is the equivalence relation generated by (z, 6*b) ~ (X (0)(z),b) whenever x € X,
b e sd(I(—, [p'])),, and 0 € I([p), [p]).

Equivalently, sd(X)([¢]) may be explicitly described as the set of equivalence classes
of conservative functors o: (0 < --- < q) — JY, up to natural isomorphism of func-
tors. In any case, let us emphasize that the subdivision of a symmetric A-complex is an
(augmented) ordinary A-complex, not merely a symmetric one.

Lemma 3.13. The geometric realizations of a symmetric A-compler X and the A-
complex sd(X) are canonically homeomorphic.

Proof. Since both geometric realization and barycentric subdivision preserve all small
colimits, it suffices to construct a natural homeomorphism

(= [PD] = [sd(I (=, [p))],

which is done in the usual way: the left hand side is AP, a non-empty subset A C [p]
determines a face of AP, and the corresponding vertex on the right hand side is sent to
the barycenter of that face; extend to an affine map on each simplex. O

Remark 3.14. Colimit presentations may be used to make many other definitions, or
illuminate old ones. For example, the join X xY of two symmetric A-complexes X and Y
may be defined by requiring (I(—, [p])) * (I(—, [q])) = I(—, [p] I [¢]) and requiring X Y’
to preserve colimits in X and Y separately. The chains functor X +— C,(X; R) that we
defined above also preserves colimits, so it suffices to define it on representables. The
shifted chains functor, sending X to C,(X;R) shifted so that RX _; is in degree 0, is
characterized up to natural isomorphism by its value on the point I(—, [0]) together with
the properties that it sends join of symmetric A-complexes to tensor product of chain
complexes, and preserves all colimits.

Remark 3.15. Symmetric A-complexes may themselves be regarded as special cases of
the generalized cone complezes of [ACP15, §2]. A cone is a topological space o together
with an “integral structure,” i.e., a finitely generated subgroup of the group of continuous
functions ¢ — R satisfying a certain condition, and a generalized cone complex is glued
out of cones along certain maps: by definition they are presented as colimits of cones,
indexed by any small category.

The orthant R@O equipped with the group generated by the p+1 coordinate projections

]R[g) — R C R is an example of a cone. The generalized cone complex corresponding to
a symmetric A-complex X is then the colimit of orthants, indexed by ([p], z) € Jx.
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3.5. The tropical moduli space as a symmetric A-complex. Let us return to the
tropical moduli space A, which we defined in Section[2l To illustrate how the definitions
of this section work for A,, we will give two descriptions that exhibit A, as the geometric
realization of a symmetric A-complex. The first description presents A, as a colimit of
a diagram of symmetric A-complexes; the second is an explicit description as a functor
X I°P — Sets.

The category T, from §2.2 has a unique final object: a single vertex, of weight g. For
the first description of A, as a colimit of a diagram of A-complexes, choose for each
object G € [, a bijection 7 = 7g: E(G) — [p| for the appropriate p > —1. This chosen
bijection will be called the edge-labeling of G. The terminal object has p = —1, and all
non-terminal objects have p > 0. We require no compatibility between the edge-labelings
for different G, but a morphism ¢: G — G’ determines an injection

-1
V] " B(G) “= B(G) “ [p),
where the middle arrow is the induced bijection from the edges of G’ to the non-collapsed
edges of G as in Definition This gives a functor F': [;P — [ sending G to the
codomain [p]| of 7@, and hence induces a functor from ['® to symmetric A-complexes,
given as G — I(—, F(G)), whose colimit X has geometric realization | X| = A, and cone
CX = MjP.

Indeed, colimit commutes with geometric realization by Lemma [B.12] so the geometric
realization of X is the colimit of the functor G — [I(—, F(G))| from ['J* to Top. But we
have a homeomorphism |I(—, F/(G))| = AP, where [p] = F(G). Furthermore, if G’ € T,
is an object with p’ + 1 edges, then the injection of label sets F'(¢): [p'] — [p] determined
as above by a morphism ¢: G — G’, induces a gluing of the simplex |I(—, F(G'))| = A”
to a face of |I(—, F(G))| = AP. This agrees with the gluing obtained from the gluing
of 0(G’) to a face of 0(G) in Definition 2.3 by restricting to the length-one subspaces
AP C o(G) = R>(()G) and A” C 0(G) = RE&G/).

For the second description of A, as the geometric realization of a symmetric A-complex,
we explicitly describe a functor X: I°? — Sets as follows. The elements of X, are equiv-
alence classes of pairs (G, 7) where G € [, and 7: E(G) — [p] is an edge labeling; two
edge-labelings are considered equivalent if they are related by an isomorphism G = G’
(including of course automorphisms). Here G ranges over all objects in ', with exactly
p+1 edges. (Using that in §2.2l we tacitly picked one element in each isomorphism class in
[, the equivalence relation is generated by actions of the groups Aut(G).) This defines
X : I°? — Sets on objects.

Next, for each injective map ¢: [p'] — [p], define the following map X (¢): X, = X,
given an element of X, represented by (G,7: E(G) — [p]), contract the edges of G
whose labels are not in ¢([p’]) C [p], then relabel the remaining edges with labels [p] as
prescribed by the map ¢. The result is a [p/]-edge-labeling of some new object G, and we
set X(¢)(G) to be the element of X, corresponding to it.

Hereafter, we will use A, to refer to this symmetric A-complex and write |A/| for the
topological space. To avoid double subscripts, we write A, ([p]) for the set of p-simplices

of Ay. Then Hy(A,) = ﬁk(\AgD since A, ([—1]) = {*}.
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4. GRAPH COMPLEXES AND CELLULAR CHAINS ON Ag

In this section we prove Theorem [[.3l From §3.5] we read off the following presentation
of the cellular chain complex C'9) = C,(A,; Q). There is one generator [G,w] of degree p
for each object G € [, and each bijection w from E(G) to an object [p] in I, subject to
the relations [G, w]| = sgn(o)[G’, w'] if there exists an isomorphism G — G’ in [, inducing
the permutation o of the set [p] = {0,...,p}. The differential is

p
0[G,w] = > (-1)[G/es,wlasel,
i=0
where w(e;) =i and w|g/e,: E(G/e;) = [p — 1] makes the following diagram commute.

"JIG/e,L-

E(G/e;)) —[p—1]

L

E(G) [p]
Proposition [3.8 specializes to the following.
Lemma 4.1. There is an isomorphism Hk(|Ag|;Q) >~ H,(C9). O

Definition 4.2. Let B9 C CY be the subcomplex spanned by those [G,w] which have a
vertex with positive weight, and let A9 = C9)/BY be the quotient chain complex.

Hence A is spanned by those [G,w] in which w(v) = 0 for all vertices v. The
boundary map on AW is still an alternating sum of edge contractions, now identifying
(G/e,w|g/e] = 0 when e € E(G) is a loop. Comparing definitions, we get the following.

Lemma 4.3. The chain complezr AY is isomorphic to a shift of Kontsevich’s graph com-
plex G . In our grading conventions, the isomorphism is
(9) (9)
GY — Akﬂ-2g—1
G, w]| — [G,w]. O
The next proposition implies that the homomorphism
ﬁk+2g—1(|Ag|; Q) — Hk(G(g))

induced by the quotient C9) — A1) is an isomorphism. It is quite similar to the acyclicity
result established in [CGV05, Theorem 2.2].

Proposition 4.4. The chain complez B9 has vanishing homology in all degrees.

The complex B calculates the reduced homology of the subspace of A, consisting of
graphs containing a vertex of positive weight. In [CGP19] we shall show that this space
is in fact contractible.

Proof. For any G and any e € E(G), say e is a stem if it separates a single weight-one
vertex from the rest of G, i.e., if G looks like

1057
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In particular a loop cannot be a stem. Notice that for distinct edges e, f € FE(G) such
that f is not a loop, e is a stem in G if and only if its image in G/f is a stem. Notice
also that G has a vertex of positive weight if and only if it admits a morphism from some
G’ having a stem. N

Suppose G has a vertex of positive weight. Let G be the graph obtained from G as
follows: for any vertex v in G of weight w > 0, other than a vertex of weight 1 already
separated from the rest of G by a stem, replace v with a single vertex of weight zero
incident to w stems. (If, and only if, G is a single vertex of weight 2, it is necessary
to suppress the resulting unstable vertex of weight 0 and valence 2 in G.) There is a
canonical morphism ¢: G — G which contracts all stems. Moreover, G is the unique
“maximal stem-uncontraction” of G in the following precise sense: for any morphism
¢': G — G that may be factored as a sequence of stem-contractions and isomorphisms,
there exists a morphism ¢: G — G’ with ¢ = ¢’ 0 9.

For i > 0, let B9 denote the subcomplex of B spanned by graphs G with at most i
edges that are not stems. Then the subcomplexes B@? for i =0,...,3g — 3, filter B,

Next, for each i > 0, we claim vanishing of relative homology of the pair (B, B(9)i=1),
The chain complex associated to this pair is generated by those [G,w| having a positive
weight, satisfying in addition that G has exactly ¢ non-stem edges. Furthermore, the
boundary of [G,w] is a signed sum of 1-edge-contractions by stems. We claim that this
chain complex is a direct sum of subcomplexes BY(G), one for each G with i non-stems
that is maximal in the sense discussed above. Here, B9)(G) is the subcomplex of B(9)?
with a generator in degree p for each [H,w] for H isomorphic to a stem-contraction of
G and w: E(H) — [p| a bijection, with relations [H,w] = sgn(c)[H’,w’| whenever there
is a 0 € Sp41 and an isomorphism H — H’ taking w to o ow’. The fact that the chain
complex does indeed split as a direct sum follows from the fact that if G and G’ are both
maximal stem-uncontractions of a given graph with a vertex of positive weight, then G
and G’ admit morphisms to each other, hence are isomorphic in [,.

Now we claim that each BY(G) is acyclic. Indeed, we will show that it is isomorphic
to the rational cellular chain complex associated to the pair

(AIP@I=L/Aut(G), Z/Aut(G))

where Z is the union of the i facets of AF(G)=1 that contain all vertices of AIF(G)I-1
corresponding to stems of G. Since 0 < i < |E(G)|, there is a natural deformation
retraction of AP()I=1 onto Z, and this retraction is Aut(G)-equivariant. Therefore the
cellular chain complex of the pair must be acyclic.

The cellular chain complex of the pair (AP(®I=1/Aut(G), Z/Aut(G)) has a generator
in degree p for each Aut(G)-equivalence class [S,w], where S C E(QG) is a set of stem
edges and w: E(G) \ S — [p] is a bijection, with relations [S,w] = sgn(o)[S, 0 o w] for
0 € Spi1. There is a map from this chain complex to B9+(G), sending [S, w] — [G/S, w],
and this map is evidently surjective. In fact it is an isomorphism: if S, S’ C E(QG) are two
sets of stem edges with G/S = G/S’, then by the maximality property of G discussed
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above, there is a morphism G — G making the diagram

1%

G G
L
G/S—>G/S'

commute. Moreover, any morphism G — G is an automorphism. Therefore S and S’ are
in the same Aut(G)-orbit. This proves that B¢ (G) is acyclic, as claimed.

It remains to see that BW?Y is acyclic. Generators are graphs in which every edge is a
stem. It is not hard to classify such G: if g > 2, there is one isomorphism class for each
h € {0,...,g}, given by a graph with a single central vertex of weight g — h, to which are
attached h stems. (If g = 2, then the classification is the same, but A must be in {0,1}.)
For h > 2, these graphs all admit odd automorphisms, so the corresponding generator for
the graph complex vanishes. Thus B@? is rank two, generated by the h = 1 and h = 0
graphs, and the boundary of the h = 1 graph is the h = 0 graph. U

5. BOUNDARY COMPLEXES

The theory of dual complexes for simple normal crossings divisors is well-known. They
may be constructed as A-complexes, with the A-complex structure depending on a choice
of total ordering on the irreducible components of the divisor. Many applications in-
volve the fact that the homotopy types (and even simple homotopy types) of boundary
complezes, the dual complexes of boundary divisors in simple normal crossings compact-
ifications, are independent of the choice of compactification. The same is also true for
Deligne-Mumford (DM) stacks [Har17]. Boundary complexes were introduced and stud-
ied by Danilov in the 1970s |[Dan75], and have become an important focus of research
activity in the past few years, with new connections to Berkovich spaces, singularity the-
ory, geometric representation theory, and the minimal model program. See, for instance,
[Ste08, [ABW13, [Pay13| [KX16], [Sim16l, dFKX17].

In order to apply combinatorial topological properties of A, to study the moduli space of
curves M, using the compactification by stable curves, we must account for the facts that
M, and M, are stacks, not varieties, and that the boundary divisor in M, has normal
crossings, but not simple normal crossings. The latter of those two complications is the
more serious one; when the irreducible components of the strata have self-intersections,
the fundamental groups of strata may act nontrivially by monodromy on the analytic
branches of the boundary and this needs to be accounted for. Omnce that is properly
understood, passing from varieties to stacks is relatively straightforward.

In this section we explain how dual complexes of normal crossings divisors are naturally
interpreted as symmetric A-complexes and, in particular, the dual complex of the bound-
ary divisor in the stable curves compactification of M, is naturally identified with A,.

5.1. Dual complexes of simple normal crossings divisors. We begin by recalling
the notion of dual complexes of simple normal crossings divisors, using the language
of symmetric A-complexes introduced in Section Bl In §5.2] we will explain how to
interpret dual complexes of normal crossings divisors in smooth DM stacks as symmetric
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A-complexes of §3.31 Here and throughout, all of the varieties and stacks that we consider
are over the complex numbers, and all stacks are separated and DM.

Let X be a d-dimensional smooth variety. Recall (cf. [Stal7, Tag 0BI9]) that a simple
normal crossings divisor is an effective Cartier divisor D C X which is Zariski locally cut
out by z - - - 4 for a regular system of parameters 1, ..., x4 in the local ring at any p € D.
The strata of D may be defined inductively as follows. The (d — 1)-dimensional strata of
D are the irreducible components of the smooth locus of D. For each i < d — 1, the i-
dimensional strata are the irreducible components of the regular locus of the complement
of the union of all strata of D of dimension greater than .

If D C X has simple normal crossings, then the dual complex A(D) is naturally
understood as a regular symmetric A-complex whose geometric realization has one vertex
for each irreducible component of D, one edge for each irreducible component of a pairwise
intersection, and so on. The inclusions of faces correspond to containments of strata. It is
augmented, with (—1)-simplices the set of irreducible components (equivalently, connected
components) of X. Equivalently, using our characterization of symmetric A-complexes
in terms of presheaves on the category I given in §3.21 A(D) is the presheaf whose value
on [p] is the set of pairs (Y, ¢), where Y C X is a stratum of codimension p + 1, i.e.,
codimension p in D for p > 0, and ¢ is an ordering of the components of D that contain
Y, with maps induced by containments of strata. Dual complexes can also be defined in
exactly the same way for simple normal crossings divisors in DM stacks.

Remark 5.1. In the literature, it is common to fix an ordering of the irreducible compo-
nents of the simple normal crossings divisor D. The corresponding ordering of the vertices
induces a A-complex structure on A(D). Working with dual complexes as symmetric A-
complexes may be slightly more natural, in that it avoids this choice of an ordering, and
certainly it generalizes better to the construction of dual complexes for divisors with (not
necessarily simple) normal crossings as symmetric A-complexes, given in §5.21

In the literature it is also commonly assumed that X is irreducible, and hence there
is no need for keeping track of (—1)-simplices and augmentations. This is sufficient for
studying one irreducible variety at a time, but comes with some technical inconveniences.
In particular, certain auxiliary constructions, such as the étale covers and fiber products
appearing later in this section, do not preserve irreducibility. It is convenient to set up
the language in a way that applies without assuming irreducibility.

5.2. Dual complexes of normal crossings divisors. We now discuss the generaliza-
tion to normal crossings divisors D in a smooth DM stack X which are not necessarily
simple normal crossings, i.e., the irreducible components of D are not necessarily smooth
and may have self-intersections. This situation is more subtle, even for varieties, due
to monodromy. In the stack case, when the boundary strata have stabilizers, the mon-
odromy may be nontrivial even for zero-dimensional strata. This phenomenon appears
already at the zero-dimensional strata of M, given by stable curves having nontrivial au-
tomorphisms, i.e., the strata corresponding to (unweighted) trivalent graphs of first Betti
number g with nontrivial automorphisms.

Let X be a smooth variety or DM stack, not necessarily irreducible. Recall that a
divisor D C X has normal crossings if and only if there is an étale cover by a smooth
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variety Xy — X in which the preimage of D is a divisor with simple normal crossings.
In this situation, D is a simple normal crossings divisor if all irreducible components are
smooth. Note that this étale local characterization of normal crossings divisors is the
same for varieties and DM stacks.

In this situation the dual complex may be defined directly as a functor I°" — Sets, in
the following way. Let D — X denote the normalization of D C X, and for [p] € I write

Dy = (D xx - xx D)\ {(20,...,2) | z = 2 for some i # j}.

We have 130 =D and 13_1 = X. Then ﬁp — X is a local complete intersection morphism
whose conormal sheaf is a vector bundle of rank (p+1) ([Stal7, Tag OCBR]). In particular

ﬁp is smooth over C of dimension d — p if X is smooth over C of dimension d + 1.

Definition 5.2. Let X be a smooth variety or DM stack, let D C X be a normal crossings
divisor, and write ﬁp — X for the construction defined for all [p] € I°® above. In this
situation, define the symmetric A-complex A(D) by letting A(D), be the set of irreducible
components (= connected components) of D,.

We point out that in the case of stacks, the association [p] — ﬁp will only be a pseudo-
functor, but the set of irreducible components will be functorial in [p] € I.

We note that a closed point of Ep corresponds precisely to a closed point x in a codi-
mension p stratum of D, together with an ordering o of the p + 1 local analytic branches
of D. Hence A(D), may be described more transcendentally as the set of equivalence
classes of pairs (x, ), where (z,0) is equivalent to (z’,0’) if there is a path (continuous
in the analytic topology) within the stratum connecting z to z’, and that following the
ordering of the branches along this path takes o to o’.

Remark 5.3. Recall that a A-complex X is regular if the maps AP — |X| associated
to o € X, for all p > 0 are all injective. This definition makes sense equally well for
symmetric A-complexes X and is equivalent to the condition that every edge of X has
two distinct endpoints, i.e., for any e € X7, we have dy(e) # d(e).

The dual complex of a normal crossings divisor will be a regular symmetric A-complex
exactly when D has simple normal crossings, meaning that every irreducible component
of D is smooth. Indeed, the irreducible components of D are smooth if and only if at
every codimension 1 stratum of D, the two analytic branches belong to distinct irreducible
components. This is equivalent to the condition that dy(e) # di(e) for e € A(D);.

The comparison of Definition with [ACP15] uses the following étale descent result,
whose proof we omit (see [CGP18]). Let D and D’ be normal crossings divisors in X
and X', respectively. Suppose 7: X' — X is étale and D’ is the preimage of D. Then
induces natural maps D, — D, for all p, and hence a morphism A(D') — A(D). Thus
(X, D) — A(D) is functorial for such étale maps. Together with the discussion in §5.0]
the following étale descent property completely characterizes this functor.

Lemma 5.4. With boundary complexes defined as in Definition [5.2, the association
(X, D) — A(D) satisfies étale descent in the sense that if Xg — X is an étale cover
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and X; = Xy X x Xy, then
A(D Xx Xl):;A(D Xx X(]) — A(D)
1S a coequalizer diagram.

Example 5.5. Consider the Whitney umbrella D = {z%y = 2°} in X = A3\ {y = 0},
as in [ACPI5, Example 6.1.7]. Calculating the dual complex A(D) by descent along the
degree 2 étale cover given by a base change y = u? gives the half interval of Example 3.6,
presented as a quotient of I(—,[1]) by the action of Z/27Z.

Corollary 5.6. Let X be a smooth variety or DM stack with the toroidal structure induced
by a normal crossings divisor D C X. Then the dual complex A(D) is the symmetric A-
complex associated to the smooth generalized cone compler L(X).

Proof. Let Xy — X be an étale cover such that Dy = D X x X has simple normal crossings
in Xo. Let X; = Xo xx Xpand D; = D xx Xo. Endow X; with the toroidal structure
induced by the simple normal crossings divisor D;. Then 3(X;) is the cone over A(D;),
and [ACP15, Proposition 6.1.2] describes ¥(X) as the coequalizer in generalized cone
complexes of ¥(X;)=2%(Xy). The result then follows from Lemma [5.4], since the identi-
fication of symmetric A-complexes with smooth generalized cone complexes preserves all
colimits. O

Most important for our purposes is the special case where X = M, is the Deligne—
Mumford stable curves compactification of M, and D = M, \ M, is the boundary
divisor. Modulo the translation from symmetric A-complexes to (smooth) generalized
cone complexes given in Corollary [5.6] the following statement is one of the main results
of [ACP15] and we refer there for details.

Corollary 5.7. The dual complex of the boundary divisor in the moduli space of stable
curves with marked points A(M, ~ M) is A,.

5.3. Top weight cohomology. Let X be a smooth variety or DM stack of dimension
d over C. The rational singular cohomology of X, like the rational cohomology of a
smooth variety, carries a canonical mixed Hodge structure, in which the weights on H*
are between k and min{2k, 2d}. Since the graded pieces Gr}" H*(X’; Q) vanish for j > 2d,

we refer to Gy, H*(X;Q) as the top weight cohomology of X.

Theorem 5.8. Let X' be a smooth and separated DM stack of dimension d with a normal
crossing compactification X and let D = X ~ X. Then there is a natural isomorphism

Gryg H*7H(X;Q) = Hp 1 (A(D); Q),
whose codomain is Hy,_1(|A(D)]; Q) when X is irreducible.

Proof. First, we reduce to the case where D has simple normal crossings, by a finite
_/ —_

sequence of blowups, as follows. Let X — X be the morphism obtained by first blowing

up the zero-dimensional strata of D, and then the strict transforms of the 1-dimensional

strata, and so on. Then one readily checks that D' = X'\ X has simple normal crossings
and A(D’) is the barycentric subdivision of A(D), as defined in §3.41
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We may therefore assume that D has simple normal crossings. The remainder of the ar-
gument is essentially identical to the proof for simple normal crossings divisors in algebraic
varieties given in [Payl13|, Sections 2 and 4]. The one additional fact needed to go from
varieties to DM stacks is that the cohomology of a smooth DM stack X with projective
coarse moduli space X is pure. To see this, note that the natural map X — X induces
an isomorphism H*(X; Q) — H*(X;Q) (see [Beh04] or [Edil3, Theorem 4.40]) and, since
X is a compact Kéhler V-manifold, its cohomology is pure [PS08, Theorem 2.43].

We briefly recall the argument: there is a complex of Q-vector spaces

0 P H(Di:Q) > @ H(DiyxxDi;; Q) =5 €D HY(DigxxDiy xxDiy; Q) = -+,
i=1

10<?1 10<t1<t2

whose cohomology gives the j-graded pieces of the weight filtrations on the cohomology
groups of D; see [KK98| Chapter 4, §2]. Set j = 0; then the long exact sequence associated
to the pair (X, D), together with the fact that H*(X,Q) is pure of weight k, allows one
to relate the cohomology of the above complex to Gr(V]V H?(X;Q), which is isomorphic by
Poincaré duality to Gryy H?**(X;Q)Y. O

6. APPLICATIONS

We now proceed to use the identification of top weight cohomology of M, with re-
duced homology of the symmetric A-complex A, developed in the preceding sections,
in combination with known nonvanishing and vanishing results for graph homology and
cohomology of M, to prove the applications stated in the introduction.

Theorem There is an isomorphism
Grgy g H" " H (Mg Q) = Hia (1A Q)

identifying the reduced rational homology of A, with the top graded piece of the weight
filtration on the cohomology of M,.

Proof. Let D = M, ~ M,. Then A, is naturally identified with the dual complex A(D),
by Corollary 5.7l The theorem is therefore the special case of Theorem 5.8 where X = M,
and X = M,. U

We now prove our nonvanishing result for H*~5(M,; Q).

Theorem [I.Il The cohomology H*~%(M,; Q) is nonzero for g =3, g =15, and g > 7.
In fact, dim H¥%(M,; Q) grows at least exponentially; precisely,

dim H* (M ,; Q) > 9 + constant
for any B < By, where By ~ 1.3247 ... is the real Toot of 2 —t — 1 = 0.

Proof. By Theorems and [[3, we have a natural surjection H*~%(M,) — Hy(G9).
Therefore the result follows from Theorem 2.7 OJ
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Note that the nonvanishing unstable cohomology group Grly H(Ms; Q) found by Looi-
jenga [Loo93] is identified with the span of [W3] in Ho(G®). Hence, the nonvanishing,
unstable, top weight cohomology that we describe, especially those corresponding to the
spans of [W,] for odd g > 5, may be seen as direct and natural generalizations.

In comparison, the asymptotic size of the tautological ring of M, is bounded above by
CV9 for a constant C'. Indeed, its Poincaré series is dominated coefficient-wise by that of
the polynomial ring

Q[r1, K2, - - ], deg k; = 2i.
where r; has degree 2i, and M, has virtual cohomological dimension 4g — 5 [Har86]. A
rough bound may be obtained by calculating dim Q|[k1, K, .. .Jon, = p(n) where p(n) is
the number of partitions of n. Since log(p(n)) ~ m/2n/3 by [HRIT, eq. (5.22)], the
dimension of the tautological ring is bounded by Zigz_lgp(Qn) <2g-p(29) < A-BVI+C
for constants A, C' and C'.

On the other hand, the Euler characteristic estimates by Harer—Zagier mentioned earlier
imply that the size of the top weight part of H*7%(M,; Q) as g — oo accounted for here
is still negligible in comparison to the entire H*(M,; Q) (and hence in comparison to the
largest single Hodge number of M,).

We also record the following nonvanishing result of odd-degree cohomology groups, as
discussed in the introduction:

Corollary 6.1. The cohomology groups H(Mg; Q), H*(Mg;Q), and H* (Mi; Q) are

nonzero.

Proof. By Theorems[[.2and 3] the nontrivial classes in H3(G®), H3(G®)), and H7(G1?))
discovered computationally in [BNM]| implies nonvanishing of H'*(Mg; Q), H*3(Ms; Q),
and H27(M10;Q). ]

The computations of [BNM] are extended, albeit by approximate (floating point) calcu-
lations, in [KWZ17], where it is also shown that @, H¥*!(GC) is infinite dimensional.

Combining [KWZI?, Corollary 6] with Theorems [[.2] [[.3], and 2.7 yields the following
dimension bound on top-weight odd-degree cohomology.
Corollary 6.2. For each g > 2, we have:

Z dim Grgg,_ﬁ H* ™ (My;Q) > B9+ constant,
9>9'>(29+2)/3, i>0

for any B < By, where By == 1.3247 ... is the real root of t* —t —1 = 0.

We conclude with an application in the other direction, using known vanishing results
for M, to reprove a recent vanishing result of Willwacher for graph homology.
Theorem 4. The graph homology groups Hy(G9) vanish for k < 0.

Proof. The virtual cohomological dimension of M, is 49 — 5 [Har86]. Furthermore,
H*7%(M,; Q) vanishes [CEP12] MSS13]. Therefore H*97%%(M,; Q) vanishes for k < 0.
The theorem follows, since H4*9~57%(M,; Q) surjects onto Hy(G9). 0



TROPICAL CURVES, GRAPH COMPLEXES, AND TOP WEIGHT COHOMOLOGY OF M, 27

7. HYPERBOLIC SURFACES

Here, we use the hyperbolic model for M, to construct the proper map A\: M, — M;mp
announced in (L.O.), and to give an explicit interpretation of the classes in Hy,_6(M,; Q)
arising from our main results. More details will appear in a sequel.

In the hyperbolic interpretation of M, points are hyperbolic metrics on a closed genus
g surface ¥, up to isometric diffeomorphisms. Let M;hid‘ C M, denote the subspace
given in the hyperbolic model for M, as those hyperbolic surfaces in which no non-trivial
geodesic has length less than e, for a suitably small € > 0. Then /\/l;hiCk C M, is a defor-
mation retract [HZ86, p. 476]. Equivalently, Harvey’s Borel-Serre type compactification
of M, or the Kato-Nakayama space associated to the boundary divisor in M, may be
used instead of /\/l;hid‘. Its boundary consists of hyperbolic surfaces with at least one
geodesic of length €, but it is better regarded as an orbifold with corners: it is covered by
orbifold charts of the form

R;o % RT — M‘;hick
for finite sets S and T (varying from chart to chart).

7.1. A map of spaces. Let h be a hyperbolic metric on a closed oriented 2-manifold
3 of genus ¢ and let I' be the dual graph of the nodal 2-manifold obtained from X by
collapsing all closed geodesics of length smaller than some suitable €, chosen once and for
all. Each e € E(I") then corresponds to a simple closed geodesic in (X, h) of length a. < e,
and we let {(e) = —log(a./€). For sufficiently small ¢ > 0, this recipe [£,h] — (I',¢)
defines a (well defined) proper map

A: Mg — M™P.
This is a model for the map (L.O.)) in the introduction.

7.2. Generalizations of abelian cycles. The injection Hy(G9)Y — Hy, ¢ (M, Q)
allows us to produce non-zero homology classes in the mapping class group from classes
in get; = HO(GC) =[], Hy(G9))V. Tt is natural to ask for a more explicit description of
the resulting homology classes. In this section we shall outline how to transport a class
represented by a cocycle a: G,(f) — Q through these isomorphisms.

Definition 7.1. For p > —1, let K, be the space of isometry classes of pairs consisting
of a hyperbolic genus g surface in M;hid‘ together with an ordered (p+ 1)-tuple of distinct
geodesics of length €, considered up to isometry of the surface preserving the ordered
tuple of geodesics. Then Sp,+1 = I([p], [p]) acts on K, by permuting the geodesics, and
d;: K,11 — K, is induced by forgetting the ith geodesic, defining a functor I°° — Spaces.

In particular, K_y is the coarse space of the orbifold MM, Let 9 MM denote the
image of the map K, — K_1 induced by () C [p)].

The symmetric A-complex defined as [p| — mo(kK}) is isomorphic to A,. This may be
seen by identifying the orbifold underlying K, with an (S)P™'-bundle over the complex
analytic orbifold underlying D, ~\ do(Dp+1), up to homotopy, or, more directly, by sending
a hyperbolic surface with (p+ 1) ordered labeled geodesics to the dual graph of the nodal
2-manifold obtained by collapsing the geodesics.
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A cochain G;E,g) — Q is naturally identified (by extending to zero on graphs with non-
zero weights) with a cochain a@ € CP(A,; Q). By definition, such a cochain is a function
a: Ay([p]) = mo(K,) — Q which is alternating under the action of S,4; on K,. Hence
we may regard such a cochain as an element o € H°(K,;Q) on which a permutation
o € Sp41 acts as sgn(o). Such a cochain is a cocycle exactly when it is in the kernel of

(7.1) (HO(K,; Q) © QrenySen V@ (ogge @) @ Qem) e,

Next we wish to apply Poincare duality to K, which is a compact rational homol-
ogy manifold with boundary. We first pin down orientations, i.e., fundamental classes
(K, € Hq—p(K,,0Kp). The subset d;(0K,+1) C 0K, is independent of i, and we have
homomorphisms

d;
Hd—p(Kp’aKp) i) Hd—p—l(aKp’di(aKpH)) & Hq- p— 1(Kp+1>8Kp+l)a

where we write § for the connecting homomorphism of the triple. The map (d;). is an
isomorphism by excision, and the orientations are chosen such that [K,1] = ((dg)«) ™"
0([Kp)), which forces ((di).)™" o d([K,]) = (=1)'[Kpra] and 0. ([K,]) = sgn(o)[I) f01"
S Sp-i—l-
Poincaré duality, i.e., cap product with these fundamental classes, now identifies the
homomorphism in (TI]) with a homomorphism
. >2((di)«) " Tod .
(72) Hd—p(KIH 8KP7 Q>Sp+1 - Hd—p—l(KP-l-lv 8*Kvp-i-h Q>Sp+27
where the signs in both the 5,4, action and the boundary homomorphism have canceled
with those in the fundamental classes. A cocycle o € CP(Ay; Q) gives a Poincaré dual
PD([a]) € Hy—p(K,, 0K,; Q)s, ., in the kernel of (7.2]). Mapping into K_; sends all spaces

_ pt1
into P MM and the map (Z2) fits into a commutative square

(7.2)

Hd—p(va aKp? Q>Sp+1 Hd—P—l(Kp+17 aK;zH-l; @)Sp+2
\Ll/(p+1)! J/l/(p+2)1
Hd—p(apMZhiCka ap—i—lM;hick; @) . Hd_p_l(ap—l—l./\/l;hmk, ap+2M;hick; Q),

where the bottom row is the connecting homomorphism for the triple. The class PD([«])
in the upper left corner therefore maps to a class in Hd_p(ap/\/l;hmk, 0p+1/\/l;hid‘), which
admits a lift to homology relative to 8p+2/\/l;hmk. Since that space has no homology
above degree (d — p — 2), another long exact sequence shows that this class lifts uniquely
to Hd_p(ap./\/lgh“k; Q). By a similar argument, one checks that the image of this class in
Hd_p(ap—lM;hick; Q) is unchanged by adding a coboundary to «, and hence one gets a well
defined class in Hy_,(M"*; Q) depending only on the cohomology class [o] € H?(Ag; Q).

In the special case where p = 3g — 4, generators of C?(A,; Q) are trivalent graphs and
automatically cocycles since CPTH(A ; Q) = 0, and the resulting classes in

Hsg 3 (Mg? Q) = Hzy 3 (MOdg? Q)
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are exactly the abelian cycles associated to maximal collections of commuting Dehn twists.
In this way, homology classes on M, associated to graph cohomology classes in H *(GW)
may be seen as generalizations of abelian cycle classes for the mapping class group.
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