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COMPUTING SQUARE-FREE POLARIZED ABELIAN

VARIETIES OVER FINITE FIELDS

STEFANO MARSEGLIA

Abstract. We give algorithms to compute isomorphism classes of ordinary
abelian varieties defined over a finite field Fq whose characteristic polynomial
(of Frobenius) is square-free and of abelian varieties defined over the prime field
Fp whose characteristic polynomial is square-free and does not have real roots.
In the ordinary case we are also able to compute the polarizations and the
group of automorphisms (of the polarized variety) and, when the polarization
is principal, the period matrix.

1. Introduction

It is well known that the abelian varieties of dimension g defined over the complex
numbers can be functorially (and explicitly) described in terms of full lattices L in
Cg such that the associated complex torus Cg/L admits a Riemann form, see for
example [Ros86].

When we move to the world of positive characteristic p, thanks to Serre, we know
that we cannot describe the whole category of abelian varieties of dimension g
in terms of lattices of rank 2g. This is due to the existence of objects such as
supersingular elliptic curves whose endomorphism algebra is quaternionic and hence
does not admit a 2-dimensional representation over Q.

Nevertheless, if we restrict our attention to some subcategories of the category of
abelian varieties defined over a finite field we have equivalences with the category
of finitely generated free Z-modules with extra structure satisfying some easy-to-
state axioms. More precisely, this was proved by Deligne in [Del69] for ordinary
abelian varieties over a finite field Fq, where q = pr is an arbitrary prime power,
and by Centeleghe-Stix in [CS15] for abelian varieties over the prime field Fp whose
characteristic polynomial of Frobenius does not have real roots, or equivalently,
such that

√
p is not an eigenvalue of the action of Frobenius on the associated l-

adic Tate module, for any prime l 6= p. Other functors (which we do not use in
this paper) defined on the subcategory of powers of elliptic curves are studied in
the Appendix in [Lau02], in [Kan11] and in [JKP+18].

Themain result of this paper is an algorithm to compute the isomorphism classes
of abelian varieties in the isogeny class determined by a square-free characteristic
polynomial h of Frobenius using Deligne and Centeleghe-Stix’ results. The key
point to perform this computation is that the target category of Deligne’s and
Centeleghe-Stix equivalences is equivalent to the category of fractional ideals of the
order Z[F, V ], where F is a root of h and V = q/F in the Deligne case and V = p/F
in Centeleghe-Stix case. Fractional ideals for orders that are not domains will be
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2 STEFANO MARSEGLIA

defined in Section 2. The order Z[F, V ] might not be maximal and so the fractional
ideals might not be invertible, even in their own multiplicator ring. In [Mar20] we
describe a method to compute the isomorphism classes of such ideals and hence we
are able to compute the isomorphism classes of abelian varieties in the isogeny class
determined by h, see Algorithm 1.

In the ordinary case, translating the results of [How95] into our ideal-theoretic
description allows us to compute polarizations of arbitrary degree and the auto-
morphism group of the polarized abelian varieties, see Algorithms 3 and 4.

The present algorithm could be used to provide computational evidence for ex-
tending the formulas counting the number of isomorphism classes of principally
polarized abelian varieties such as in [AW15] and [AG17].

We would like to stress that the shift from Z[F, V ]-modules to Z[F, V ]-fractional
ideals (for certain isogeny classes) is very natural and it has already been used
in the past, sometimes implicitly. A list of papers where such a shift is applied
to simple ordinary varieties includes: the work of Howe, see for example [How95,
Section 6] where the focus is on abelian varieties with maximal endomorphism ring
and [How04, Section 2] for abelian surfaces; a paper by Lenstra, cf. [Len96, Sec-
tion 6]; a paper by Lenstra, Pila and Pomerance, with focus on for abelian surfaces,
cf. [LPP02, Section 8]; a paper by Shankar and Tsimerman, mainly for geomet-
rically simple isogeny classes, cf. [ST18, Section 3.1]. The shift is also described
using categorical language for simple ordinary abelian varieties in previous work of
the author [Mar16], and in Martindale’s thesis [Mar18b, Sections 1.2,1.4]. Results
analogous to the one contained in the present paper for simple almost ordinary
abelian varieties in odd characteristic can be found in Oswal and Shankar’s paper
[OS, Section 4].

The paper is structured as follows. In Section 2 we recall the definition of frac-
tional ideal of an order and we introduce the notion of an ideal class monoid. In Sec-
tion 3 we describe the categories of abelian varieties and Deligne’s and Centeleghe-
Stix’ equivalences. In Section 4 we focus on the square-free case and prove an
equivalence with the category of fractional ideals of certain orders. Such an equiv-
alence allows us to describe the endomorphism ring, the automorphism group and
the group of rational points of the abelian varieties. In Section 5 we translate the
notion of a polarization of an ordinary abelian variety over a finite field into the
ideal-theoretic language and we describe how to compute the polarizations of a
given degree up to isomorphisms. We also describe how to compute the automor-
phism group of the polarized abelian variety. In Section 6 we present the algorithms
from the previous sections and in Section 7 we present the output of some compu-
tations. Finally, in Section 8 we explain how to compute a period matrix of the
canonical lift of an ordinary principally polarized abelian variety using the tools
provided. The algorithms have been implemented in Magma [BCP97]. The pack-
ages and the code to reproduce the examples contained in this paper are available
at https://github.com/stmar89/AbVarFq. The author is currently running a big
computation of isomorphisms classes of abelian varieties over finite fields. The
output will be published on [LMF13].

Acknowledgments. The author would like to thank Jonas Bergström for helpful
discussions and Rachel Newton and Christophe Ritzhentaler for comments on a
previous version of the paper, which is part of the author’s Ph.D thesis [Mar18a].
The author would also like to express his gratitude to the Max Planck Institute
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for Mathematics in Bonn for their hospitality. The author thanks the anonymous
reviewer of Mathematics of Computation for useful comments and suggestions.

Conventions. All rings are commutative and unital. All morphisms between
abelian varieties A and B over a field k are also defined over k, unless otherwise
specified. In particular we write Hom(A,B) for Homk(A,B). An abelian variety A
is simple if it is so over the field of definition.

2. Orders and Ideal classes

Let f ∈ Q[x] be a monic square-free polynomial and denote by K the étale Q-
algebra Q[x]/(f). Note that K is a finite product of number fields. An order in
K is a subring R of K whose underlying abelian group is isomorphic to Zn where
n = deg f . In particular, we have that R ⊗Z Q = K and that K is the total ring
of quotients of R. Among all orders of K there is one maximal with respect to
inclusion called the maximal order of K. It is a Dedekind ring and we denote it
by OK .

A fractional R-ideal is a finitely generated sub-R-module I of K such that K =
I ⊗Z Q, or, equivalently, it contains a non-zero divisor of K. Given two fractional
R-ideals I and J we have that IJ , I + J , I ∩ J and (I : J) = {x ∈ K : xJ ⊆ I} are
also fractional R-ideals. Note that the fractional R-ideals are precisely the lattices
in K which are R-modules.

An over-order of R is an order containing R.
To every fractional R-ideal I we can associate a particular order S, the multi-

plicator ring of I, defined as the biggest subring of K for which I is an S-module.
Note that S = (I : I) and that S is an over-order of R. A fractional ideal I is
invertible if I(S : I) = S, where S is its multiplicator ring.

Observe that two fractional R-ideals I and J are isomorphic as R-modules if and
only if there exists a ∈ K× such that I = aJ . Indeed, every R-linear morphism
α : I → J induces a unique K-linear endomorphism α⊗ Q of K which is uniquely
determined by the image of 1, say a. Moreover α is injective if and only if a is
not a zero-divisor. We will denote by I(R) the category of fractional R-ideals with
R-linear morphisms.

The set of fractional R-ideals up to isomorphism is called the ideal class monoid
of R and it is denoted ICM(R). It is a multiplicative monoid under the operation
induced by ideal multiplication and contains a group Pic(R) consisting of the classes
of invertible R-ideals, with equality if and only if R = OK . More generally, we have
that

ICM(R) ⊇
⊔

S

Pic(S),

where the disjoint union is taken over all the over-orders S of R. We will write [I]
for the isomorphism class of the fractional R-ideal I.

In [Mar20] we describe an algorithm that computes ICM(R).

3. The category of abelian varieties over a finite field

Let q = pr be a power of a prime p. Denote with AV(q) the category of abelian
varieties over Fq. For A in AV(q) let hA be the characteristic polynomial of the
Frobenius acting on the Tate module TlA for a prime l 6= p. Recall that the
definition of hA does not depend on the choice of the prime l. It follows from the
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results of Honda [Hon68] and Tate [Tat66] that the polynomial hA characterizes
the isogeny class of A. Their results can be summarized as follows. Consider the
following conditions for a polynomial h in Q[x]:

(a) h is monic, of even degree and with integer coefficients;
(b) every complex root of h has absolute value

√
q;

(c) h = mn, where m is irreducible and n is the least common denominator
of the rational numbers {vp(f(0))/r}, where f runs over the irreducible
factors of m over Qp and vp is the p-adic valuation normalized such that
r = vp(q). If m has a real root then one needs to add 1/2 to the set of
rational numbers.

Let W(q) be the set of finite products of polynomials satisfying (a), (b) and (c).

Proposition 3.1 (Honda-Tate theory, see [Tat71]). If A is an abelian variety in
AV(q) then hA is in W(q). Conversely, for every h in W(q) there exists an abelian
variety A in AV(q) such that h = hA. Given two abelian varieties A and A′ in
AV(q) we have hA = hA′ if and only if A and A′ are isogenous. Moreover, if A has
dimension g then hA has degree 2g.

For h in W(q) we will denote by AV(h) the full subcategory of AV(q) consisting
of abelian varieties in the isogeny class determined by h. A polynomial h in W(q)
will be called ordinary if exactly half of the roots of h are p-adic units. An abelian
variety A is called ordinary if hA is ordinary, or, equivalently, if hA mod p is not
divisible by xg+1, where g is the dimension of A.

The main theoretical tools we will use to understand the category AV(q) are
certain functors to the category of finitely generated free Z-modules with some
extra structure, which become equivalences when we restrict to subcategories of
AV(q). More precisely, we will consider the following categories:

• AVord(q): ordinary abelian varieties over Fq;
• AVcs(p): abelian varieties A over Fp such that hA has no real root.
• Mord(q): free finitely generated Z-modules T with an endomorphism F
such that:

– F ⊗Z Q acts semi-simply on T ⊗Z Q;
– the characteristic polynomial hF of F ⊗Z Q is in W(q);
– hF is ordinary;
– there exists an endomorphism V of T such that F ◦ V = q.

• Mcs(p): free finitely generated Z-modules T with an endomorphism F such
that:

– F ⊗Z Q acts semi-simply on T ⊗Z Q;
– the characteristic polynomial hF of F ⊗Z Q is in W(p);
– hF has no real roots, that is, hF (±

√
p) 6= 0;

– there exists an endomorphism V of T such that F ◦ V = p.

A morphism from (T, F ) to (T ′, F ′) for objects in Mord(q) (or in Mcs(p)) is a
Z-linear morphism ϕ : T → T ′ such that the following diagram commutes:

T

F

��

ϕ // T ′

F ′

��
T

ϕ // T ′
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Theorem 3.2. There are equivalences of categories

Ford : AVord(q) → Mord(q)

and
Fcs : AVcs(p) → Mcs(p),

such that if
A 7→ (T, F )

then RankZ(T ) = 2 dimA and F corresponds to the Frobenius endomorphism of A.

Proof. See [Del69, Theorem 7] and the covariant version of [CS15, Theorem 1] given
in [CS15, 7.4]. �

Remark 3.3. Let A be in AVord(q). We will recall the construction of Ford(A) =
(T, F ) given in [Del69] since it will be used later in computing the polarizations.
Denote by W the ring of Witt vectors over Fq. Since A is ordinary it admits

a canonical lift to an abelian variety Ã over W , characterized by End
Fq
(A) =

EndW (Ã). Fix an embedding ε : W →֒ C and define A′ = Ã ⊗ε C. Finally put
T = H1(A

′,Z). Note that this construction is functorial in A and in particular T
comes equipped with an endomorphism F corresponding to the Frobenius of A.

Remark 3.4. The construction of the functor Fcs depend also on a choice, see
[CS15, Section 7.3]. For any choice of embedding ε : W →֒ C the functor Fcs can

be constructed in a way that extends Ford on AVord(p). See [CS15, Proposition 45].

As Serre has pointed out, functorial descriptions such as the ones in Theorem 3.2
cannot be extended to the whole category of abelian varieties. This is a consequence
of the existence of objects like supersingular elliptic curves, whose endomorphism
algebra is a quaternionic algebra which does not admit a 2-dimensional represen-
tation.

4. The square-free case

In this section h will be either a square-free ordinary polynomial in W(q) or a
square-free polynomial in W(p) with no real roots. We will denote with M(h) the
image of AV(h) under the functor Ford (or Fcs, respectively).

Remark 4.1. Let A an abelian variety in AV(h). The Poincaré reducibility theorem
states that there are simple and pairwise non-isogenous abelian varieties B1, . . . , Br

and an isogeny such that
A ∼ B1 × . . .×Br.

In particular h =
∏

i hBi
and, since h is square-free, it follows that each hBi

is
irreducible. Observe that the converse holds in both cases of interest to us: the
characteristic polynomial of a simple abelian variety B is irreducible, hence equal
to the minimal polynomial of the Frobenius, if B is in AVord(q), see [How95, The-
orem 3.3], or in AVcs(p), because in the condition (c) stated at the beginning of
Section 3 all denominators are equal to 1.

One observes that the proportion of square-free polynomials among non-ordinary
p-Weil polynomials is smaller than the proportion of square-free polynomials among
ordinary p-Weil. Nevertheless it accounts for the vast majority of them. For exam-
ple by looking at [LMF13] one sees that among the 105600 ordinary isogeny classes
of abelian fourfolds over F5 exactly 104746 are square-free. Among the 27239
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non-ordinary isogeny classes of abelian fourfolds over F5 we have 26765 which are
square-free.

Remark 4.2. Note that being square-free is not a geometric condition, in the sense
that in general it is not stable under extensions of the base field. For example, if A
is an abelian surface over F31 with characteristic polynomial

hA = (x2 − 3x+ 31)(x2 + 3x+ 31)

then A is isogenous to the product of two non-isogenous elliptic curves E1 and E2.
On the other hand E1 and E2 become isogenous over F312 and indeed the charac-
teristic polynomial of A′ := A⊗ F312 is

hA′ = (x2 + 53x+ 961)2.

Denote with K the étale algebra Q[x]/(h). Put α = x mod (h). Let R be the
order in K generated by α and q/α. Observe that our order R is the order Rw

defined in [CS15, Section 2] for the Weil support w identified by the polynomial h
and, similarly, R equals the order RC defined in [How95]. Recall that I(R) denotes
the category of fractional R-ideals.

Theorem 4.3. There is an equivalence of categories Ψ: M(h) → I(R).
Proof. Let g be the dimension of any abelian variety in AV(h), or equivalently
let 2g be the degree of h. Pick an object (T, F ) in M(h). Note that by definition T
is a Z[F, V ]-module. Since h is square-free it is the minimal polynomial of F and
hence the morphism F 7→ α induces an isomorphism Z[F, V ] ≃ R and hence an
R-module structure on T . Since T is torsion-free it can be embedded in R⊗Z Q =
K and hence it can be identified with a sub-R-module I of K. Since T is an
abelian group of rank 2g it follows that I is a fractional R-ideal, hence an object
of I(R). Denote this association (T, F ) 7→ I by Ψ. Observe that Ψ is a functor.
Indeed if ϕ : (T, F ) → (T ′, F ′) is a morphism in M(h), then the compatibility
rule ϕ ◦ F = F ′ ◦ ϕ implies that Ψ(ϕ) will be an R-linear morphism, as required,
and that it respects composition and that it sends the identity morphism to the
identity morphism. By construction it is clear that Ψ is fully faithful and essentially
surjective, hence an equivalence of categories. �

Corollary 4.4. If h is ordinary or if h is over Fp with no real roots then there is
an equivalence of categories

F : AV(h) → I(R).
In particular, F induces a bijection

AV(h)

≃ −→ ICM(R).

Proof. The functor F is the composition of the functor Ford (or Fcs) from The-
orem 3.2 together with the functor Ψ from Theorem 4.3, which are all equiva-
lences. �

Remark 4.5. Theorem 4.3 and Corollary 4.4 tell us that the abelian varieties in
the isogeny class AV(h) correspond to the different Z[x, y]/(h(x), xy− q)-structures
that one can put on Z2g.

Corollary 4.6. If F(A) = I, then

(a) F(End(A)) = (I : I);
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(b) F(Aut(A)) = (I : I)×;
(c) A is isomorphic to a product of abelian varieties if and only if (I : I) is a

product of orders.

Proof. Observe that (a) and (b) follow immediately from the previous proposition.
Statement (c) holds by functoriality and the fact that an ideal I admits a decom-
position I1 ⊕ I2 if and only if the same holds for its multiplicator ring. Indeed,
let S = (I : I). If S = S1 ⊕ S2, denote with e1 and e2 the units of S1 and S2,
respectively, then I = I1 ⊕ I2 where Ii = eiI. The other implication follows from
the fact that if I = I1 ⊕ I2 then (I : I) = (I1 : I1)⊕ (I2 : I2). �

Recall that for a fractional R-ideal J the trace dual is defined as

J t =
{

z ∈ K : TrK/Q(zJ) ⊆ Z
}

,

which is also a fractional R-ideal, with the same multiplicator ring as that of J .
Moreover, if J = α1Z⊕ . . .⊕ αnZ, then J

t = α∗
1Z ⊕ . . .⊕ α∗

nZ, where the α∗
j ’s are

uniquely defined by the relations TrK/Q(αiα
∗
j ) = 1 if i = j and 0 otherwise.

Corollary 4.7. If F(A) = I, then there is an isomorphism

A(Fq) ≃
I

(1− F )I
.

Proof. Observe that A(Fq) is the kernel of 1−πA, where πA is the Frobenius endo-
morphism of A. Moreover, notice that the action of F on I/(1− F )I is invertible.
Now, if A is ordinary, the statement follows from [How95, Lemma 4.13, Proposi-
tion 4.14].

If A ∈ AVcs(p) we will obtain the result by looking at the ℓ-primary parts for
every prime ℓ diving the number of Fp-points of A. For a fractional R-ideal J put
Jℓ = J ⊗Z Zℓ. Also denote by Nℓ the ℓ-primary part of A(Fp).

By [CS15, Propositions 21 and 28] we have Tp(A) ≃ I ⊗Rp ≃ Ip and hence

Np ≃ Ip
(1− F )Ip

.

For a prime ℓ 6= p by [CS15, Propositions 21 and 27] we have an isomorphism
Tℓ(A) ≃ HomRℓ

(Iℓ, Rℓ) and hence

Nℓ ≃
(Rℓ : Iℓ)

(1 − F )(Rℓ : Iℓ)
.

Recall that Rℓ is Gorenstein if and only if Rt
ℓ is principal. Hence we have that

(Rℓ : Iℓ) = (Rt
ℓI)

t ≃ Itℓ . Also, recall that for fractional ideals J1 and J2 we have an
isomorphism of abelian groups J t

1/J
t
2 ≃ J2/J1. Hence we obtain isomorphisms of

abelian groups

(Rℓ : Iℓ)

(1− F )(Rℓ : Iℓ)
≃ Itℓ

(1− F )Itℓ
≃

1
(1−F )Iℓ

Iℓ
≃ Iℓ

(1 − F )Iℓ
,

which concludes the proof at ℓ 6= p. �
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5. Polarizations and automorphisms in AVord(q)

Let h be an ordinary square-free polynomial in W(q) and define K and R as
above. Observe that K is a CM-algebra with involution defined by α = q/α. Note
that R = R.

Lemma 5.1. Let I be a fractional R-ideal. Then

(I)t = (It).

Proof. For z ∈ K, letmz be its minimal polynomial over Q. Observe thatmz = mz

and in particular TrK/Q(z) = TrK/Q(z). It follows that

a ∈ (I)t ⇐⇒ TrK/Q(ai) ∈ Z for every i ∈ I ⇐⇒
⇐⇒ TrK/Q(ai) ∈ Z for every i ∈ I ⇐⇒ a ∈ (It),

which concludes the proof. �

In this section we describe how to compute the dual abelian variety, polarizations
and automorphisms of a polarized abelian variety in AV(h).

Theorem 5.2. Let A be an abelian variety in AV(h) and I = F(A) be the corre-

sponding ideal in I(R), where F is the functor of Corollary 4.4. Then I
t
= F(A∨),

where A∨ denotes the dual abelian variety of A. Moreover, if

F(λ : A→ B) = I
ȧ→ J

then

F(λ∨ : B∨ → A∨) = J
t ȧ→ I

t
,

where λ∨ is the morphism dual to λ and ȧ (resp. ȧ) denotes the R-linear morphism
multiplication-by-a (resp. multiplication-by-a).

Proof. Let (T, F ) = (TA, FA) be the module inM(h) corresponding toA. By [How95,
Proposition 4.5] the dual abelian variety A∨ corresponds to

(TA∨ , FA∨) = (T∨, F∨),

where T∨ = HomZ(T,Z) and F
∨(ψ) = ψ◦V , for every ψ ∈ T∨. Let n be the degree

of h. Fix a Z-basis α1, . . . , αn of I and consider the Z-linear maps:

HomZ(I,Z) −→ I
t

and I
t −→ HomZ(I,Z)

ψ 7−→
n
∑

i=1

ψ(αi)α∗
i z 7−→ TrK/Q(z · −)

These maps are clearly inverses of each other and hence we have that

Ψ((T∨, F∨)) = I
t
,

where Ψ is the functor defined in the proof of Theorem 4.3, or equivalently, that

F(A∨) = I
t
. The second statement follows in an analogous manner. �

A morphism λ : (T, F ) → (T ′, F ′) in Mord(q) corresponds to an isogeny if the
induced linear map λ⊗Q is invertible, see [How95, Section 4, p.2368]. In particular,
if λ : A → B is a morphism in AV(h) then it is an isogeny if and only if F(λ) = a
is not a zero-divisor, that is a ∈ K×.
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An isogeny λ : (T, F ) → (T∨, F∨) defines a bilinear map b : T × T → Z by
b(s, t) = λ(t)(s). For such b, by [Knu91, Theorem 1.7.4.1,p.44], there exists a
unique R-sesquilinear form S on T ⊗Q such that b = TrK/Q ◦S.

Since K is a CM-algebra, homomorphisms K → C come in conjugate pairs. A
CM-type of K is a choice of pairwise non-conjugate morphisms ϕ1, . . . , ϕg : K → C,
where 2g = dimQK. Consider the set

(5.1) Φ := {ϕ : K → C : vp(ϕ(F )) > 0} ,

where vp is the p-adic valuation induced by the embedding ε : W → C as in Re-
mark 3.3. Note that Φ is a CM-type of K since the polynomial h is ordinary.

An element a ∈ K is called totally imaginary if a = −a, or equivalently, if ψ(a)
is totally imaginary for every ψ : K → C. Such an element is said to be Φ-positive
(resp. non-positive) if ℑ(ϕ(a)) > 0 (resp. ℑ(ϕ(a)) ≤ 0) for every ϕ in Φ.

Proposition 5.3 ([How95, Proposition 4.9]). An isogeny λ : (T, F ) → (T∨, F∨)
corresponds to a polarization if and only if

• S is a skew-Hermitian form, that is S(t1, t2) = −S(t2, t1) for every t1, t2 ∈
T ⊗Q, and

• S(t, t) is Φ-non-positive for every t ∈ T ⊗Q.

Theorem 5.4. Let h be a square-free ordinary polynomial in W(q) and let A be
an abelian variety in AV(h). Define R and K as above and put I = F(A). Then:

(a) given an isogeny λ : A→ A∨ put a = F(λ). Then λ is a polarization if and
only if a satisfies:

• aI ⊆ I
t
,

• a is totally imaginary, and
• a is Φ-positive.

Moreover, we have degλ = [I
t
: aI].

(b) given two polarizations λ and λ′ of A, there is an isomorphism (A, λ) ≃
(A, λ′) if and only if there exists v ∈ (I : I)× such that

a = va′v,

where a = F(λ) and a′ = F(λ′). In particular, we have

Aut((A, λ)) = (I : I)× ∩ µK ,

where µK is the group of torsion units of K.

Proof. (a) Let T be the module associated to A. Let b : T × T → Z and
S : TQ×TQ → K be the forms associated to the polarization λ. We will use
the same letters to denote the forms induced after applying the functor F .
Using Theorem 5.2 we see that

b(s, t) = Tr(ats),

which implies that

S(s, t) = ats.

So by Proposition 5.3 we have that a corresponds to a polarization if and
only if a = −a and a is Φ-non-positive. For the statement about the degree,
see [How04, Section 4].
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(b) The element v must be an automorphism of I, hence must be a unit of the
multiplicator ring (I : I). The diagram

I

v

��

a // I
t

I
a′

// I
t

v

OO

must commute, i.e. a = va′v. In particular, if a′ = a then, a being a non-
zero divisor (since it corresponds to an isogeny), this is equivalent to vv = 1,
that is v is a torsion unit, see [Neu99, Proposition 7.1].

�

Note that such an ideal theoretic description was already used in [How04, Sec-
tion 4] for simple abelian surfaces.

Recall that given an abelian variety A, a polarization a is said to be decom-
posable if there exist two polarized abelian varieties (B1, b1) and (B2, b2) and an
isomorphism ψ : A→ B1 ×B2 such that a = ψ∨ ◦ (b1 × b2) ◦ ψ.
Corollary 5.5. Let A be an abelian variety in AV(h) and put I = F(A). Assume
that A admits a principal polarization λ. Then (I : I) is a product of orders if and
only if (A, λ) is decomposable and hence it is not (geometrically) isomorphic to the
Jacobian of a curve. In particular, if R is a product of orders, then the isogeny
class associated to h does not contain a Jacobian.

Proof. Put S = (I : I). Then by Corollary 4.6 S is a product if and only if every
abelian variety with endomorphism ring S is isomorphic to a product of abelian
varieties. In particular, if any one of them admits a principal polarization, this
would be decomposable by Theorem 5.4 and hence cannot be isomorphic (as a
polarized abelian variety) to the Jacobian of a curve. �

Remark 5.6. We cannot state a result analogous to Corollary 5.5 without assuming
that h is squarefree.

6. Algorithms

The algorithms in this section have been implemented in Magma [BCP97] and
the code is abailable on the author’s webpage. We will use without mentioning a
lot of algorithms for abelian groups, which can all be found in [Coh93, Section 2.4].

Algorithm 1: Isomorphism classes in a given isogeny class

Input: h a square-free ordinary polynomial in W(q) or a square-free
polynomial in W(p) with no real roots;

Output: a list of fractional ideals representing the isomorphism classes of the
abelian varieties in the isogeny class determined by h;

K := Q[x]/(h);

F := x mod (h);

V := qF−1;

R := Z[F, V ];

return ICM(R);
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Theorem 6.1. Algorithm 1 is correct.

Proof. The correctness follows from Theorem 4.3. �

Remark 6.2. In [Mar20] we describe in detail how to compute ICM(R) for any
order R in a finite product of number fields K.

Algorithm 2: CM-type

Input: h a square-free ordinary polynomial in W(q);
Output: a CM-type Φ as in (5.1);
write h =

∏r
i=1 hi with hi irreducible;

Q(F ) := Q[x]/(h);

M := SplittingField(h);

P := a maximal ideal of M above p;

ψ0 := a homomorphism M → C;

for i = 1 . . . r do

di := deg(hi);

Q(Fi) := Q[x]/(hi);

let Fi,1, . . . , Fi,di
be the conjugates of Fi in M ;

end

Φ := { };
for ϕ ∈ Hom(Q(F ),C) do

if ϕ(F ) = (ψ0(F1,j1 )× . . .× ψ0(Fr,jr )) with F1,j1 , . . . , Fr,jr ∈ P then

add ϕ to Φ;

end

end

return Φ;

Theorem 6.3. Algorithm 2 is correct.

Proof. Use the notation as in the Algorithm. Fixing an embedding of ε : W → C

as in Remark 3.3 encompasses fixing prime above p and an embedding for each
extension containing the fields Q(Fi), i = 1 . . . r in a compatible way. Since we
need a field containing all the conjugates of Fi for all i, the most efficient choice is
to work with the compositum M of the Galois closures of the fields Q(Fi), which is
precisely the splitting field of the polynomial h. Under these identifications, we get

ϕ ∈ Φ ⇐⇒ vp(ϕ|Q(Fi)(Fi)) > 0 for i = 1, . . . , r

⇐⇒ ψ−1
0 (ϕ|Q(Fi)(Fi)) ∈ P for i = 1, . . . , r.

Since the polynomial h is ordinary, the set Φ consists of exactly half of the homo-
morphisms K → C, one for each conjugate pair. �

Theorem 6.4. Algorithm 3 is correct.

Proof. For each unit u ∈ S× and homomorphism ϕ : K → C we have that ϕ(u/u)
lies on the unit circle. Hence by [Neu99, Proposition 7.1] the quotient ζ = u/u
has finite multiplicative order, say n. Then u2n = un(uζ)n = unun = (uu)n. In
particular the abelian group Q is torsion. By the Dirichlet Unit Theorem the unit
group S× is a finitely generated abelian group, and therefore it follows that Q is
finite. Observe that given two fractional R-ideals H and I, they are isomorphic if
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Algorithm 3: Polarizations of a given abelian variety

Let h be a square-free ordinary polynomial in W(q);

Put K := Q[x]/(h), F := x mod (h), V := qF−1 and R := Z[F, V ];
Input: a fractional R-ideal I corresponding to an abelian variety A; a

positive integer N ;
Output: a sequence P of elements of K× corresponding to all pairwise

non-isomorphic polarizations of A of degree N ;
Compute the CM-type Φ using Algorithm 2;

S := (I : I);

K := 〈vv : v ∈ S×〉 ; // consider S× and K as subgroups of (SS)×

Q := S×/K ∩ S×;

Q := {representatives in S× of the elements of Q};
S ′ :=

{

subgroups H of I
t
such that [I

t
: H ] = N

}

;

S := {H ∈ S ′ : H is an R-module with multiplicator ring S};
P := { };
for H ∈ S do

if (H : I) = x0S then

PH := { };
for u ∈ Q do

y := x0u;

if y = −y and y is Φ-positive then

Append y to PH ;

end

end

end

end

P ′ :=
⋃

H∈S PH ;

for λ ∈ P ′ do

if there is no λ′ ∈ P such that λ/λ′ ∈ K then

Append λ to P ;

end

end

return P ;

and only if they have the same multiplicator ring and (H : I) is a principal ideal, see
[Mar20, Proposition 4.1.(c), Corollary 4.5]. Note that once we know that (H : I) is
invertible in S, checking whether it is a principal ideal it is a finite problem and can
be done efficiently if have already computed Pic(S), see for example [Coh93, 6.5.5].
For each H ∈ S with x0I = H , the set PH contains all polarizations of I with
image H up to isomorphism by Theorem 5.4. So in particular the set P ′ contains
all polarizations of I of degree N . By Part (b) of Theorem 5.4 λ and λ′ in P ′ are
isomorphic if and only if λ/λ′ is in K. This concludes the proof of the correctness
of Algorithm 3. �
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Remark 6.5. Observe that Algorithm 3 can be simplified if S× = S×. In this is
the case, the set P coincides with P ′, that is, we can skip the last loop. Indeed
assume that λ and λ′ are in P ′, and satisfy λI = H and λ′I = H ′. If λ = vvλ′

for some v ∈ S× = S× then H = vvH ′ = H ′, and hence λ and λ′ are both in PH

which implies that they must coincide, since PH contains only one representative for
each isomorphism class. This observation is particularly useful when we compute
principal polarizations, because if I admits a principally polarization then S = S.

Algorithm 4: Automorphism of a polarized abelian variety

Input: a pair (I, x) corresponding to a polarized abelian variety (A, µ);
Output: a finite abelian group H corresponding to Aut((A, µ));
S := (I : I);

H := torsion(S×);

return H ;

Theorem 6.6. Algorithm 4 is correct.

Proof. It follows from Part (b) of Theorem 5.4. �

7. Examples

Elliptic curves. Every elliptic curve E comes with a unique principal polarization.
This means that counting the isomorphism classes of elliptic curves over Fq is the
same as counting the principally polarized ones. The characteristic polynomial of
the Frobenius endomorphism of an elliptic curve over Fq has the form x2 + βx+ q
with |β| ≤ 2

√
q by Hasse’s Theorem. Not every β in this range gives rise to an

isogeny class of an elliptic curve. See [Wat69, Theorem 4.1] for a complete list.
Let Nq(β) be the number of isomorphism classes of elliptic curves over Fq in the
isogeny class determined by the characteristic polynomial h = x2+βx+ q weighted
with the reciprocal of the number of automorphisms over Fq. As a consequence of
Corollary 4.4 we get the following Proposition, which reproves a well known result
by Deuring and Waterhouse. See [Wat69], [Deu41] and also [Sch87, Theorem 4.6].

Proposition 7.1. Let q = pr, where p is a prime number and r is a positive integer.
Let β be an integer satisfying β2 < 4q. If r > 1 assume also that β is coprime with
p. Then

Nq(β) =
#Pic(OK)

O×
K

∑

n|f

n
∏

p|n

(

1−
(

∆K

p

)

1

p

)

,

where K = Q[x]/(h), R = Z[x]/(h) and f = [OK : R] with h = x2 + βx+ q.

Proof. The assumptions on β mean that, for an elliptic curve E in the isogeny
class determined by β, we have E ∈ AVord(q) or E ∈ AVcs(p), since there is no
characteristic polynomial of an elliptic curve over Fp with root

√
p. Observe that

if we write R = Z[α] then q/α is in R. In a quadratic field every order is Bass and
hence by [Mar20, Proposition 3.7] we have

ICM(R) =
⊔

R⊆S⊆OK

Pic(S).
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Therefore, by Corollary 4.4 and Corollary 4.6.(b), we obtain

Nq(β) =
∑

R⊆S⊆OK

#Pic(S)

#S×
.

Since K is a quadratic field we know that each order S is uniquely determined by
its index [OK : S] and these are precisely the divisors of f . To conclude we just
need to observe that if [OK : S] = n then we have that

#Pic(S) =
#Pic(OK)

[O×
K : S×]

n
∏

p|n

(

1−
(

∆K

p

)

1

p

)

,

where
(

·
p

)

is the Legendre symbol for p odd and the Kronecker symbol for p = 2,

see [Cox13, Theorem 7.24]. �

Higher dimension. Here we present some examples in dimension greater than 1.
The code to recompute them is available at https://raw.githubusercontent.com/stmar89/AbVarFq/master/examples/examples_pol_sqfree_abvar.txt.

Example 7.2. Consider the polynomial h = x4 + 2x3 − 7x2 + 22x + 121. By
[How95, Theorem 1.3] we know that the corresponding isogeny class of simple
abelian surfaces over F11 does not contain a principally polarized variety. Put
K = Q[x]/h = Q(α). Let R be the order Z[α, 11/α]. The only proper over-order
of R is the maximal order OK . Since both orders are Gorenstein, the isomorphism
classes of the abelian varieties in the isogeny class determined by h functorially
correspond to

Pic(R) ⊔ Pic(OK).

Moreover we have Pic(R) ≃ Z/2Z×Z/2Z and Pic(OK) ≃ Z/2Z, so in particular we
have 6 isomorphism classes of abelian varieties. Two of the 4 isomorphism classes
with endomorphism ring R have 2 non-isomorphic polarizations of degree 4 while
the other 2 have 2 non-isomorphic polarizations of degree 25. One of the isomor-
phism classes with endomorphism ring OK has 2 non-isomorphic polarizations of
degree 4 while the other has 2 non-isomorphic polarizations of degree 25. The de-
grees mentioned above are minimal, in the sense that the isomorphism class does
not admit a polarization of smaller degree. All the above polarized varieties have
automorphism groups of order 2.

Example 7.3. Let h = x6 − 2x5 − 3x4 + 24x3 − 15x2 − 50x + 125. This is the
characteristic polynomial of an isogeny class of simple abelian varieties over F5

of dimension 3. Put K = Q(α) = Q[x]/h and denote by R the order Z[α, 5/α].
There are 5 over-orders of R, all stable under complex conjugation. One of the over
orders is not Gorenstein. We denote this order by S. Moreover denote by T the
unique over-order of R such that [OK : T ] = 2 and the group of torsion units is
µ(T×) ≃ Z/2Z.

The ICM(R) consists of 14 classes, so there are 14 isomorphism classes of abelian
threefolds over F5 with characteristic polynomial h. Among these 14 classes 2 are
not invertible in their multiplicator ring S.

We compute that 8 isomorphism classes are principally polarized. They are all
invertible in their multiplicator rings. More precisely, they correspond to isomor-
phism classes in

Pic(R) ⊔ Pic(T ) ⊔ Pic(OK)

https://raw.githubusercontent.com/stmar89/AbVarFq/master/examples/examples_pol_sqfree_abvar.txt
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and all admit a unique principal polarization up to isomorphism. The polarized
isomorphism classes with endomorphism ring R and T have 2 automorphisms and
the one with maximal endomorphism ring have automorphism group Z/4Z.

Example 7.4. Let

h = x8 − 5x7 + 13x6 − 25x5 + 44x4 − 75x3 + 117x2 − 135x+ 81.

This is the characteristic polynomial of an isogeny class of simple abelian varieties
over F3 of dimension 4. Let K = Q(α) = Q[x]/h and denote by R the order
Z[α, 3/α]. There are 8 over-orders of R.

The ICM(R) consists of 18 classes, so there are 18 isomorphism classes of abelian
fourfolds over F3 with characteristic polynomial h. Among these 18 classes, 5 are
not invertible in their multiplicator rings. It turns out that 10 out of the 18 ideal
classes are isomorphic to the class of the conjugate of the trace dual ideal and 2 of
them are non-invertible. This means that the corresponding abelian varieties are
isomorphic to their dual. Not all of them are principally polarized.

There are 8 isomorphism classes which are principally polarized, all admitting
a unique principal polarization up to isomorphism. The ideals corresponding to 2
of them are not invertible in their multiplicator ring. All the principal polarized
abelian varieties have automorphism group of order 2, but the ones with maximal
endomorphism ring which have 10 automorphisms.

We also notice that in this example there are abelian varieties with the same
endomorphism ring, but non-isomorphic groups of rational points.

Example 7.5. In the following table we present the results of our computations of
the isomorphism classes of all ordinary square-free isogeny classes of abelian surface
over Fp for p = 2, 3, 5, 7 and 11. We will use the following notation:

• N1: ordinary square-free isogeny classes over Fp,
• N2: isomorphism classes of abelian varieties,
• N3: isomorphism classes of abelian varieties which do not admit a principal
polarization,

• N4: polarized isomorphism classes of principally polarized abelian varieties,
• N5: isomorphism classes of abelian varieties with maximal endomorphism
ring,

• N6: isomorphism classes of abelian varieties with maximal endomorphism
ring which do not admit a principal polarization.

p N1 N2 N3 N4 N5 N6

2 14 21 7 15 15 3
3 36 76 23 59 43 6
5 94 457 203 290 159 34
7 168 1324 636 797 387 88
11 352 4925 2675 2797 1476 459

We remark that the proportion of abelian surfaces that do not admit a principal
polarization is much lower when we restrict ourselves to the surfaces with endo-
morphism ring which is the maximal order of the endomorphism algebra. We have
on-going computations for g = 3 that show that this difference becomes much more
pronounced.
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8. Period Matrices

Let A be an abelian variety in AV(h) for a square-free ordinary polynomial h in
W(q) of degree 2g and I be the corresponding fractional R-ideal, where R = Z[F, V ]

as usual. Let A′ be the complex abelian variety Ã ⊗ε C as in Remark 3.3. Recall
that I = H1(A

′,Z) as abelian groups and choose a Z-basis of I, say

I = α1Z⊕ . . .⊕ α2gZ.

Assume also that A admits a principal polarization λ, which corresponds to mul-
tiplication by an element a in K×. Denote with λ′ the polarization induced by λ
on A′. Let Φ = {ϕ1, . . . , ϕg} be the CM-type found by Algorithm 2. Recall by
[Del69, Section 8] that this particular CM-type characterizes the complex structure
on I ⊗ R induced by the identification with the lie algebra of the complex abelian
variety A′, via the isomorphism of complex tori

A′(C) ≃ Cg

Φ(I)
,

where Φ(I) is the lattice in Cg spanned by the complex vectors

(ϕ1(αi), . . . , ϕg(αi)) i = 1, . . . , 2g.

A period matrix associated to A′ is a g× 2g complex matrix whose columns are the
coordinates of a Z-basis of the full lattice Φ(I). We are interested in a matrix that
captures the Riemann form induced by the polarization λ′ of A′.

More precisely, as in the proof of Theorem 5.4 we obtain that the Riemann form
associated to a is given by

b : I × I → Z (s, t) 7→ Tr(tas).

We can choose now a symplectic Z-basis of I with respect to the form b, that is,

I = γ1Z⊕ . . .⊕ γgZ⊕ β1Z⊕ . . .⊕ βgZ,

and

b(γi, βi) = 1 for all i, and

b(γh, γk) = b(βh, βk) = b(γh, βk) = 0 for all h 6= k.

Such symplectic basis can be computed with appropriate modifications of the Gram-
Schmidt orthogonalization process, see for example [CdS01, Theorem 1.1].

Consider the g × 2g matrix Ω whose i-th row is

(ϕi(γ1), . . . , ϕi(γg), ϕi(β1), . . . , ϕi(βg)).

This is what is usually called the big period matrix of (A′, λ′). If we write Ω =
(Ω1,Ω2) we can recover the g × g small period matrix or Riemann matrix τ by

τ = Ω−1
2 Ω1.

Example 8.1. Let f = (x4 − 4x3 + 8x2 − 12x + 9)(x4 − 2x3 + 2x2 − 6x + 9),
which identifies an isogeny class of abelian four-folds over F3. We compute the
principally polarized abelian varieties and we find that 4 isomorphism classes admit
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a unique principal polarization. Here we present one of them with the corresponding
(approximations of the) big and small period matrices.

I =
1

54

(

432 − 549α + 441α2 − 331α3 + 186α4 − 81α5 + 33α6 − 7α7
)

Z⊕

⊕
1

6

(

63 − 78α + 65α2 − 49α3 + 27α4 − 12α5 + 5α6 − 1α7
)

Z⊕

⊕
1

6

(

81 − 99α + 84α2 − 61α3 + 33α4 − 15α5 + 6α6 − 1α7
)

Z⊕

⊕
1

18

(

−63 + 96α − 86α2 + 68α3 − 39α4 + 18α5 − 8α6 + 2α7
)

Z ⊕ (−1)Z⊕

⊕ (−α)Z ⊕ (−α
2
)Z ⊕

1

9

(

81 − 96α + 81α
2
− 64α

3
+ 33α

4
− 15α

5
+ 6α

6
− α

7
)

Z

End(I) =
1

54

(

432 − 549α + 441α
2
− 331α

3
+ 186α

4
− 81α

5
+ 33α

6
− 7α

7
)

Z⊕

⊕
1

6

(

63 − 78α + 65α
2
− 49α

3
+ 27α

4
− 12α

5
+ 5α

6
− 1α

7
)

Z⊕

⊕
1

6

(

81 − 99α + 84α2 − 61α3 + 33α4 − 15α5 + 6α6 − 1α7
)

Z⊕

⊕
1

18

(

−63 + 96α − 86α2 + 68α3 − 39α4 + 18α5 − 8α6 + 2α7
)

Z⊕

⊕
1

54

(

−378 + 549α − 441α2 + 331α3 − 186α4 + 81α5 − 33α6 + 7α7
)

Z⊕

⊕
1

6

(

−63 + 84α − 65α2 + 49α3 − 27α4 + 12α5 − 5α6 + α7
)

Z⊕

⊕
1

6

(

−81 + 99α − 78α2 + 61α3 − 33α4 + 15α5 − 6α6 + α7
)

Z⊕

⊕
1

18

(

−99 + 96α − 76α2 + 60α3 − 27α4 + 12α5 − 4α6
)

Z

x =
537

80
−

1343

120
α +

1343

144
α2 −

419

60
α3 +

337

80
α4 −

15

8
α5 +

559

720
α6 −

1

5
α7

Ω =







2.8 − i −2.8 + 0.59i 0 0 1 1.7 − 0.29i 0 0
−2.8 + i 2.8 − 3.4i 0 0 1 0.29 + 1.7i 0 0

0 0 −1 −0.38 − 0.15i 0 0 −1.6 − 0.62i −0.15 − 0.15i
0 0 −1 −2.6 + 6.9i 0 0 0.62 − 1.6i −6.9 + 6.9i






,

τ =







−1 − 2.8i 2 + 1.4i 0 0
2 + 1.4i −2.7 − 0.95i 0 0

0 0 0.52 − 0.21i 0.14
0 0 0.14 0.71 − 0.31i






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[AW15] Jeffrey Achter and CassandraWilliams, Local heuristics and an exact formula for abelian
surfaces over finite fields, Canad. Math. Bull. 58 (2015), no. 4, 673–691.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I.
The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265.

[CdS01] Ana Cannas da Silva, Lectures on symplectic geometry, Lecture Notes in Mathematics,
vol. 1764, Springer-Verlag, Berlin, 2001.

[Coh93] Henri Cohen, A course in computational algebraic number theory, Graduate Texts in
Mathematics, vol. 138, Springer-Verlag, Berlin, 1993.

[Cox13] David A. Cox, Primes of the form x
2+ny

2, second ed., Pure and Applied Mathematics
(Hoboken), John Wiley & Sons, Inc., Hoboken, NJ, 2013.

[CS15] Tommaso Giorgio Centeleghe and Jakob Stix, Categories of abelian varieties over finite
fields, I: Abelian varieties over Fp, Algebra Number Theory 9 (2015), no. 1, 225–265.
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