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Abstract

It has recently been proposed that Zamoldchikov’s T T̄ deformation of two-dimensional
CFTs describes the holographic theory dual to AdS3 at finite radius. In this note we use the
Gauss-Codazzi form of the Einstein equations to derive a relationship in general dimensions
between the trace of the quasi-local stress tensor and a specific quadratic combination of this
stress tensor, on constant radius slices of AdS. We use this relation to propose a generalization
of Zamoldchikov’s T T̄ deformation to conformal field theories in general dimensions. This
operator is quadratic in the stress tensor and retains many but not all of the features of T T̄ .
To describe gravity with gauge or scalar fields, the deforming operator needs to be modified
to include appropriate terms involving the corresponding R currents and scalar operators
and we can again use the Gauss-Codazzi form of the Einstein equations to deduce the forms
of the deforming operators. We conclude by discussing the relation of the quadratic stress
tensor deformation to the stress energy tensor trace constraint in holographic theories dual
to vacuum Einstein gravity.
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1 Introduction

A decade ago, Zamolochikov [1] explored deformations of two-dimensional conformal field
theories by an operator that is quadratic in the stress energy tensor, called the T T̄ operator.
This operator is defined as a bilocal operator,

T T̄ (x, y) = T ij(x)Tij(y)− T i
i (x)T

j
j (y) (1.1)

where Tij is the stress energy tensor. In a two-dimensional CFT this operator was shown by
Zamoldchikov to have a remarkable OPE structure as x → y:

T T̄ (x, y) = T (y) +
∑

α

Aα(x− y)∇yOα(x). (1.2)

Here Oα denote local operators and the function Aα(x− y) can be divergent as x → y; this
relation implies that we can identify T T̄ as a local operator T (y), modulo derivatives of
other local operators. The T T̄ operator can be used to deform the conformal field theory,
generating a family of theories characterized by the coupling of this operator. While the
deforming operator is irrelevant, its particular properties imply that the resulting theory is
more predictive than a generic non-renormalizable quantum field theory.

It has recently been proposed that the T T̄ deformation is relevant to understanding the
holographic theory dual to AdS3 with a finite radial cutoff [2]. The basic idea is that the
holographic theory at finite radius is a member of the family of deformed theories discussed
by Zamolodchikov. These ideas were explored further in a number of other works, see [3–11].

There have been a number of previous attempts to set up a holographic correspondence
at finite radius, using various approaches. In the early days of AdS/CFT, the role of the
holographic renormalization group was explored, with [12] relating radial flow to renormal-
ization group. In what follows we will use the sharp dictionary between radial Hamiltonian
evolution and holographic operators developed in [13]. In [14, 15], it was proposed that the
holographic dual at finite radius should be interpreted as a deformed CFT.

Another approach to understanding holography at finite radius follows from the fluid
gravity correspondence. In [16], the fluids dual to finite cutoff surfaces in asymptotically
AdS black brane geometries were analysed, and it was argued that these fluids should be
related to fluids in appropriately deformed conformal field theories. Note that one can set
up a Dirichlet problem at finite radius not just in asymptotically AdS geometries, but also
in Ricci flat spacetimes [17–20]. In [19, 20], the corresponding Ward identities for the fluid
stress tensor were used to infer information about the putative holographic quantum field
theory dual to such spacetimes.

The properties of the T T̄ operator are very specific to two dimensions. Potential ana-
logues of the T T̄ operator in higher dimensions have been discussed from the field theory
perspective in [21, 22]. In particularly, Cardy proposed in [21] that a deformation involving
the square root of the determinant of the stress tensor may be an appropriate generalisation.
This possibility was further explored in [22], although [22] also mentions that a quadratic
generalization to dimensions higher than two may be more natural holographically.

In this short note we use holography to propose a generalisation of the T T̄ deformation
to dimensions higher than two. Following the approach of [6], we derive an expression for the
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Ward identity involving the trace of the stress tensor, at finite radius. This analysis implies
that in a d-dimensional theory we should consider the operator

T = T ijTij −
1

(d− 1)
T i
i T

j
j . (1.3)

This clearly reduces to the T T̄ operator in two dimensions. In general dimensions the opera-
tor does not share all the special properties uncovered by Zamolodchikov in two dimensions,
but we argue that these properties are not required if one is only considering states that are
stationary and spatially homogeneous. We demonstrate that the energy relation for constant
radius hypersurfaces in black branes indeed precisely matches the energy relation obtained
by deforming a conformal field theory with this operator.

As highlighted in [4,6,9], the T T̄ operator is not sufficient to describe AdS3 gravity with
matter: for example, additional deformations are required if one includes bulk scalars and
gauge fields. By deriving the Ward identity for the trace of the stress of the stress tensor
in the presence of gauge fields, we propose the required deformation involving R currents in
the dual field theory. We also consider briefly the case of scalar fields.

The quadratic combination of the stress tensor in (1.3) has appeared in earlier literature:
the vacuum Einstein equations (with zero cosmological constant) force the induced Brown
York tensor on a hypersurface to satisfy the constraint T = 0 [19, 20]. In section 8 we
explain the relationship between the current work and this constraint; it is the Gauss-Codazzi
relations (in particular, the Hamiltonian constraint) on a constant radius surface that picks
out the combination (1.3) in both cases.

The plan of this paper is as follows. In section 2 we consider AdS gravity in general
dimensions and show that the trace identity for the stress energy tensor at finite radius
implies a deformation by an operator of the form (1.3). In section 3 we consider AdS branes
and derive an expression for the effective energy as a function of the cutoff radius. We
consider the dual interpretation of the operator in section 4. In sections 5 and 6 we consider
generalisations to include gauge and scalar fields in the bulk. We discuss the relation of the
TT deformation to the defining holographic relation for holographic theories dual to vacuum
Einstein gravity in section 7. We conclude in section 8.

2 AdS gravity

The bulk (Euclidean) action for pure AdS gravity is

IM = − 1

16πG

∫

dd+1x
√
g (R + d(d− 1)) , (2.1)

where we set the AdS radius to one. The boundary terms for this action include the standard
Gibbons-Hawking-York term and the counterterms derived in [23]:

I∂M = − 1

8πG

∫

ddx
√
h (K − (d− 1) + · · · ) (2.2)

where K is the trace of the extrinsic curvature and the ellipses denote terms involving the
intrinsic curvature of the metric h.
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We now introduce a coordinate system such that the metric takes the form

ds2 = dr2 + γij(x, r)dx
idxj (2.3)

in terms of which the extrinsic curvature takes the simple form

Kij =
1

2
∂rγij. (2.4)

As exploited in the Hamiltonian renormalization approach of [13], one can use the standard
Gauss-Codazzi relations to rewrite the action as

I = − 1

16πG

∫

dd+1x
√
g
(

R+K2 −KijKij + d(d− 1)
)

+
1

8πG

∫

ddx
√
h ((d− 1) + · · · )

(2.5)
where R denotes the Ricci scalar of constant radius hypersurfaces and the ellipses again
denote terms involving the intrinsic curvature of the boundary metric.

One can use the Gauss-Codazzi equations to express the Einstein equations in the coor-
dinate system (2.3). For us, the most relevant equation is the (rr) equation which implies

K2 −KijKij = R+ d(d− 1). (2.6)

We now define the quasi-local stress energy tensor as

δI =
1

2

∫

ddx
√
hT ijδhij (2.7)

which gives

Tij =
1

8πG
(Kij −Kγij + (d− 1)γij + · · · ) (2.8)

The first two terms are the Brown-York quasi-local stress tensor. The third term follows
from the leading order counterterm i.e. it contains information about the renormalization
required to compute quantities in the conformal field theory. While one could add any term
proportional to the metric to the Brown-York tensor without spoiling the conservation of the
stress tensor, the specific coefficient arising here follows from holographic renormalization
[23, 24].

Now let us restrict to slices for which the intrinsic curvature vanishes i.e. the terms in
ellipses are zero. Then

T i
i =

(d− 1)

8πG
(d−K) (2.9)

We can also show that

T ijTij =
(d− 1)

64π2G2

(

K2 − 2(d− 1)K + d(d− 2)
)

(2.10)

where we use the Gauss-Codazzi relation to eliminate KijKij. Then

− 4πG

(

TijT
ij − 1

(d− 1)
(T i

i )
2

)

=
(d− 1)

8πG
(d−K) = T i

i . (2.11)
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Again we highlight the role of the counterterm (and the corresponding term linear in the
metric in the stress tensor) in determining this expression.

This calculation suggests that in general dimensions the deformation that one should
consider in general dimensions is

T ≡
(

TijT
ij − 1

(d− 1)
(T i

i )
2

)

(2.12)

which manifestly reduces to the T T̄ deformation in d = 2. We can then write the trace
relation as

T i
i = −λT (2.13)

where λ = 4πG.

3 Energy spectrum

In this section we consider asymptotically AdS black branes in general dimensions and show
how their energy (as defined by the quasi-local stress tensor) changes with the radius. In
the following section we will show how such a relation follows from interpreting the cutoff
geometries in terms of theories deformed by the operator T .

Let us consider a general static metric of the form

ds2 = ρ2f(ρ)2dτ 2 +
dρ2

ρ2f(ρ)2
+ ρ2dxadxa. (3.1)

A metric of the form (3.1) has the following Ricci tensor:

R0̂0̂ =
(

−df 2 − (d+ 1)ρf∂ρf − ∂ρ(ρ
2f∂ρf)

)

(3.2)

R1̂1̂ =
(

−df 2 − (d+ 1)ρf∂ρf − ∂ρ(ρ
2f∂ρf)

)

Râb̂ =
(

−df 2 − 2ρf∂ρf
)

δâb̂

where we have introduced an orthonormal frame

e0̂ = ρf(ρ)dτ ; e1̂ =
dρ

ρf(ρ)
; eâ = ρdxa. (3.3)

The extrinsic curvature is

Kττ =
1

2
f(ρ)∂ρ

(

f(ρ)2
)

(3.4)

Kab = f(ρ)ρδab.

The quasi-local stress energy tensor implies that

Tττ =
1

8πG

(

D − D

ρ
f(ρ)

)

, (3.5)
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where D is the number of spatial dimensions. The quasi-local energy is then

E =
1

8πG

∫

dDxρD
(

D − D

ρ
f(ρ)

)

=
DVDρ

D

8πG

(

1− 1

ρ
f(ρ)

)

, (3.6)

where VD is the regulated (dimensionless) volume of the spatial directions.
For AdS-Schwarzschild (with flat horizon) in (d+ 1) dimensions

f(ρ)2 = ρ2 − µ

ρD−1
(3.7)

and thus

E =
DVDρ

D

8πG

(

1−
(

1− µ

ρD+1

)
1

2

)

. (3.8)

We can then express the dimensional ratio

ǫ = Eρ =
DVDρ

D+1

8πG

(

1−
(

1− µ

ρD+1

)
1

2

)

(3.9)

as

ǫ =
DVDρ

d

2λ

(

1−
(

1− λM

ρd

)
1

2

)

(3.10)

in terms of the (dimensionless) mass parameter 4πM = µ/G and d = D + 1. In the limit of
ρ → ∞ this expression gives the finite renormalized quantity

ǫ → DVD

4
M. (3.11)

The relation (3.6) clearly holds for any static metric with flat spatial sections. In particular,
we can apply the relation to well-known geometries such as charged AdS black branes for
which

f(ρ)2 = ρ2 − µ

ρD−1
+

Q2

ρ2(D−1)
(3.12)

with Q the electric charge, and thus

ǫ = Eρ =
DVDρ

D+1

2λ

(

1−
(

1− λM

ρD+1
+

Q2

ρ2D

)
1

2

)

(3.13)

In the limit as ρ → ∞ this again tends to

ǫ =
1

4
DVDM, (3.14)

i.e. the charge parameter drops out of the energy. We will return to charged black branes
below.
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4 CFT deformation

Now let us turn to the interpretation in terms of CFT deformations. In this section we
consider the behaviour of the operator

T ≡
(

TijT
ij − 1

(d− 1)
(T i

i )
2

)

(4.1)

in general dimensions. The key point is to analyse whether there is indeed an appropriately
defined composite operator i.e. that one can define

T (x) = Limx→y

(

T ij(x)Tij(y)−
1

(d− 1)
T i
i (x)T

j
j (y)

)

(4.2)

There is a fundamental difference between the behaviour of this operator in two dimensions
and the behaviour for d > 2.

To illustrate this, we first consider the expectation value of the right hand side in the
conformal vacuum. In a d-dimensional CFT, the two point function of the stress tensor at
separated points is given by

〈Tij(x)Tkl(0)〉 =
1

x2d

(

1

2
(IikIjl + IilIjk)−

1

d
δijδkl

)

(4.3)

where

Iij = δij −
2xixj

x2
(4.4)

and implicitly we work in Euclidean signature. It is then straightforward to show that

〈Tij(x)T
ij(0)〉 = (d− 2)

x2d
(4.5)

and
〈T i

i (x)T
j
j (0)〉 = 0. (4.6)

Thus for a CFT in the conformal vacuum the combination

〈T ij(x)Tij(y)〉 −
1

(d− 1)
〈T i

i (x)T
j
j (y)〉 =

(d− 2)

|x− y|2d (4.7)

is only position independent in d = 2.
Note that, using standard regularisation techniques, one can renormalize so that (4.5) is

well defined in the distributional sense as x → 0. For example, using differential regularisa-
tion, for d odd one can write

1

x2d
∼ �

d

2
+1

(

1

xd−2

)

, (4.8)

while for d even
1

x2d
∼ �

d

2
+1

(

log(x2µ2)

xd−2

)

, (4.9)

where µ is an arbitrary (renormalization scale) parameter.

7



The arguments of Zamolodchikov [1] in d = 2 do not rely on conformal symmetry - but
on local translational and rotational symmetry, which in particular imply that the stress
energy tensor is symmetric and conserved. In two dimensions, these properties suffice to
show that the operator product expansion for the quadratic T T̄ combination of the stress
tensor is of the form

T ij(z)Tij(z
′)− T i

i (z)T
j
j (z

′) =
∑

α

Aα(z − z′)Oα(z
′) (4.10)

where the coefficients Aα are coordinate independent unless the operator Oα is itself the
coordinate derivative of another local operator. This form for the OPE thus implies that we
can identify the T T̄ operator as a local operator T , modulo derivatives of local operators,
as stated in (1.2).

It is instructive to understand how Zamolodchikov’s arguments change in dimensions
different from two. The OPE still takes the form (4.10) in all dimensions. However, in
dimensions greater than two, the conservation of the stress tensor places fewer restrictions
on the right hand side of (4.10); the coefficients can be divergent even when Oα is not the
derivative of a local operator. This is already apparent from the expression (4.7).

These issues do not mean that one cannot define a composite local operator T in dimen-
sions higher than two; the definition however depends on the renormalization procedure (and
hence on the full short distance behaviour of the theory). This is significant, as we cannot
assume that the UV theory is conformal: we instead want to consider a family of theories
characterized by irrelevant deformations of a CFT. As we discuss below, for matching the
energy spectrum with the holographic description, we can however avoid discussing details of
the regularisation procedure, as the states under consideration are static and translationally
invariant.

4.1 Energy spectrum

In (3.10), we found an energy spectrum within gravity which can be expressed in the form

ǫ =
C

α

(

1− (1− nα)
1

2

)

, (4.11)

where C is a constant, α is a dimensionless coupling and n is a dimensionless parameter
characterising the energy (eigen)state. The constant C is the overall normalization constant
for the energy in the undeformed theory i.e.

ǫ(0) =
1

2
Cn. (4.12)

Following the analysis of [6], one can observe that this quantity satisfies a non-linear differ-
ential equation

∂αǫ =
1

2C
ǫ

(

ǫ+ 2α
dǫ

dα

)

, (4.13)

for any value of n.
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In two dimensions, this equation can be interpreted directly in terms of the defining
Ward identity for the family of deformed theories. Let us consider the Euclidean theory
on a cylinder of circumference R. A stationary state |n〉 has energy En(R, λ), where the
parameter λ denotes the coupling of the operator T , and momentum along the circle direction
Pn = 2πln/R, where ln is an integer. To match with the gravity analysis above, we will
restrict to zero momentum states.

Then, using the fact that T is well-defined as a local operator in two dimensions, Zamolod-
chikov [1] showed that in the state |n〉 the expectation value of T is

〈n|T |n〉 = − 2

R
En

∂En

∂R
. (4.14)

This follows from
T = 2 (TτxTτx − TττTxx) , (4.15)

where we use coordinates (τ, x), and from the definition of the energy momentum tensor i.e.

〈n|Tττ |n〉 = −En

R
〈n|Txx|n〉 = −∂En

∂R
(4.16)

with

〈n|Tτx|n〉 =
i

R
Pn (4.17)

when the momentum is non-zero. (Note that the minus sign in the first expression and the
factor of i in the final expression follow from the Euclidean signature.)

When we calculate an expression such as

〈n|TττTxx|n〉 (4.18)

we can always use a spectral decomposition

∑

m

〈n|Tττ |m〉〈m|Txx|n〉e(En−Em)τei(Pn−Pm)x (4.19)

The proof that the operator T is independent of position (in d = 2) implies that terms with
m 6= n must cancel and thus the expectation value factorises

〈n|T |n〉 = 2〈n|Tτx|n〉2 − 2〈n|Tττ |n〉〈n|Txx|n〉 (4.20)

leading to the result above (4.14) when the momentum vanishes.

The defining relation for the family of QFTs is

dS

dλ
=

∫

d2z T (z), (4.21)

where we define S(0) as the CFT, which in turn implies that [1, 25]

∂En

∂λ
+ 2En

∂En

∂R
= 0. (4.22)
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This is not yet comparable to (4.13), as the latter is expressed in terms of a dimensionless
coupling. Letting

α =
λ

R2
(4.23)

and using dimensional analysis to write the energy as

En =
1

R
ǫn(α), (4.24)

where ǫn is dimensionless, we obtain

∂αǫn = 2ǫn (ǫn + 2α∂αǫn) , (4.25)

which indeed agrees with (4.13).

Now let us consider the generalization to a theory in d dimensions compactified on a sym-
metric torus of volume V = RD. Repeating the two-dimensional arguments, let a stationary
state |n〉 have energy En(R, λ), where the parameter λ denotes the coupling of the operator
T , and the momenta along the circle directions are P a

n = 2πlan/R, where lan are integers. To
match with the gravity analysis above, we will restrict to zero momentum states, although
the generalization to include momentum would be straightforward.

We can then calculate the expectation value of the operator T as

〈n|
(

T ijTij −
1

D
(T i

i )
2

)

|n〉 =
∑

m

〈n|T ij|m〉〈m|Tij|n〉e(En−Em)τei(P
a
n−P a

m)xa

(4.26)

− 1

D

∑

m

〈n|T i
i |m〉〈m|T i

i |n〉e(En−Em)τei(P
a
n−P a

m)xa

,

where {|m〉} denotes a non-degenerate complete set of energy and momentum states. Since
|n〉 itself is such an eigenstate, the superposition above immediately collapses onto the n = m
terms i.e.

〈n|
(

T ijTij −
1

D
(T i

i )
2

)

|n〉 = 〈n|T ij|n〉〈n|Tij|n〉 −
1

D
〈n|T i

i |n〉2. (4.27)

Let us now consider the assumptions that go into this expression. The operator product
expansion (4.10) in d 6= 2 implies that the two point function evaluated in a generic state is
manifestly dependent on the points z and z′; thus the expectation value of the operator T
would in general depend on how one regularises the operators as they approach each other.

On the other hand, since the original theory is a CFT and the deformation does not
change its long distance behaviour, factorization at infinite separations remains applicable
for any value of the coupling λ:

Ly→∞〈Oα(z + y)Oβ(z
′)〉 = 〈Oα〉〈Oβ〉 (4.28)

where here y can denote separation in time or space.
The computation above assumes that the regularisation procedure does not affect the

expectation value of T in an energy/momentum eigenstate i.e. it can effectively be computed
by factorization. In particular, denoting the conformal vacuum of the CFT as |0〉, then we
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showed in (4.7) that the two point function of TT needs to be regularised as the operators
approach each other. The regularisation is such that

〈0|T |0〉 = 〈0|T ij|0〉〈0|Tij|0〉 −
1

D
〈0|T i

i |0〉2 = 0, (4.29)

where 〈0|Tij|0〉 for the conformal vacuum (on the Euclidean plane).

Now let us evaluate (4.27) for finite energy states. The assumption that the state |n〉 is
both static and spatially isotropic implies that

〈n|Tτa|n〉 = 0 〈n|Tab|n〉 = 0 a 6= b (4.30)

and

〈n|Tττ |n〉 = −En

V
(4.31)

while for the stress tensor in the spatial directions

〈n|Tab|n〉 = δab
Pn

V
(4.32)

where Pn is the pressure. It is then straightforward to show that

〈n|T |n〉 =
(

1− 1

D

)

E2
n

V 2
+

2EnPn

V 2
. (4.33)

Note that the terms involving P 2
n cancel between the T ijTij and (T i

i )
2 combinations i.e. the

relative factor between these terms guarantees this cancellation. It is due to this cancellation
that the differential equation we obtain below is first order rather than second order. The
pressure is related to the gradient of the energy as

Pn = −V
∂En

∂V
. (4.34)

Now, following the same logic as in two dimensions, the defining relation for the family of
quantum field theories characterised by the coupling λ is

∂En

∂λ
=

(

1− 1

D

)

E2
n

V
− 2En

∂En

∂V
(4.35)

The dimensionless coupling α = λ/V 1+ 1

D and by standard dimensional analysis

En =
1

V
1

D

ǫn(α) (4.36)

where ǫ is dimensionless. Thus in D spatial dimensions we find

∂αǫn =

(

1 +
1

D

)

(

ǫ2n + 2αǫn∂αǫn
)

, (4.37)

which agrees with (4.13) i.e. the energy spectrum found in gravity is indeed consistent with
that of the family of deformed theories.
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5 Charged black branes

The generalization to include charge on the black holes is straightforward. We couple gravity
to a gauge field via

IM = − 1

16πG

∫

dd+1x
√
g

(

R − 1

4
F µνFµν + d(d− 1)

)

(5.1)

We can always introduce a coordinate system (locally) in which the metric takes the same
form as before i.e.

ds2 = dr2 + γij(x, r)dx
idxj. (5.2)

Using the Gauss-Codazzi relations we can then write the Einstein equations as

K2 −KijKij = R+ d(d− 1) +
1

2
ȦiȦ

i − 1

4
FijF ij (5.3)

∇iK
i
j −∇iK =

1

8
ȦiFij

K̇i
j +KKi

j = Ri
j −

1

2
ȦiȦj −

1

2(1− d)
(ȦkȦk)δ

i
j

−1

2
F ikFjk −

1

4(1− d)
FklFklδij − dδij

where the dots indicate radial derivatives. Here we have chosen a radial gauge for the gauge
field, Ar = 0, and Fij = ∂iAj − ∂jAi. The gauge field equations are then

Äi +KȦi +∇jF ji = 0 ∇iȦ
i = 0 (5.4)

Now let us restrict to the case where the curvature of constant radius slices is zero and the
gauge field depends only on the radius.

The quasi-local stress energy tensor is again

Tij =
1

8πG
(Kij −Kγij + (d− 1)γij) (5.5)

and thus

T i
i =

(d− 1)

8πG
(d−K) (5.6)

We can also show that

T ijTij =
1

64π2G2

(

(d− 1)(K2 − 2(d− 1)K + d(d− 2))− 1

2
ȦiȦ

i

)

(5.7)

where we use the Gauss-Codazzi relation to eliminate KijKij. We thus obtain the following
result for the combination considered previously:

T i
i = −4πG

(

T ijTij −
1

D
(T i

i )
2

)

− 1

32πG
ȦiȦ

i (5.8)

Now let us consider how this can be interpreted in terms of a field theory deformation.
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By construction, as we take the limit to the conformal boundary, the term of appropriate
dilatation weight in Tij becomes the expectation value of the dual stress energy tensor. The
(renormalized) expectation value of the dual current J i is similarly related to a specific term
in the expansion of the canonical momentum of the gauge field into dilatation eigenfunctions.
More specifically,

〈J i〉 = 1

16πG
πi
(d) (5.9)

where πi = Ȧi and πi
(d) is the coefficient of the e−dr term in πi. Note that in general the

relationship between 〈J i〉 and terms in the asymptotic expansion of Ȧi is more complicated.
Here the assumed symmetry, i.e. the bulk metric and field strength depend only on the
radius, ensures the simple relation between 〈J i〉 and the coefficient of the e−dr term in the
asymptotic expansion.

Let us consider first the case in which there is no source term for the current in the dual
field theory. The symmetry then guarantees that the asymptotic expansion of the gauge
field is

Ai = Ai
(d)e

−dr + · · · (5.10)

and thus
Ȧi = −de−drAi

(d) + · · · = 16πGe−dr〈J i〉+ · · · (5.11)

We can similarly expand

Ai = Ai(D−1)e
−(D−1)r + · · · = γ(0)ijA

j

(d)e
−(D−1)r + · · · (5.12)

where γ(0)ij is the background metric for the dual field theory (i.e. it is independent of r).
Thus

Ȧi = −(D − 1)γ(0)ijA
i
(d)e

−(D−1)r + · · · = 16πG
(D − 1)

d
γ(0)ij〈J j〉e−(D−1)r. (5.13)

Note that it is not the case that Ȧi = γijȦ
j as Ȧi = ∂r(γijA

j) and ∂r(γij) 6= 0. We can
rewrite the trace identity in this case as

T i
i = −λ

(

T ijTij −
1

D
(T i

i )
2 +

2(D − 1)

d
e−2Drγ(0)ij〈J i〉〈J j〉+ · · ·

)

. (5.14)

where we use the relation λ = 4πG. This relation suggests that the gauge field contribution
is related to a deformation of the field theory involving the square of the symmetry current.

Now let us return to the general case. In the absence of the gauge field, we interpret γij
as the background metric for the field theory and Tij as the operator. While Tij is essentially
the canonical momentum dual to γij, we include the counterterm proportional to γij in the
definition of Tij so that the appropriate dilatation eigenfunction in Tij gives the dual CFT
stress tensor. Mirroring the same construction for the gauge field, we will define

J i =
Ȧi

16πG
(5.15)
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Now
Ȧi = 2KijA

j + γijȦ
i (5.16)

which we can rewrite using

Kij = 8πG

(

Tij −
1

D
T k
k γij

)

+ γij (5.17)

giving

ȦiȦi = 16λ2

(

AjJ i(Tij −
1

D
T k
k γij) + J iJi

)

+ 8λAiJ i (5.18)

and thus

T i
i + AiJ i = −λ

(

T ijTij −
1

D
(T i

i )
2 + 2J iJi + 2AjJ i(Tij −

1

D
T k
k γij)

)

. (5.19)

Note that the left hand side of this expression is the standard relation for a CFT, deformed
by a source Ai for a current J i.

5.1 Field theory interpretation

We now turn to the field theory interpretation. Consider the Ward identity (5.19) on a flat
background, with zero direct source Ai for the current i.e.

T i
i = −λ

(

T ijTij −
1

D
(T i

i )
2 + 2J iJi

)

. (5.20)

To reproduce this Ward identity we are led to consider the following deformation of a con-
formal field theory

λ

∫

ddx

(

T ijTij −
1

D
(T i

i )
2

)

+
λ

R2

∫

ddxJ iJi (5.21)

where here Ji is a conserved current in the field theory. The coupling of the second term
follows on dimensional grounds: the canonical dimension of the current is D and here we
denote the volume of the D spatial directions as V = RD i.e. R is the spatial scale. We will
discuss below the relationship between Ji and the current Ji defined on the gravity side.

Following the earlier discussion, let us now consider eigenstates |n〉 of the energy momen-
tum tensor that are also charge eigenstates i.e.

〈n|Jτ |n〉 = i
qn
V

(5.22)

where qn is dimensionless and V is as above the spatial volume. (The factor of i originates
from the Euclidean signature.) Then

〈n|JτJ
τ |n〉 =

∑

m

e(En−Em)τei(P
a
n−P a

m)xa〈n|Jτ |m〉〈m|Jτ |n〉 (5.23)

= − q2n
V 2

,
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where we implicitly use the orthonormality of eigenstates of energy and charge.
The dimensionless energy ǫn(α, qn) then satisfies the differential equation

∂αǫn =

(

1 +
1

D

)

(

ǫ2n + 2αǫn∂αǫn
)

− q2n (5.24)

with the final term originating from the differentation of the coupling of the current defor-
mation with respect to λ. We can reinstate a generic normalization for the energy at α = 0
as before, giving

∂αǫ̃n =
1

2C

(

ǫ̃2n + 2αǫ̃n∂αǫ̃n
)

− 2Cd

D
q2n. (5.25)

5.2 Charged static black branes

We consider charged static black brane solutions of the type (3.1). Using the expressions for
the curvature (3.2), it is straightforward to show that the charged black brane solutions for
which

f(ρ) =

(

1− λM

ρd
+

Q2

ρ2D

)

(5.26)

satisfy Einstein’s equations with a (Lorentzian) gauge field such that

(∂ρAt)
2 = 2D(D − 1)

Q2

ρ2D
(5.27)

and hence

At = ±
√
2DQ√

D − 1ρD−1
, (5.28)

which from (5.9) implies that the (renormalized) expectation value of the CFT current is

〈Jt〉 = ± d
√
2D

4λ
√
D − 1

Q (5.29)

according to the usual AdS/CFT dictionary.
The general energy relation (3.13) can be expressed as

ǫ(α) =
C

α
(1− f(α)) (5.30)

and

∂αǫ−
1

2C
ǫ (ǫ+ 2α∂αǫ) = − C

2α2

(

1− f 2 + α∂α(f
2)
)

. (5.31)

For the charged black brane, we can write

f(α) =
(

1− αM +Q2α2
)

1

2 . (5.32)

Here as before M is dimensionless, the gravity normalization is

C =
DVD

2
(5.33)
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and we define

Q =
Qρ

λ
, (5.34)

for reasons that we will explain below. Note that the energy expanded perturbatively in α
is

ǫ =
C

2
M + α

C

8
(M2 − 4Q2) + · · · (5.35)

where the second term is positive for real f(α).

Inserting (5.32) into (5.31) we can see that the energy relation satisfies

∂αǫ−
1

2C
ǫ (ǫ+ 2α∂αǫ) = −C

2
Q2, (5.36)

which is of the same form as the field theory result (5.25).

6 Scalar deformations

In this section we briefly consider scalar deformations. We begin by coupling gravity to a
single scalar field i.e. the bulk action is

IM = − 1

16πG

∫

dd+1x
√
g

(

R− 1

2
(∂Φ)2 + V (Φ)

)

(6.1)

where V (Φ) is the potential for the scalar field. For asymptotically AdS spacetimes, the
potential has a fixed point such that V = d(d − 1), as above. We can always introduce a
coordinate system (locally) in which the metric takes the same form as before i.e.

ds2 = dr2 + γij(x, r)dx
idxj. (6.2)

Using the Gauss-Codazzi relations we can then write the Einstein equations as

K2 −KijKij = R+ V (Φ) +
1

2
Φ̇2 − 1

2
γij∂iΦ∂jΦ (6.3)

∇iK
i
j −∇iK =

1

2
Φ̇∂jΦ

K̇i
j +KKi

j = Ri
j −

1

2
∂iΦ∂jΦ +

1

(d− 1)
V (Φ)δij

where the dots indicate radial derivatives. The scalar field equation is

Φ̈ +KΦ̇ +�iΦ+ V ′(Φ) = 0, (6.4)

where the prime denotes the derivative with respect to Φ and �i denotes the Laplacian along
the radial slices.

Let us now restrict to configurations in which the scalar field depends only on the radial
coordinate, and the curvature of each constant radius slice is zero. In such a situation, the
only relevant counterterm for the action is

Ict =
1

8πG

∫

ddx
√
hW (Φ) (6.5)
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where the superpotential W (Φ) is defined via

V (Φ) =
d

(d− 1)
W (Φ)2 − 2W ′(Φ)2. (6.6)

In the case of V = d(d − 1), we obtain W = (d − 1) and reproduce the result of the first
section.

The quasi-local stress energy tensor follows from the action and is given by

Tij =
1

8πG
(Kij −Kγij +Wγij) , (6.7)

where we have used the fact that radial slices have no intrinsic curvature and the scalar field
depends only on the radius. The trace is then

T i
i =

1

8πG
(dW − (d− 1)K) . (6.8)

Then we can show that the quadratic combination gives

(

T ijTij −
1

D
(T i

i )
2

)

=
1

64π2G2

(

2W (K − d

D
W ) + (2(W ′)2 − 1

2
Φ̇2)

)

(6.9)

= − W

4πGD
T i
i +

1

64π2G2

(

2(W ′)2 − 1

2
Φ̇2

)

Up this point we have not assumed that the metric has Poincaré symmetry along the radial
slices, i.e. it is a flat domain wall. If we do assume this, then the equations of motion can
be expressed in first order form implying that

Φ̇ = 2W ′ (6.10)

and

Ȧ =
W

(d− 1)
(6.11)

where the metric is expressed as

ds2 = dr2 + e2A(r)dxidxi. (6.12)

For such flat domain walls, the defining relation is then

T i
i = −4πGD

W (Φ)

(

T ijTij −
1

D
(T i

i )
2

)

. (6.13)

Here implicitly we interpret the Dirichlet data on each slice as γij and Φ, and the operators
are associated with radial derivatives of these quantities. This suggests that the deformation
to be considered in this case is the TT deformation, appropriately dressed by scalar couplings.
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7 Relation to fluid dual to vacuum Einstein gravity

In this section we will consider the relation between gravity at finite radius and a putative
dual theory, for spacetimes that are not asymptotically AdS. The goal is to connect the
discussions of TT deformations in this work with previous analyses of the dual field theory.

In a number of works including [17–20], a dual fluid description of vacuum Einstein
gravity was explored, building on earlier work on fluid/gravity relations [26–28]. In this
context, one fixes a flat metric γij on a timelike hypersurface Σc (outside the Rindler/event
horizon) and identifies the Brown-York tensor

Tij =
1

8πG
(Kγij −Kij) (7.1)

as the putative stress tensor of the dual theory. Conservation of the Brown-York tensor
translates into integrability conditions for the Einstein equations.

The Hamiltonian constraint on Σc can be expressed as

KijK
ij −K2 = 0 (7.2)

and this constraint can immediately be rewritten in terms of the Brown-York tensor as [19,20]

T ijTij −
1

(d− 1)
T 2 = 0. (7.3)

In [19, 20], this relation was interpreted as the equation of state for the dual theory.
Clearly the definition of the stress tensor via (7.1) is not unique: one could equally well

define the stress tensor as

TC
ij =

1

8πG
(Kγij −Kij + Cγij) (7.4)

where C is any constant. In the asymptotically AdS setup, we fix the constant C by requiring
that the stress tensor approaches the renormalised stress tensor at the conformal boundary.
In flat spacetime, there is no a priori reason to fix a particular value of C as we do not have
a holographic correspondence at infinite radius. For an equilibrium solution, we can write
the stress tensor as

Tij = (p+ ρ)uiuj + pγij (7.5)

where p is the pressure, ρ is the energy density and ui is the fluid velocity. The effect of the
constant in (7.4) is thus

p → p+ C ρ → ρ− C. (7.6)

In the case of flat space in Rindler coordinates, the stress tensor on a hypersurface Σc indeed
takes the perfect fluid form, with [19, 20]

p = 4πTU + C ρ = −C (7.7)

where TU is the Unruh temperature. This motivates choosing −4πTU ≤ C ≤ 0, so that the
energy density and the pressure are both non-negative.
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The Hamiltonian constraint (7.2) is clearly independent of the choice of the stress tensor
(7.4). However, the translation of the Hamiltonian constraint into a constraint on the stress
tensor does depend on C: for C 6= 0, we find

TC = −4π(d− 1)G

C

(

TCijTC
ij − 1

(d− 1)
(TC)2

)

+
dC

16πG
(7.8)

Thus for non-zero C the relation (as one would expect) takes a form analogous to that for
anti-de Sitter spacetimes.

8 Conclusions and outlook

In this paper we have used the Gauss-Codazzi relations within AdS gravity to write a trace
relation for the stress tensor at finite radius. This relation suggests that the corresponding
deformation of the dual d-dimensional CFT is as given by (1.3). As discussed in previous
works [4,6,9], the deformation is modified by the presence of additional fields in the bulk; we
can again use the Gauss-Codazzi relation to deduce systematically the form of the deforming
operator.

We used static black brane solutions to derive a relation for the energy at finite radius
in terms of the mass parameter of the black brane and the effective coupling. The same
relation was reproduced from the perspective of states of a CFT deformed by the operator
(1.3). It would be straightforward to extend these results to boosted, spinning branes.

The energy relation is not sensitive to the precise definition of the operator (1.3) i.e.
how one takes the limit (4.2) to define the composite operator. To explore this deforma-
tion further, it would clearly be interesting to calculate quantities that are sensitive to this
definition, such as correlation functions and entanglement entropy. Correlation functions in
the deformed two-dimensional dual theory were explored in [6]. Note however that, since in
three bulk dimensions gravity has no propagating degrees of freedom, correlation functions
of the stress energy tensor already follow directly from the Ward identities in the presence
of sources. In the 2d CFT this is well known: one uses conservation of the stress tensor (the
diffeomorphism Ward identity) together with the trace Ward identity

T i
i =

c

6
R, (8.1)

where c is the central charge. Relations between stress energy tensor two point functions
(in flat space) are obtained by differentiating these identities with respect to the metric and
then setting the background metric to be flat. The standard CFT two point functions are
then obtained by integrating the relations arising from the diffeomorphism Ward identity,
substituting the relations obtained from the trace identity. In the deformed 2d theory, the
corresponding trace relation is instead

T i
i = −λ

(

T ijTij − (T i
i )

2
)

+
c

6
R. (8.2)

Throughout this paper the last term was set to zero: in the bulk we assumed that hy-
persurfaces of constant radius are flat and in the field theory we correspondingly took the
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background metric to be flat. Using the Gauss-Codazzi relation (2.6) we can infer that this
would is the generalized relation for non-flat hypersurfaces. Since the stress tensor is still
conserved, differentiation of this relation with respect to the metric again gives relations for
correlation functions, which are equivalent to those derived in [6].

For d > 2 one can obtain an analogue of (8.2) using the Gauss-Codazzi relation (2.6),
together with the curvature counterterm contributions to the holographic stress tensor [23].
However, as gravity in d > 3 has propagating degrees of freedom, one needs to solve the
perturbation equations around AdS to obtain correlation functions; one cannot deduce them
from manipulations of the Ward identities. From the field theory perspective, one would
need to define the (regularisation of the) composite operator T to obtain the correlation
functions at finite λ using conformal perturbation theory. The regularisation of the composite
operator would also be needed to understand entanglement entropy in the deformed theory;
see discussions of entanglement entropy for a 2d theory closely related to the T T̄ deformed
theory in [11].
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