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8 A short note on the multiplicative energy of the spectrum of a set

Shkredov I.D.

Abstract

We obtain an upper bound for the multiplicative energy of the spectrum of an arbitrary
set from Fp, which is the best possible up to the results on exponential sums over subgroups.

1 Introduction

Let p be a prime number and let A be a subset of the prime field Fp. Denote by Â(r), r ∈ Fp

the Fourier transform of the characteristic function of the set A, namely,

Â(r) =
∑

a∈A

e−
2πiar

p .

Given a real number ε ∈ (0, 1], define

Spec ε(A) = {r ∈ Fp : |Â(r)| > ε|A|} . (1)

The set Spec ε(A) is called the spectrum or the set of large exponential sums of our set A. Such
sets are studied in [18, Section 4.6], further, in [2]—[5], [11]—[14] and in many other papers.
The spectrum appears naturally in any additive problem and, hence, it is important to know
the structure of these sets. It is well–known that Spec ε(A) has strong additive properties, see,
e.g., [2], [3], [13]. This fact was used in [15] to obtain a new property of the spectrum, namely,
that Spec ε(A) has poor multiplicative structure. It coincides with the philosophy of the sum–
product phenomenon, see, e.g., [18] that says that both additive and multiplicative structures
do not exist simultaneously. Previously, we used the modern sum–product tools, see [9], [10] to
demonstrate this poor multiplicative structure. Here we apply the main sum–product result of
[9] directly and obtain

Theorem 1 Let A ⊆ Fp be a set, |A| = δp and R ⊆ Spec ε(A) \ {0} be any set. Suppose that
p 6 ε2|A|3. Then

|{(x, y, z, w) ∈ R4 : xy = zw}| ≪ ε−4δ−1|R|3/2 . (2)

Estimate (2) is stronger than the results of [15, Section 4] and moreover one can show
(see Remarks 6, 9) that the bound in Theorem 1 is sharp up to our current knowledge of some
number–theoretical questions. Also, in this paper we study other multiplicative characteristics
of the spectrum, see Theorem 5 and Theorem 7, formula (15). As a byproduct we obtain by the
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same method a purely sum–product result, namely, a new lower bound on AA + AA for sets
with small sumset.

All logarithms are to base 2. The signs ≪ and ≫ are the usual Vinogradov symbols. If we
have a set A, then we will write a . b or b & a if a = O(b · logc |A|), c > 0.

2 Notation and preliminary results

In this paper p is an odd prime number, Fp = Z/pZ and F
∗
p = Fp \ {0}. We denote the Fourier

transform of a function f : Fp → C by f̂ ,

f̂(ξ) =
∑

x∈Fp

f(x)e(−ξ · x) , (3)

where e(x) = e2πix/p. We rely on the following basic identities. The first one is called the
Plancherel formula and its particular case f = g is called the Parseval identity

∑

x∈Fp

f(x)g(x) =
1

p

∑

ξ∈Fp

f̂(ξ)ĝ(ξ) . (4)

Another particular case of (4) is

∑

y∈Fp

∣∣∣
∑

x∈Fp

f(x)g(y − x)
∣∣∣
2
=

1

p

∑

ξ∈Fp

∣∣f̂(ξ)
∣∣2∣∣ĝ(ξ)

∣∣2 . (5)

In this paper we use the same letter to denote a set A ⊆ Fp and its characteristic function
A : Fp → {0, 1}. Also, we write fA(x) for the balanced function of a set A ⊆ Fp, namely,
fA(x) = A(x)− |A|/p.

Let A ⊆ Fp be a set, and ε ∈ (0, 1] be a real number. We have defined the set Spec ε(A)
in (1) already. Clearly, 0 ∈ Spec ε(A), and Spec ε(A) = −Spec ε(A). For further properties of
Spec ε(A) see, e.g., [2], [3], [13], [15]. Usually, we denote by δ the density of our set A, that is,
δ = |A|/p. From Parseval identity (4), we have a simple upper bound for size of the spectrum,
namely,

|Spec ε(A)| 6
p

|A|ε2 =
1

δε2
. (6)

Put E+(A,B) for the common additive energy of two sets A,B ⊆ Fp (see, e.g., [18]), that
is,

E
+(A,B) = |{(a1, a2, b1, b2) ∈ A×A×B ×B : a1 + b1 = a2 + b2}| .

If A = B, then we simply write E
+(A) instead of E+(A,A) and the quantity E

+(A) is called
the additive energy in this case. One can consider E

+(f) for any complex function f as well.
Sometimes we use representation function notations like rAB(x) or rA+B(x), which counts the
number of ways x ∈ Fp can be expressed as a product ab or a sum a + b with a ∈ A, b ∈ B,
respectively. Put σ+(A) =

∑
x∈A rA−A(x). Further clearly

E
+(A,B) =

∑

x

r2A+B(x) =
∑

x

r2A−B(x) =
∑

x

rA−A(x)rB−B(x)
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and by (5),

E
+(A,B) =

1

p

∑

ξ

|Â(ξ)|2|B̂(ξ)|2 . (7)

Similarly, one can define E
×(A,B), E×(A), E×(f) and so on.

Now we recall some results from the incidence geometry, see, e.g., [18, Section 8]. First of
all, we need a general design bound for the number of incidences, see [16, 19, 20]. Let P ⊆ F

3
q

be a set of points and Π be a collection of planes in F
3
q. Having p ∈ P and π ∈ Π, we write

I(p, π) =
{

1 if q ∈ π
0 otherwise.

Put I(P,Π) =
∑

p∈P,π∈Π I(p, π). We have (see [16])

Lemma 2 For any functions α : P → C, β : Π → C one has

|
∑

p,π

I(p, π)α(p)β(π)| 6 q‖α‖2‖β‖2 , (8)

provided either
∑

p∈P α(p) = 0 or
∑

π∈Π β(π) = 0.

Of course, similar arguments work not just for points/planes incidences but, e.g., points/lines
incidences and so on. A much more deep result on incidences is contained in [9] (or see [7, The-
orem 8]). We formulate a combination of these results and Lemma 2, see [16].

Theorem 3 Let p be an odd prime, P ⊆ F
3
p be a set of points and Π be a collection of planes

in F
3
p. Suppose that |P| 6 |Π| and that k is the maximum number of collinear points in P. Then

the number of point–planes incidences satisfies

I(P,Π)− |P||Π|
p

≪ |P|1/2|Π|+ k|P| . (9)

Finally, we recall a simple asymptotic formula for the number of points/lines incidences in
the case when the set of points forms a Cartesian product, see [17] and also [16].

Theorem 4 Let A,B ⊆ Fp be sets, |A| 6 |B|, P = A×B, and L be a collection of lines in F
2
p.

Then

I(P,L)− |A||B||L|
p

≪ |A|3/4|B|1/2|L|3/4 + |L|+ |A||B| . (10)
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3 The proof of the main results

Let A ⊆ Fp be a set. We write

E
×
k (A) =

∑

x

rkA/A(x)

for any k > 1. Our aim is to obtain an upper bound for E×
2 –energy of the spectrum but before

that we prove an optimal result for E×
4 which is interesting in its own right. We use arguments

similar to [8].

Theorem 5 Let A ⊆ Fp be a set, |A| = δp and R = Spec ε(A) \ {0}. Then

E
×
4 (R) . ε−16δ−4

(
E
+(fA)

|A|3
)2

. (11)

P r o o f. Applying formula (7) and the definition of the spectrum (1), we notice that

(ε|A|)4
p

· rR/R(λ) 6 p−1
∑

x∈R, λx∈R

|Â(x)|2|Â(λx)|2 6 p−1
∑

x

|f̂A(x)|2|f̂A(λx)|2 = E
+(fA, λfA) .

Hence

E
×
4 (R) 6 (ε|A|)−16p4

∑

λ

E
+(fA, λfA)

4 = (ε|A|)−16p4
∑

λ

r4(fA−fA)/(fA−fA)(λ) = (ε|A|)−16p4 · σ .

By the Dirichlet principle there is ∆ > 0 and a set P such that ∆ < |rfA−fA(λ)| 6 2∆ on P and

σ . ∆4
∑

λ

r4(fA−fA)/P (λ) = ∆4
∑

λ

|{λp = a1 − a2 : p ∈ P}|4 ,

where a1, a2 have weights fA(a1), fA(a2), correspondingly. Let τ > 0 and Sτ be the set of all λ
such that |r(fA−fA)/P (λ)| > τ . Since r(fA−fA)/P (λ) = r(A−A)/P (λ) + δ2p|P |, it follows that

τ |Sτ | 6
∑

λ∈Sτ

|r(fA−fA)/P (λ)| 6 |A|2|P |+ δ2|P |p2 = 2|A|2|P | .

In particular, |Sτ | 6 2|A|2|P |/τ . The number of the solutions to the equation sp = a1 − a2 can
be interpreted as the number of incidences between the set of lines L = Sτ × A, counting with
the weight fA(a1) and the sets of points P = A × P , again counting with the weight fA(a2).
Applying Theorem 4, we obtain

τ |Sτ | = I(P,L) ≪ |A|3/2|P |1/2|Sτ |3/4 + |Sτ ||A|+ |A||P | . (12)

If the first term dominates, then we have

|Sτ | ≪ |A|6|P |2/τ4 . (13)
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In view of the inequality |Sτ | 6 2|A|2|P |/τ one can suppose that τ3 ≫ |A|4|P | > |A|3 because
otherwise it is nothing to prove. It gives us that τ ≫ |A| and hence the second term in (12) is
negligible. We will consider the case when the third term in (12) dominates later but now let
us remark that in this case τ3 ≫ |A|5|P | because otherwise it is nothing to prove. Thus, by
summation of formula (13), we obtain

σ . |A|6|P |2

and hence

E
×
4 (R) . (ε|A|)−16p4|A|6∆4|P |2 6 ε−16δ−4

E
+(fA)

2/|A|6

as required. It remains to consider the case when the third term in (12) dominates and we know
that τ3 ≫ |A|5|P |. In other words, if we consider the ordering

|r(fA−fA)/P (s1)| > |r(fA−fA)/P (s2)| > . . . > |r(fA−fA)/P (sj)| > . . . ,

then there is an effective bound |r(fA−fA)/P (sj)| 6 |A||P |j−1 for j > J := (|P |/|A|)2/3 . Again,
by summation we obtain

σ ≪
∑

j>J

(|A||P |/j)4 ≪ |A|4|P |4J−3 ≪ |P |2|A|6

and it gives the same bound for E×
4 (R). This completes the proof. ✷

Remark 6 Let A be a multiplicative subgroup of order p2/3. Then the best known bound for the
Fourier coefficients of A is |Â(r)| < √

p, ∀r 6= 0, see, e.g., [6]. On the other hand, taking R
equals a coset of A belonging to Spec ε(A) \ {0}, we see that E

×
4 (R) > |R|5 = |A|5 . Applying

formulae (4), (7), we get

E
+(fA) <

(
max
r 6=0

|Â(r)|
)2

|A|

and hence estimate (11) of Theorem 5 is tight (up to our current knowledge of the Fourier
coefficients of multiplicative subgroups).

Unfortunately, the method of the proof of Theorem 5 works for E×
4 (R) but not for E

×
k (R)

with k < 4. In this case we obtain

Theorem 7 Let A ⊆ Fp be a set, |A| = δp and R ⊆ Spec ε(A) \ {0} be any set. Suppose that
p 6 ε2|A|3. Then

E
×(R) ≪ ε−4δ−1|R|3/2 . (14)

Similarly,

σ×(R) . ε−4δ−1|R|3/4
(
E
+(fA)

|A|3
)1/2

+ ε−4δ−1

(
1 +

|R|
|A|

)
. (15)
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P r o o f. Using the Fourier transform similar to the proof of Theorem 5, we have

(ε|A|)4
p

· E×(R) 6 p−1
∑

λ,µ∈R

∑

x

|f̂A(λx)|2|f̂A(µx)|2 =
∑

x

r2(fA−fA)R(x) .

Clearly, the last quantity can be interpreted as points/planes incidences (with weights), see [1].
Here the number of the points and planes is at most O(|A|2|R|). Finally, using our assumption,
we get from (6)

|R| 6 p

ε2|A| 6 |A|2 .

Applying Theorem 3, we obtain

∑

x

r2(fA−fA)R(x) ≪ |A|3|R|3/2 .

It follows that
E
×(R) ≪ ε−4δ−1|R|3/2 .

as required.
Similarly,

σ×(R) 6 (ε|A|)−4
∑

λ∈R

∑

x

|f̂A(x)|2|f̂A(λx)|2 = ε−4δ−1|A|−3
∑

λ∈R

r(fA−fA)/(fA−fA)(λ) .

After that we can use the arguments and the notation from the proof of Theorem 5 (with
Sτ = R) and derive that

∑

λ∈R

r(fA−fA)/(fA−fA)(λ) . ∆|P |1/2|R|3/4|A|3/2 +∆|A|(|P | + |R|) ≪

≪ (E+(fA))
1/2|R|3/4|A|3/2 + |A|3 + |A|2|R| .

Here we have used a trivial bound ∆ 6 2|A|. It gives us

σ×(R) . ε−4δ−1|R|3/4(E+(fA)/|A|3)1/2 + ε−4δ−1 + ε−4δ−1|R|/|A|

and this coincides with (15). ✷

Example 8 Let ε ≫ 1, R = Spec ε(A) \ {0}, and let size of R is comparable with the upper
bound which is given by (6), namely, |R| ≫ δ−1ε−2 ≫ δ−1. Then E

×(R) . |R|5/2. It means
that we have a non–trivial estimate for the multiplicative energy of the spectrum in this case.
Similarly, we always have E

+(fA) < |A|3, so σ×(R) . |R|7/4 + |R|2/|A|.

Remark 9 The same construction as in Remark 6 shows the tightness of bounds (14), (15),
again up to our current knowledge of the Fourier coefficients of multiplicative subgroups.

In the same vein we obtain a result on the growth of AA+AA, which improves [16, Theorem
32] for small E×

4 (A).
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Theorem 10 Let A ⊆ Fp be sets. Then

∑

x

r2AA+AA(x)−
|A|8
p

. |A|4(E×
4 (A))

1/2 + E
×
4 (A)|A|2 . (16)

P r o o f. Without loosing of the generality, one can assume that 0 /∈ A. We need to estimate the
number of the solutions to the equation

a1/a · a′1/a′ + a2/a · a′2/a′ − a3/a · a′3/a′ = 1 ,

where a, a′, aj , a
′
j ∈ A, j = 1, 2, 3. Put

C
×
4 (A)(α, β, γ) := |A ∩ αA ∩ βA ∩ γA| .

One can check that ∑

α,β,γ

C
×
4 (A)(α, β, γ) = |A|4 ,

and ∑

α,β,γ

C
×
4 (A)(α, β, γ)

2 = E
×
4 (A) . (17)

In these terms, we want to bound the sum

σ :=
∑

α,β,γ

∑

α′,β′,γ′

C
×
4 (A)(α, β, γ)C

×
4 (A)(α

′, β′, γ′)δ(αα′ + ββ′ − γγ′ = 1) ,

where δ(x = 1) equals one iff x = 1. Using the Dirichlet principle as in the proof of Theorems 5,
7, we find two numbers ∆1,∆2 > 0 and two corresponding sets of points and planes P, Π such
that

σ . ∆1∆2

∑

α,β,γ

∑

α′,β′,γ′

P(α, β, γ)Π(α′ , β′, γ′)δ(αα′ + ββ′ − γγ′ = 1) .

Without loosing of the generality, suppose that |P| 6 |Π|. Also, notice that |P|, |Π| 6 |A|4.
Applying Theorem 3 (previously inserting the balanced function fA(x) = A(x) − |A|/p as in
the proofs of Theorems 5, 7) with the maximal number of collinear points k 6 |A|2 and using
formula (17), combining with Lemma 8, we get

σ . ∆1∆2|P||Π|1/2 +∆1∆2k|P| + |P|1/2E×
4 (fA) 6

6 (∆2
2|Π|)1/2∆1|P| + k(∆2

1|P|)1/2(∆2
2|Π|)1/2 + |A|2E×

4 (fA) 6

6 (E×
4 (A))

1/2|A|4 + E
×
4 (A)|A|2 .

This completes the proof. ✷

Corollary 11 Let A ⊆ Fp, |A+A| = K|A| and |A+A|3|A| 6 p3. Then

|AA+AA| & min{p,ΩK(|A|2)} .
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P r o o f. Using [7, Lemma 18] (where, actually, a better dependence on K is suggested) or just
applying the arguments of the proof of Theorem 5, we get

E
×
4 (rB+C)−

|B|8|C|8
p3

. E
+(B,C)2|B|3|C|3 .

Putting B = A+A, C = −A and noting that |A|A(x) 6 rB+C(x), we obtain

E
×
4 (A)−

|A+A|8
p3

. |A+A|5|A|−1 . (18)

Obviously, by the Cauchy–Schwartz inequality, we have

|A|8 6 |AA+AA| ·
∑

x

r2AA+AA(x) . (19)

By Theorem 10, we get

∑

x

r2AA+AA(x)−
|A|8
p

. |A|4(E×
4 (A))

1/2 + E
×
4 (A)|A|2 .

If the term |A|8

p dominates in the last formula, we have from (19) that |AA+AA| ≫ p. Otherwise

in view of (18) and our condition |A+A|3|A| 6 p3, we see that

|A|8 . |AA+AA| ·
(
|A|4(E×

4 (A))
1/2 + E

×
4 (A)|A|2

)
≪ |AA+AA| ·K5|A|6 .

This completes the proof. ✷

Considering A = {1, 2, . . . , n}, where n is sufficiently small comparable to p, we see that
Corollary 11 is the best possible up to logarithms.
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