1805.10609v3 [math.AG] 7 Jun 2019

arXiv

Sylvester double sums, subresultants and
symmetric multivariate Hermite interpolation

Marie-Francoise Roy'! and Aviva Szpirglas?

1Univ Rennes 1, CNRS, IRMAR-UMR 6625, F-35000 Rennes,
France
2Univ Poitiers, CNRS, LMA-UMR 7348, F-86000 Poitiers, France

Abstract

Sylvester doubles sums, introduced first by Sylvester (see

), are symmetric expressions of the roots of two polyno-
mials P and (. Sylvester’s definition of double sums makes no sense
if P an @ have multiple roots, since the definition involves denomina-
tors that vanish when there are multiple roots. The aims of this pa-
per are to give a new definition for Sylvester double sums making sense
if P and ) have multiple roots, which coincides with the definition by
Sylvester in the case of simple roots, to prove the fundamental property
of Sylvester double sums, i.e. that Sylvester double sums indexed by
(k,£) are equal up to a constant if they share the same value for k + ¢,
and to prove the relationship between double sums and subresultants, i.e.
that they are equal up to a constant. In the simple root case, proofs
of these properties are already known (see |Lascoux and Pragacz, 2002]
|d"Andrea et al., 2007, [Roy and Szpirglas, 2011]). The more general proofs
given here are using generalized Vandermonde determinants and a new
symmetric multivariate Hermite interpolation as well as an induction on
the length of the remainder sequence of P and Q.

Keywords: subresultants, Sylvester double sums, multivariate Hermite inter-
polation, generalized Vandermonde determinants

Introduction

The first aim of this paper is to provide a definition for Sylvester double sums
making sense if P and ) have multiple roots, which is done using quotients
of Vandermonde determinants involving variables, and substitutions. When the
structure of the multiplicities of the roots of P and @ is known, we obtain a direct
expresion of the Sylvester double sums in terms of generalized Vandermonde
determinants.
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The second aim of the paper is to prove, in the general case, the fundamental
property for Sylvester double sums, i.e. that Sylvester double sums indexed by
(k, £) are equal up to a constant if they share the same value for k+¢. In order to
prove this fundamental property, it is convenient to define more general objects,
the multi Sylvester double sums. We introduce a new multivariate symmetric
Hermite interpolation and use it to study the properties of multi Sylvester double
sums. The strategy then consists in proving the fundamental property for multi
Sylvester double sums and obtaining the result for Sylvester double sums as a
corollary by identifying coefficients.

The third aim of the paper is to prove the relationship between double sums
and subresultants, i.e. that they are equal up to a constant. Our strategy is
based on an induction on the length of the remainder sequence of P and Q.
Our more general proofs are new even in the special case when the roots of the
polynomials are simple.

The idea of introducing a multivariate symmetric Hermite interpolation and us-
ing multi Sylvester double sums was inspired by [Krick et al., 2016|’s use of mul-
tivariate symmetric Lagrange interpolation and introduction of multi Sysvtester
double sums in the context of simple roots.

The content of the paper is the following.

In Section [I] we give a general definition for Sylvester double sums, valid also
when there are multiple roots, and prove that it coincides with Sylvester’s defi-
nition in the special case where all roots are simple (Proposition [d]).

In SectionPlwe consider generalized Vandermonde determinants and use them to
give a new formula for Sylvester double sums when the structure of multiplicities
is known (Proposition [[3)).

In Section 3] we introduce an Hermite interpolation for multivariate symmetric
polynomials (Proposition 20)).

In Section M we study multi Sylvester double sums. We give their definition in
subsection @] In subsection .2 we compute the multi Sylvester double sums and
Sylvester double sums for indices (k,¢) with k + ¢ > deg(Q). In subsection @3]
we prove that multi Sylvester double sums and Sylvester double sums indexed
by k, £, depend only (up to a constant) on j = k + ¢ (Theorem B2l and Theorem
[3T).

In Section Bl we give a relationship between Sylvester double sums of (P, Q) and
Sylvester double sums of (Q, R) where R is the opposite of the remainder of P
by @ in the Euclidean division (Proposition [3g).

Finally we prove in Section [0 that Sylvester double sums coincide (up to a
constant) with subresultants, by an induction on the length of the remainder
sequence of P and @ (Theorem [0).

1 Sylvester double sums

We give a general definition for Sylvester double sums, valid also when the
polynomials have multiple roots, and prove that it coincides with Sylvester’s
definition in the special case where all roots are simple (Proposition [G]).



1.1 Basic notations and definitions

Let K be a field of characteristic 0.

Let A be a finite list of elements of K.

We denote A’ C, A when A’ is a sublist of A with a elements (i.e. the list A’
is ordered by the restriction of the order on the list A).

Let B be another finite list of elements of K.

We denote
(A, B) = [[ (= - ).

zE€A
yEB

Note that TI(A,B) is independant on the order of A and B.

We abbreviate TI({z}, B) and TI(A, {y}) to II(z,B) and TI(A,y) respectively.
Note that II(A, B) is the classical resultant of the monic polynomials TI(X, A)
and II(X, B).

Definition 1. The Vandermonde vector of length i of x € K, denoted by v;(x),
18

vi(z) = . (1)

Let A = (x1,...,2;) be a finite ordered list of elements of K. The Vandermonde
matrix V(A) is the ¢ x ¢ matrix having as column vectors v;(x1), ..., v;(z;). The
Vandermonde determinant V' (A) is the determinant of the Vandermonde matrix
V(A). It is well known that

VA = ] (@—u=y).

i>k>j>1
By BJ|A the we denote the list obtained by concatening B and A.
The following result is obvious.

Lemma 2.
V(B|A) = V(A)II(A,B)V(B). (2)

and, as a special case, given a variable U,

V(B|U) = I(U, B)V(B).

1.2 Definition of Sylvester double sums

Let P = (z1,...,2p) and Q = (y1,...,yy) be two finite ordered sets of element
of K and P = II(X, P), Q = I[I(X, Q)

The Sylvester double sum of (P, Q) of index k € N,/ € N is usually defined as
the following polynomial in K[U]:



(K, LI(P\K,Q\ L)
(K, P\ K)II(L, Q\ L)

> U, K)I(U, L) (3)

KC P
LCyQ

(see [Sylvester, 1840, [Sylvester, 1853]).

This definition of Sylvester double sums makes no sense if P and ) have multiple
roots, since some of the quantities II(K,P \ K) (resp. II(L,Q \ L)) at the
denominator are equal to 0.

In this section, we give a general definition of Sylvester double sums, valid even
if P and @ have multiple roots and prove that it coincides with the classical one
when all these roots are simple.

Let X = (X1,...,X,) and Y = (Y1,...,Y,) be two ordered sets of indetermi-
nates.

Given X’ Cy X (resp. Y' C; Y ), we denote sx/ (resp. sys ) the signature of
the permutation ox/ (resp. ovy+) putting the elements of X (resp. Y) in the
order (X \ X)|| X’ (resp.(Y \ Y)[|Y").

For any k € N,/ € N, we define the polynomial F**(X,Y)(U) in K[X,Y,U]

FFRXY)U) = > sxosy VYY) X\ X)VYIX|U)  (4)

X'CpX
Y'CpY

Note that if & > p or £ > ¢ then F**(X,Y)(U) = 0.

Proposition 3. The polynomial F**(X,Y)(U) is antisymmetric in the vari-
ables X and in the variables Y.

Proof. For any permutation o of the ordered set X, we call also o the action of
o on a polynomial F'in K[X,Y,U], i.e o(F)(X,Y) = F(0(X),Y). Denoting s
the signature of o we want to prove

o(FPYX,Y)(U) = sFH(X,Y)(U). (5)

It is enough to prove (@) for a transposition exchanging two sucessive elements,
of signature —1.
So, let 7 be the transposition exchanging X; and X;;;. We want to prove

T(FM)(X,Y)(U) = —F*(X,Y)(U). (6)

We denote by 7(X) the ordered set obtained from X by exchanging X; and
Xit1. Given X' Cy, X, we denote by 7(X') the ordered set 7(X’) Cj 7(X) (i.e.
7(X’) is ordered by the restriction of the order on 7(X)) and by X’ the ordered
set 7(X') Cx X (i.e. X’ and 7(X') have the same elements but X’ is ordered
by the restriction of the order on X).
Denote

FXY = sxosy V(Y \Y)I(XA\ X))V (Y |X|0).

We have 3 cases to consider.



o If X; € X' and X;11 € X’ then 7(X \ X') =X\ X’ and

F(FXY) = sxsy V(Y \ Y [r(X\ X))V (Y [7(X)|U)
sy VIOV VYOO XV (Y (X |0)
-3,

o If X; ¢ X" and X, 11 ¢ X’ then 7(X’) = X’ and

T(FXY) = sxesy VY \Y)[7(X\ X)) V(Y |7(X)||U)

sxsy V(Y \Y)[7(XA X))V (Y[ XT]|U)
_FX Y .

o If X; € X and X1 ¢ X', or X; ¢ X and X1 € X/, then o, = 7o0x/,
7(X') =X’ and 7(X\ X’) = X\ X’ so that

T(FXY) = sxsy VY \Y)[Ir(X\ X))V (Y'|[7(X)|U)
—S)g/szf/V((Y\Y’)II(X\X’))V(Y’IIX’IIU)
_FX,

and

T(FXY) = sxsy V(Y \ Y)|Ir(X\ X))V (Y'||7(X)||U)
—sxsy VKA Y)IXAX))VTIXT)
—FX.Y'

From which we deduce

- (FX’,Y/ I FX’,Y’) _ (FX’,Y/ I FX’,Y’) _

So, we get ([@).
The exchange between two elements of Y can be treated similarly. O

Lemma 4. If A(X,Y) in K[X,Y] is antisymmetric with respect to the variables
X, then A(X,Y) = S(X,Y)V(X) where S € K[X,Y] is symmetric with respect
to the variables X.

Proof. If A(X,Y) is antisymmetric with respect to X then, for any j < k,
denote 7; 1 (X) the ordered set of variables obtained by transposing X; and Xj.

AX)Y) — A(m,1(X,Y)) 2A(X, Y)

Xj— X X - Xk
is a polynomial. So A(X,Y) = S(X,Y)V(X) and S(X,Y) is a symmetric
polynomial with respect to X. O



Applying Lemma @ and Proposition B we denote S**(X,Y)(U) the symmet-
ric polynomial with respect to the indeterminates X and with respect to the
indeterminates Y satisfying

_ FR(XY)(U)

SH(X,Y)(U) V(X)V(Y)

(7)

Given two monic univariate polynomials P and @ of degree p and ¢ we denote
P = (z1,...,2p) and Q = (y1,...,yq) ordered lists of the roots of P and @ in
an algebraic closure C of K, counted with multiplicities.

Definition 5. The generalized Sylvester double sum of (P, Q) for the exponents
k,? € N x N is defined by

Sy (P, Q)(U) = S*(P,Q)(U).

Note that this definition does not depend on the order given for the roots of P
and Q.

This definition of generalized Sylvester double sums for monic polynomials co-
incides with the usual definition of Sylvester double sums when the polynomials
P and @ have no multiple roots, as we see now in Proposition [6}

Proposition 6. If P,Q have only simple roots,

N LIP\K,Q\L)
(K, P\ K)II(L, Q \ L)

SyWHH(P,Q)(U) = > T(U,K)II(U,L)

KCP
LC,Q



Proof of Proposition [8. ( IR "
(K, L)I(P\K,Q\L)
2, MU L) e B oL @ )

LC,Q

= > IUKIU,L)

KC,P
LC,Q

LT e VEIKIOV(Q\ L (PAK)
S VEIV(Q)

PP.QU)
BRGICOR

= SyW"(P,Q)(U)

VILHIK, LV (E)V(Q\ LII(P\ K, Q\ L)V (P \ K)
V(KK P\ K)V(P\ K)V(L)I(L Q\L)V(Q\ L)

applying Lemma O

2 Generalized Vandermonde determinants and Sylvester
double sums
We consider generalized Vandermonde determinants (also called sometimes con-

fluent Vandermonde determinants, see [Lancaster and M.Tismenetsky, 1985, [Horn and Johnson, 1991])
and connect them with the Sylvester double sums (Proposition [I3).

Notation 7. Let P be a polynomial of degree p with coefficients in a field K.
Let (z1,...,zm) be an ordered set of the distinct roots of P in an algebraic
closure C of K, with x; of multiplicity u;, and let P be the multiset of roots of
P, represented by the ordered set

P= (21,0, 110 s Tim,0s - s Ty —1),

with x; j = (i, j) for 0 <j < p;—1, 30" p; = p.
Let Q be a polynomial of degree q with coefficients in K. Let (y1,...,yn) be
an ordered set of the distinct roots of Q in C with y; of multiplicity v;, , for
1=1,...,n. Let Q be the ordered multiset of its root, represented by the ordered
set

Q= (Y105 Ylpr—1s- 3 Yn,0s - Ynwp—1);
with yij = (yi,7) for 0 <j <w =1, 37 vi = q.
We introduce an ordered set of variables Xp = (X1,0, - - - y X =1 s X 05 Xon i —1)
and an ordereed set of variables Yo = (Y1,0,- -, Y1 01—1,--» Yn,0,- -5 Ynun—1)-
For a polynomial f(Xp,Xq) we denote f(P,Q) the result of the substitution of
Xij; by x; and Y;; by y;.
Notation 8. Given f a polynomial depending on the variable U, we denote

_ 19
Tl au (8)

f[i]



Definition 9 (Generalized Vandermonde determinant). Let K C P, L C; Q
and U = (Uy,...,U,) an ordered set of u indeterminates.

The generalized Vandermonde matrix V[L||K||U) is the ({+k+u) x ({+k+u)

matrix having as column vectors the { columns Ul[cj-]ré-i-u (yi) for yi; € L followed
by the k columns v,[ﬂruu(:vi) for z; ; € K followed by the u columns vty (Us)
(using notation () and notation (8)).

The generalized Vandermonde determinant V[L||K||U) is the determinant of
V[L|K[U).

e In the particular case uw = 0 we denote V[L||K] the corresponding deter-
mainant.

e In the particular case k = p, ¢ = u = 0 we denote V[P] the corresponding
determinant .

e Similarly, in the particular case k = 0,4 = q,u = 0 we denote V[Q] the
corresponding determinant.

Remark 10. The peculiar notation V[L|K||U) with one square bracket to
the left and one parenthesis to the right is here to indicate that the column
v,[i]r“u(:zri) indexed by z; ; € K and v][CJJ]rHu(yi) indexed by y; ; € L have been
derivated, while there is no derivation with respect to the columns indexed by

the variables in U.

While the classical Vandermonde determinant V(P) is null when P has multiple
roots, we have the following result for the generalized Vandermonde determi-
nant.

Lemma 11. The generalized Vandermonde determinant V[P] is equal to

VPl = ] (zj— 2.

1<i<j<m
Proof. The proof is done by induction on p.
Ifp=1 V[P =1
Suppose that
VPl = [T (&5 —ai)rens.
1<i<j<m

The polynomial F(U) = V[P||U) is of degree p, with leading coefficient V[P]
and satisfies the property

forall1 <i<m, forall0 <j < p;, FUl(z;) = 0,
So,
FU)=VPI[[0 =z = [ (& =@ [0 =)
i=1 1<i<j<m i=1



Consider T'(U) = (U — z)P(U).

— First case: x is not a root of P. Let T the ordered set (obtained by adding z
at the end of P) of roots of the polynomial 7', so = 41 is a root of T" with
multiplicity 1. Then

VI[T] = F(z) = H (xj — a;)Hiti H(x —x;)M = H (5 — )"k

1<i<j<m i=1 1<i<ji<m+1

— Second case: z is a root of P. So there exists 1 < j < m such that z = z; ,
and z; is a root of multiplicity p; + 1 of T'.

Let T the ordered set of roots of the polynomial T obtained by inserting x; ,,; =
(w4, puy) after xj,,, 1 in P. Then

VI[T] = (_1)M+1+~~+#mF[#J‘](:Cj)
= (apsnesny (2

i=1
i#]

= H (zj — xi)m(urfl) 1
1<i<j<m

Remark 12. If K C; P, it can happen that V[K] = 0. Taking for example
P= (II,O; 21,1,22,0, ZCQJ) and K = (xlyl, I2,1); it is easy to check that V[K] =0.

From now on, and till SectionB], P and @) are monic polynomials,

The following proposition makes the link between generalized Vandermonde
determinants and Sylvester double sums.

We denote sk (resp. sr) the signature of the permutation ok (resp. or)
obtained by putting the elements of P (resp. Q) in the order (P \ K)||K (resp.

(Q\L)[L).

Proposition 13.

SPQ) = 3 e IR LOIVIEIRI)

In the proof of Proposition I3l we use the following notation [[4l and Lemma [I5l

Notation 14. For any polynomial f depending on the variables Xp, and K Cy,
P, denote O8I f the polynomial defined by induction on r as follows.

Mf=f
If K =K'|[(zi;),
amfflw&mf
it oxi;



Similarly, for any polynomial f depending on the variables Yq, and L C, Q,

denote O f the polynomial defined by induction on s as follows.
oMf =1

IfL =L/|[(yi,)
oL
ol _ laya[ .]f,
gt 0X;

Note that
VIL|K|U) = f(K,L,U)

with f(Xk, Yy, U) = 0MoXIV (Y| Xk||U).

Lemma 15.
o1 (V(Xp)f(Xp)) (P) = V[P]f(P)

Proof. We first note that

P (V(Xp) f(Xp)) = OFU(V (X)) f(Xp) + Z Ve (Xp)fr(Xp)

where V,.(Xp) (resp. fr(Xp)) is obtained from V(Xp) (resp. from f(Xp)) by
partial derivations, one variable X; ; at least being derived less than j times
(resp. at least one time). Denoting X; ; the first variable which is being derived
less than j times in V,.(Xp), we define 5/ as the order of derivation of X, ; in
V. (Xp). We notice that V,.(Xp) is the determinant of a matrix with two equal
columus, the one indexed by 4, j* and the one indexed by i, 7. Hence V,.(P) = 0.

This proves the claim.
Proof of Proposition[13 Since
F&(Xp,Yq)(U) = V(Xp)V(YQ)S™(Xp, Yq)(U),

using Lemma [TH] we obtain

I UIPIFHY (P, Q)(U) = V[PIV[QIS™“(P,Q)(U) = V[P]V[QSylv™“(P,Q)(U).

On the other hand, denoting
hik L(Xp, YQ)(U) = V(Yq\Ll[ Xp\x)V (YL Xk [|U),

we have
H190P e L(P,Q)(U) = V[(Q\ L)|(P\ K)|VLIK|U).
Since
FH(Xp,YQ)(U) = Y sksuhk L(Xp,Yq)(U)
Tl
we get

OIUGPIFH (P, Q)U) = Y sxsuV[(Q\L)[|(P\K)VILIK|U)

KCP
LC,Q

10
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The following lemma will be useful later.
Lemma 16.

1. For L C, Q, defining

f(yQ\L):(_l)p(q—f)a[Q\L]( (Your) H P(Y )

YeYaL
we have
VIQ\L)[[P] = V[P|f(Q\L).
2. For K Cy P, defining

9 Xp\k) = oI \K] ( (Xp\k) H QX )

XeXp\k
we have
VIQI(P\K)] = V[Q]g(P \ K)
Proof. Defining

MXp,Yqu) = WV (YqLlXe)
= 0L (V(Xp)II(Xp, V)V (YquL))
= V(Xp)0 QY (II(Xp, Yq\r.)V (Ya\L))

and applying Lemma [I5] we get

PP, Yo\) = VPR (V(Yq)II(P YQ\L))
= V[POI™ | V(YqL) (=1)PP(Y)
YGYQ\L
= f¥q\L)-
and finally

V[(Q\L)|[P] =0FIn(P,Q\L) = VIP]f(Q\L).

Which is Lemma [T61.
The proof for Lemma [T6]2 is similar. O

Lemma [T6] has the following corollary.
Corollary 17. If Q divides P, then
Sy (P, Q)(U) = 0

Proof. In this case, f(Q \ L) = 0 as any root of @) is a root of P with at least
the same multiplicity. So, applying Lemma [I6l1, V[(Q \ L)||/P] = 0. It follows

SyWI(P.Q)U) = Y s Q\L)}V[]Q][LW) =0
LC;Q

11



3 Hermite Interpolation for multivariate symet-
ric polynomials

We now introduce an Hermite interpolation for multivariate symmetric polyno-
mials.

We consider an ordered set of p — k variables U.
Proposition 18. The set

1s a basis of the vector-space of symmetric polynomials in U of multidegree at
most k,... k.

The proof of Proposition [I8 uses the following Lemma.
Lemma 19.
VIK|[[(P\K)] = (-1)*"~PsgV[P] £ 0.
2 IfK #K, VIK'(P\K)] =0
Proof.

1. Tt is clear that V[K||(P \ K)] = (=1)*P=F s V[P] # 0, since sk is the
signature of the permutation putting P in the order (P \ K)| K.

2. The fact that V[K'||(P \ K)] = 0 when K’ # K follows from the fact that
the matrix V[K'||(P \ K)] has two equal columns. O

Proof of Proposition[I8. Since the number of subsets of cardinality & of P is
(Z) and that (z) is also the dimension of the vector space of symmetric

polynomials in U of multidegree at most k, ..., k, it is enough to prove that
S e K/||U) _
VIPIV(U)
K'C,P

implies ck = 0 for all K C P.
Let us fix K C; P. Since

Z CK/V[K/HU) = O,

K'CyP

it follows by substitution and derivation that

> e dPHVIK | Xp\k) = 0.
K'C,P

12



When replacing Xp\k by P\ K we obtain
> e VIK|(P\K)] =0.
K/'C,P
Using Lemma [T9 we get cx = 0. O

The following Proposition gives the connection between a symetric polynomial
in U of multidegree at most k, ...,k and its coordinates in the basis Bp (U).

Proposition 20. (Multivariate symmetric Hermite Interpolation) Let

g be a symetric polynomial in U of multidegree at most k, ..., k. Writing
VIK]|U)
U) = —_—
9(U) Z gKV[P]V(U)
KcyP
then

gk = (—1)FP P sgh(P\ K)
with
h(Xe\k) = 0PV (Xp\k)g (Xp\x))-

Proof. We have
> 9xVIK|U) = V[P]g(U)V (V).
KcCiyP

Derivating both sides by OP\K'] and substituting P \ K’ for U we get, using
Lemma [T9]

g VIK'|(P\K")] = s (-1)*PHVIP] = V[P]h(P \ K'),

and finally
gk = (=P R g n(P\ K). O

Remark 21. Proposition generalizes a result in |[Chen and Louck, 1996|
given for Lagrange interpolation of symmetric multivariate polynomials.

As a corollary of Proposition 20, we recover the classical Hermite Interpolation
Proposition 22. (Hermite Interpolation) Given an ordered list
A= (q1,00- @ pis—15 -1 Gm,0 -+ » Inpim—1)

of p numbers, there is one and only one polynomial of degree at most p — 1
satisfying the property

forall1 <i<m, forall0<j<p;, QVl(z;)) = q;.

13



Proof. If k = p — 1 in Proposition [I8], then

is a basis of the vector space of univariate polynomials in U of degree at most
<p—-1L
Note that (=1)P"'spy\ (s, 3 = (—=1)#+F#m =771 So, the family

{(=1ypitrtmm=i=lg, o li=1,...,m,j=0,...p — 1}

is the coordinates in the basis Bp ,—1(U) of a polynomial Q(U) (necessarily
unique) of degree at most p — 1 such that QU (x;) = qi,j, applying Proposition
20 O

4 Multi Sylvester double sums

We introduce in subsection 1] multi Sylvester double sums and study their
properties, using the Hermite interpolation for symmetric multivariate poly-
nomials. In subsection we compute the multi Sylvester double sums and
Sylvester double sums for indices (k,¢) with k + ¢ > ¢. In subsection we
prove the fundamental property of Sylvester double sums, i.e. that Sylvester
double sums indexed by k, ¢, depend only (up to a constant) on j =k + ¢ < p.
This was already known in the simple roots case but even in this case our proof
is new.

4.1 Definition of multi Sylvester double sums

The idea of replacing the variable U by a block of indeterminates to define multi
Sylvester double sums is directly inspired from |Krick et al., 2016].

Definition 23. The multi Sylvester double sum, for (k,¢) a pair of natural
numbers with k + £ = j, is the polynomial MSylv**(P,Q)(U), where U is a
block of indeterminates of cardinality p — 7,

V[(Q\L)|(P\ K)V[L|K|U)
MSIR Q) = 3 s g () ®)

In particular

MSylv*(P,Q)(U) =

S VIQUE\K) VIK|U) 0

2TVl VPV(D)

The following proposition gives the relationship between multi Sylvester double
sums and Sylvester double sums.

14



Proposition 24. Denoting U = U||U’" with U’ a block of p— j — 1 indetermi-
nates,
Syl (P, Q)(U) is the coefficient of H U" in MSylv™*(P, Q)(U).

Ureu’

The proof of Proposition 24] is based on the following Lemma.

/
Lemma 25. V[K|U) is the coefficient of H U* in VIK|U]U) )
VUTO)
Uew
Proof.
MV (Xk||U|U") oI (V (X ||U)II(U, Xx)IL(U, U)V (U"))
Vo) (U, U)V(U)

= O™V (Xk||U)I(U', X))
Noting that

oM (V(Xk |0V, Xk)) = 0™V (Xkc |U)<TI(U, Xc)+ Y Vi (X, U (U, Xc)

where each II,.(U’, Xk) is obtained by partial derivation of II(U’, Xk) with
respect to at least one variable in Xk, it is clear that the degree of some U’ € U’

in IT,.(U’, Xk ) is less than k. The claim follows, substituting K to Xk. O
.. VIL|K|U|U’
Proof of Proposition [24 The coefficient of U,I;[U, U" in % is V[L||K||U)
by Lemma 25 The coefficient of H U" in MSylv®*(P, Q)(U) is
U'eu
VIQ\L)|(P\ K)VIL|K|U) kot
SKSL = Sylv" (P, Q)(U)

K;p VIPVIQ]

LC,Q
by Proposition O

4.2 Computation of (multi) Sylvester double sums for j > ¢
Proposition 26. Ifg<j<p

MSylv/*(P,Q)(U) = (-1)/*=9) T Q(U)

Uueu

Proof. The polynomial H Q(U) is a symmetric polynomial in U of multidegree

UeU
q,-..,q,soatmost j,...,j. Its coordinates in the basis Bp ;(U) are, for K C; P,

(=1)1P=D s h(P \ K) where

WXpx) =P ViXek) [ QX)
XeXp\k

15



by Proposition 20} and moreover

VIQ[I(P\ K]
MP\K)= ————=
P =g
by Lemma [162.
So, the polynomials MSylv?°(P, Q)(U) and (—1)7(P=9) H Q(U) have the same
Ueu

coordinates in the basis Bp ;(U) and are equal. O
As a corollary

Proposition 27.
1. SyWP=H(P,Q)(U) = (-1)P1Q(U)
2. Forany q<j<p—1, Sylv’’(P,Q)(U) =0

3. SyW™(P,Q)(U) = (=1)*@~9Q(U)
Proof.

1. For j = p — 1 Proposition 28] is exactly
Syl? "R, Q)U) = (-1)" Q).

2.If g < j < p-—1, denoting U = U||U" with U" a block of p — j — 1
indeterminates, the coefficient of H U in H Q(U’) is equal to 0, so
_ Ueur U'eu
Sylv/?(P,Q)(U) = 0 applying Proposition 26l

3. From Proposition 28 and Proposition 24] denoting U = U||U’ with U’ a
block of p — ¢ — 1 indeterminates, we know that Sylv?’(P,Q)(U) is equal
to the coefficient of H U in (=1)1P=DQ(U) [Iyrcy @U’). This co-

Ueu
efficient is exactly (—1)4®=DQ(U). O

Proposition 28. If{ < q¢<k+/{=7j <p then
MSylv*“(P,Q,U) = (—1)*®~9) ( 0 ) MSylv/*(P,Q,U)

v L)|U’
Proof. Let L C, Q and U’ = (U7,...,U;_;); the polynomial % is
a symmetric polynomial in the indeterminates U’ of degree at most ¢ — £ < k in
each indeterminate U/,1 < i < p — k. So, we can write this polynomial in the
basis Bp 1 (U’)
ViQ\L)u) _ 3 VIK|U")

V(U e VPV (U)

16



where, by Proposition
gk = ()" s V[(Q\ L) (P \ K)].
We deduce from this

VIK|U')

VIQ\L)[U) = Y (DM Pk V[(Q\L)|(P\K)] VP

KcCiyP

We replace U’ by U’ = Y1,||U, where U is a set of p— j indeterminates, derivate
with respect to M and replace Y1, by L; we obtain

VIQLILIU) = ¥ () seri@ m P\ K
KciyP
— COMReR Y v\ @\ Ky VLKD)
Kc,P V[P]
As
V(Q\L)L|U) = s.V[Q|U),
we have
VI = 3 10 senvi@\ e k] LEED
Kc,P
and
VQIU) - VILIK|[U)
The polynomial V‘[/(?lgj') is a symmetric polynomial in the indeterminates U

of degree at most ¢ < j in each indeterminate U;,1 < i < p — j. So, we can
write it in the basis Bp_;(U)

viQlu) _ Y ow VIW|U)

V(U) VIPIV(U)

WC,P
where by Proposition

gw = (1P swV[Q[(P\ W)].
So

Y swVQIP\W)VWIU) = > (—1) " sgsrV[(Q\L)||(P\K)] V(L[| K| U).

WCjP KcCiP

17



It follows

Y swVIQIP\W)IVIW[U) = (1)) 3 sieseVI(Q\L) | (P\K)]V[LIK|U)

(1) 5 swVIEPWIVIWIU) = ()0 3 sV [QUDIPVKIVILIK]U)
WcC,;P I}fgfg

( q ) Ywe,p swVIQIPAW)VIWIU) 1 3 SKSLV[(Q\L)H(P\K)]V[LHKHU)

¢ VIPIVIQ]V(U) e VIPIVIQ]V(U)
and
MSylv™(P,Q,U) = (—1)»=7) ( % )MSylvj’O(P,Q,U). O

Corollary 29. For g < j <p,

Sy (P.Q) = (-1)*~7 ( ' )Sylvj’O(P,Q)

Proof. Immediate using Proposition 2§ and Proposition [24] O
Proposition 30.

1. For any (k, ) with g =k + ¢,
Sﬂﬁ%RQmm=«4Wp®(Z>Q

2. For any (k,0) with¢ <gq,j=k+{ withgq<j<p-—1,
Sy (P.Q)(U) =0

3. For any (k,0) with ¢ < q,k+{=p—1,
sy (P, Q) = (1 (4 Q)

Proof.  Follows from Corollary 29 and Proposition O

18



4.3 Fundamental property of (multi) Sylvester double sums

This section is essentially devoted to the proof of Theorem [BIl, which is a fun-
damental property of Sylvester double sums: up to a constant Sylvester double
sums Sylv"?~"(P,Q) depend only on j. Such a result has been already given
for ¢ < j < p by Corollary 29

Theorem 31. IfkeN, leN k+/l=5j<qg<p
SV (P.Q)0) = ()0 () sy (P Q)(0).

We, in fact, prove Theorem BIlas a corollary of a multivariate version (Theorem
B2). The proof of Theorem B2 uses in an essential way the Exchange Lemma
coming from [Krick et al., 2016].

Theorem 32. Ifk e N/ e N, k+{({=j<q<p, and U a set of p—j
indeterminates,

MSylv™(P,Q)(U) = (—1)4»=9) ( ; )MSylvj’O(P, Q)(U).

To prove Theorem [32] for 7 < ¢, we need a lemma

Lemma 33. Let K ¢, P.L C;, Q and U = Uy,...,U, an ordered set of
variables. Then (—1)““=D/2V[L||K] is the coefficient of the leading monomial

u
H Uik-i-f-i—u—z
=1

of V[L||K||U) with respect to the lezicographical ordering.
Proof.

VILIK|[U) = 0™ (v (v | Xk |[U)) (K, L, U)
= V(U)a™ oM (V (Y| Xk )TI(U, Yo || Xk)) (K, L).

The coefficient of | [ U/~ in VIL||K|U) is (—1)“(~1/2 multiplied by the
i=1
coefficient of HUZ-’“H in OO (V (Y, || Xk )TI(U, Xk || Y1) (K, L). This coeffi-
i=1
cient is
MMV (Ve[| Xk ) (K, L) = VIL|K];
indeed if any derivation is done on II(U, Xk||Y1,), with respect to K or L, the
degree in at least one indeterminate U; € U decreases strictly. O
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Proof of Theorem[3d . We have j < q. Let U’ be a block of p—/ indeterminates.
On one hand,

(U, Xr) V(Yql|Xp\1)V (X|U')
I(Xp\r, Yo) =t =
T%:P BTV (Xpyr, Xr) TCZP V(Yo)V(U)V(Xx[Xp\1) ,
_ w0 3 gp YQHXP\T) (Xz||U)
P V(U V(Xe)
On the other hand,
(U’ Y1) YQ\LllXP) (Yi|U")
(Xp, Youp) =il —
Z ( P Q\L)H(YLaYQ\L) Z V U/) (YQ\LHYL)

LC.Q
V(YQ\LHXP)V(YLHU/)

V(Xp)V(U)V(Yq)

_ z:&

LC.,Q

From the Exchange Lemma in |Krick et al., 2016|, we can write

I(U’, Xr) I(U’, Y1)
I Xp\1,YQ) o~ = I(Xp,Yo\L) =~~~ (11)
T%;P \ I(Xp\1, XT) LgQ T, Yo\L)
So, we deduce from (Tl
> YQHXP\T) (Xr[[U) D0 3 YQ\LHXP) (Yp[U')
TV )V (U)V (Xe) VX VUV (V)

TC,P LC,Q

(12)

> stV (Yol Xp\r)V(Xo|U) = (=)0 >~ sV (Yo Xp)V (YL U)
TC,P LC/Q
(13)

Hence, derivating with respect to Q and substituting Q to Yq,
Y stVQXp\)V (XU = (=1 F9 37 st V[(Q\ L) Xe) VLU
TC,P LC/Q

(14)
We fix K Cj, P. The total degree with respect to Xk of V[Q \ L||Xp]|V[L|U")

is

di = ( I; >+k(p+q—j)-

Denoting, for any T Cy P, ¢ the cardinality of KNT, we note that the cardinality
of ( P\T)NKis k—c.
So, the total degree with respect to Xk of V[Q||Xp\1)V (Xt |U’) is

du=(k;C)+®—d@+mﬁ+d+(§>+dwwL
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1.e.
k . .
do,c = ( 5 >+k(p+q—1)—0(q—J+0)

and

di —dy .= clg—j+c
So da,. <djifc>0anddy.=d; if c=01ie. if T CP\K. This implies that
subsets T which intersect K don’t contribute to the homogeneous part of total

degree di in Xk on the left side of (4.
Note that, if T C, P\ K,

VIQ|IXp\1) = k. TV [Ql Xp\ (kuT) | XK),

where rk T is the signature of the permutation pk rt taking the ordered set
P\ T to the ordered set (P \ (KUT))| K.

We can also write

VIQ\L)[Xp) = sk V[(Q\ L) Xp\x[| Xx)

If X = Xy, -, Xy, taking the coefficient of Hle X}—i+pta=i in both sides
of (I4) gives, by Lemma [33]

> rkrstV[Q| X kum)V (X1 |U) = (-1 > skspV(Q\L) | Xp k) VLI U).
TC,P\K LC.Q
(15)

Derivating both sides of (IH) with respect to P VKl and replacing Xp\k by P\
K, followed by replacing U’ by Xk ||U, where U is a set of p— j indeterminates,
derivating with respect to 9! and replacing Xx by K gives

Y. rrrstVI[QIP\(KUD))VITIK|U) = (=1)""~9 3~ sieseV[(Q\L)[|(P\K)]VL|K|U).
TC,P\K LC.Q
(16)

Summing with respect to K, ve get

Y rrerstVIQ|(P\KUT)VT|K|U) = (=1)* P~ IMSylv™ (P, Q)(U)V [PIV[Q]V (U).

KCP
TC,P\K

Denote W the set KU T ordered by the induced order on P. Let 7k T be the
permutation sending the ordered set P\ W||W to the ordered set P\ W||T| K
and tk T its signature. We deduce

Ytk wsTVIQ|P\W)V[WU) = (1) P~ OMSylv™“ (P, Q)(U)V[PIV[Q]V(U).

KC,P
TCyP\K
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We remark that tx Trk TsT = (—1)Msw. Indeed, denoting ¢k, T the permuta-
tion sending the ordered set (P \ W)||T||K to the ordered set (P \ W)|K||T,
with signature (—1)¥, and by Pk 1 the permutation sending the ordered set
(P\T)|T to the ordered set (P \ (KUT))||K||T, with signature rk T, we have
the follwing sequence of permutations

oW : P +—— (P\W)|W
®r: (PA\W)[W «— (P\W)|T|K
e (PAW)TIK «—  (P\ W)[K|T
Per: PAW)K|T «— (P\T)|T
o' P\T)T +— P ,

. —1 _
with o o p'i 1 otk T 0 TK T © owl = Id.

Noting that there are ( J

, ) ways of decomposing W C; P as W = KUT, we

get
MSylvH (P, Q)(U) = (~1)w~) < / ) NSyl (P, Q)(U). O

Proof of Theorem [31. Theorem [31lis an immediate consequence of Theorem B2]
by applying Proposition O

5 Sylvester double sums and remainders

In Section Bl we give a relationship between the Sylvester double sums of P, Q
and those of @, R where R is the opposite of the remainder of P by @ in the
Euclidean division.

We are now dealing with not necessarily monic polynomials.

Definition 34. Let P be a polynomial of degree p which leading coefficient is
denoted 1c(P). Let Q be a polynomial of degree q which leading coefficient is
denoted 1c(Q).

Let (k,0) with j = k+ ¢ < p be a pair of natural numbers. We define

Syle’e(Pa Q)(U) = lc(P)q_le(Q)p_jSylvkye (%’ 16%)) ©)

Remark 35. Note that if ke N, /e N/ < q, k+/(=j<gq

SV (P.Q)0) = (- () sy (P Q)

follows immediately from Theorem [BI] and Definition [341

We use Notation[[to define the ordered sets P and Q representing the multisets
of roots of P and Q.
Rewriting Lemma [I6] in the non monic case, we get Lemma

22



Lemma 36.

1. For L C, Q, defining

fqw) = ()P 99 AH [ vvg) [ PO,
YEYQ\L

we have
—e VI(Q\L)|IP)]

FQ\E) = k(P

2. For K Cy P, defining

9(Xpx) =0 [V(Xpk) [ QX)) |,
XeXp\k

we have
-1 VI(QI(P\ K)|
40%)

Similarly, reewriting Proposition 27] in the non monic case, we get Proposition

B7

Proposition 37.
1. SyW'TH(PQ)(U) = (=1)Pe(P) P Q(U)
2. For any q<j <p—1, Sylv"*(P,Q)(U) =0
3. Sylv®*(P,Q)(U) = (-1)1P=Dle(Q)P~*'Q(U)

We proceed now to the proof of Proposition B8 wich is the main result of Section

Proposition 38. Let R = —Rem(P,Q). If j €N, j <q

9(P\K) =1c(Q)

e IfR=0, Sylv'*(P,Q)(U) = 0.
o If R#0, SyWw " (P,Q)(U) = (=1)P=Dle(Q)P~"Sylv"**(Q, R)(U)
The following elementary lemma plays a key role in the proof of Proposition [38]

Lemma 39. Let R = —Rem(P, Q). For every y; ; € Q, 0 < j' < 7,

PV (y) = =R (y,)

Proof. Write P = CQ — R, derivate j' times and evaluate at ;. O
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P Q
le(P) " 1e(Q)

Proof of Proposition[38. If R = 0, Sylvo’j <
from Corollary I So,

) (U) =0 follows

Syv (P, Q)(U) = (=1)P=Sylv®™ (P, Q)(U) = 0

If R # 0, let r be the degree of R. Let (z1,...,2,) be an ordered set of the
distinct roots of R in an algebraic closure C of K, with z; of multiplicity &;,
and, as in Notation [7 let R be the multiset of roots of R, represented by the
ordered set

R = (2170, R W RS2 | P Z'Uygvfl),

with Zij = (Zl,j) for 0 S j S 51 — 1, Z::l 51 =T.
If j <gq, define for L C; Q

f0qu) = (=190 (V(Yq ) [Ty ey, P(V))

M) = 0@ (V) [y eyg, R(YV))
Note that ‘

FQ\L) = (=1)#*V=Ip(Q\ L)

from Lemma [39

So
J _ le(P)11e(Q)P
ssb(P.Q)) = S 3 V@ LIFVIIY)
= % Z sLf(Q\ L)V[L||U) applying Lemma 3611
LC;Q
e @ o~
(=1) Vial LCZ]Q Lh(Q\ L)VIL||U)
= (_1)(P+1)(‘1*j) 1C§/C:2[Z;]J LCZjQ sL IC(R)qJ“iE;’JKQ \ L)] V[LHU) applying Lemma 3612
_ (1)@ (@ e(R)TT
(-1) Vvl 5,V RIQ LIV
_ p41)(g—5) 1(Q)P " 1e(Q)"Ile(R)1
= (e M) S S viRI@ ) L)V ILIY)

LG;Q
= (_1)(p+1)(q—j)1C(Q)p—rsylvj,o(Q, R)

The claim follows since

Syl (P, Q)(U) = (=1)7®=ISylv*7 (P, Q)(U)
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by Theorem BI] and
(_1)j(p—j)(_1)(p+1)(q—j) - (_1)q(p—q)_

6 Sylvester double sums and subresultants

Finally we prove in this section that Sylvester double sums coincide (up to a
constant) with subresultants, by an induction on the length of the remainder
sequence of P and Q.

This section is devoted to the proof of the link between double sums and sub-
resultants which is known in the simple case (see [Lascoux and Pragacz, 2002]
[d”Andrea et al., 2007, [Roy and Szpirglas, 2011]).

Notation. ¢, = (—1)¥*~1/2 The sign ¢, is the signature of the permutation
reversing the order i.e. sending 1,2,...,k— 1,k to k,k—1,...,2,1. We have
alsoer, =11 k=0,1 mod4, e, =—-1if k=2,3 mod 4. As a consequence

Ei+1 = (—1)i<€i. (17)

We have also

€ivg = (—1)eig;, (18)
which follows from the fact that reversing ¢ + j numbers can be done in three
steps: reversing the first ¢ ones, then the last j one and placing the last j
numbers in front of the i first.
The main theorem of this section is the following.

Theorem 40. Let ke N, (eN, (< q, k+l=j<p—1
Sy (P, Q)U) = (=1, ( ' ) Sres; (P, Q)(U).

Remark 41. When j =p — 1, Sres, (P,Q)(U) = Q(U) by convention; so, as

Sﬂw%guman_(_mk(z>hmmqpHQamﬁmk+e_p_Lxmga

SV (P.QU0) = (1) () 1@ Sres, L (P.Q))

In order to prove Theorem 40, we use an induction on the length of the remainder
sequence of P and @Q based on Proposition B8
Before proving Theorem [40l we recall the following properties of subresultants.

Lemma 42. Let R = —Rem(P,Q).

l.g<j<p-1 Sres; (P, Q)(U) =0

2.7=4q Sresy (P, Q)(U) = &p—qlc(Q)PI71Q(U)
3.j=q—1 Sres;—1(P,Q)(U) = gp_glc(Q)P~ITIR(U)
4.j<q—1,R#0 Sres; (P, Q)(U) = ep—qle(Q)P~"Sres; (Q, R)(U)
5.j<q—1,R=0  Sres;(P,Q)U) =0



Proof. All items follow from [Basu et al., 2003] except the computation of Sres,—1 (P, Q)(U).
Sres,—1(P, Q)(U) is clearly equal to &,_442lc(Q)P~9"1 (= R(U)) by replacing the
row of P by a row of —R in the Sylvester-Habicht matrix, and reversing the
order of its p — ¢ 4 2 rows. Notice now that e,_g42 = —€p—q. |

We also recall the following similar properties of Sylvester double sums.

Lemma 43. Let R=—Rem(P,Q). Let j €N, j<p—1

l.g<j<p-—1 Sylv?*(P,Q)(U) =0,

2.j=gq Sy O(P,Q)(U) = (—1)1P=DIc(Q)P~971Q(U)
3.j=g-1 Syt M (P.Q) (U) = (1)@ Vit Dtrale(@)r-att R(U)
4.j<q—1,R#0 Syl (P,Q)(U) = (—=1)1r=D1e(Q)P~"Syv*(Q, R)(U)
5.j<q—1,R=0 Sylv/'%(P,Q)(U) =0,

Proof. All items follow from Proposition 37 except for the computation of
Sylv?~ (P, Q)(U). Using Proposition B8 and Proposition BT for Q, R, we ob-
tain

SyvI—LO(P,Q)(U) = (1)1 D1e(Q)P~TSylyvi=10(Q, R)(U7) = (—1)1~H+alr—0le(Q)p—r+r—a+LR(17)
It remains to remark that (¢ — 1)(p —q+1)+p—qg=q(lp—q) +¢— 1. O

Proof of Theorem[£0. The statement for ¢ < j < p — 1 follows from Lemma (2]
1,2, Lemma [43] 1,2 and Theorem 311

The statement for j = ¢ — 1 follows from Lemmma 2] 3, Lemma[43] 3, Theorem
Bl and ([I7) since £p—g+1 = (—1)P"%e,_y.

For j < ¢ — 1 we first prove the special case

Sylv/*(P,Q) = (—1)"?=7¢, _iSres;(P, Q) (19)

The proof is by induction on the length of the remainder sequence of P, Q.
The basic case is when @ divides P, i.e. R = 0, and the claim is true by Lemma
5, Lemma [43] 5.

Otherwise suppose, by induction hypothesis that

Sylv%(Q, R) = (—1)7@ Ve, _;Sres;(Q, R) (20)
Using Lemma [42] 5 and Lemma [43] 5 it remains to note that
(_1)j(p—j)(_1)j(q—j)(_1)q(p—q) - (_1)(q—j)(p—q)
and conclude by ([I8) since ¢, _; = (—1)(@DP=Dg, e .

The general case for k, £ now follows from Theorem [311
O

The authors thank the referees for their relevant remarks. Special thanks to
Daniel Perrucci for a very careful rereading.

26



References

[Basu et al., 2003] Basu, S., Pollack, R., and Roy, M.-F. (2003). Algorithms in

real algebraic geometry. Springer.

[Chen and Louck, 1996] Chen, W. and Louck, J. (1996). Interpolation for sym-
metric functions. Advances in Mathematics, 117.

[d’Andrea et al., 2007] d’Andrea, C., Hong, H., Krick, T., and Szanto, A.
(2007). An elementary proof of sylvester’s double sums for subresultants.
Journal of Symbolic Computation, 42-3.

[Horn and Johnson, 1991] Horn, R. and Johnson, C. (1991). Topics in matriz
analysis. Cambridge University Press.

[Krick et al., 2016] Krick, T., Szanto, A., and Valdetarro, M. (2016). Symmetric
interpolation, exchange lemma and double sums. Communications in Algebra,
45.

[Lancaster and M.Tismenetsky, 1985] Lancaster, P. and M.Tismenetsky (1985).
The theory of matrices. Academic Press.

[Lascoux and Pragacz, 2002] Lascoux, A. and Pragacz, P. (2002). Double
sylvester sums for subresultants and multi-schur fonctions. Journal of Sym-
bolic Computation, 35-6.

[Roy and Szpirglas, 2011] Roy, M.-F. and Szpirglas, A. (2011). Sylvester double
sums and subresultants. Journal of Symbolic Computation, 46.

[Sylvester, 1840] Sylvester, J. J. (1840). Note on elimination. Philosophical
Magazine, XVII.

[Sylvester, 1853] Sylvester, J. J. (1853). A theory of the syzygetic relations
of two rational integral functions. Philosophical Transactions of the Royal
Society of London, CXLIII-III.

27



	1 Sylvester double sums
	1.1 Basic notations and definitions
	1.2 Definition of Sylvester double sums

	2 Generalized Vandermonde determinants and Sylvester double sums
	3 Hermite Interpolation for multivariate symetric polynomials
	4 Multi Sylvester double sums
	4.1 Definition of multi Sylvester double sums
	4.2 Computation of (multi) Sylvester double sums for jq
	4.3 Fundamental property of (multi) Sylvester double sums

	5 Sylvester double sums and remainders
	6 Sylvester double sums and subresultants

