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Abstract. In 2016, Balakrishnan–Ho–Kaplan–Spicer–Stein–Weigandt [1] pro-
duced a database of elliptic curves over Q ordered by height in which they
computed the rank, the size of the 2-Selmer group, and other arithmetic in-
variants. They observed that after a certain point, the average rank seemed
to decrease as the height increased. Here we consider the family of elliptic
curves over Q whose rational torsion subgroup is isomorphic to Z/2Z× Z/8Z.
Conditional on GRH and BSD, we compute the rank of 92% of the 202,461

curves with parameter height less than 103. We also compute the size of the
2-Selmer group and the Tamagawa product, and prove that their averages tend
to infinity for this family.

1. Introduction

Let E be an elliptic curve over Q. After a suitable choice of isomorphism, we
can always express such a curve in its short Weierstrass form:

E : y2 = x3 + a4x+ a6

with a4, a6 ∈ Z. Using this description, we define the naive height of the curve E
as h(E) := max{4|a4|3, 27a26}.

In [1], the authors created an exhaustive database of isomorphism classes of ellip-
tic curves with naive height up to 2.7 · 1010, which contained a total of 238,764,310
curves. For each elliptic curve in this database, they computed the minimal model,
the torsion subgroup, the conductor, the Tamagawa product, the rank, and the size
of the 2-Selmer group. They plotted the average rank of the curves up to a certain
height. Initially the average rank seemed to be an increasing function, but around
a naive height of 109, they observed a turnaround point, where the average rank
seemed to start decreasing as the height was increasing.

In this database however, there were no elliptic curves recorded with rational
torsion subgroup isomorphic to Z/2Z× Z/8Z, which is the largest possible torsion
subgroup for elliptic curves over Q. The curve with minimal naive height that has
such a torsion group has Weierstrass form y2 = x3− 1386747x+ 368636886 and its
naive height is 10667230914617018892 ≈ 1.07 · 1019.

In this paper, we describe a similar database for the family of elliptic curves
over Q whose rational torsion subgroup is isomorphic to Z/2Z × Z/8Z. We can
parametrize this family in the following way:

F :=

{
E : y2 = x(x+ 1)(x+ u4)

∣∣∣∣ u =
2t

t2 − 1
, t ∈ Q \ {0, 1}

}
.

We call t the parameter of the curve and write t = a/b for coprime integers a,
b. This particular parametrization was provided by Bartosz Naskręcki, resulting
from ideas in [16]. The family inherits a height function from its parametrization.
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For any E ∈ F , we define the parameter height H(E) := max{|a|, |b|}. For each
isomorphism class of curves in this family, we will only consider the model in F for
which H is minimal. From now on, we will call the family of curves represented by
elements of F the (2, 8)-torsion family.

We use the parameter height, as it makes it easier to enumerate and compare
curves in our family. The naive height of the curves in our family is very large, as
could already be seen in the example mentioned above. We prove in Section 2 that

0.559 · h(E)1/48 < H(E) < 0.672 · h(E)1/48.

We also show that the parameter height controls the size of the conductor N(E):

N(E) < 1.161 ·H(E)10.

From now on, we will use the term height to refer to the parameter height.
There are several reasons to consider the (2, 8)-torsion family. First, based on

the relation between the parameter height and the naive height, restricting to this
family allows us to quickly see curves of large naive height. Another advantage
is that the existence of the rational torsion structure makes it easier to carry out
2-descent.

To provide an example, the 2000th curve in our database has parameter t =
98/99, naive height 6.39 ·10107 and conductor 6.65 ·1017. It would be more difficult
to determine the rank for a curve of similar size without any special structure, and
currently it would not be feasible to carry out such calculations in bulk.

In our family, we enumerated all 202,461 isomorphism classes of curves with
height less than 1000. The average rank function seems to achieve its maximum at
height 24, at the 121st curve, where the average rank peaks at 0.744. Among these,
we determined the rank for 186,719 classes, conditional on GRH and BSD.

This particular family of elliptic curves was also studied in [7] and [12]. In [7],
the authors were in search of rank 4 curves, but were unable to find any. To date,
no rank 4 curve has yet been found in this family. In [12], the authors obtained
statistical results on the 2-Selmer group, similar to our data in Section 5.2.

Main Results. We found that curves with height up to 100 in the (2, 8)-torsion
family has average rank 0.626 (Figure 2 in Section 5.1) and with height up to 1000
have average rank between 0.508 and 0.663 (Figure 3 in Section 5.1). The first
curves in the (2, 8)-torsion family with given rank r are

r = 0 : y2 = x3 − 1386747x+ 368636886 (t = 1/2),

r = 1 : y2 = x3 − 64052311707x+ 6090910426477494 (t = 1/4),

r = 2 : y2 = x3 − 42884506779312987x+ 3379377560795274084396534 (t = 5/8),

r = 3 : y2 = x3 − 20406728559954500484507x

+ 1121060630379489735235148874483894 (t = 12/17).

We found that no rank 4 curves can exist with height below 1000.
The curve with rank 3 with the greatest height found in our database has pa-

rameter t = 841/1018; its global minimal model is as follows:

y2 + xy = x3 − 1537294523297507321569249472559902413559297102550x

+ 733636624633313284630814852522791055015138014738294124679165680060100132.
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This curve was found when we tried to compute the 2-Selmer rank of curves beyond
height 1000. Currently, the curve with maximal height on the list of elliptic curves
with high rank maintained by Dujella [10] has parameter 352/1017.

The average size of the 2-Selmer group seems to be increasing rather slowly,
but steadily. We prove the following theorem, which is an analogue of a result by
Lemke-Oliver and Klagsbrun for the family of elliptic curves with 2-torsion [15].

Theorem 6.3. The average size of the 2-Selmer group tends to infinity in the
(2, 8)-torsion family.

Similarly, observing the data on the average Tamagawa product suggested the
following theorem that we prove in Section 6.1:

Theorem 6.1. The average Tamagawa product in the (2, 8)-torsion family up to
height N has order of magnitude (logN)33.

Outline of the paper. In Section 2, we provide some properties of the (2, 8)-
torsion family related to our parametrization. In Section 3, we recall general results
and conjectures related to ranks of elliptic curves. In Section 4, we discuss the
computational methods we use. Section 5 contains the data we obtained and our
analysis of the data. In Section 6, we prove that the average Tamagawa product
and the average size of the 2-Selmer group tends to infinity for this family.
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Council grant agreement No. 670239. Hanselman was supported by the research
grant 7635.521(16) of the Science Ministry of Baden-Württemberg.

2. Some preliminary properties of the (2, 8)-torsion family

In this section, we discuss the parametrization for the (2, 8)-torsion family. We
also show how the parameter height is related to the naive height and the conductor.

2.1. The parametrization. By expressing the torsion points explicitly, one can
check that any curve with Z/2Z× Z/8Z-torsion can be described as an element of
F . Conversely, given a curve in F , it is a straightforward calculation to verify that(

2u

(t+ 1)2
,

4t(t2 + 2t− 1)(t2 + 1)

(t+ 1)5(t− 1)3

)
is a point of order 8. Hence the torsion subgroup is isomorphic to Z/2Z× Z/8Z.

In each isomorphism class in F , there are exactly 8 different choices of t. We
get these representatives using the transformations t 7→ −t, t 7→ 1/t and t 7→
(1− t)/(1 + t). We choose the t corresponding to a curve with minimal height. The
maps t 7→ −t, t 7→ 1/t allow us to restrict t = a/b to the range (0, 1). Assuming
a < b, if a ≡ b ≡ 1 mod 2, the map t 7→ (1− t)/(1 + t) allows us to take parameter
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t′ = a′/b′, where a′ = (b − a)/2 and b′ = (a + b)/2. Then t′ would have a smaller
height, since a′ < b′ < b. Thus, choosing t = a/b ∈ (0, 1) with a and b coprime with
different parity, we get a unique representative for each isomorphism class.

With this choice of parameter, we see that the number of curves with height n
is φ(n) if n is even and φ(n)/2 if n is odd, where φ(n) is the Euler totient function.
By [20], we have for any ε > 0, the estimate∑

n≤N

φ(n) =
3

π2
N2 +O(N(logN)2/3(log logN)4/3).

Using the fact that φ(2n) is φ(n) if n is odd and 2φ(n) if n is even, one can show
that the total number of curves up to height N is

2

π2
N2 +O(N(logN)2/3(log logN)4/3).

2.2. Naive height and parameter height. Let E be a curve given by the equa-
tion y2 = x(x + 1)(x + u4) in F where u = 2t/(t2 − 1) and t = a/b are chosen as
above. We show how the naive height and parameter height are related.

Proposition 2.1. Let E/Q be an elliptic curve in F , with naive height h and
parameter height H. We have

0.559 · h1/48 < H < 0.672 · h1/48.

Proof. We start by giving a minimal Weierstrass model for our curve. Write S = 2ab
and T = b2 − a2, so u = −S/T . It follows that S and T are coprime where S is
even and T is odd. We write E in short Weierstrass form y2 = x3 − Ax + B, by
putting A = 27(S8 − S4T 4 + T 8) and B = 27(S4 − 2T 4)(2S4 − T 4)(S4 + T 4).

One can check that there exists no prime p such that p4 | A and p6 | B, therefore
this Weierstrass form is minimal. With this, the naive height of E is given by:

h = 39T 24 max
{

4|1− u4 + u8|3, (1− 2u4)2(2− u4)2(1 + u4)2
}
.

Since this expression is symmetric in S and T , first assume S < T , so that u ∈
(0, 1). Bounding the polynomials in u, we get 312 · T 24/16 ≤ h ≤ 4 · 39 · T 24.
Note also, max(S, T ) = max(2ab, b2 − a2) ∈ [2(

√
2− 1)H2, 2H(H − 1)]. Therefore

(
√

2− 1)24 · 312 · 220 ·H48 < h < 39 · 226 ·H48, which gives the result. �

Figure 1. Conductor of isomorphism classes in the (2, 8)-torsion family.

2.3. Size of the conductor. Consider a curve in F with parameter t = a/b, where
a and b are coprime and of different parity. This curve is isomorphic to

E : y2 = x(x+ S4)(x+ T 4),
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where S = 2ab and T = b2 − a2 are coprime. The discriminant of E is ∆E =
16S8T 8(T 4−S4)2. By Tate’s algorithm [18], this curve has bad reduction precisely
at the primes dividing ∆E , and the exponent of the conductor is always 1. Therefore
the conductor of E is the product of primes dividing

ab(b2−a2)(a2+b2)(a2−2ab−b2)(a2+2ab−b2) = b10t(1−t2)(1+t2)(t2−2t−1)(t2+2t−1).

The absolute value of the polynomial in t is bounded from above in the interval
(0, 1) by approximately 1.160. Hence N(E) < 1.161 ·H(E)10.

3. Background

Computing the rank of an elliptic curve over a number field is a difficult problem,
and while there are a number of techniques that work well in practice, there is no
known algorithm to carry this out in general. Here we review the main theorems
and conjectures and discuss how they can be used to give conditional results.

3.1. The BSD Conjecture. The most famous conjecture on ranks of elliptic
curves is the Birch and Swinnerton-Dyer Conjecture (BSD) [4]. Let E be an elliptic
curve defined over a number field with L-function L(s, E). The BSD Conjecture
states that the rank of E equals the order of vanishing of L(s, E) at s = 1, which
is called the analytic rank of E. Assuming this conjecture allows us to obtain an
upper bound of the rank from the L-function.

3.2. The Minimalist Conjecture and Current Results. It is believed that
the root number, i.e. the sign of the functional equation of L(s, E), is 1 for half of
all elliptic curves and −1 for the other half. The Minimalist Conjecture, initially
formulated by Goldfeld [13] for the quadratic twists families, states that with respect
to any reasonable ordering, half of the elliptic curves have rank 0 and half have rank
1. This would mean the average rank should tend to 1/2, and 0% of elliptic curves
have rank at least 2. One of our main goals is to provide numerical evidence for
this conjecture for the (2, 8)-torsion family.

The following result of Bhargava and Shankar [2] on the upper bound of the av-
erage rank of elliptic curves provides strong evidence for the Minimalist Conjecture.

Theorem 3.1 (Bhargava–Shankar, [2]). The average rank of all elliptic curves over
Q ordered by naive height is at most 0.885.

3.3. The Selmer Group and Descent. For each integer n ≥ 2, the n-Selmer
group Seln(E) of E over Q fits into an exact sequence of abelian groups

(1) 0→ E(Q)/nE(Q)→ Seln(E)→X(E)[n]→ 0,

whereX(E)[n] denotes the n-torsion subgroup of the Tate-Shafarevich groupX(E)
of E over Q. If p is a prime, then Selp(E) is an elementary abelian p-group, whose
dimension as an Fp-vector space is called the p-Selmer rank of E, which is effectively
computable and provides an upper bound on the rank via (1).

Explicitly, an element in the n-Selmer group of E can be represented by a pair
(C, π), where C is a genus 1 curve which is locally soluble and π is a map defined
over Q that makes the following diagram commute:

C

E E

π'

[n]
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In this diagram, the vertical map C → E is an isomorphism defined over Q. De-
termining (a lower bound for) the rank of E is equivalent to finding rational points
on C. If no rational point of C can be found by a search by height, we apply the
method of descent repeatedly. More generally, given a rational isogeny φ : E → E′,
there is a Selmer group associated to it, denoted as Selφ(E). For the dual isogeny
φ̂ : E′ → E of φ, we denote the corresponding Selmer group as Selφ̂(E′). The
following is a standard result, see for example [17, Lemma 6.1].

Theorem 3.2. Let E and E′ be elliptic curves over Q. Suppose there exists φ :
E → E′ an isogeny of degree 2. Then the following sequence is exact:

0→ E′(Q)[φ̂]/φ(E(Q)[2])→ Selφ(E/Q)→ Sel2(E/Q)→ Selφ̂(E′/Q).

For E ∈ F , we have |E′(Q)[φ̂]/φ(E(Q)[2])| = 1, which implies that

|Selφ(E/Q)| ≤ |Sel2(E/Q)|.
Fisher [11] gives an efficient way to apply descent 6 times on elliptic curves with

full 2-torsion structure. Moreover, since the (2, 8)-torsion family has Z/2Z× Z/8Z
torsion, there are two isogenous curves with full 2-torsion structure. Applying
Fisher’s method to all three isogenous curves allowed us to determine the rank of
more curves. Below is a picture of the isogenous curves and their torsion structures.

E Etors(Q) ∼= Z/2Z× Z/8Z

E′ E′
tors(Q) ∼= Z/2Z× Z/4Z

E′′ E′′
tors(Q) ∼= Z/2Z× Z/2Z

There are also a number of recent results on the size of Selmer groups:

Theorem 3.3 (Bhargava–Shankar, [3]). For n ≤ 5, the average size of Seln(E) for
all elliptic curves E/Q ordered by naive height is σ(n), the sum of divisors of n.

The theorem implies that the average size of the 2-Selmer group converges to
σ(2) = 3. However, this no longer holds for the family with nontrivial 2-torsion.

Theorem 3.4 (Klagsbrun–Lemke Oliver, [15]). The average size of Sel2(E) is
unbounded for the family of elliptic curves over Q with a torsion point of order 2
ordered by a parameter height 1.

Our data suggests that the average size of the 2-Selmer group is also unbounded
in the (2, 8)-torsion family. In Section 6.2, we give a proof of this fact.

3.4. The Tamagawa Number. Let E be an elliptic curve over Q. The Tama-
gawa number is the finite index cp(E) := #(E(Qp)/E0(Qp)), where E0(Qp) is the
subgroup of points in E(Qp) which have good reduction. Each cp(E) can be easily
computed from the coefficients of E using Tate’s algorithm [18]. The Tamagawa
product of E is

T (E) =
∏
p≤∞

cp(E).

1The parameter height used here for an elliptic curve with a 2-torsion point EA,B : y2 =

x3 +Ax2 +Bx, is max{|A|, B2}.
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If there exists an isogeny φ : E → E′ of degree 2, then the Tamagawa ratio of E is

T (E/E′) =
|Selφ(E)|
|Selφ̂(E′)|

.

Consider the exact sequence induced by the isogeny φ:

0 ker(φ) E(Q) E′(Q) H1(Q, ker(φ)) H1(Q, E) · · · .φ δ

Passing to a completion at a place p, we define

H1
φ(Qp, kerφ) := δp(E

′(Qp)/φ(E(Qp)) ⊂ H1(Qp, ker(φ)).

Then the Tamagawa ratio can be related to the Tamagawa numbers as follows.

Theorem 3.5 (Cassels, [8], Lemma 3.1). The Tamagawa ratio decomposes into a
product of local factors as follows:

T (E/E′) =
∏
p≤∞

Tp(E/E′), where Tp(E/E′) =
1

2

∣∣H1
φ(Qp, kerφ)

∣∣.
Theorem 3.6 (Dokchitser–Dokchitser, [9], Lemma 4.2 and 4.3). For p 6= 2 finite,

1

2

∣∣H1
φ(Qp, kerφ)

∣∣ =
cp(E

′)

cp(E)
.

4. Computing ranks

4.1. Enumerating curves. We produce a list of all isomorphism classes in F up
to height N by computing the Farey sequence of order N to get a list of (a, b),
where a and b are coprime and have opposite parities. Each pair (a, b) gives a curve
in F of minimal height in its isomorphism class. This gives us 202,462 ordered
isomorphism classes of (2, 8)-torsion curves with height less than 1000.

4.2. Procedure. To make our rank computations feasible, we assume two standard
conjectures: the Birch and Swinnerton-Dyer Conjecture (BSD) and the generalized
Riemann hypothesis (GRH). BSD allows us to obtain an upper bound of the rank
by computing the analytic rank numerically. GRH provides the conjecturally best
bound for the error term of the L-function attached to an elliptic curve, which im-
proves the efficiency of the analytic rank computation. An immediate consequence
of the BSD Conjecture is the Parity Conjecture, which states that the root number
agrees with the parity of the rank. This allows us to determine the rank when the
upper bound and lower bound we calculated for the rank differ by 1.

We computed the rank using a combination of Sage [19] and Magma [6]. We first
ran Cremona’s mwrank in Sage, which carries out 2-descent and searches for rational
points with low height. This function gave us an upper bound and a lower bound
for the rank of each curve in our database. If the bounds agreed, this determined
the rank. If the bounds differed by 1, the rank is obtained conditional on the Parity
Conjecture. This process determined the rank of 52.1% of the curves.

If the rank was not determined at this stage, we ran the Sage function
analytic_rank_upper_bound, which computes an upper bound on the analytic
rank conditional on GRH and takes a parameter ∆, using Bober’s method in [5].
The runtime is exponential in ∆, but a higher ∆ potentially gives a better bound.
We ran the function repeatedly with increasing values of ∆ up to at most 2.0, or
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until the rank’s upper bound differed from the lower bound by at most 1. After
this stage, we still had 44.2% curves with unknown rank.

Because of the large number of curves remaining, it was computationally unfea-
sible to run with higher ∆ for all of them. Restricting to curves with H < 100,
only 153 remained at this stage, and we were able to continue the process up to
∆ = 3.8. After this, only 15 curves were left with H < 100. Computing the analytic
rank becomes more difficult as the conductor increases. Since the parameter height
appears to be positively correlated with the conductor, as is seen in Figure 1, it
became more and more difficult to determine the rank the further we got along.

Since our curves have full rational 2-torsion, a recent implementation of Fisher’s
TwoPowerIsogenyDescentRankBound [11] in Magma is faster and a better fit for
our purposes. Using this, we were able to determine the ranks of more than 90%
of the curves up to H < 1000.

For the remaining curves, we returned to Sage. We ran analytic rank with higher
values of ∆, up to at least 3.2, and do a further point search using a higher bound
in the mwrank function two_descent. Altogether, the rank of 42.1% of the curves
in our database was determined purely via descent, hence unconditionally.

Initially there was one curve left with H < 100: this is the curve with parameter
t = 66/97. Thanks to Klagsbrun for suggesting the use of AnalyticRank in Magma,
we are able to show that this curve has rank 0. The rank of all curves with H < 100
are determined conditional on GRH and BSD.

The list of high rank curves maintained by Dujella [10] contains 28 rank 3 curves,
of which 26 hasH < 1000. Our computations recovered the rank of 17 of them. The
rank of the remaining 9 curves, which were all discovered by Fisher, were included
in our database for completeness. In addition to the list, we found an extra rank 3
curve at t = 9/296.

5. Results and analysis of computed data

5.1. Rank. In the (2, 8)-torsion family, we very quickly observe a possible turn-
around point in average rank. The average rank seems to peak atH = 24 with value
0.744, after 121 curves are computed, then steadily decreases to 0.626 at H = 99.

0.5 0.75 1 1.25 1.5 1.75 2

log10(Height)

0

0.2

0.4

0.6

A
v
e
ra

g
e
 r

a
n
k

Figure 2. Average rank up to height 100 in the (2, 8)-torsion family.

Looking at all curves with H < 1000, the behaviour is less certain because of
the number of curves with undetermined ranks: we are only able to compute the
rank of 186,718 curves which is 92.2%. For the remaining curves, we have upper
bounds and lower bounds from our computations. None of these upper bounds is
greater than 3, so no rank 4 curve can exist with H < 1000. In Figure 3, we plot
the computed upper and lower bounds for the average rank.
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Figure 3. Average rank up to height 1000 in the (2, 8)-torsion family.

Rank H < 100 (%) H < 250 (%) H < 500 (%) H < 1000 (%)

0 865 (43.3) 5672 (45.0) 22143 (43.8) 84724 (41.8)

1 1021 (51.1) 6243 (49.5) 25108 (49.7) 101354 (50.1)

2 111 (5.6) 298 (2.4) 445 (0.9) 613 (0.3)

3 3 (0.2) 10 (0.1) 24 (0.0) 27 (0.0)

≥ 4 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Unknown 0 (0.0) 384 (3.0) 2845 (5.6) 15743 (7.8)

Total 2000(100.0) 12607(100.0) 50565(100.0) 202461(100.0)

Average 0.626 [0.545, 0.606] [0.516, 0.628] [0.508, 0.663]

Table 1. Rank distribution up to different heights.

5.2. Size of the 2-Selmer group. To get a clearer picture of the behaviour of
the average size of the 2-Selmer group, we computed data beyond height 1000, and
it seems to be divergent. In Section 6.2, we prove that this is indeed the case.
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Figure 4. Average size of the 2-Selmer group in the (2, 8)-torsion family.

5.3. Tamagawa product. The average Tamagawa product in the (2, 8)-torsion
family also behaves differently from the one in [1]. In their data, the average
Tamagawa product peaks at 1.84 at naive height 6.3 · 105, then decreases with
respect to the naive height. However in Figure 5, we see that it is increasing in the
(2, 8)-torsion family, and that its value is much larger than 1.84. In Section 6.1, we
show that the average Tamagawa product is unbounded for this family.
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rank Sel2(E) H < 100 (%) H < 1000 (%) H < 2000 (%) H < 4000 (%)

2 346 (17.3) 29943 (14.8) 117397 (14.5) 462688 (14.3)

3 799 (40.0) 70856 (35.0) 278930 (34.4) 1107482 (34.2)

4 586 (29.3) 62903 (31.1) 252357 (31.1) 1009839 (31.2)

5 222 (11.1) 29287 (14.5) 120373 (14.9) 487277 (15.0)

6 44 (2.2) 7934 (3.9) 34104 (4.2) 142043 (4.4)

7 3 (0.2) 1386 (0.7) 6329 (0.8) 27823 (0.9)

8 0 (0.0) 147 (0.1) 811 (0.1) 3743 (0.1)

9 0 (0.0) 5 (0.0) 51 (0.0) 333 (0.0)

10 0 (0.0) 0 (0.0) 3 (0.0) 28 (0.0)

≥ 11 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Total 2000 (100) 202461 (100) 810352 (100) 3241228 (100)

Average | Sel2(E)| 13.728 16.574 17.055 17.361

Table 2. 2-Selmer rank distribution up to different heights.
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Figure 5. Average Tamagawa product in log10 scale in the (2, 8)-
torsion family.

5.4. Root number. The average root number appears to converge to 0, as shown
in Figure 6.
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Figure 6. Average root number in the (2, 8)-torsion family.

Root number H < 100 (%) H < 1000 (%) H < 10000 (%)

1 976 (48.8) 100927 (49.9) 10125245 (50.0)

−1 1024 (51.2) 101534 (50.1) 10136574 (50.0)

Total 2000 (100) 202461 (100) 20261819 (100)

Average −0.024000 −0.002998 −0.000559

Table 3. Root number distribution up to different heights.
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6. Proofs

6.1. The average Tamagawa product is unbounded. To find the numbers
cp(E), we apply Tate’s algorithm [18]. We look at the model

E : y2 − xy = x3 +
1

4

(
S4 + T 4 − 1

)
x2 +

1

16
S4T 4x,

where S = 2ab and T = b2 − a2. Again a and b are coprime and have opposite
parities. The discriminant of E is ∆E = 1

28S
8T 8(T 4 − S4)2. Note that S, T and

(T 4 − S4)2 are pairwise coprime. By Tate’s algorithm [18], we get

cp =


vp(∆E) if p | ST or

(
p | T 4 − S4 and

(
−1
p

)
= 1
)
,

2 if p | T 4 − S4 and
(
−1
p

)
= −1,

1 otherwise.

Combining the local factors cp(E), we get

T (E) =
∏
p

cp(E) =
∏

p|T 4−S4

(−1
p )=−1

2
∏

pk‖(T 4−S4)2

(−1
p )=1

k
∏

pl‖ 1
28
S8T 8

l.

Theorem 6.1. The average Tamagawa product in the (2, 8)-torsion family up to
height N has order of magnitude (logN)33.

Proof. We estimate the sum

S(N) :=
∑

a,b≤N,2|a
(a,b)=1

∏
p|T 4−S4

(−1
p )=−1

2
∏

pk‖(T 4−S4)2

(−1
p )=1

k
∏

pl‖ 1
28
S8T 8

l.

Let H1(a, b) = (a2 − b2 − 2ab)(a2 − b2 + 2ab), H2(a, b) = a2 + b2 and H3(a, b) =
ab(b−a)(b+a). Note that the factors a2−b2−2ab, a2−b2+2ab, a2+b2, a, b, b−a, b+a
are pairwise coprime. Let

f(H) =
∏
p|H

(−1
p )=−1

2
∏
pk‖H

(−1
p )=1

k and g(H) =
∏
pl‖H

l.

Let P+(x) and P−(x) denote the largest and smallest prime divisor of x respectively.
Fix ε > 0. Factorise Hi(a, b) into di and Hi(a, b)/di, so that P−(di) < N ε, and
P+(Hi(a, b)/di) ≥ N ε. Then maxa,b≤N{H1(a, b)2H2(a, b)4, H3(a, b)8} ≤ N32, so
H1(a, b)2H2(a, b)4 and H3(a, b)8 each has at most 32/ε prime factors greater than
N ε. Therefore f(d21d

4
2) ≤ f(H1(a, b)2H2(a, b)4) �ε f(d21d

4
2). Similarly g(d83) ≤

g(H3(a, b)8)�ε g(d83). We have

S(N) =
∑

a,b≤N,2|a
(a,b)=1

f(H1(a, b)2H2(a, b)4)g(H3(a, b)8)

�
∑

d1,d2,d3
P+(di)<N

ε

f(d21d
4
2)g(d83)

∑
a,b≤N, 2|a, (a,b)=1

di|Hi(a,b)
P−(

Hi(a,b)

di
)≥Nε

1.

Write a = α + ud1d2d3 and b = β + vd1d2d3. Since H1, H2 and H3 are pairwise
coprime, we only need to look at coprime d1, d2 and d3. Since H1, H2 are odd and
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H3 is even, we consider only odd d1, d2 and even d3. Note that a, b | H3(a, b) by
construction. Suppose p | (a, b), then p | d2 or p > N ε. We have

∑
a,b≤N

∃p≥Nε: p|(a,b)

1 = O

∑
p≥Nε

(
N

p

)2
 = O(N2−ε).

We can exclude pairs of a and b with P−((a, b)) > N ε with a cost of O(N2−ε).∑
a,b≤N, 2|a, (a,b)=1

di|Hi(a,b)
P−(

Hi(a,b)

di
)≥Nε

1 =
∑

α,β<d1d2d3
2|α, di|Hi(α,β)

p|d1d2d3⇒(p-β or p-α)

∑
u,v< N

d1d2d3

P−(
Hi(a,b)

di
)≥Nε

1 +O(N2−ε).

By the small sieve [14, Theorem 2.6, p.85] we have

∑
u,v< N

d1d2d3

P−(
Hi(a,b)

di
)≥Nε

1 � N2

d21d
2
2d

2
3

∏
p<Nε

1−
7 +

(
−1
p

)
+ 2 ·

(
2
p

)
p

 � N2

d21d
2
2d

2
3(logN)7

.

It remains to compute∑
α,β<d1d2d3

2|α, di|Hi(α,β)
p|d1d2d3⇒(p-β or p-α)

1 =
∑

α,β<d1
d1|H1(α,β)

p|d1⇒(p-β or p-α)

1
∑

α,β<d2
d2|H2(α,β)

p|d2⇒(p-β or p-α)

1
∑

α,β<d3
2|α, d3|H3(α,β)
p|d3⇒(p-β or p-α)

1.

By the Chinese remainder theorem, it suffices to count the number of solutions of
Hi modulo pv‖di for each prime p dividing di. We have

h1(pv) :=
∑

α,β<pv

pv|H1(α,β)
p-β or p-α

1 =

{
4φ(pv) if 2 is a square modulo pv,

0 otherwise;

h2(pv) :=
∑

α,β<pv

pv|H2(α,β)
p-β or p-α

1 =

{
2φ(pv) if − 1 is a square modulo pv,

0 otherwise;

h3(pv) :=
∑

α,β<pv

pv|H3(α,β)
p-β or p-α

1 =

{
4φ(pv) if p 6= 2,

φ(pv) if p = 2.

We extend h1, h2 and h3 to multiplicative functions. Then the sum becomes

S(N) � N2

(logN)7

∑
d1,d2,d3

P+(di)<N
ε

f(d21d
4
2)g(d83)h1(d1)h2(d2)h3(d3)

d21d
2
2d

2
3

� N2

(logN)7

∏
p<Nε

(
1 +

f(p2)h1(p)

p2

)(
1 +

f(p4)h2(p)

p2

)(
1 +

g(p8)h3(p)

p2

)

� N2

(logN)7

∏
p<Nε

(
1 +

1

p

)4(
1 +

1

p

)4(
1 +

1

p

)32

� N2(logN)33.
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The total number of curves up to height N has order of magnitude N2 as discussed
in Section 2.1. Therefore the average Tamagawa product is of the size (logN)33. �

6.2. The average size of the 2-Selmer group is unbounded. We follow the
approach in [15] to show the average Tamagawa ratio diverges in the (2, 8)-torsion
family, which implies that the average size of the 2-Selmer group is unbounded.

The curve obtained by the degree 2 isogeny φ : E → E′ corresponding to the
rational subgroup generated by the point (0, 0) is

E′ : y2 − xy = x3 +
1

4

((
S2 + T 2

)2
+ 4S2T 2 − 1

)
x2 +

1

4

(
S2T 2

(
S2 + T 2

)2)
x,

which has discriminant ∆E′ = 1
24S

4T 4(T 4 − S4)4. Using Tate’s algorithm and
looking at Table 1 in [9], we find that the Tamagawa ratio for any finite prime p is

Tp(E/E′) =
cp(E

′)

cp(E)
=


2 if p | S4 − T 4 and

(
−1
p

)
= 1,

1
2 if p | ST,
1 otherwise.

Since the discriminants ∆E and ∆′E are both positive, we have T∞(E/E′) = 1.

Theorem 6.2. The logarithmic Tamagawa ratio t(a, b) := log2 T (E/E′) tends to a
normal distribution with mean −2 log logN +O(1) and variance 6 log logN +O(1).

Before we turn to the proof, let us look at the application of Theorem 6.2. We find
that t(a, b) log 2 tends to a normal distribution with mean µ := −2(log 2)(log logN)+
O(1) and variance σ2 := 6(log 2)2 log logN +O(1).

Hence T (E/E′) = exp(t(a, b) log 2) tends to a log-normal distribution which
has mean exp(µ + σ2

2 ) = eO(1)(logN)(3 log 2−2) log 2. Since 3 log 2 − 2 > 0, the
mean increases as N increases. From the discussion in Section 3.3, we know that
|Sel2(E)| ≥ |Selφ(E)| ≥ T (E/E′), so the following theorem is a corollary of Theo-
rem 6.2.

Theorem 6.3. The average size of the 2-Selmer group tends to infinity in the
(2, 8)-torsion family.

Proof of Theorem 6.2. Let H1 = (a2 − b2 − 2ab)(a2 − b2 + 2ab)(a2 + b2) and H2 =
ab(b − a)(b + a). Throughout this proof, we will assume p is an odd prime as the
contribution of the prime 2 can be taken into the error term. Define

fp(H) := 1p|H · 1(−1
p )=1 and gp(H) := 1p|H ,

where 1 denotes the indicator function. Then

t(a, b) = f(H1(a, b))−g(H2(a, b)), where f(H) :=
∑
p

fp(H) and g(H) :=
∑
p

gp(H).

For any function F and any property P defined on the set AN := {(a, b) : a, b ≤
N, a and b coprime and have opposite parities}, define

PN (P) =

∑
(a,b)∈AN 1P(a,b)

|AN |
and EN (F ) =

∑
(a,b)∈AN F (a, b)

|AN |
.
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Fix ε > 0. For p ≤ N ε, by counting the number of solutions of H1, H2 modulo p,

EN (fp(H1)) = PN (H1 ≡ 0 mod p) =


6
p+1 +O

(
1

N2(1−ε)

)
if
(

2
p

)
=
(
−1
p

)
= 1,

2
p+1 +O

(
1

N2(1−ε)

)
if
(

2
p

)
= −1,

(
−1
p

)
= 1;

EN (gp(H2)) = PN (H2 ≡ 0 mod p) =
4

p+ 1
+O

(
1

N2(1−ε)

)
.

Since maxa,b≤N{|H1(a, b)|, |H2(a, b)|} ≤ N6, each of H1 and H2 can only be divisi-
ble by at most 6/ε prime factors larger thanN ε, so

∑
p>Nε fp(H1) and

∑
p>Nε gp(H2)

are bounded above by 6/ε. Let F (N) :=
∑
p≤Nε fp(H1) andG(N) :=

∑
p≤Nε gp(H2).

Then F (N) = f(H) +O(1) and G(N) = g(H) +O(1) for (a, b) ∈ AN .
We define the following random variables to model fp(H1) and gp(H2),

Xp =

1 with probability 2
p+1

(
2 +

(
2
p

))
0 with probability 1− 2

p+1

(
2 +

(
2
p

)) if
(
−1

p

)
= 1;

Yp =

{
1 with probability 4

p+1 ,

0 with probability 1− 4
p+1 ,

and so that {Xp}p ∪ {Yp}p are independent except P(Xp = 1 and Yp = 1) = 0.
If
(
−1
p

)
6= 1, Xp = 0 with probability 1. Let X(N) =

∑
p≤Nε Xp and Y (N) =∑

p≤Nε Yp. By the multidimensional central limit theorem, X(N) and Y (N) con-
verge to independent normal distributions as N →∞. Note that X(N) has mean
and variance 2 log logN +O(1); Y (N) has mean and variance 4 log logN +O(1).

Since mixed moments determine the multinomial distribution, we want to show
that the mixed moments of F (N) and G(N) converge to those of X(N) and Y (N).
We have by construction

EN
(
F (N)kG(N)l

)
=

∑
p1,...,pk≤Nε
q1,...,ql≤Nε

PN (H1 ≡ 0 mod pi and H2 ≡ 0 mod qj)

= E(X(N)kY (N)l) +O

(
(4 log logN)k+l−1

N2(1−ε)

)
.

From this we compute

EN
(

(F (N)− EN (F (N)))
k
(G(N)− EN (G(N)))

l
)

= E
(

(X(N)− E(X(N)))
k
(Y (N)− E(Y (N)))

l
)

+O

(
(4 log logN)k+l−1

N2(1−ε)

)
.

This shows that the distributions of F (N) and G(N) tend to those of X(N) and
Y (N) respectively. The difference of two normal distribution is a normal distribu-
tion, hence f(H1)− g(H2) = F (N)−G(N) +O(1) tends to a normal distribution
with mean and variance as claimed. �
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