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DENSITY OF RATIONAL POINTS ON A QUADRIC
BUNDLE IN P3 x P3

T.D. BROWNING AND D.R. HEATH-BROWN

ABSTRACT. An asymptotic formula is established for the number of ratio-
nal points of bounded anticanonical height which lie on a certain Zariski
dense subset of the biprojective hypersurface

Tyt ayi =0

in P3 x P3. This confirms the modified Manin conjecture for this variety,
in which the removal of a “thin” set of rational points is allowed.
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1. INTRODUCTION

The main goal of this paper is to study the density of rational points on the
biprojective hypersurface X C P x P3 cut out by the equation F(x;y) = 0,
where

F(x;y) = myi + - + ayi.
Let H : X(Q) — R be an anticanonical height function and let
N(Q,B) = #{(z,y) € : H(z,y) < B}, (1.1)

for any subset Q@ C X(Q). The variety X defines a smooth hypersurface
of bidegree (1,2) and has Picard group Pic(X) = Z2?. If a point (z,y) €
X(Q) is represented by a vector (X,y) € Zi, X Zg,, then we shall take

H(z,y) = |x*|y|?, where | - | : R* — Ry is the sup-norm. In view of the
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Manin Conjecture [9], one might expect that there is a Zariski open subset
U C X such that
N({U(Q), B) ~ cBlog B,

as B — oo, where ¢ is the constant predicted by Peyre [19]. We certainly
require U to exclude all subvarieties of the form z; = z; = a2, =y, = 0
for {i,j,k, 1} = {1,2,3,4}, since the rational points on X which satisfy these
constraints are easily seen to contribute > B%? to N(X(Q), B). Similarly,
we get a contribution of the same order of magnitude from rational points for
which x = (0,0,1,—1) and y = (a, b, ¢, ¢), for example.

More interestingly, any fibre X, = 7, *(z) over a point = € P3(Q) such that
X, = P! x P! will contribute ~ c,Blog B, as B — oo, for an appropriate
constant ¢, > 0 depending on z. It is expected that the total contribution
from these rational points will be ~ aBlog B, where

a= E Cy

z€P3(Q)
X 2PlxPp?

is a convergent series. Note that if z = [z1,...,24] € P3(Q) then the isomor-
phism X, & P! x P! holds if and only if X,(Q) # 0 and z; ... x4 is a square in
Q*. In view of this we are led to study (LI when € is obtained from X (Q)
by deleting the set

T={(x,y) € X(Q):2y...24 =0} (1.2)

Our main result is then the following.
Theorem 1.1. Let Q@ = X(Q)\T. Then
N(§2, B) ~ cBlog B

as B — oo, where
Too

PR (13

is the Peyre constant for the variety X, with
Too :/ / e(—0F (x;y))dxdyd6. (1.4)
—oo J[-1,1]8

We shall see in Lemma [.14] that the integral

/ ‘/ e(—0F (x;y))dxdy| dé.
—oo |J[-1,1]3
is convergent.

Theorem [[.Tlanswers a question that was originally raised by Colliot-Thélene,
and mentioned in work of Batyrev and Tschinkel |2, Ex. 3.5.3] over 20 years
ago. The set T in (L2) is an example of a “thin” set of rational points, as
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introduced to the subject by Serre [22 §3.1]. Theorem [[T] therefore confirms
the refined Manin conjecture for X, in which one is allowed to remove a finite
number of thin sets. Lehmann, Sengupta and Tanimoto [I7] have developed a
geometric framework for identifying the relevant thin sets for any Fano variety.
Follow-up work of Lehmann and Tanimoto [16, Thm. 12.6] confirms that our
set T is compatible with their predictions for the quadric bundle X.

Our result adds to the small store of examples in which thin sets have
been shown to exert a demonstrable influence on the distribution of rational
points on Fano varieties. One of the first examples in this vein was discovered
by Batyrev and Tschinkel [I], who showed that the split cubic surfaces in
the biprojective hypersurface {z1y} + - -+ + z4yj = 0} C P3 x P? contribute
significantly more than the Manin conjecture would predict for the number of
rational points of bounded anticanonical height. More recently, Le Rudulier
[18] has investigated Manin’s conjecture for the Hilbert schemes Hilb? (P x P')
and Hilb*(P?), with the outcome that a thin set of rational points needs to
be removed in order for the associated counting functions to behave as they
should.

The basic line of attack in the proof of Theorem [I.I]involves counting points
on X as a union of planes when y is small, and as a union of quadric surfaces
when x is small. In the first case x lies in a lattice determined by y, and
we will use counting arguments that come from the geometry of numbers. In
the second case we can count vectors y using the circle method, taking care to
control the dependence of the error terms on x. It turns out that we can handle
the case |y| < BY4, giving an asymptotic formula, using lattices. Moreover
we can deal with the range B° < |x| < BY%79 via the circle method, for any
fixed & > 0. In terms of the inequality |x|?|y|? < B, this leaves two small
ranges uncovered, and here it will suffice to use an upper bound of the correct
order of magnitude. Indeed such an upper bound is also indispensable as an
auxiliary tool in the treatment of the lattice point counting problem. The
range BY679 < |x| < BYS contributes O(§Blog B) to N(€, B), and this is
o(Blog B) when we allow § to tend to 0. However, we do not obtain an explicit
error term, though it would be possible in principle to do so, by examining
more closely the dependence on ¢ in our other estimates. One might speculate
that one could prove a version of Lemma in which the second error term
had an explicit dependence on 7, perhaps in the form O(n~K B1=7*/20]og B)
for some numerical constant K. If that were indeed possible, then one could
prove Theorem [[.I] with an error term saving a positive power of log B.

This paper is naturally arranged in three main parts. We begin by discussing
upper bounds in §2 We go on to use these in proving our asymptotic formula
for the range |y| < B4, using lattice point counting in §3l Thirdly, we develop
our circle method argument in §4 to deal with values |x| < BY/%7. Once all
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this is in place, it remains in §5l and §6] to combine the various results and
consider the overall leading constant that arises.

Acknowledgements. During the preparation of this paper the authors were
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the Mathematical Sciences Research Institute in Berkeley, California, during
the Spring 2017 semester. The authors are very grateful to the referee for
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2. UPPER BOUNDS

We begin by introducing some notation. Throughout our work we shall
write (ay,...,a) for the greatest common divisor of the integers ay, ..., a.
We trust that any confusion with vector notation will be obviated by context.
Let A(x) = x129w374. For Y > 1 and any fixed x € Z* we let

M(x;Y)=#{y € Z i : ly| <Y, F(x;y) =0} .

prim
We then set
My(X,Y)= > M(xY),
xe74
A(x)#0, [x|<X

so that Ms(X,Y) counts solutions (x,y) € Z* x Z3 ;. of F(x;y) = 0 in the

region |x| < X, |y| <Y, such that A(x) # O. Similarly, we write

My(X,Y)= >  M(xY)

X€(Zpo)*
|x|<X

The primary result in this section is the following collection of upper bounds.
Lemma 2.1. We have
My(X,Y) < X3Y? + X°y?/3
and
M3(X,Y) <. X3Y? + XPY23 4 XHey2te,
for any e > 0. Moreover, if 1 < X; < X then
Y MixY) < (XY)EX XYY 4 XYY

X€E(Zpo)*
[x|<X, |z1|< X1

for any € > 0.
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The principal tool that we will use is the authors’ result [5, Thm. 1.1]. To
state this we introduce the arithmetic function

@(m) = +p™), (2.1)
plm

along with the notation

Abad(x): H P° (2-2)

pé||x1...z4
e=2

for x € (Z40)*. We then have the following.

Lemma 2.2. Let x € (Zy)* and Apaa(x) < YY20. Then
1/3 |x[* o8 4/3 v?
MG ¥) < (80D a0 () Elovo (Y4 ),
|A(x)] | A/
where oy = 1+ @ and x(n) is the Dirichlet character defined by taking

X(2) =0 and
x(p) = (#)

for odd primes p. The implied constant in this estimate is absolute.

In fact [5, Thm. 1.1] records an upper bound with [T (1 + x(p)/p) in
place of L(oy, x). However, the argument given in [5, page 3| ensures that the
product is at most an absolute constant multiple of L(oy, x).

In order to apply Lemma to Lemma 2.T] we will need to handle vectors
with Apaq(x) > Y/20 via a separate auxiliary bound. Indeed various auxilliary
bounds will be used elsewhere in the proof of Theorem [[.T] and it is therefore
natural to begin this section by dealing with these.

2.1. Auxiliary upper bounds. We begin by recording a uniform upper
bound for the counting function for rational points on quadric surfaces. The
following result is due to Heath-Brown [13, Thm. 2].

Lemma 2.3. For any irreducible quadratic form Q(y) € Z[y1, . .., ys] and any
e > 0 we have

#{yeZ':ly|<Y, Qly) =0} <. Y***.
We next examine two counting problems involving fewer than 4 terms.
Lemma 2.4. Let X,Y > 1. Then
#{(@1, Y1, 72, 12) € (Zpo)* + || < X, |yl Y, miyi = 20135} = O(XY).
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Proof. We extract common factors h = (x1,23) and k = (y1,y2). For each h
and k we are left with counting non-zero integers x,y; with |z}| < X/h and
ly!| < Y/k, such that 2, = £y,* and 2, = +,°. The number of such integers
is

< (min {V/XThY/})" < (/RTRV/0,

Summing over h < X and k <Y gives O(XY) as required. O

Lemma 2.5. Let X,Y,U,V > 1 with XY? = UV2. Define T(X,Y,U,V) to
be the number of solutions X,y € (Z4o)® of the equation

w1y} + Tays + w395 = 0,
with
1], |zo| < X, [z3] <UL fmls |yol <Y, ys| < V.
Then T(X,Y,U, V) <. XUVY* for any e > 0.

Proof. For the proof we first estimate the quantity 7*(X, Y, U, V') which counts
pairs of vectors x,y as for T'(X,Y, U, V), but with the added restrictions that
x and y should be primitive. According to Heath-Brown [10, Lemma 3] there
are

XU
max(Xy3, Xy3, Uy3)
< 1+ X2U(Xyd) (X yd) 3 (Uyd) 3

<1+

primitive solutions x for each primitive y. Summing over y and using the
relation XY? = UV? then yields

T*(X,Y,U,V) < YV + XUV. (2.3)
In particular T*(X,Y,U, V) < XUV if Y2 < X.

Alternatively we may use Corollary 2 of Browning and Heath-Brown [4].
This shows that for any given x € (Z4o)? there are

V2 3/2\ 1/3
<. {1+< V(z129, 2123, T273) ) (XY

‘1’1$2$3|
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corresponding primitive y. Let n = |rixex3] and d = (2129, 123, 2223), SO
that d® | n?. Summing over the x then gives an estimate

T*(X,Y,U,V) < X°UXY)" + (Y V) B(xy)> Y d'?» Y n'/?

d<X2U n<X2U
d3|n?
<<E X2U(XY)€ + (Y2V)1/3(XY)2€ Z d1/2(X2U)2/3d_3/2
d<X?2U
< XU+ (YAV)V3(XPU)BYH(XY)*

= {X?U + XUV}(XY)*.
In particular T*(X,Y,U,V) < {X?U + XUV}Y® if Y2 > X, and by our
remark above the same is true in the alternative case Y2 < X as well.
Comparing this bound with (2.3]) shows that

T*(X,Y,U,V) <. {min(X?U,Y?V) + XUV Y™

whether Y2 > X or not. However
min(X2U, Y?V) < (X2U)?3(Y*V)Y3 = XUV,
whence
T(X,Y,U, V) <. XUVY*™,

We then find that

T(X,Y,U V)<Y > TH(X/d,Y/e,U/d,V]e)

d<X e<Y
<. Z Z XUVY%d2e1-%
d<X e<Y
<. XUVY*.

The lemma now follows on redefining e. U
Lemmas [2.4] and have the following corollary.

Lemma 2.6. Let X, Y > 1. Then the number of solutionsx € Z*, y € Zy s, of
the equation F(x;y) =0, lying in the region |x| < X, |y| <Y, and satisfying
the constraint that [[,_, ziy; = 0, is O(X3Y™ + Y4, for any e > 0.

Proof. Suppose firstly that exactly one of the products x;y; vanishes, x4y, = 0
say. Then there are O(X +Y’) choices for x4 and y4, and O.(X?Y'*¢) choices
for the remaining variables, by Lemma Thus the total contribution is
O.(X3Y1*e + X2Y?*). This is satisfactory for the lemma after redefining e,
since X?2Y?T < max( X3V Y1),

Suppose next that exactly two of the terms x;y; vanish, x3ys = x4ys = 0,
say. There are then O(X? + Y?) choices for x3,ys,r4 and y4. Moreover there
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are O(XY") choices for the remaining variables, by Lemma 24l We therefore
have a total O(X3Y +XV3), which is satisfactory since XY? < max(X3Y, Y*).

It is not possible for exactly three terms z;y; to vanish, when F(x;y) = 0,
so the only remaining case is that in which x;y; = 0 for every index 7. Since y
is primitive it cannot vanish, and hence there are O(X3Y + Y*) possibilities
in this situation. This completes the proof of the lemma. U

The final case to consider is that in which the product x; ...z, is non-zero
but has a large square divisor. Let

Abad H P,

péllz1... 24
e=2

as in (2.2)). The following result shows that vectors x with a large value of
Apaqa(x) make a small contribution to M5(X,Y).

Lemma 2.7. Let D > 1 and let ¢ > 0. Then

R X3y?
> Mi(xY) <. (XY) {W +X4Y}.
x€(Zzo)?
|x|<X
Apaa(x)2D

In general, if we write s(n) for the largest square-full divisor of n, then
s(uv) | s(u)s(v)(u,v)?, as one sees by considering the case in which v and v
are powers of the same prime. Thus

8(:1712525(73.]74) | 8(1’1)8(252)8((173)8(1’4)(Ill’g,I3I4)2(I1,1’2)2(.1’3,254)2,
and since
(w12, w374) | (21, 73) (21, 14) (22, 23) (T2, T4)

we see that if Ap,q(x) > D then either (x;, x;) > D' for some pair of indices
i # j, or s(z;) = D' for some i. In the latter case d? | z; for some d > D'/?*,

Hence
Z MI(X Y Z ZMI X Y

XE(Zso)* d>D1/24 x
Ix|<X
Apaa(x)2D
where the x-summation is over x € (Z4)* such that |x| < X, with d? | z; or
d | (x;,x;), for some choice of distinct indices 4, j € {1, 2, 3,4}.
For any k € N we write

Sk(a) = Sp(a; X) = Z Z e(axy?) (2.4)

0<|z|<X |y|<Y
k|z
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Then
D Mi(x;Y) < Ii(d) + I(d),

where

I(d) = /0 Sy(a)2Si(a)2da and  I(d) = /0 S () () dar,

We note that I;(d) = 0 unless @ < X. In estimating these integrals we are
led to an auxiliary counting problem, treated in the following result.

Lemma 2.8. Let k € N and let X,Y > 1. Let Ly(X,Y) denote the number
of (x,y,y, 1, y1, To,y2) € Z7 such that k | x, with

0< ‘ZL’|, |$1|, |$2| < Xv ‘y‘v ‘y/|7 |y1|7 |y2| < Y
and

w1yt — w2ys = 2(y — )y +y).
Then for any € > 0 we have

k

We will establish this in a moment, but first we show how it may be used
to complete the proof of Lemma 2.7 In general we have

1Sa(a)]? < #{z € ZpoN[-X, X] : d | x}

x>y elaxly®—y?),  (25)

0<]z|<X |yl,|ly'I<Y
dlz

X%Y? 4 X3Y
Li(X,Y) <. (XY)* {—+ + k:X2} .

by Cauchy—-Schwarz. We therefore deduce from Lemma 2.§ that

> ons Y Zxy)

d>D1/24 D1/24<d<X

X3Y? + X4y
<> (XY)e{d—j;JrX?’}

D1/24<d<X

(XWEE XY
ey [KVEEY )
This is satisfactory for Lemma 2.7

To handle I5(d) we apply the Cauchy—Schwartz inequality, yielding

nar < ([ 1se@pisiora) ([1s@ra). @0
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We proceed as before, using ([2.5]) and Lemma 2.8 to deduce that
X372 4+ XYy
—+ + X3} .

1 2X
/ \Sdz(a)\2|51(a)|2da < —Lg(X)Y) <. (XY)e{ pT
0

P2
Taking d = 1 we see that the second factor in (2.6)) is

1

/ Si(@)|*da <. (XY (X°Y? + XTY), 27)

0
Thus oy vy
I(d) <. (XY)*" {d—j; XY+ X7/2Y1/2} ’
whence
C [ X3Y?+ XYY
Z ]2(d) <c Z (XY) {T —|-X3Y—|—X7/2Y1/2}
d>D1/24 D/24<d</X
(XY XY, o
<. (XY) {WH(/YH( v }

This too is satisfactory for Lemma [2.7]

Proof of Lemma[2.8. Clearly Li(X,Y) = 0 unless £ < X, which we now as-
sume. There are O(k~'XY) triples with z(y — y')(y + v') = 0, and for each
there are O(XY') corresponding quadruples 1, y;, 2, y2 with y1y2 # 0, by
Lemma 24 and there are O(X?) quadruples with 3y, = 0. This case there-
fore contributes a total O(k™'(X?Y? + X3Y)) to Li(X,Y).

When z(y — ') (y + ') # 0, we get

< m3(|z1yi — 223]) < (XY
solutions x,y,%’. It therefore remains to count the number of 1, y1, s, yo for
which @1y} = 29y mod k. Breaking into residue classes modulo k we deduce
that

Lk(Xv Y) <e

X%Y? + X3Y X2 < Y
L2

2
’ +(XY)— 1+ E) o(k), (2.8)
where

o(k) = #{(z1,x2,y1,y2) € (Z/kZ)4 : Ily% = x2y§ mod k}.

Since p(k) is a multiplicative arithmetic function it suffices to estimate o(p°).
When p 1 y; the values of xs, 1, y2 determine xq, so that there are at most
p*¢(p°) such solutions. The same argument applies when p { yo so that
there are at most 2p*p(p®) solutions with p 1 (y1,42). If e > 2 there are
pPo(p°~?) solutions with p | (y1,%2), while if e = 1 there are p* solutions.
Hence o(p) < 27°(p — 1) + 1 < 29" and

o(p®) < 2p°(1—p ") + pPo(p°?)
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for e > 2. One can now show that o(p®) < (e+1)p® for all e > 1, by induction.
We then have o(k) <. k3™ for any € > 0. We therefore complete the proof of
the lemma by inserting this into (2.8]) and redefining e. O

2.2. Proof of Lemma 2.1l Using Lemma we will establish the following
result.

Lemma 2.9. We have
> Mi(xY) < XPY? 4 XYW < XPY? 4+ XPYPS,
x€(Zpo)?

[x|<X, Ax)#£D
Apaa (x)<Y1/20

Proof. The second inequality follows since X4Y4/? < max(X?3Y?, X°Y?/3). To
prove the first inequality, we begin by considering dyadlc ranges

and denote the corresponding contribution M (X1, ..., Xy;Y). Then, on writ-
ing X = X1X2X3X4 and

XA\ Y2
C(Xl,...,X4;Y):<ma}} Z) <Y4/3+A—),

it follows from Lemma that
M(le"'7X4;Y) <<C(X17"'7X47 Zw Ab d( )1/3L(UY7X)7

where @ is given by ([21)) and the sum is for x € Z* in the region (2.9) such
that A(x) # 0. Note that we are free to include vectors with Apaq(x) > Y1/20
on the right, since L(oy, x) > 0.

By checking the inequality at prime powers, one easily sees that

\ /3
n [0 <> —
sl saln
e=2

where s and ¢ run over square-full and square-free integers respectively. It
follows that

Zw X)) Apaa (x)3 Loy, x Z— > ) Lioy.x), (2.10)

dy ,dg ,d3 7d4= eN xeS
dido d3d4:[s,t]

where s and ¢ run over square-full and square-free integers respectively, and
S =S(Xy,...,Xy;dy, ..., dy) is the set of x € Z* in the region (2.9) such that
A(x) #0and d; | z; for 1 <i < 4.
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Let d = didadsds. We claim that
> Lio.y) < Xd 7, (2.11)

x€eS

uniformly for ¢ > 1. We will prove this later, but first we observe that we can
now estimate (2Z.I0) as

N 51/3
<X> —lls.1])ls, 177/,

s,t

The infinite sum has an Euler product, with factors of the shape

1+ 4p—1—7/8 + Z Z pe/3—f7_4(pe)p—7e/8 — 14+ O(p_13/12).
e22 f=0,1

The resulting product therefore converges, so that (ZI0) is O(X). We then
see that

~

M(Xl, .. ,X4,Y) <K C(Xl, .. ,X4,Y)X
2
= (max X;)”* X3/3 (Y4/3 + AY—) .
! X1/4
On summing over dyadic values for the X; we obtain Lemma 2.9]

It remains to prove (Z.II]). Our key tool for the proof is a form of Burgess’
estimate [7]. If # > 3/16 we have

> w(n) <o N2,

n<N

where 1 is any non-principal character of modulus ¢q. We obtain the same
bound for the corresponding sum over all integers n such that |n| < N. For
our purposes it will be enough to take = 1/5 in these estimates.

The character x is non-principal, with modulus O()A( ). By the Burgess
bound coupled with partial summation, we see that

Z X(:L) < NY2-oX1/5 o N-1/2X1/5,

n>N n
It follows that terms with n > X%? contribute O(1) to L(c,y), which is
satisfactory since d < X.

We proceed to consider the terms with n < X2/, Suppose that X;/d; is
largest for ¢ = 1, say. If we write x1 = d;q then

Sy Moy oy () (Y)
— o — no n n/’
XES pngX2/5 T2,23,T4 n X2/5 q

n odd
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where the sum over ¢ is for integers with X;/2d; < |¢| < Xi/d;, for which
qd1T97374 is a non-square. In general, for any integer k, there are O(Q'?)
integers ¢ € [—Q, Q)] for which kq is a square. Thus if we adjust the sum
over ¢ to include all integers with X;/2d; < |gq| < X;/d;, and then apply the
Burgess bound, we find that

Z (%) < (Xl/d1)1/2n1/5,

provided that n is not a square. On the other hand, if n is a square, we have
a trivial bound O(X;/d;). Thus

1
> S
n<X?2/5 q
n odd

< Z n1/5 cr X/d1 1/2_'_ Z —20 Xl/dl)

n<X?2/5 m<X1/5

< XX )d)Y? + X, /d.
Since X;/dy > (X /d)/* we will have
XX fdi)? < XX /) (X /d)7° < (X fdy)d ™.
When we sum over s, x3, x4 we now find that
>y 2 ﬁ/s _ R,
XES < R2/5
This completes the proof of (Z.11]) and so the proof of the lemma. U

To finish the proof of Lemma 2.1] we proceed to show how to remove the
condition Ap.q(x) < YV from Lemma It follows from Lemma B.7 that
Y Mi(xY) < (XY)T{XPYy?0 4 Xy}
XE(Zzo)*
Ix|<X
Apad (x)>Y1/20
When ¢ = 1/800 we have
(XY)€X3Y2 1/480 __ (X3Y2)1 1/1600(X5Y2/3)1/1600 < X3Y2 —|—X5Y2/3
and
(XY)€X4Y < X13/3Y10/9 — (X3Y2)1/3(X5Y2/3)2/3 < X3Y2 —|—X5Y2/3.

This completes the proof of the first part of Lemma 2.1
Next, if |x| < X with x € (Z40)* and A(x) = k? say, then 0 < |k| < X?, and
each such k corresponds to at most 874(k?) < X¢ vectors x. For each such
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x we use the bound M;(x;Y) = O.(Y?*¢), which follows from Lemma 2.3

Hence
Y Mi(xY) < XPYAXY),
x€(Zyo)*
|x|<X
A(x)=0
for any ¢ > 0, giving us the second part of Lemma 2.1
Finally, with Si(a; X) as in (2.4]), we have

> Mi(xY) / Si(o; X)%S)(a; Xy)dar,

XE(Z#O)
|x|<X, |z1|<X1

whence Holder’s inequality yields

> Mi(xY) {/ |51 (o X)) da} /4{/01|Sl(a;X1)|4da}1/4.

XE(Z7§O
|x|<X, |z1|<Xq

Appealing to (27, this is
< (XY (XY + X)) (XY 4 XY
< (XY)PEXPIX (XPY? 4 XYY,

and the third part of Lemma 2.1 follows.

1/4

3. AN ASYMPTOTIC FORMULA USING LATTICE POINT COUNTING

In this section we write

M,(y; R) = # {X cZ': |x| <R, Flx;y)= 0} (3.1)
and prove an asymptotic formula for
> My(y;(B/ly)'?) = M(B;Y), (3:2)
yeZprlm
Y<|y|<2Y

say.
Theorem 3.1. Let Y > L. Then

=2
Ni( =B Z

yezZ*

prim

Y<|y|<2Y

_ /_ : /[_171}4 e(—0F (x: y))dxds. (3.3)

+ O(B*3Y*3) + O(BY ') + O(Y"),

Iy\2

where
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We note that if y has at least two non-zero components, then

[ ecortoyax =TT ooy
e(—0F (x; X = — )
[—1,1) Y 0y Y

j=1
so that the outer integral in ([B.3]) is absolutely convergent. On the other hand,
if y =(1,0,0,0), for example, then
in(2m6
[ etortayax = 2T
[_171]4 7T9

and the outer integral is conditionally convergent, with value 8.
We begin the proof by estimating M, (y; R) for an individual vector y, as
follows.

Lemma 3.2. Let y € Z.,, and put d(y) = \/y! +---+y;i. Let V(y) be the
volume of the intersection of the cube [—1, 1] with the hyperplane
{xeR*: F(x;y)=0}.

Then there exists a vector x; = X1(y) € Ly, satisfying
0<|x| < |y[*? and F(xy;y) =0, (3.4)
such that V) R
Y) p3
My(y; R) = —=R°4+ O +O(1).
s = g+ 0 () + 00

If (y2,...,y3) = (21,...,24) we may apply a rotation R € SO4(R) to x and z
so as to move z to Rz = (0,0,0, 2}), say. Then V(y) will be the 3-dimensional
volume of the region {t € R[—1,1]*: ¢, = 0}.

Proof of Lemmal32. When y is primitive the function M,(y; R) counts vec-
tors x € Z* from a 3-dimensional lattice A of determinant d(y), as in [13|
Lemma 1(i)], for example. We now claim that

.Y V(y) 13 ( R R )
M, (y; R) d(y)R +0 )\1)\2+>\1+1 ,
where the implied constant is absolute and A\; < Ay < A3 are the successive
minima of A. If we had been using the L?-norm in place of the L*>°-norm this
would have followed directly from Schmidt [21, Lemma 2]. One should note
here that, in Schmidt’s notation, A*(=9 contains the vectors g1, ..., gr_;, and
has successive minima Aq,..., Ar_;, so that d(Ak“_i)) >E Ar... A\p—;. To han-
dle the L*>*-norm one needs only trivial modifications to Schmidt’s argument,
which we leave to the reader. To complete the proof of Lemma we note
that R?/(AMX2) < (R/A)? and R/ < max((R/)\)?1). Moreover, by the
definition of the successive minima the lattice A contains a vector of length
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A1. Writing x; for this vector we see that x; will be primitive, and the lemma
follows, since A\; < (M AA3)'? < d(y)'/? < |y|*/5. O

We turn now to the proof of Theorem [3.1Il In our argument certain “bad”
vectors y will have to be dealt with separately. We denote the set of these by
A, and write ¢ for the remaining set of good vectors. The definition of the
set # will be given below in (B.0), since it is hard to motivate at this stage.

For the bad vectors we note that

B V(y) < BY_4,

ly[*d(y)
whence
V _
My 33 (B/1v1)1) = B 0B ~) 4.0 (b (v: (B/y)))
when y € 4. It therefore follows from (3.2) along with Lemma B.2] that
Ny( =B ) |y\2d 7t O(BY '“#5) + O(%,)
Y€ Lpim (3.5)
Y<ly|<2y

+O(BPY 5,) + O(Y"),

where

=Y My (v: (B/lyI)'"?),

yERB

S = Ixy) ™

N =
We begin by discussing Y, since this motivates our choice of the sets ¢ and

%#. We define )
SO S

ye¥Y xezt

prim
0<|x|<cly|?/3
F(x;y)=0

and

where ¢ is the implied constant in (3.4]). We shall prove the following bound
for this sum, which shows that the term >, in (B.5) makes a satisfactory
contribution in Theorem [B.11

Lemma 3.3. We have E(Y) < Y®?3 for any Y > 1.

Proof. Our strategy for estimating E(Y) will be to sort the inner sum into
dyadic intervals for |x|. When all the components of x are non-zero we shall
be able to invoke the second part of Lemma 2.1l and when exactly three of
the components of x are non-zero we will use Lemma Thus the remaining
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vectors x are those with at most two non-zero components, and these will
correspond to y being in the bad set %, which we now proceed to describe.

If x has exactly one non-zero component the equation F(x;y) = 0 forces
the corresponding component of y to vanish. We therefore include vectors y
with [ y; = 0 in the bad set A.

Suppose on the other hand that exactly two components of x vanish, say
x3 = x4 = 0, and that [Jy; # 0. Then (z1,25) = 1, since x is primitive.
Moreover x93 + xoys = 0. If we write h = (y1,%2) then we must have o =
+(y1/h)? and 2, = F(y2/h)%. It follows that |y1|/h < c¢'/?|y|'/3, and similarly
12| /b < /2|y |/3. We then say that a vector y is “bad” if either [Jy; = 0 or if
there are two components, y; and ys say, such that |y, [y2] < /2 (y1, y2)|y|"/>.
Here ¢ is the implied constant in (3.4]). We now define

Y < |y| <2V, eith . =0orel
B {y ezl ly| either [y or else } 396)

il lysl < 2 (ys, yy)ly['/? for some i # j
Similarly we write ¢ for the complement of % in the set of y € Z2. with

Y < ly| < 2Y. Thus if y is in the complementary set ¢, any correspponding
vector X has at most one zero entry.

We are now ready to estimate E(Y). Let S(L,¥) be the number of pairs
x,y that arise for which L/2 < |x| < L. Then

E(Y)< Y L*S(L,9),

the sum over L being for powers of 2 only, with L < Y?/3. Our definitions
ensure that

S(L,9) < My(L,2Y) + YT(L,2Y, L,2Y),
in the notation of Lemmas 2.1l and 2.5, which then yield
S(L, %) <. [PY? + Y3 4 [y
for any ¢ > 0. For L < Y?/% and € = 3/10 this is < LY? + L?Y?/2 whence

EY)< Y (@Y +Y"?) <y + Y5 logY,
2i<<y2/3
which is satisfactory for Lemma U

We next estimate #2. There are O(Y?3) vectors y with [Jy; = 0. For the
remaining bad vectors, if we have y; = hz;, for example, then y5 = hzy with
21, 29 coprime and

|21, |2a] < HPly] P < Y
There are O(Y') choices for h and O(Y/3) choices for each of z; and z, and
since there are O(Y?) possible values for y3 and y, we see that there are
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O(Y1/3) options for y. Thus #% < Y''/3 so that the corresponding term in
(B.3)) is satisfactory for Theorem 311

It remains to consider ;. We begin by disposing of the contribution from
solutions x,y with []z;4; = 0. We apply Lemma with X < BY/3y—2/3
obtaining a bound O.(BY*~! + Y*). The corresponding contribution to (3.5
will turn out to be satisfactory for our purposes, as we shall see shortly. In
what follows we may assume [] z;y; # 0.

We now focus on terms for which y; = hz; and yo = hzs where z; and 25
are coprime and 0 < |z[, |z| < ¢/?|y|'/3, so that

(.]712% —+ ZL’QZS)]”F + $3y§ + $4yi =0 (37)
with non-zero integer variables. We set
X = (BY™)Y? and Z = max{|z], |z|},

whence 1 < h < 2Y/Z. When 127 + 2922 = 0 we have x3y3 + z4y3 = 0 as well.
There are then O(Y/Z) choices for h, while Lemma 2.4 shows that there are
O(X Z) values for z1,x9, 21, 22 and O(XY") possibilities for x3, x4, ys3,y4. The
case 7127 + 1222 = 0 therefore contributes O(X?Y?) = O(B*3Y?/3) to ¥;. We
shall see in a moment that this makes a suitably small contribution to (B.3]).

We count the remaining solutions according to the values taken by z; and
zo. It will be convenient in what follows to write N(Y; 21, 2z2) for the number
of solutions to the equation (B.7) in non-zero integers 1, . .., x4, h,ys, y4 with
1123 + 2922 # 0 and

x| <X, 1<h<2Y/Z and |ys|, [y] <2V
It follows from our analysis thus far that
T BY T Y 4 BAYE 4 N N(Yz,m). (3.8)
0<‘Z1‘,‘Z2‘<<Y1/3

We put t = 2727 + x22, which is assumed to be non-zero. For a given
non-zero t (and fixed z1, 29) the number of xy, x5 such that z12% + 2925 = ¢
is O(1 + X/Z?). Moreover the equation th? + z3y3 + z4y3 = 0 has at most
T(X,2Y,2X 72 2Y/Z) solutions, in the notation of Lemma 25, which then
shows that

N(Y:z,2) <. (1+XZ7 )XYz
for any fixed £ > 0. We insert this estimate into (B.8]) and find that
S e BYSTL 4 YA 4 BYBY?S 4 (Y3 4 X)Xy /3te
<. Y*+ B¥3y?/3te 4 gy -2/,

Taking ¢ = 1/3 now gives us a suitable contribution to (3.5)).
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Returning to (B.3]), in order to complete the proof of Theorem BIlit remains
to show that
V(y)

W = 0s0(), (3.9)

for any non-zero vector y € R?*, where 0,,(y) is defined in (B3)). It will be
convenient to put y? = d(y)w; for 1 < i < 4. Then if || - || denotes the
L?-norm, it follows that ||w|ly = 1. Moreover, in this notation we have

00 ()d(y) = /_ Z /[_1’1]4 e(—6w.x)dxd.

As already noted following the statement of Theorem [B.1] the repeated integral
is 8 if w has a single non-zero component. This suffices for (3.9), since one
easily sees that V(w) = 8 in this case.

On the other hand, if w has at least two non-zero components then, as
remarked earlier, the inner integral is O((1+]60|?)~!), so that the double integral

1S
oo . 2
lim sin(mof) / e(—0w.x)dxdl
640 PN 7T69 [_1’1]4

o /in(msN 2 (3.10)
- lim/ / (s1n(7r )) e(—0w.x)d0dx.
5\1,0 [_1’1]4 —00 7-‘-60
In general if
0726 — |ul), if|ul<§
K(u:s) = ' ’ 3.11
(u;6) {07 s (3.11)

then

K(u: 6) = / " e(ou) (Smgge)fde, (3.12)

— 00

so that the inner integral on the right of (3.10) is K(w.x;J).

Since ||wl|s = 1 there exists a 4 x 4 orthogonal matrix M € O4(R) such
that Mw = (1,0,0,0). Then w.x = (Mw)"Mx. Changing variables from x
to z = Mx, so that z runs over the set Z = M[—1,1]*, we see that

000 (y)d(y) = lggl g K(z;;0)dz=meas{z € Z : 21 =0} = V(w) = V(y),

as required. This concludes the proof of Theorem [3.1
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4. COUNTING POINTS ON QUADRICS

In this section we will establish an asymptotic formula for the smoothly
weighted counting function

No(P)= > w(P'x),
xcZ*
F(x)=0
as P — oo, where F'(x) is the non-singular integral diagonal quadratic form
F(X) = All’% + AQ.:C% + Agl’% + A4Ii

Here w : R* — Ry is a fixed infinitely differentiable weight function of com-
pact support, which vanishes in some neighbourhood of the origin. Our goal
is to establish an asymptotic formula even when the coefficients A; are of size
a small power of P, and it will be crucial to our success that the size we are
able to handle is sufficiently large.

Our asymptotic formula for N,,(P) is only valid for suitable weights w and
“generic” choices of the coefficients A;. To specify the necessary conditions we
define

I1F|| = max |Ail, Ap= A1A2A3A4( # 0)7

and

Apag = H P (4.1)

Pee||>A2F
We then require that
w(x) =0 for |x|<mn, (4.2)
that
IFI" < JA (< IF]), for 1<d <4, (4.3)
and that
Apaa < ||F|7, (4.4)

for a small parameter n € (0, ﬁ) at our disposal. The first two conditions
imply that
|VF(x)| >, [|[F||'"™" for w(x) # 0, (4.5)
while the last condition implies in particular that Ap # [0 when || F|| > 1.
Our asymptotic formula involves the “singular integral”, defined to be

Ooo(w; F) :/ / w(x)e(—0F (x))dxdd, (4.6)
_ oo JRA
and the “singular series”

S(F) = H)H%}o p I H#{x e (Z/PL) F(x)=0mod p’}.  (4.7)



DENSITY OF RATIONAL POINTS ON A QUADRIC BUNDLE 21

We will see in Lemma [L.T0 that this is convergent whenever Ar # 0. With
this notation our principal result in this section is the following.

Theorem 4.1. When (42), (A3) and (@4]) hold we have
Ny(P) = 0os(w; FYS(F)P? + Oy, (| F||TY221 P32 || F|| V320 ),
provided that || F|| > P".

The main term here is typically of size around P?||F||~!, so that we get an
asymptotic formula when P7 < ||F|| < P¥3t9 For comparison, Browning
[3, Prop. 2] shows that

Nu(P) = 0uo(w; F)S(F)P? + Oy (||F |7 P257) |

for a special choice of weight function w, under the assumptions that Ap £ [
and that (£3) and (4.4) hold. Theorem (1] refines this result considerably
for forms whose discriminant is close to being square-free, provided that the
coefficients of F' are not too small compared with P. We should emphasize
that in both Theorem M.l and the result of Browning [3] the coefficients of
1 are relatively unimportant. In particular they have no significance for the
current application.

The condition that ||F|| > P" is somewhat unnatural and deserves further
comment. Under this assumption together with the hypotheses (4.2]), (43
and (4] we are able to eliminate certain awkward terms that arise when we
apply Poisson summation. This is explained further in §£5l At this point
it is crucial that the quadratic form F'(x) is diagonal. We could remove the
condition || F|| > P" and handle non-diagonal forms, but this would be at the
expense of a worse dependence on || F||.

4.1. Preliminaries. Our proof of Theorem [.1] uses the smooth §-function
variant of the circle method introduced by Duke, Friedlander and Iwaniec [§],
and later developed by Heath-Brown [12, Thm. 1]. We proceed to review the
technical apparatus required.

For any ¢ € N, any ¢ € Z* and any @ > 1, we define the complete exponen-

tial sum
Sy =" 3 e (aF(b) +b.o), (4.8)

amod g b mod g
and the oscillatory integral
N F(x)
Ic:/wPlxh<g, )e —c.x)dx,
Ae)= [ wtpon (555 ) eu—ex
for a certain function h : (0,00) x R — R described in [12, §3]. We note

here that h(x,y) is independent of F' and @) and is infinitely differentiable for
(z,y) € (0,00) x R. Moreover h(zx,y) is non-zero only for z < max{1,2|y|}.
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When 3 < 2 <1 and |y| < §, for example, h(z,y) will be of exact order 1. It
then follows from [12, Thm. 2| that

c
Ny (P) = Q_Q? YD a7 Sy(e)y(c). (4.9)
cezt g=1
where the constant cq satisfies cg = 1+ On(Q™Y), for any N > 0.

We shall take @ = +/||F||P? in our work. In our proof of Theorem [A.1]
we shall often encounter a small positive parameter ¢, and for the sake of
convenience we shall allow it to take different values at different stages of the
argument, so that z°logx < 2¢, for example. All of our implied constants are
allowed to depend on the weight function w and on n and ¢, but on nothing
else unless specified. Ultimately we will take € to be fixed in terms of n but
much smaller than it, so that the dependence on ¢ will disappear. As above we
assume that w, besides being infinitely differentiable and of compact support,
satisfies the condition (.2]).

We now wish to apply the bounds for the exponential integral I,(c) that were
derived in [12] §§7-8]. Unfortunately, the implied constants in each of these
estimates is allowed to depend implicitly on the coefficients of F', a deficiency
that we shall need to remedy here.

Lemma 4.2. Let ¢ € Z* be non-zero. Then the following hold:
(i) For any N > 0 we have
p5 ||FH(N+1)/2

Iq(c) <Ly ‘C‘N

(ii) We have
gl FIP P

) .
q(c) < |AF|1/2\C\

Proof. To begin with we may write
I,(c)= P4/ w(x)h(r,G(x))e (—v.x) dx,
R4

where r = ¢/Q, v =¢ 'Pc and G = |F||"'F. In particular

Gl +ha
ot o 0 ) S 1
for all x € supp(w) and ky,...,ks € Zzo. The function h(z,y) is non-zero

only for x < max{1,2|y|} and satisfies h(z,y) < x~'. In fact, for any 4,7 > 0
and any N > 0, we have
0" h(z, y)

F 2y L jNa T (:CN + min{1, (:L’/‘y‘)N}) ) (4.10)



DENSITY OF RATIONAL POINTS ON A QUADRIC BUNDLE 23

These facts are all explained in [I2, Lemmas 4 and 5]. Repeated integration
by parts now establishes part (i).

Turning to part (ii), we see that I,(c) = P*~'I(v), in the notation of [12|
Lemma 14], with f = rh. The argument in the proof of [12, Lemma 17]
shows that there exists a smooth weight function w; : R* — Ry, such that
supp(w;) C supp(w) and a function p(t) < r such that

I(v) = /_OO p(t) /R4 wy(x)e (tG(x) — v.x) dxdt.

[e.e]

We may analyse the inner integral J, say, using the smoothly weighted sta-
tionary phase bound worked out by Heath-Brown and Pierce in Lemmas 3.1
and 3.2 of [I4]. Recall that G(x) = ||F||7'F(x) < 1 for all x € supp(w;) and
observe that integration by parts gives

/ |wy(y)|dy < / min{l, |y\_1}5dy < 1.
Rzl Rzl

This shows that J = Oy (|v|™) for any M > 0 if |v| > |t|, while we have
J = O(||F|]*|Ar|~Y/?t72) otherwise. Applying these bounds with M = 2, and
noting that |Ar|'/2 < ||F||?, the statement of part (ii) easily follows. O

The effect of part (i) is that the sum over ¢ in (£9)) can be truncated to
lc| < || F||V2QF for any ¢ > 0, with negligible error. The following estimate
allows us to work with /,(c) when ¢ = 0.

Lemma 4.3. Assume that (£2)) and ([A3)) hold. Then we have
£0°1,(0)

gk
Proof. Let k € {0,1} and recall the notation r = ¢/@Q). Then

ok 1,(0) Ok h(r,G(x))
k q — 2k pd ?
q o r"P /R4 w(x) ok dx

7,2
<<r_1P4/ <r2+min{1,7}) dx,
xEsupp(w) G(X)2

on taking N = 2 in (£I0). We now appeal to (45]), which implies that
IVG(x)| > ||F||~" for all x € supp(w). Thus the measure of the set where
|G(x)] < zis O(z||F||"). The integral is therefore O(r||F||"), as in the proof
of [12, Lemma 15], and the lemma follows. O

< ||F||"P?*,  for k € {0,1}.

We conclude this section by considering the integral

J(0:w) = /R W (x)e(~G(x))x (4.11)
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Lemma 4.4. Under the assumptions [AL2) and ([A3) we have
J(0:w) < 07| [P

for any non-negative integer N.

Proof. To prove this we use the first derivative bound for smooth exponential
integrals, see Heath-Brown [12| Lemma 10]. First however we must reduce the
support of the weight function w by using Lemma 2 of [I2]. This shows that
if 0 < 0 < 1 then there is a smooth function ws of compact support such that

wix) =67 [ wsl6 x - y), ¥y,
R
Thus there is some vector y = y(9) such that

J(O;w) < 6

/R4 wa(é‘l(x —y),y)e(—0G(x))dx| .

We will choose § = ||F||"'min|A4;|. Thus 6§ > ||F||7", by [@3). We now see
that

J(6;w) <

/R . (w)e(~6G. (w)dul.

where we have set w,(u) = ws(u,y) and G.(u) = G(y + du). According to
[12, Lemma 2], if w,(u) # 0 then w(y +du) # 0, so that |y +ou| > n, by (£2).
It follows that |VG.(u)| >, 6% on the support of w,. Moreover, the second
order derivatives of G, are O(6?) and the higher derivatives vanish. We then
see from [12, Lemma 10] that

(4.12)

/ wo(W)e(=0G (0))du <y |65
Rzl

for any non-negative integer N. The reader should note that the implied
constant is independent of y and by the technical properties of ws described
in [12] Lemma 2]. The statement now follows from (4.I12]). O

4.2. The exponential sums. In this section we summarise what we will need
to know about the exponential sums S,(c) defined in (4.8]). As proved in [12]
Lemma 23], these satisfy the multiplicativity property S, 4,(c) =S4, (€)Sy,(c)
for any coprime integers ¢;,q2. We begin by establishing the following basic
estimate.

Lemma 4.5. For any q € N we have
Sy(c) < ¢ H (q, Ay i)'/,

1<i<4
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Proof. To begin with, for any prime power p” we have

Sp(e)= Y T Glads,cip), (4.13)

a mod p” 1<i<4

where
G(b,c;q) = Z ey (bx2 + c:L') (4.14)
x mod ¢q

denotes the generalised Gauss sum for any ¢ € N and b,c¢ € Z. For ¢ = p"
we put 8 = v,(b). Breaking into residue classes modulo p" ™57} it is easy
to see that G(b,c;p") = 0 unless p™"{#} | c. We conclude that if S,-(c) # 0
then we must have min{v,(4;),r} < v,(c), for 1 <7 < 4.

Next, on inspecting the proof of [12, Lemma 25], we find that

Spr(c) < pgr#{y mod p" : p" | 24y; for 1 <@ < 4}1/2
p3r H p(min{vp(Ai),r}+vp(2))/2

1<i<4
3T+2Up(2) H pmin{vp(Ai)7T7UP(ci)}/2'

1<i<4

/

/N

=D

The statement of the lemma now follows from multiplicativity. U

Our next result relies on an explicit evaluation of the Gauss sum (4.14)). Let
b,c € Z and let g be an odd integer. Then according to [15, p. 66], we have

G(b,c;q) = eq (—4bc?) (g) 04\, (4.15)

provided that (b,q) = 1. Here 4b denotes the multiplicative inverse of 4b
modulo ¢, and

5 — 1 if g =1mod4,
)i if¢g=3modA4.

Define the dual form
F*(y) = AgAsAgyi + At AsAgys + At Ap Agys + Ay Ag Asyy. (4.16)
The following result follows on inserting (£I5) into (EI3).

Lemma 4.6. Let p{2Ap be a prime. Then

() = (2£) e (5D,

where ¢, (N) is the Ramanujan sum.
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By standard properties of the Ramanujan sum, this result implies that
Spr(c) = 0 unless p | F*(c), whenever p{2Ap and r > 2.
We proceed by using our work so far to study the asymptotic behaviour of

the sum
S(we) =Y q7*8,(c), (4.17)
qszT
for suitable vectors c.

Lemma 4.7. Let ¢ > 0 and assume that F*(c) # 0. Then
<D a8y (e)) < 2| P T (i)'

q<zx 1<i<4

Proof. Define the non-zero integer N = 2ApF*(c). To handle ¥(z; c) we sum
trivially over ¢, finding that

YIS0 = Y @ 1Skl Y a’lSu(e)l.

<z 92T 1<z /q2
q2‘N°° (q17N):1

It follows from Lemma that the inner sum is restricted to square-free
integers ¢; and that |S,, (c)| < ¢} Lemmayields

Zq ?19,(c)| < log x Z |5 q2 < logx Z H (A;, )2,

q<z q2<T g2<z 1<i<4
q2|N*° q2|N*°

The statement of the lemma follows on noting that there are O.(N¢z*) values
of g» that contribute to the remaining sum. O

We shall also need to study ¥(z;0). First, we recall the definition (A1) of
Aypaq and establish the following result.

Lemma 4.8. Letr > 1 and p | Ap, with p{2Ap.a. Then S,-(0) = 0.

Proof. We return to (AI3]) with ¢ = 0. The assumption p 1 2Ap,q implies
that v,(Ar) = 1. We suppose without loss of generality that v,(A4) = 1 and
pt A1 AsAs. We may evaluate G(ad;, 0;p") using (£I0) for 1 < i < 3. Next,
on writing A, = Ay/p, it is easy to see that

if r=1
Glad 0;p) = Y epor (adiz?) =7 oy
(aA4,0;p") €p (@ 45”) {(;A )5sz if r > 2.

x mod p”

Hence S,-(0) = 0 for r > 1, since the a-sum is 320 4 (%) = 0. O

We now have everything in place to study ¥(x;0). This time we shall sum
non-trivially over ¢ using the Burgess bound for short character sums.
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Lemma 4.9. Let ¢ > 0 and assume that Ap # 0. Then
Z(m; 0) <. |AF‘3/16+5A3§51 pl/2te
Proof. Define the non-zero integer N = 2Ap.q. We have
S(x;0) = > ¢;°5,(0) > 475, (0).

qzéﬂgo q1<z/q2
q2|N (q1,N)=1

It follows from Lemma [£.§ that the inner sum is actually only over ¢; which are
coprime to 2Ap. Setting A = 2Ar for convenience, it follows from Lemma [£.0]

that
_ Ar\
> so- X () v
q<X q<X q
(g,4)=1 (q,A)=1

where ¢* = 1% h, with h(d) = pu(d)/d. Opening up ¢* and inverting the order
of summation, we conclude that

_ p(u) (Ap Ap
> oso - X M (S) T ().
u u v
qs<X usX v<X/u
(Q7A):1 (u,A):l (’1)7A)=1

According to Burgess [6], [7], the inner sum is O.(|Ap[¥157¢(X/u)'/?), for any
€ > 0. But then we have

- 1
Z q 3Sq(0) <, |AF|3/16+€X1/2 } : =7 <. ‘AF|3/16+5X1/2.
q<X =
(g:4)=1

Applying this with X = z/¢y and returning to the start of the argument, we
may now deduce from Lemma that

[Ticica(ae, Ai)1/2
(z;0) K. |Ap|P10+egl/2 Z hE

qQ2<x 2
a2/ Aoy

3/8
<. |AF|3/16+€Abédxl/2+E7

since there are O.(]Ap|°2®) choices for ¢o in this sum. This completes the
proof of the lemma. O

We end this section by considering the singular series (4.7]), which we may

write as
S(F) =]]D_r *5(0).

p r=0
We prove the following upper bound.
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Lemma 4.10. Whenever Ar # [0 we have
S(F) < Ayl L(L xp) < Alall FII7,
where xg is the quadratic character defined by taking xr(2) =0 and

Xr(p) = (%)

for odd primes p.
Proof. When p 1 2Ar we have

Spr(0) = (if ) e,

by Lemma [A.6] whence
[T D S, (0) < L(1, xp).
p"’2AF r=0

The conductor of xr is O(||F||*), whence L(1, xr) < log(2+ || F||) < ||F||°.

The factor corresponding to primes for which p | Ar and p { 2Ap.q is just
1, by Lemma [4.8 It therefore remains to consider primes p | 2Ap.q. Suppose
that p/i||2A4; with f; < fo < f3 < fi, say. Then Lemma L5 yields

Zp .8, (0) < Zp [T min@”?,p"7).
1<j<4

If we bound the minimum by p'/? for j = 4 we see that

Zp 4rS << Zp mln 3T/2 (f1+f2+f3)/2) < p(f1+f2+f3)/

If p°||Apaq this is O(p®/?), so that primes which divide 2Ay,q provide a total
Og(AiéﬁJre) for any € > 0. The lemma then follows. O

4.3. The main term. We now collect our estimates together in order to com-
plete the proof of Theorem Il Let ¢ > 0 and let C' = || F||Y2Q*. Returning
to ([A3), it follows from part (i) of Lemma 2] that

Ny (P)= M(P)+ E(P)+ O(1),
where

- é iq_45q(0)[q(0) and E(P)=— > Zq_45
q=1

cezt ¢=1
0<|c|<C
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In both M(P) and E(P) we recall that I,(c) vanishes for ¢ > @, by the
properties of the function h.

To handle M(P) our first task is to relate I,(0) to the singular integral,
given by (4.0). To begin with we note that

10) = P [ weon (.66 ) ax

where G(x) = ||F||7'F(x). Since w is compactly supported we will have
|G(x)] < ¢, whenever w(x) # 0, for some constant ¢,, depending only on w.
We choose a smooth weight function wy : R — R supported on [—1—c¢,,, 1 +¢,]
such that wy(t) =1 for t € [—cy, ¢,]. This choice can be made in an explicit
way such that wy depends only on w. This allows us to write

1,(0) = P! / w(x)wo(G(x))h (%,G(x)) dx.
R4
The function f(t) = we(t)h(q/Q,t) is compactly supported with a continuous

second derivative. Recall the definition ([B.II]) of the function K(u;d). The
above condition is enough to ensure that

/_OO fO)K({t—7;0)dt — f(1) as o]0,

uniformly in 7. As a result one sees that

= P*lim /R 4 / <%t> K(t — G(x); 8)dtdx.

Using the equation (3.12]) we are now led to the expression

1,(0) = Phiim [ (Sn(mo0) 2J(e- )L(6)do
)= 700 v ’

with J(0;w) given by (4I1]) and

L(§) = /_ : wo(t)h (%,t) e(0t)dt.

The following result is concerned with estimating this integral.
Lemma 4.11. Assume that ¢ < Q). Then

L(0) = 1+ On((g/Q)™) + On((g/Q)"0]")
for any integer N > 1.

We will prove this at the end of this section, but first we use it to com-
plete our treatment of 7,(0). Combining Lemma [£.4] with the trivial bound
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J(0;w) < 1 we have J(6;w) <y (1 + |0])72V||F||*N7. The error terms in
Lemma [A.17] therefore contribute a total

o) N N
<y Pt [T LR pyooag < PasQ)

for any N > 2. Moreover

/_Oo (%)2 J(0; w)dd — /_ : J(0;w)do

oo

as 0 [ 0. On replacing 0 by || F||# we then see that
I,(0) = P*{||Fllowe(w; F) + On((¢/Q)™ | F[**™) }

for any ¢ < Q and any N > 2. In particular, if ¢ < Q|| F||~°" then, by taking
N suitably large, the error term can be made smaller than any given negative
power of P, by virtue of our assumption that ||F|| > P".

We will need the following upper bound for the singular integral, in which
we do not make either of the assumptions (A2]) or (L3).

Lemma 4.12. Suppose that Arp # 0. Suppose either that w is a smooth weight
function of compact support, or that w is the characteristic function of [—k, k|*
for some k > 0. Then oo (w; F) <, |Ap|~V4

We will prove this in the next section. Taking the lemma as proved, we see
that (4.3]) implies that

Ooo(w; F) < ||F||_1+”. (4.18)
We now have

. 4
M(P) = ”F““wg’ﬂp S gS,(0) + 0 (T (QUEI™)] + 1)
q<Q||F||=5n

T(M) = é S 4715,(0)1,(0).

q>M

Summation by parts yields

T(M) = —IQMQ(]WO) Y(M;0) — % /MOO Y(x; 0)%Ix;0)dx,

where Y(z;0) is given by (4I7). However [,(0) vanishes identically when
x > (), whence it follows from Lemmas and that

Fnp4 Flnp4
IFIPY im0 <,

3/16+4¢ A 3/8 N1/24€
Q’M  M<o<q Q*M 1A B @ .

T(M) <



DENSITY OF RATIONAL POINTS ON A QUADRIC BUNDLE 31

Taking M = Q||F||=®" with Q = P||F||'/?, and using the bounds |Ag| < || F]|*
and Apaq < ||F]]7, this yields

T(Q|IF|~") <« HF||_1/2+5177/8+6P3/2+5'

Our assumption that ||F|| > P7 enables us to replace P by ||F||*/7, whence,
on choosing ¢ suitably small, we obtain the bound

Fllos(w; F)P* _ _
M(P) _ || ” 6(92 ) Z q 4Sq(0) +0 (HFH 1/2+777P3/2),
a<Q|F||=5n

A similar analysis shows that

||FC£|2P4 qgQ%;”M 418,(0) = ||FC£|2P4 qz:;q—45q(0) + O(|| F|[/2+on p32).
The infinite sum is just &(F'). Hence, using (£I8)), we find that

M(P) = 0oo(w; F)S(F)P? + O (||F||7/#™Mp32)
This is satisfactory for the statement of Theorem 1]

Proof of Lemma[{.11. When |f| < 1 the result is an immediate application
of Heath-Brown [12, Lemma 9]. Moreover, taking N = 2 in ([@I0) yields
h(z,t) < o+ min(z~!, zt72), whence one trivially has L(f) < 1 for ¢ < Q.
We may therefore assume that ¢Q 10| < 1 < |0|. In this case we must modify
the proof of [12 Lemma 9]. It will be convenient to write x = ¢/@ and
X = /z/|f|. Since wy has compact support we may suppose that t <, 1.
Thus (AI0) implies that h(x,t) <y ¥ 7¢|~" for any N > 1. It then follows
that the range [t| > X contributes On(zV ' XN) = On((z]0])N=1/2) to
L(#). This is satisfactory for the error terms of Lemma [Tl on redefining N.

When |t] < X we use Taylor’s theorem to approximate wg(t)e(ft) by a
polynomial of degree M, say, together with an error O, (XM*1|9|M+1). Since
we have h(z,t) < x + min(z~!, 2t7?), as noted above, this error term con-
tributes Oy ((x]0])M+V/2) to L(), which again is satisfactory if M is large
enough. The polynomial produced by Taylor’s theorem has terms c,,t™ with
Cm < 0™ When 1 < m < M we apply [12, Lemma 8], producing an overall
bound Oy, ((X10])™(x/X)M) for each value of m. One should note here firstly
that the required condition z < min(1, X) holds, by virtue of the condition
z|f] < 1, and secondly that X2™ =1 < 2M XM for M > 1, since 2 < 1 < |4
On considering the possible values for m € {1,..., M} we then see that each
monomial ¢,,t™ contributes Ons((2]0))™) + O ((x|0])M+D/2), which is satis-
factory when M is taken large enough. Finally, the constant term cg is handled
analogously using [12 Lemma 6], producing the same error term together with
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a main term c¢y. However the function w, takes the value 1 at the origin, and
the lemma follows. O

4.4. The singular integral. We begin by proving Lemma[4.12l The function
J(O;w) = / w(x)e(—0G(x))dx
R4

is well-defined and continuous. We claim that J(6;w) € L'(R) for w as in the
lemma. If w is smooth and supported in [—k, k|* then

J(0; w) <y / e(—0G(x) + x.y)dx
[—k,K]%

for some y € R*, by Lemma 3.2 of Heath-Brown and Pierce [14]. The integral
on the right factors into four 1-dimensional integrals, with

K F
/ e(—0A;|F||~'2? + 2y;)dr <, min< 1, 17 :
L |64;]

It then follows that

4
. I || : [Pl
J(@,w)<< mln{l, |9A]‘ < min 1, W s

J=1

whence

—00 —00

o o |F||? Izl
/ J(Q,w)d9<</ mln{1,92|AF|1/2 d9<<|AF|1/4’

as required.

We now use the machinery developed above to see how to compare o, (w; F)
for different weights.

Lemma 4.13. Let wo(x) be the characteristic function of the region [—1,1]%.
Suppose that wi(x) (respectively, wo (X)) is supported in the region n < |x| < 1
(respectively, n < |x| < 1+n) and takes values in [0, 1] there. Suppose further
that wy(x) = 1 whenever 2n < |x| < 1 —n (respectively, we(x) = 1 whenever
2n < |x| < 1). Then

Ooo(Wi; F) = 0o (wo; F) + 0(771/2|AF|_1/4),

fori=1,2, the implied constant being absolute.
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Proof. We confine ourselves to the result for wq, the function wy being treated
analogously. We first calculate that

e > /sin(r6)\ >
J(0;w)dd = lgg]l 50 J(6;w)dé

= i /_ } /R w(x)e(~0G(x) (mgge))? dxd.

The conditions for Fubini’s Theorem are satisfied, allowing us to switch the
two integrations. The relation (8.12) then shows us that

/_OO J(O;0)d0 =lim | w(x)K(=G(x); 8)dx (4.19)
It follows that
IF (o ) = o ) =ty [ {n) = 09} € (-Gl

We have |w;(x) — wo(x)| < 1 for all x, the difference being non-zero only if
either |x| < 27 or there is some index i for which 1 —n < |z;| < 1. Hence

8

[ (%) = wo(x)| <D fulx),

n=0

where each f,(x) is the characteristic function of a certain box I3 X ... X Iy.
For n = 0 this is just [—27, 2n]*, but otherwise 3 of the intervals I; have length
2, and the fourth has length n. Thus

8
[ F[[- oo (w1 F) — 0o (wo; F Zl& K(-G(x);0)dx.

n=

The expression on the right may be evaluated via a further application of
(419). As in the proof of Lemma [£.12] we have

/ 6(9AjHF||_1x2)dSL’ < min {meas(lj) ’ "{LZH‘ } 7
J

I
leading to a bound

. . = 17
[ F[{ooc(wi; F) = 0o (wo; F)} <</_ min {77> ZINE dg

[e.9]

2 IIF]
|A |1/4

and the lemma follows. O

<n'/?
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It is convenient at this point to record some facts about 7., as given in
Theorem L1l

Lemma 4.14. Let 0,.(y) be given by [B3]), and define

/ / —0F (x;y))dydé. (4.20)
1 1]4
Then

= / 0o (¥)dy = / 0o (), (4.21)
[_171}4 [_171]4

Moreover, these last two integrals are absolutely convergent.

Proof. In order to verify (4.2I) it is enough to confirm that the orders of
integration may be suitably changed, and this will be permissible provided
both

| eoreayyae and [ e(-oFGay)y
[—1,1]4 [-1,1]*

are in L'(R x [—1,1]*). However these are of order

4 4
[Tmin{1, 1617 il and [T ming1, o] /2l 2}
i=1 =1

respectively, and so are both integrable. U

4.5. Analysis of E(P). The key observation in handling £(P) is that the hy-
pothesis ||F|| = P" in Theorem [.1], along with the assumption (£4)), allow us
to restrict to ¢ € Z* for which F*(c) # 0. Indeed, suppose for a contradiction
that ¢ € Z* is such that 0 < |c| < C' and F*(c) = 0, where F*(c) is given by
(4.16). Let us assume, for example, that ¢; # 0. Now, if we write

II »

pll A1
pfA2A3Ay

then the equation F*(c) = 0 implies that A | ¢;. Since 1 < |¢i] < C we
would then deduce that A} < C. However (&3] and (£4) yield

| A
Abad

Since C' = ||F||*/2Q¢ with Q = ||F||"/?P, we therefore obtain a contradiction
if € is small enough and P is large enough, since P < || F|.

We now have
LY Y

cezt q=1
le|<C
F*(c)#0

e L



DENSITY OF RATIONAL POINTS ON A QUADRIC BUNDLE 35

The analysis of quaternary quadratic forms, in Heath-Brown [12 §12] for ex-
ample, normally requires one to obtain some cancellation from the summation
over ¢, but this is no longer necessary because we have been able to remove
vectors ¢ for which F*(c) = 0.

Noting that I,(c) is only supported on ¢ < @), we deduce from part (ii) of
Lemma [£.2] that

- ||F|| P 3
Z < Tap 7 2 4 ISule
a<kQ

Lemma [4.7] now 1mphes that

||FH2+EP3+5 Z H1<i<4(Aia Ci)1/2

E(P) < IAR[1202 c|

Z4
0<|c|xC

It remains to estimate the c-sum, which we temporarily denote by K. We
plainly have

dqdodsd
Z e Z maX1<z<4|d Cz|

dilAq cez™ {0}
c;kC/d;

C C C log C
—+1 1 1
<(d,~+><d]+)<dk+) d;

for some permutation {i,j, k,l} of {1,2,3,4}. Multiplying this by v/d;dadsd,
and recalling that C' = ||F||*/2Q¢, this gives

K<<Zlogc<c+\/7) <C+\/7) <C+\/7)<<||F||3/2+6Pa

di| A

The inner sum is

on employing the trivial estimate for the divisor function.
Absorbing P¢ into ||F||¢, it now follows that

HF||5/2+5P
|AF|1/2

Our hypotheses (£3) implies that |Ap| > ||F||*~37, from which one sees that
our bound for F(P) is satisfactory for the error term given in Theorem (4.1

E(P) <

5. COMBINING THE VARIOUS INGREDIENTS

Theorems 3.1 and £ will be our main tools for the proof of Theorem .1l In
this section we begin by adapting them so as to count only primitive vectors.
We then apply Theorem [A.1] to the quadrics in y given by F(x;y) = 0, and
sum the resulting asymptotic formulae with respect to x. In doing so we must
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allow for those vectors x excluded by the conditions of the theorem. The
next stage is to remove the weight w occuring in Theorem L1l We then piece
together our two main estimates, and make suitable adjustments so as to cover
all primitive x,y with |x|*|y|? < B. In §6 we will show that the main terms
combine to give cBlog B, as B — oo, with the constant ¢ given by (L3]).

5.1. Primitive solutions with small y. In analogy to (B8.1)) and (3:2)) we
define

M(y; R) = #{x € Z': |x| < R, Ax) 0, F(x:y) = 0}

and
No(B;Y) = > M;(y; (B/lyl)"?),
yEZ‘érim
Y<[|y|<2Y
so that
No(B;Y) < B + B3y =8/, (5.1)

by the first part of Lemma 211

We may also estimate Ny(B;Y) by removing solutions with A(x) = O
from the counting function N;(B;Y) given by Theorem Bl According to
Lemma [2.6] there are O.(BY "' + Y1) solutions with A(x) = 0. Moreover
there are O(X?) possible square values for A(x) # 0 when |x| < X, each
such value corresponding to O.(X*¢) vectors x. Thus Lemma 2.3 shows that
solutions with A(x) = [0 # 0 contribute O.(B*3+Y?/3) to Ny(B;Y). Taking

e = 2 we deduce that

15
B2/3+ey 23 _ (B2/3Y4/3)3/5(BY_1/3)2/5 < BY3Y/3 4 gy 13,
It then follows from Theorem [B.1] that

No(B;Y)=B ) QTOT(‘E) + O(B*3Y*3) + O(BY '3 + O(Y*Y) (5.2)

yeZprim
Y<[|y|<2Y

for Y > 1, where 05(y) is given by (B.3).
We now set

My(y: R) = # {x € Z, [x| < B A(x) #0, F(x;y) =0}

prim
and
Ns(B;Y)= > M (y:(B/ly|)"?),
yEZ;;l)rim
y<|y|<2y
whence

Mg(y; R) =) _ u(d)Ms(y; R/d).

d<R



DENSITY OF RATIONAL POINTS ON A QUADRIC BUNDLE 37

Our goal now is the following estimate.

Lemma 5.1. ]f% <Y < BY* we have

. :i 00 (¥) 2/3v,4/3 -1/3
N3(B;Y) R0 > I + O(B*PYY3) + O(BY ~1/3).

yezZ4

prim

Y <|y|<2Y
Proof. We start from the relation
Ny(B;Y)= Y uld)Na(B/d*Y).
d<(B/Y2)1/3

To estimate this sum we choose a parameter D in the range 1 < D < BY/3Y ~2/3
and use (5.2) for d < D and (5.1) for d > D. This yields

Ng(B; Y) - B (Z %) Z QOO(y> + O(B2/3Y4/3) + O(By—l/?))

2
ey ly|

yezt

prim

Y<|y|<2Y
+O(Y*D) + O(BD™%) + O(B**D~*y ~%/3).
It follows from (B.9]) that
050(¥) V(y)
—_= _ << 1’
2 2 |y [*d(y)

2
yezt |Y| yezt

prim prim

Y<|y|<2Y Y<|y|<2Y

so that the leading term is

i QOO(Y) -2
B 2 e OB

yeZ4

prim

Y <ly|<2y

Thus if we choose D = BY3Y~4/3 we obtain

B 0 _
N(BY) =5 2 2 |y<|§) + O(B*Y*%) + O(BY ~"/3) + O(BY3Y*/3),

yezt

prim

Y<|y|<2Y
Since Y < B'/* the final error term is bounded by the first, as required. O
5.2. Primitive solutions for typical small x. We next perform a similar

computation for solutions in which x is small and y is large, counted via the
fibration into quadrics, using Theorem Il We write

Mi(x; Pow) = ) w(Ply),

yezZ*
F(x;y)=0



38 T.D. BROWNING AND D.R. HEATH-BROWN

where w(y) is an infinitely differentiable weight function of compact support
that vanishes for |y| < 7. Then Theorem 1] shows that

M7 (x; Pw) = 040 (x;w)S(x) P? + Ouwn (|X|_1/2+7’7P3/2 + |x|1/2+2"P)
when |x| > P", provided that
x| <l (< [x]), for 1< i <4, (5.3)
and that
Apaa(x) < x| (5.4)
The singular integral and series are given by

000 (3 W) / /R 4 —OF(x;y))dydo (5.5)

and
= [ lim p™#{y € (Z/p'Z)" : F(x;y) = 0mod p}.
p

We now write

Ms(x; Pw) = Z w(Py)

yezZA |

prlm

F(xy)=0
and proceed to derive the following estimate.

Lemma 5.2. Suppose that x satisfies the conditions (5.3) and (5.4)), and that
P7 < x| < P?3. We then have

Too (%3 0)S(x)
¢(2)

My(x; P,w) = P2 40y, (x| 7V2PP35) 40, (|x| /2 P53,

(5.6)
Proof. Our starting point is the relation

Mg (x; Pyw) = Y u(d) Me(x; P/d, w)
d<P
= 0o (x;w) & (x) P{¢(2) ™ + O(P7)}
+ Ow " (|X‘_1/2+7nP3/2 + |X‘1/2+277P1+77> )
If we assume that |x| < P?/3 the final error term is O, (|x|~1/2P5/3+57). We

also observe that 0., (x;w) < |x|7'7, as in (418, and that S(x) < [x|" by
Lemma [£10 and (5.4]). The estimate (5.0]) then follows. O

We are now ready to consider the average

Ni(B;X,w) = Y My (x (B/x[)?w),
x€Z4 . A(x)#0

prim?

X<|x|<2X
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for which we have the following estimate.
Lemma 5.3. Let
B¥ < X < BYS= BM < X < BY679, (5.7)

Then if n is small enough we will have

B Ooo(x; W) S (x) 2
Ny(B; X, w) = ) Z 3 + Oy y (B0,
g( ) x€Z4 . A(x)#0 |X‘
)I()<\x|<2X

Proof. We would like to apply Lemma for those vectors x which satisfy
the conditions (5.3) and (5.4), and for which (B/|x|*)"? < |x| < (B/[x[?)"/3.
This final constraint holds if X < |x| < 2X with X satisfying (5.7)). Moreover,
the error term contributes a total O,,,(B%°31X), which is satisfactory for X
in the range (7). Thus to complete our treatment of Ny(B; X, w) we must
consider vectors x for which either (B.3]) or (5.4) fails.

We begin by considering the number of solutions (x,y) for such x. By the
third part of Lemma 2.1 the number of solutions (x,y) for which (53] fails
will be

<. BsX—317/4{B+Bl/2X5/2} <. BsX—3n/4{B+Bll/12} <. Bl+€X_3’7/4.

This is satisfactory when B?" < X < BY6~* provided that we take € < 72
Similarly, by Lemma 2.7 the number of solutions (x,y) for which (5.4) fails
will be

<. B¢ {BX—n/24 +Bl/2X5/2}

for any fixed ¢ > 0. As before, under the assumption (5.7)) this becomes

O(B'=7°/20Y if we choose ¢ small enough. Thus vectors x which fail to satisfy
either (5.3)) or (5.4) will make a suitably small contribution to Ny(B; X, w).
To complete the proof of Lemma [5.3] it remains to prove that

(X w)6 _
X - (X| u‘)g %) o, (5.8)
xEZ‘éhm7 A(x)#0 X
X<|x|<2X
BE3) or (B4 fails

since for X in the range (5.7) the right hand side will then be O(B~"°/),
which is satisfactory for Lemma [5.3l According to Lemmas 410 and [4.12] we

have
pre Abaa(x)!!

<. X _—
: |931!L'25531'4|1/4
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Let s run over square-full positive integers, and write s = Ap,q(x) and n =
|z1202324]. Then vectors for which (5.3) fails will contribute

<. X 3+ Z 81/4 Z T4(n)n_1/4

n<16X4-n

s|n
<. X 342 Z Z ——

s m<16X4-1/s

<. X 342 ZX3_3”/48_3/4.

However, if s runs over square-full integers the infinite sum Y s7%/* converges,

so that the above will be O(X~"/2) if we choose ¢ small enough, which is
satisfactory for (0.8]). Similarly, vectors for which (5.4) fails will contribute

<. X3+ Z 81/4 Z T4(n)n_1/4

sz X1 n<16X4
s|n

<. X 342 Z Z m— V4
s>X7 m<16X4 /s
X3+ X343/4
<. s;ﬁ
Since
25—3/4 < S/
s>8
for any S > 1, the above will be O(X~"/?) for small enough e, which again

produces a satisfactory contribution to (5.8). This completes the proof of the
lemma. U

5.3. Removing the weights. The counting function Ny(B; X, w) involves a
weight function w, and our next task is to remove it so as to produce

Ns(B:X)= ) > wl(B/IxI) ),
xEZérim,A(x);éD yEmem

X<|x|<2X  F(x;y)=0
where wy is the characteristic function of [—1,1]*, as in Lemma I3 The

result is described in the following estimate.

Lemma 5.4. If X is in the range (5.7) we have

NiBX) = 3

C(2) x€Zt A(x)#£0

prim?

X<|x|<2X

+0(n'?B) 4+ 0,(B*""/?),
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We remark that 0, (x) = 040 (X; wp) in view of ([E20) and (5.5).

Proof. Given n € (0, ﬁ) we can construct specific weights wy, ws depending
on n alone, and satisfying the conditions of Lemma [£13 Thus for all u we
have 0 < wy(u), we(u) < 1. Both functions vanish when |u| < 7. The weight
wy takes the value 1 for 2n < |u| < 1 — 1 and vanishes for |u| > 1; the weight
wy takes the value 1 for 2n < |u| < 1 and vanishes for |u| > 1+47. In particular
0 < wy(u) < wp(u) for all u, so that Ny(B; X, w;) < N5(B; X). The condition
that |(B/|x[>)~"%y| < 2n is equivalent to the condition |(B'/|x|®)~?y| < 1
with B’ = 4n*B, whence

N5(B; X) — N5(41°B; X) < Ny(B; X, wy).
Since the first part of Lemma 2.1 shows that
Ns(4n?B; X) < n**B
for X < B'/5, we see that it will suffice to show that

B 00
N4(B; X, ’wl) = — Z M + 0(771/23) + On(Bl—U2/2O)‘
§(2) x€Z4 . A(x)#£0 ‘X|
)?<|x\<2X

for i = 1,2. However according to Lemma we have

B oo\ X Wy —
NB;Xw) = = Y7 x wg)G(X> + 0, (B0
C(2) x€Z4 . A(x)#0 |X‘
)?2Tx\<2X

for i = 1,2. It needs to be stressed at this point that the implied constant for
the error term depends only on 7, since the two weight functions are completely
fixed once 7 is chosen. Moreover our two weight functions do indeed vanish
on a neighbourhood of the origin as was required at the outset in §l

We now use Lemma to replace 04 (x;w;) by 05(x), introducing an
error O(n*/?BS(X)) with

S(x)

S(X) = Z | w1 2o gag| = X (5.9)
ergrim, A(x)#£0
X<|x|<2X
We therefore deduce that
B 0o (X)6(x
NolBiX) = o %
xEZgrim,A(x);ﬁD (5 10)
X<|x|<2X ’

+OM2B) + O(n'/2BS(X)) + O,(B/%).
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In order to estimate the sum S(X) we apply Lemma .10 with ¢ = 2—10, which
yields

SX)< X7 3 frmr] A ()P O L(L, ).
x€z4 A(x)#0

prim’

X<|x|<2X

We proceed by mimicking the proof of Lemma Let S(X1,...,X4;X)
denote the contribution to the right hand side from the dyadic ranges

It will be convenient to put X = X ... Xy Writing s = Apaq(x), which is a
square-full integer, we conclude that

S(X1. ., X X) < XXV N 808N N, ),

s square-full di,...,dg x€S

where S is the set of x € Z* in the region (5.11]) for which with A(x) # O and
d; | x; for 1 < i < 4. Appealing to (211), it follows that

S(X1,.. . X X) < XXM ST B0 NS (dy L dy) T

s square-full di,...,dy

<<X—3)A(3/4 Z 7_4(5)5—23/40

s square-full

< XT3XA

On summing over dyadic values for the X; subject to max X; < X, we finally
conclude that

S(X) < 1. (5.12)
Once inserted into (5I0)), this therefore completes the proof of Lemma[4l [

5.4. The counting function N(Q; B). Using Lemma [5.1] together with a
dyadic subdivision of the range for |y|, we find that

Ax) #0, F(x;y) =0
7 < 7A .
#%&”ep“” in <oy ]2 < B, |y| < BYA

_i Qoo(Y> (513)
B A P +OB)

yeZprim
ly|<BY/*
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We would like to handle the range |x| < B'/S similarly, using Lemma [5.41
We claim that

A(x) #0, F(x;y) =0 }

ezt x7ZE.
#{( Y) €ZLyrim X Lprinm x|3ly|? < B, |x| < BY/S

B 00 (X) 6 (%)
- ¢(2) 2

= BE (5.14)
B2"<\xl|)2rgl/6

A(x)#0
+0(n'/?Blog B) + 0,(B*""/®log B).

In order to prove this we must handle the contribution of the two ranges
x| < B?" and BYS" < |x| < B'Y5, both for the number of solutions to
F(x;y) = 0, and for the second range in respect of the sum of leading terms.
Lemma 1] shows that N3(B;X) < B when X < BY% so that the two
awkward ranges contribute O(nBlog B) on the left, which is dominated by
the error term O(n'/2Blog B) in (514). In view of Lemma EIZ a range
X < |x| € 2X contributes O(BS(X)) to the main term on the right in (5.14),
in the notation of (5.9). Using the bound (5.12]), and summing over dyadic
values of X in the range BY/5~% « X « B'Y/S B/6-31 « X « B'Y/S we obtain
a contribution O(nBlog B), which again is satisfactory. This establishes the
claim in (5.14)).

We now combine the estimates (5.I3]) and (5.I4]) so as to cover the entire
range |x|3|y|? < B in the definition (L)) of the counting function N(Q; B),
with Q = X(Q) \ T and T being given by (L2Z). We may remove the points
with [x| < BYS and |y| < BY* at a cost O(B), using Lemma 2.1l Passing to
the affine cone and allowing for multiplication of x and y by units, we therefore
reach the following conclusion.

Lemma 5.5. We have

B 1
-2 (c @+ am)
+O( 1/2Blog B) + 0,(B*""/?10g B).

where
0 ~(x)6
Mi(B) = g (f) and  Mp(B)= Y TP (X)g(x)
yeZgrlm |y‘ xezérlm ‘X|
ly|l<B1/4 B |x|<B/¢

A(x)#0
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6. THE FINAL RECKONING

In this section we shall produce asymptotic formulae for M;(B) and Ms(B),
as B — oo. We shall begin in §6.1] by dealing with M;(B), which is the
easier to handle, before developing the techniques further in §6.2] to handle
M, (B). Finally, in §6.3] we shall confirm that the two contributions combine
in a satisfactory manner to complete the proof of Theorem [l

6.1. Analysis of M;(B). The goal of the present section is the following
result.

Lemma 6.1. We have

M,(B) = %(4)7'00 log B+ O(1),

where Ty, is given by (L4).

We begin by using the Mobius function to detect the primitivity condition,
which shows that

sy = Y MO exly),

2 2
k<B1/4 k YEZANTo |Y|
where
To = To(k) = {y e R*: 1 < |y| < BY*/k}. (6.1)
One sees from the definition (B3] that o (ky) = k%000 (y), whence
k %
)= Y 2=ly). (6.2)
k |yl
k<Bl/4 YEZANT,

We now wish to replace the sum over y by an integral. The argument will
make repeated use of the bound

0so(y) < ly| ™%, (63)
which is immediate from (3.9). We start with the following estimate.

Lemma 6.2. If min,; |y;| > 2 then

|y ? |y + t[?
Proof. We begin by showing that
V0o (1) < (min fu]) "2 Aw) 722, (6.4)

4 Oco y+t i - - N
( ):/[01]4 deo((m}nlyil) VAl ?).
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Without loss of generality we may just examine the partial derivative with
respect to y;. Our definition ([33)) shows that

o) = [ [T 1-02)a0

where we write temporarily

1w = [ ewnar

1

Then I(¢)) < min{1, [¢)|7'} and
1
iI(—@u%) = —47Ti9u1/ ze(—0zui)dr < Juy| "
8U1 1

Thus

a o0
() < | / min{ 1, 0] uuzua|~2}d0
1 —00

< ‘Ul‘_l‘UQU3U4|_2/3
< (min |u|) 72 A(w) |7,
as required.
We now use the decomposition
0o(Y +1)  000(¥) _ 0s(y +1) — 0(y)
ly +tf? ly[? ly +t?
If |t| < 1 and min; |y;| > 2 then
lyi + til = |yl = |t = 3w,
so that |y +t|72 < |y|™2. Moreover the Mean Value Theorem shows that

+ o0 (¥){ly +t] 72 — |y|*}.

0
_Qoo(y + ft)

|Qoo(y+t) - QOO(Y)| < sup 85

0<é<1

It then follows from ([6.4]) that

< (min |y; A )
TR (min 1)) A(y) [}y

We also have
ly+t 7=yl =y + ¢y H{ly + o)+ [y H{lyl = ly + ¢}

Assuming as above that |t| < 1 and |y| > 2 we see that |y| < |y + t| < |y]
and |y +t| — |y| < 1, so that

05 ()l + 172 = [y]7*} < Iy ox(y) < (miny,) 2| AGy) 2]y |72,
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by (€3]). We therefore have

00 (Y +1)  00(y) . ~1/3 —2/3)|—2
= + O ( (min |y; A / , 6.5
<t = 200 (minlul) AW (69
and the lemma follows. O

Our next result converts the summation over y in (6.2) into an integral.

Lemma 6.3. We have

Qﬁ-‘;’ — L(B:k) + O(1),
yEZA*NTy Y
where
s = [ &
To (k) ly|

Proof. We define
X ={yeZ":|y| <BY*/k -2, min |y > 2}

and
vy = [+ (0,19,
yeX
The reader should note that these could be empty if k is large enough. The
sets y + (0, 1]* forming Y are disjoint, and Y lies inside the set Tj defined in
(61). Moreover Ty \ Y is a subset of 71 U T3, where

T, ={teTy: BY*/k - 3 < [t| < BY*/k},

and
T2 = {t € TO : 1'I111'l|t2‘ < 3}
It then follows from Lemma [6.2] and (6.3)) that

20Y) _ ;g0 <i E) ,

ly|?

YEZANTy i=0
where
Ey= Y. (m}nIyil)_l/?’IA(.Y)|_2/3IYI_2,
yEZA*NTy
min |y;|>2
and
B= Y v+ [ vl
yEZANT; T

for © = 1,2. We readily find that F; < 1 for ¢ = 0,1,2, and the lemma
follows. O
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In order to complete our argument we will need the following evaluation of
J 1(B X ]{3)

Lemma 6.4. If k < BY* we have
Ji(B; k) = 27, log(BY* /k),
with T given by ().

Proof. We divide Ty(k) into four (overlapping) pieces according to the index i
for which |y| = |y;|. We observe from (8.3) that o (y) is unchanged when we
permute the coordinates, and that 0u(y) = |y| 2000 (t1, 2, t3,1) if y| = |w4
and t; = y;/|y| for i = 1,2, 3. It therefore follows that

BY/4/k
Jl(B, k‘) :8/ ﬁ/ Qoo(tl,tg,tg,l)dt.
1 -1,1)3

In a precisely similar way Lemma T4 yields

1
Too Z/ 0o (y)dy = 8/ y4dy4/ 0o (t1, 12, 13, 1)dt,
(—1,1]4 0 (—1,1)3

and the lemma follows. O

We can now complete the proof of Lemma Combining ([6.2]) with
Lemma [6.3] we obtain

” Ji(B; k) + O(1).

k<B1/4
We have
Z M logk <1
k<Bl/4
and

Z M —I—O(B 3/4)

k<BL/4
so that Lemma [6.4] yields
2T,
M, (B) = == log BY* + O(1),

and the required estimate follows.
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6.2. Analysis of My(B). We remind the reader that
0oo(X)6(x

3
xezgrim ‘X|
B2’7<\x|<B1/6
A(x)£0
where
rni)= [ [ e(-0FGiy)ayds
—oo J[—1,1]*
and

S(x)=Y ¢S5, withS,=S5,x)= Y > e(aF(xb)).

amod g bmod g
The goal of the present section is the following result.
Lemma 6.5. We have
_ L@
2 ¢(3)¢(4)
where Ty, is given by (L4).

M,(B) Toolog B + O (nlog B) + O,(1),

In order to estimate Ms(B) our plan will begin by showing that the singular
series G(x) can be replaced by a truncated sum

S(x; R) = Z q_45q>

q<R

for suitable R. Using Heath-Brown’s large sieve for real characters [L1], we
shall ultimately succeed in showing that R can be taken an arbitrarily small
power of B, with acceptable error. The constraint A(x) # [ can now be
replaced by A(x) # 0, again with an acceptable error. We then interchange
the ¢ and x summations in My(B) and approximate the x-sum by a 4-fold
integral. Lastly, the remaining ¢-sum will be extended to infinity to get our
final asymptotic formula for My(B). Throughout this analysis we will use
repeatedly the estimate

00 (%) < |A(x)] V1

given by Lemma .12
In order to carry out this plan we first make a crude first analysis of the tail
of the singular series &(x). Since A(x) # [, it follows from Lemma and

partial summation that

Z q_45q <. |A(X)|3/16Abad(x)3/8B_1/2+6,

q>B
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for any € > 0. Since |x|> > |A(x)[?/*, an application of Lemma E.I2 now shows
that the tail of the singular series contributes

Ab d(X)3/8
< B—1/2+5 2
e XEZZA |A(X>|13/16
x|<B1/o

to My(B). Writing s = Apaq(x) and n = |A(x)|, we see that this is

<. B~/ Z $3/8 Z 4(n) <. B33+ Z L

n13/16 5/8
s<B2/3 n<B2/3 s square-full
s square-full sln

Taking ¢ = é and noting that the s-sum is convergent, this shows that

0o (X)6(x; B _
My(B)= ) ( ‘)X|§ )+O(B 18).
ergrim
B21<|x|<BY/6
A(x)#0

Building on this, we now show that the singular series can be truncated to a
much smaller power of B, with acceptable error.

Lemma 6.6. We have

0oo(X)8(x; B8
My(B)= Y ( >|X(|3 )+0n(1).
xezgrim
BQ7}<|X‘<BI/6
A(x)£0

Proof. Since |x|> > |A(x)]?/* and 0.(x) < |A(x)|7%* it will be enough to
show that

1
E(B> = Z |A(X)| Z q_4Sq <<77 1.
XELA im B1/8<q<B
B2’7<|x\<Bl/6
A(x)#0

Note that we have relaxed the condition A(x) # O to require only that A(x)
is non-zero. We shall write s = Ap,q(x) and n = A(x), so that ns™! is square-
free. Since |A(x)| = |x| = B*!, we are only interested in integers n in the
range B? < |n| < B3,
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It follows from the multiplicativity of S, that

Z q_45q < Z v4S,| Z uS,|.

B/8<q<B GRS B8 fu<u<B/v
v|(2s) (u,25)=1

Lemma shows that
S, < 03 H (iji)l/2

1<i<4
<Pt .. a2V
< vt 5)1/2

< v3 min(v?, 5)'/?
<

for v | (25)*. Moreover, Lemmas and 4.8 imply that
n

Su=(2) ¢ (wu,

u
when (u,2s) = 1, where ¢* = 1% h, with h(d) = p(d)/d. Hence

1 ny ¢ (u)
€ —1/2 3/8 L n
DRSS DD DESCUND DRI I S (O B
s<B2/3  v<B B21|n|<B2/3 B"/8 Jy<u<B/v
s square-full v|(2s)> sln (u,2s)=1
since the number of x associated to n is at most 74(n) = O.(B°).
We now write n = sm and split the ranges for m and v into dyadic intervals.
This gives us values M and U < U; < 2U, with

B2 n/8 B
mMOf—)<M<WBmﬁ <U< —
S v

such that
B?* 1/2 m

B g LT et Ty (B
B2/3 v<B M<m<2M |U<u<U;
s square full v|(2s)°
with

_ u
Qs =

0 if u is even.

{U“D*(“) (%) if wis odd,
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In particular o, s < 1. We now write

> 2 () =

M<m<2M |U<u<U;

>y (%)au,sﬁm,

M<m<2M U<u<U;

with 3,, = +1, and apply the large sieve for real characters in the form given
by Heath-Brown [I1, Cor. 4]. This shows that

>y (%) QB <o (MU){MUY2 + M2UY,

M<m<2M U<u<U;

whence
E(B) <. B* Z Z U—1/28—5/8{U—1/2 X M_l/g}'
s<B2/3 v<B
s square-full v|(25)*°
However

U2 M2 < o2B="1 L min{1, s'/2B7"}
< W12 BN/16 4 115/16(51/2 g=ny1/16
< B/16,1/241/32
We therefore deduce that
E(B) <. B0+t Z g—19/32 Z 1 <. B/16+5

s<B2/3 v<B
s square-full v|(25)*°

since there are O.((sB)?) possible values for v, and the sum over square-full
s is convergent. Taking ¢ = 7/80, we therefore conclude the proof of the
lemma. U

Next we wish to show that the condition A(x) # O can be replaced by
A(x) # 0 with an acceptable error. We trivially have

S(x; B < > g< BV
q<B"/8
Moreover Lemma E T2 shows that o, (x) < |A(x)|~/4. We now write A(x) =
n? so that x| < n? < |x|* In particular we will have B" < n < B'3 and

x| < n™32. Moreover each value of n corresponds to O.(B¢) vectors x.
Thus

. 8

j : Uoo(X)G()?)Q B/ ) <. Bn/4+a E n—2 <. B_3U/4+8.

x€Z2 . |X‘
prim

B21<|x|<B/6

A(x)=0+#£0

Bn<n<B/3

This may be absorbed into the error term of Lemma[6.6 on choosing € = 31/4.
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Now that we have truncated the singular series satisfactorily, we may open
up the expression for &(x; B"/®) and interchange the g-sum with the x-sum,
before breaking the latter into congruence classes modulo ¢q. This leads to the
expression

My(By= > a7 ' Y cF(ab))U(ga)+ Oy(1),
q<Bn/3 a,(b rr;odlq
q,a)=

where ¢,(-) is the Ramanujan sum and

a)= Y T

2 TP

x€ prim

Ban‘x|<B1/6
A(x)#0

x=a mod ¢

Any x counted by U(g;a) is automatically coprime to g. Using the M&bius
function to detect the residual primitivity of x we may now write

QUSRI ST DI

k<Bl/6 x€Z*NTy
(k,q)=1 x=ka mod ¢

where k is the multiplicative inverse of k& modulo ¢ and
To = To(k) = {t € (Ry)* : B*/k < |t| < BY¢/k}. (6.6)

(The reader should note that this is not the same set that is defined in (G.1);
we recycle our notation for this and other similar sets.) Since o (kx) =
k1o (x), this simplifies to give

k<B/6 x€Z*NTy
(k,q)=1 x=ka mod ¢

We therefore obtain the following formula.
Lemma 6.7. We have

wm= Y ot XA Y aram Y=o

q<B"/8 k<B1/6 a,b mod ¢ x§Z4ﬂTo
(k,q)=1 (g,2)=1 x=ka mod ¢

The next stage is to compare the x-sum to an integral. We start with the
following estimate, which is an analogue of Lemma [6.2]

Lemma 6.8. If min; |x;| > 2q then

Ooo(X) _4/ Ooo(X+t) . , /41 -3
——==q ————==dt + O(¢(min |z; A(x x|77).
‘X|3 0.q/1 |X—|—t‘3 ( ( i ‘ |) | ( )| | ‘ )



DENSITY OF RATIONAL POINTS ON A QUADRIC BUNDLE 53

Proof. The proof follows the same lines as that of Lemma We begin by
showing that
Vo (x) < (min[a;]) ~AGx)| 7" (6.7)

Without loss of generality it will suffice to examine the partial derivative with
respect to z; in proving this. Our definition of the singular integral yields

Too(X) = /_OO HI(—Q:Ei)dQ,

where we write temporarily

I(y) = /_ e(vy?)dy.

1
By the standard second derivative test [23 Lemma 4.4] we see that

I() < min{1, []~*/?}.

Moreover )
0 1 0
— I(— - —e(— 2dy.
e ( 9551) 20, /_1y8y6( Ox1y )dy

The integral on the right is uniformly bounded, as one sees on integrating by
parts. Thus

0
a—xl](—eﬂfl) <K |:L'1|_1,

whence

1 —0o0

<K |£L’1|_1|l’2$31’4|_1/3
< (min |z;]) A G,
as required.
We now use the decomposition
Oo(X+1t)  050(%)
|x +t[? |x/?
| Oso(Xx+t) = 0s(x)
B x +tf°

+ o () {lx+ ] — [x[ %}

If |t| < ¢ and min; |x;| > 2¢ we may show, as in the proof of (6.3), that

O (X + 1) — 05 (%) 3 0
< |x SUp | =—0 (X + &L
Ix +tf3 x| q0<§£1 € ( £t)

< g(min |z;]) MA@ Vx|,
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via ([67). Similarly, also as in the proof of (6.3]), we will have
[+ 677 — |x| 70 < glx| ™,
so that Lemma yields
oo (){[x + ¢ — x| 7*} < gl AG)| x|
We therefore have

O(X+1t)  0s(x)
x+tP |3

+ O(q(min |z;]) A Gx)| x| %),

and the lemma follows. O
We are now ready to tackle the x-summation in Lemma

Lemma 6.9. We have
S ) Bk + OB ),

where

Too(¥)
Jo(Bi k :/ d
2 ) To (k) ly|? Y

Proof. We define
X ={xeZ":B"/k+2q<|x| < BY®/k —2q, min|z;| > 2¢, x = ka mod ¢}

and

Y = Jx+0,q".
xeX
The reader should note that these could be empty if k£ and ¢ are large enough.
The sets x + (0, ¢]* forming Y are disjoint, and both X and Y lie inside the
set T defined in (6.6]). Moreover Tp \ Y is a subset of 77 U Ty U T3, where

T, ={t €Ty: B*/k < |t| < B¥"/k + 3q},
Ty ={t €Ty: BY®/k — 3¢ < |t| < BYS/k},
and
T3 = {t S T() . II11I1|tZ| < 3q}
It then follows from Lemma that

Z UT;?ZC) =q *L(B;k)+ 0O <Z Ez) ) (6.8)

x€Z*NTy i=0
x=ka mod ¢
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where
Ey=q Y (ml.inIévil)_IIA(X)I_MIXI‘?’,
x€Z4NTy
min |x;]|>2q
and

Ei= ) AP +q¢" /T |Aly)| Ty dy

XEZANT;

for i = 1,2, 3. Note that we have dropped the condition x = ka mod ¢ in these
error terms. We now find that

Ey<q Y ay Masws) VM < YT al ™t < (gk BT,

2q<r1<22,3<2g x4 B2 [k
x4>B? [k

for example. This holds whether k& < B?" or not. Similar calculations show

that
B2 /k+3q

E < Z Tt + / yy 'y, < gkB™,

B2 /k<z4<B™ [k+3q Bn/k
and
Ey < qkB™Y/5,
For the sum in F3 we have

SNIATxT < Y (wrmaw) Ve P

x€Ts 1<z1<3q
1<z2,23<74
x4>B2"/k

<@t > ™

:(:42B2’7/k‘
< (gkB~1)*,

and similarly for the integral. Thus (G.8) becomes

S ) Bk + OB,

as required. [l
Combining Lemma with Lemma we see that
_ p(k)
My(B)= > ¢ %(q) Y ox Jo(B; k) + O,(1), (6.9)

q<B77/8 k<31/6
(k,q)=1
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with

v(@)= Y clF(a;b)).
a,b mod q
(g,2)=1

We therefore need information about the function .

Lemma 6.10. The function v is multiplicative, with

n o Jewhp (L —p7t), if2]f,
Y(p’) {07 ForT

for every positive integer f.

Proof. The function (q) is clearly multiplicative, and for prime powers we
have

v = Y Y ep(cFab) =o@) > eu(F(ab)),
¢ mod pf a,b mod pf a,b mod pf
(e;p)=1 pfa pla

on replacing ca by a. It follows that
b)) =) Y. ep(Fab)—o®) > ey(F(ab)).

a,b mod p/ a,b mod pf
pla

Hence if we write

L) = Y eu(Flab))

a,b mod pf

we will have ¥ (p/) = p(p )1 (p)) — p*o(p/ )1 (p’~1). However, on performing
the summation over a we find that

di(p') = p#{bmod p’ : p | (87,01} = p (P /)
The required formula for ¥ (p’) then follows. O
We also have the following evaluation of Jy(B; k).
Lemma 6.11. We have
Jo(B; k) = 374 log(BY572).

Proof. The argument is completely analogous to that used for Lemma [6.4]
based on the fact that oo (y) = |y| 0s(t1, ta, t3, 1) if |y| = |ya] and t; = y;/|y]|
for i =1,2,3. We find that

Bl/G/kd

Jo(B; k) = 8/ 4 Ooo(t1, t2, 3, 1)dt,
B2 /k Y4 J[-1,1)3
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while Lemma FT4] yields

1
Too :/ aoo(y)dy:8/ yZdy4/ Ooo(t1, t2, t3, 1)dt.
[—1,1}4 0 [—1,1]3

The lemma follows from these relations. O

We now have everything in place to complete the proof of Lemma Ac-
cording to Lemma [6.11] we have

> %JQ(B; k) = 370 log(BY6721) %

k<B1/6 k<31/6
(k.q)=1 (k,q)=1
N
= 37, log(BY/57%n) % +O(B~?1og B)
k=1
(k,q)=1
37, log(BY/6-21 A _
i((4) ) H(l —p H' +0(B?1log B).
plg

We can now insert this into (6.9), using Lemma [6.10 to observe that (q) is
supported on the squares, with 1)(r?) < 7. This leads to the estimate

o0

1/6-2
My(B) = 37°°10gB ) Z o) [0 - +0,01).

= plg

Finally we note that

STl =11
plg P
=[[a+@=p {2 +p*+..})
11

(1 N p () + p PP (p") + .. )
1—p

AN
—~
w
~
N DN
|
~—

Lemma then follows.
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6.3. Conclusion. It is now time to bring Lemmas and together in
Lemma [5.5l This yields

. DBlogB 1/2
N(Q; B) = 4C(3)C(4)TOO + O(n/*Blog B) + O,(B).
This is an asymptotic formula which holds for any 7 € (0, 155). Suppose that
the error terms are F) + Fs, in which |E;| < c;n*/?Blog B, and | Es| < c3(n)B.
We claim that the error terms may be replaced by o( Blog B). To show this, we
suppose that some small € > 0 is given, and we proceed to show that there is a
B(e) such that |E; + Ey| < eBlog B whenever B > B(e). Let n = {e/(2¢1)}*.
Then |E| < 3eBlog B for every B. With this value of 1 we then set

B(e) = exp{2¢5(n)/e},

so that |Es| < %EBlogB for all B > B(e). This proves our claim. It therefore
follows that

N(§2; B) ~ cBlog B,

as B — oo, with

Too

C= —F——~—7

4¢(3)C(4)

In order to complete the proof of Theorem [L] it remains to check that
our leading constant agrees with the prediction by Peyre [19]. According to
Schindler [20] §3], the Peyre constant is equal to

1 : —Tt t
W'ngtg&p n(p'), (6.10)

where 7, is given by (L) and where n(p') is the number of (x,y) € (Z/p'Z)®
such that F(x;y) =0 mod p'. If ¢ > 1 we have

n(p')=>_ > #{xe(@/H'7)": F(x;y)=0modp'}
IR
[t/2]
= > #{xe(Z/p'2)": F(x;u) = 0mod p} + O(p™).

J=0 umod pt—J
(u,p)=1
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Since p { u the number of x € (Z/p'~%)* such that p'~% | F(x;u) is p*¢=2).
Thus
[t/2]
n(pt) _ Z Z p3t+2j + O(th)

J=0 u mod p*—J

(u,p)=1
[t/2]
_ Z{p4(t—j) _ p4(t—j—1)}p3t+2j i O(p6t)
j=0
[t/2]

_ {1 _ p—4} Zp7t—2j + O(p6t)
§=0

={1+p7}p" +O00").
It follows that p~"n(p') tends to 1 + p~2, so that (G.I0) is

G
K2)CE) @)

Thus our leading constant ¢ in Theorem [I.T] agrees with the Peyre constant.
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