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DENSITY OF RATIONAL POINTS ON A QUADRIC

BUNDLE IN P3 × P3

T.D. BROWNING AND D.R. HEATH-BROWN

Abstract. An asymptotic formula is established for the number of ratio-
nal points of bounded anticanonical height which lie on a certain Zariski
dense subset of the biprojective hypersurface

x1y
2

1 + · · ·+ x4y
2

4 = 0

in P3 × P3. This confirms the modified Manin conjecture for this variety,
in which the removal of a “thin” set of rational points is allowed.
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1. Introduction

The main goal of this paper is to study the density of rational points on the
biprojective hypersurface X ⊂ P3 × P3 cut out by the equation F (x;y) = 0,
where

F (x;y) = x1y
2
1 + · · ·+ x4y

2
4.

Let H : X(Q) → R>0 be an anticanonical height function and let

N(Ω, B) = # {(x, y) ∈ Ω : H(x, y) 6 B} , (1.1)

for any subset Ω ⊂ X(Q). The variety X defines a smooth hypersurface
of bidegree (1, 2) and has Picard group Pic(X) ∼= Z2. If a point (x, y) ∈
X(Q) is represented by a vector (x,y) ∈ Z4

prim × Z4
prim, then we shall take

H(x, y) = |x|3|y|2, where | · | : R4 → R>0 is the sup-norm. In view of the
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Manin Conjecture [9], one might expect that there is a Zariski open subset
U ⊂ X such that

N(U(Q), B) ∼ cB logB,

as B → ∞, where c is the constant predicted by Peyre [19]. We certainly
require U to exclude all subvarieties of the form xi = xj = xk = yl = 0
for {i, j, k, l} = {1, 2, 3, 4}, since the rational points on X which satisfy these
constraints are easily seen to contribute ≫ B3/2 to N(X(Q), B). Similarly,
we get a contribution of the same order of magnitude from rational points for
which x = (0, 0, 1,−1) and y = (a, b, c, c), for example.

More interestingly, any fibre Xx = π−1
1 (x) over a point x ∈ P3(Q) such that

Xx
∼= P1 × P1 will contribute ∼ cxB logB, as B → ∞, for an appropriate

constant cx > 0 depending on x. It is expected that the total contribution
from these rational points will be ∼ aB logB, where

a =
∑

x∈P3(Q)
Xx

∼=P1×P1

cx

is a convergent series. Note that if x = [x1, . . . , x4] ∈ P3(Q) then the isomor-
phism Xx

∼= P1×P1 holds if and only if Xx(Q) 6= ∅ and x1 . . . x4 is a square in
Q∗. In view of this we are led to study (1.1) when Ω is obtained from X(Q)
by deleting the set

T = {(x, y) ∈ X(Q) : x1 . . . x4 = �} . (1.2)

Our main result is then the following.

Theorem 1.1. Let Ω = X(Q) \ T . Then
N(Ω, B) ∼ cB logB

as B → ∞, where

c =
τ∞

4ζ(3)ζ(4)
(1.3)

is the Peyre constant for the variety X, with

τ∞ =

∫ ∞

−∞

∫

[−1,1]8
e(−θF (x;y))dxdydθ. (1.4)

We shall see in Lemma 4.14 that the integral
∫ ∞

−∞

∣∣∣∣
∫

[−1,1]8
e(−θF (x;y))dxdy

∣∣∣∣ dθ.

is convergent.
Theorem 1.1 answers a question that was originally raised by Colliot-Thélène,

and mentioned in work of Batyrev and Tschinkel [2, Ex. 3.5.3] over 20 years
ago. The set T in (1.2) is an example of a “thin” set of rational points, as
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introduced to the subject by Serre [22, §3.1]. Theorem 1.1 therefore confirms
the refined Manin conjecture for X , in which one is allowed to remove a finite
number of thin sets. Lehmann, Sengupta and Tanimoto [17] have developed a
geometric framework for identifying the relevant thin sets for any Fano variety.
Follow-up work of Lehmann and Tanimoto [16, Thm. 12.6] confirms that our
set T is compatible with their predictions for the quadric bundle X .

Our result adds to the small store of examples in which thin sets have
been shown to exert a demonstrable influence on the distribution of rational
points on Fano varieties. One of the first examples in this vein was discovered
by Batyrev and Tschinkel [1], who showed that the split cubic surfaces in
the biprojective hypersurface {x1y31 + · · · + x4y

3
4 = 0} ⊂ P3 × P3 contribute

significantly more than the Manin conjecture would predict for the number of
rational points of bounded anticanonical height. More recently, Le Rudulier
[18] has investigated Manin’s conjecture for the Hilbert schemes Hilb2(P1×P1)
and Hilb2(P2), with the outcome that a thin set of rational points needs to
be removed in order for the associated counting functions to behave as they
should.

The basic line of attack in the proof of Theorem 1.1 involves counting points
on X as a union of planes when y is small, and as a union of quadric surfaces
when x is small. In the first case x lies in a lattice determined by y, and
we will use counting arguments that come from the geometry of numbers. In
the second case we can count vectors y using the circle method, taking care to
control the dependence of the error terms on x. It turns out that we can handle
the case |y| 6 B1/4, giving an asymptotic formula, using lattices. Moreover
we can deal with the range Bδ 6 |x| 6 B1/6−δ via the circle method, for any
fixed δ > 0. In terms of the inequality |x|3|y|2 6 B, this leaves two small
ranges uncovered, and here it will suffice to use an upper bound of the correct
order of magnitude. Indeed such an upper bound is also indispensable as an
auxiliary tool in the treatment of the lattice point counting problem. The
range B1/6−δ 6 |x| 6 B1/6 contributes O(δB logB) to N(Ω, B), and this is
o(B logB) when we allow δ to tend to 0. However, we do not obtain an explicit
error term, though it would be possible in principle to do so, by examining
more closely the dependence on δ in our other estimates. One might speculate
that one could prove a version of Lemma 5.5 in which the second error term
had an explicit dependence on η, perhaps in the form O(η−KB1−η2/20 logB)
for some numerical constant K. If that were indeed possible, then one could
prove Theorem 1.1 with an error term saving a positive power of logB.

This paper is naturally arranged in three main parts. We begin by discussing
upper bounds in §2. We go on to use these in proving our asymptotic formula
for the range |y| 6 B1/4, using lattice point counting in §3. Thirdly, we develop
our circle method argument in §4, to deal with values |x| 6 B1/6−δ. Once all



4 T.D. BROWNING AND D.R. HEATH-BROWN

this is in place, it remains in §5 and §6 to combine the various results and
consider the overall leading constant that arises.

Acknowledgements. During the preparation of this paper the authors were
supported by the NSF under Grant No. DMS-1440140, while in residence at
the Mathematical Sciences Research Institute in Berkeley, California, during
the Spring 2017 semester. The authors are very grateful to the referee for
numerous helpful comments. While working on this paper the first author was
supported by EPSRC grant EP/P026710/1.

2. Upper bounds

We begin by introducing some notation. Throughout our work we shall
write (a1, . . . , ak) for the greatest common divisor of the integers a1, . . . , ak.
We trust that any confusion with vector notation will be obviated by context.
Let ∆(x) = x1x2x3x4. For Y > 1 and any fixed x ∈ Z4 we let

M1(x; Y ) = #
{
y ∈ Z4

prim : |y| 6 Y, F (x;y) = 0
}
.

We then set

M2(X, Y ) =
∑

x∈Z4

∆(x)6=�, |x|6X

M1(x; Y ),

so that M2(X, Y ) counts solutions (x,y) ∈ Z4 × Z4
prim of F (x;y) = 0 in the

region |x| 6 X , |y| 6 Y , such that ∆(x) 6= �. Similarly, we write

M3(X, Y ) =
∑

x∈(Z6=0)
4

|x|6X

M1(x; Y ).

The primary result in this section is the following collection of upper bounds.

Lemma 2.1. We have

M2(X, Y ) ≪ X3Y 2 +X5Y 2/3

and

M3(X, Y ) ≪ε X
3Y 2 +X5Y 2/3 +X2+εY 2+ε,

for any ε > 0. Moreover, if 1 6 X1 6 X then
∑

x∈(Z6=0)
4

|x|6X, |x1|6X1

M1(x; Y ) ≪ε (XY )
εX

3/4
1 X−3/4{X3Y 2 +X4Y },

for any ε > 0.
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The principal tool that we will use is the authors’ result [5, Thm. 1.1]. To
state this we introduce the arithmetic function

̟(m) =
∏

p|m
(1 + p−1), (2.1)

along with the notation

∆bad(x) =
∏

pe‖x1...x4

e>2

pe (2.2)

for x ∈ (Z6=0)
4. We then have the following.

Lemma 2.2. Let x ∈ (Z6=0)
4 and ∆bad(x) 6 Y 1/20. Then

M1(x; Y ) ≪ ̟(∆(x))∆bad(x)
1/3

( |x|4
|∆(x)|

)5/8

L(σY , χ)

(
Y 4/3 +

Y 2

|∆(x)|1/4
)
,

where σY = 1 + 1
log Y

and χ(n) is the Dirichlet character defined by taking

χ(2) = 0 and

χ(p) =

(
∆(x)

p

)

for odd primes p. The implied constant in this estimate is absolute.

In fact [5, Thm. 1.1] records an upper bound with
∏

p6Y (1 + χ(p)/p) in

place of L(σY , χ). However, the argument given in [5, page 3] ensures that the
product is at most an absolute constant multiple of L(σY , χ).

In order to apply Lemma 2.2 to Lemma 2.1 we will need to handle vectors
with ∆bad(x) > Y 1/20 via a separate auxiliary bound. Indeed various auxilliary
bounds will be used elsewhere in the proof of Theorem 1.1, and it is therefore
natural to begin this section by dealing with these.

2.1. Auxiliary upper bounds. We begin by recording a uniform upper
bound for the counting function for rational points on quadric surfaces. The
following result is due to Heath-Brown [13, Thm. 2].

Lemma 2.3. For any irreducible quadratic form Q(y) ∈ Z[y1, . . . , y4] and any
ε > 0 we have

#
{
y ∈ Z4 : |y| 6 Y, Q(y) = 0

}
≪ε Y

2+ε.

We next examine two counting problems involving fewer than 4 terms.

Lemma 2.4. Let X, Y > 1. Then

#{(x1, y1, x2, y2) ∈ (Z6=0)
4 : |xi| 6 X, |yi| 6 Y, x1y

2
1 = x2y

2
2} = O(XY ).
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Proof. We extract common factors h = (x1, x2) and k = (y1, y2). For each h
and k we are left with counting non-zero integers x′i, y

′
i with |x′i| 6 X/h and

|y′i| 6 Y/k, such that x′1 = ±y′22 and x′2 = ±y′12. The number of such integers
is

≪
(
min

{√
X/h, Y/k

})2
6 (
√
X/h)4/3(Y/k)2/3.

Summing over h 6 X and k 6 Y gives O(XY ) as required. �

Lemma 2.5. Let X, Y, U, V > 1 with XY 2 = UV 2. Define T (X, Y, U, V ) to
be the number of solutions x,y ∈ (Z6=0)

3 of the equation

x1y
2
1 + x2y

2
2 + x3y

2
3 = 0,

with

|x1|, |x2| 6 X, |x3| 6 U, |y1|, |y2| 6 Y, |y3| 6 V.

Then T (X, Y, U, V ) ≪ε XUV Y
ε for any ε > 0.

Proof. For the proof we first estimate the quantity T ∗(X, Y, U, V ) which counts
pairs of vectors x,y as for T (X, Y, U, V ), but with the added restrictions that
x and y should be primitive. According to Heath-Brown [10, Lemma 3] there
are

≪ 1 +
X2U

max(Xy21, Xy
2
2, Uy

2
3)

≪ 1 +X2U(Xy21)
−1/3(Xy22)

−1/3(Uy23)
−1/3

primitive solutions x for each primitive y. Summing over y and using the
relation XY 2 = UV 2 then yields

T ∗(X, Y, U, V ) ≪ Y 2V +XUV. (2.3)

In particular T ∗(X, Y, U, V ) ≪ XUV if Y 2 6 X .
Alternatively we may use Corollary 2 of Browning and Heath-Brown [4].

This shows that for any given x ∈ (Z6=0)
3 there are

≪ε

{
1 +

(
Y 2V (x1x2, x1x3, x2x3)

3/2

|x1x2x3|

)1/3
}
(XY )ε
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corresponding primitive y. Let n = |x1x2x3| and d = (x1x2, x1x3, x2x3), so
that d3 | n2. Summing over the x then gives an estimate

T ∗(X, Y, U, V ) ≪ε X
2U(XY )ε + (Y 2V )1/3(XY )2ε

∑

d6X2U

d1/2
∑

n6X2U
d3|n2

n−1/3

≪ε X
2U(XY )ε + (Y 2V )1/3(XY )2ε

∑

d6X2U

d1/2(X2U)2/3d−3/2

≪ε {X2U + (Y 2V )1/3(X2U)2/3}(XY )3ε

= {X2U +XUV }(XY )3ε.
In particular T ∗(X, Y, U, V ) ≪ {X2U + XUV }Y 9ε if Y 2 > X , and by our
remark above the same is true in the alternative case Y 2 6 X as well.

Comparing this bound with (2.3) shows that

T ∗(X, Y, U, V ) ≪ε {min(X2U, Y 2V ) +XUV }Y 9ε

whether Y 2 > X or not. However

min(X2U, Y 2V ) 6 (X2U)2/3(Y 2V )1/3 = XUV,

whence
T ∗(X, Y, U, V ) ≪ε XUV Y

9ε.

We then find that

T (X, Y, U, V ) 6
∑

d6X

∑

e6Y

T ∗(X/d, Y/e, U/d, V/e)

≪ε

∑

d6X

∑

e6Y

XUV Y 9εd−2e−1−9ε

≪ε XUV Y
9ε.

The lemma now follows on redefining ε. �

Lemmas 2.4 and 2.5 have the following corollary.

Lemma 2.6. Let X, Y > 1. Then the number of solutions x ∈ Z4, y ∈ Z4
prim of

the equation F (x;y) = 0, lying in the region |x| 6 X, |y| 6 Y , and satisfying

the constraint that
∏4

i=1 xiyi = 0, is Oε(X
3Y 1+ε + Y 4), for any ε > 0.

Proof. Suppose firstly that exactly one of the products xiyi vanishes, x4y4 = 0
say. Then there are O(X + Y ) choices for x4 and y4, and Oε(X

2Y 1+ε) choices
for the remaining variables, by Lemma 2.5. Thus the total contribution is
Oε(X

3Y 1+ε +X2Y 2+ε). This is satisfactory for the lemma after redefining ε,
since X2Y 2+ε 6 max(X3Y 1+2ε, Y 4).

Suppose next that exactly two of the terms xiyi vanish, x3y3 = x4y4 = 0,
say. There are then O(X2 + Y 2) choices for x3, y3, x4 and y4. Moreover there
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are O(XY ) choices for the remaining variables, by Lemma 2.4. We therefore
have a total O(X3Y +XY 3), which is satisfactory since XY 3 6 max(X3Y, Y 4).

It is not possible for exactly three terms xiyi to vanish, when F (x;y) = 0,
so the only remaining case is that in which xiyi = 0 for every index i. Since y

is primitive it cannot vanish, and hence there are O(X3Y + Y 4) possibilities
in this situation. This completes the proof of the lemma. �

The final case to consider is that in which the product x1 . . . x4 is non-zero
but has a large square divisor. Let

∆bad(x) =
∏

pe‖x1...x4

e>2

pe,

as in (2.2). The following result shows that vectors x with a large value of
∆bad(x) make a small contribution to M3(X, Y ).

Lemma 2.7. Let D > 1 and let ε > 0. Then

∑

x∈(Z6=0)
4

|x|6X
∆bad(x)>D

M1(x; Y ) ≪ε (XY )
ε

{
X3Y 2

D1/24
+X4Y

}
.

In general, if we write s(n) for the largest square-full divisor of n, then
s(uv) | s(u)s(v)(u, v)2, as one sees by considering the case in which u and v
are powers of the same prime. Thus

s(x1x2x3x4) | s(x1)s(x2)s(x3)s(x4)(x1x2, x3x4)2(x1, x2)2(x3, x4)2,
and since

(x1x2, x3x4) | (x1, x3)(x1, x4)(x2, x3)(x2, x4)
we see that if ∆bad(x) > D then either (xi, xj) > D1/24 for some pair of indices
i 6= j, or s(xi) > D1/8 for some i. In the latter case d2 | xi for some d > D1/24.
Hence ∑

x∈(Z6=0)
4

|x|6X
∆bad(x)>D

M1(x; Y ) 6
∑

d>D1/24

∑

x

M1(x; Y ),

where the x-summation is over x ∈ (Z6=0)
4 such that |x| 6 X , with d2 | xi or

d | (xi, xj), for some choice of distinct indices i, j ∈ {1, 2, 3, 4}.
For any k ∈ N we write

Sk(α) = Sk(α;X) =
∑

0<|x|6X
k|x

∑

|y|6Y

e(αxy2). (2.4)
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Then ∑

x

M1(x; Y ) ≪ I1(d) + I2(d),

where

I1(d) =

∫ 1

0

Sd(α)
2S1(α)

2dα and I2(d) =

∫ 1

0

Sd2(α)S1(α)
3dα.

We note that Ij(d) = 0 unless dj 6 X . In estimating these integrals we are
led to an auxiliary counting problem, treated in the following result.

Lemma 2.8. Let k ∈ N and let X, Y > 1. Let Lk(X, Y ) denote the number
of (x, y, y′, x1, y1, x2, y2) ∈ Z7 such that k | x, with

0 < |x|, |x1|, |x2| 6 X, |y|, |y′|, |y1|, |y2| 6 Y

and

x1y
2
1 − x2y

2
2 = x(y − y′)(y + y′).

Then for any ε > 0 we have

Lk(X, Y ) ≪ε (XY )
ε

{
X2Y 2 +X3Y

k
+ kX2

}
.

We will establish this in a moment, but first we show how it may be used
to complete the proof of Lemma 2.7. In general we have

|Sd(α)|2 6 #{x ∈ Z6=0 ∩ [−X,X ] : d | x}
×

∑

0<|x|6X
d|x

∑

|y|,|y′|6Y

e(αx(y2 − y′2)), (2.5)

by Cauchy–Schwarz. We therefore deduce from Lemma 2.8 that

∑

d>D1/24

I1(d) 6
∑

D1/246d6X

2X

d
Ld(X, Y )

≪ε

∑

D1/246d6X

(XY )ε
{
X3Y 2 +X4Y

d2
+X3

}

≪ε (XY )
ε

{
X3Y 2 +X4Y

D1/24
+X4

}
.

This is satisfactory for Lemma 2.7.
To handle I2(d) we apply the Cauchy–Schwartz inequality, yielding

|I2(d)|2 6
(∫ 1

0

|Sd2(α)|2|S1(α)|2dα
)(∫ 1

0

|S1(α)|4dα
)
. (2.6)
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We proceed as before, using (2.5) and Lemma 2.8 to deduce that
∫ 1

0

|Sd2(α)|2|S1(α)|2dα 6
2X

d2
Ld2(X, Y ) ≪ε (XY )

ε

{
X3Y 2 +X4Y

d4
+X3

}
.

Taking d = 1 we see that the second factor in (2.6) is
∫ 1

0

|S1(α)|4dα≪ε (XY )
ε(X3Y 2 +X4Y ). (2.7)

Thus

I2(d) ≪ε (XY )
ε

{
X3Y 2 +X4Y

d2
+X3Y +X7/2Y 1/2

}
,

whence
∑

d>D1/24

I2(d) ≪ε

∑

D1/246d6
√
X

(XY )ε
{
X3Y 2 +X4Y

d2
+X3Y +X7/2Y 1/2

}

≪ε (XY )
ε

{
X3Y 2 +X4Y

D1/24
+X7/2Y +X4Y 1/2

}
.

This too is satisfactory for Lemma 2.7.

Proof of Lemma 2.8. Clearly Lk(X, Y ) = 0 unless k 6 X , which we now as-
sume. There are O(k−1XY ) triples with x(y − y′)(y + y′) = 0, and for each
there are O(XY ) corresponding quadruples x1, y1, x2, y2 with y1y2 6= 0, by
Lemma 2.4, and there are O(X2) quadruples with y1y2 = 0. This case there-
fore contributes a total O(k−1(X2Y 2 +X3Y )) to Lk(X, Y ).

When x(y − y′)(y + y′) 6= 0, we get

≪ τ3(|x1y21 − x2y
2
2|) ≪ε (XY )

ε

solutions x, y, y′. It therefore remains to count the number of x1, y1, x2, y2 for
which x1y

2
1 ≡ x2y

2
2 mod k. Breaking into residue classes modulo k we deduce

that

Lk(X, Y ) ≪ε
X2Y 2 +X3Y

k
+ (XY )ε

X2

k2

(
1 +

Y

k

)2

̺(k), (2.8)

where

̺(k) = #{(x1, x2, y1, y2) ∈ (Z/kZ)4 : x1y
2
1 ≡ x2y

2
2 mod k}.

Since ̺(k) is a multiplicative arithmetic function it suffices to estimate ̺(pe).
When p ∤ y1 the values of x2, y1, y2 determine x1, so that there are at most
p2eϕ(pe) such solutions. The same argument applies when p ∤ y2 so that
there are at most 2p2eϕ(pe) solutions with p ∤ (y1, y2). If e > 2 there are
p6̺(pe−2) solutions with p | (y1, y2), while if e = 1 there are p2 solutions.
Hence ̺(p) 6 2p2(p− 1) + p2 6 2p3 and

̺(pe) 6 2p3e(1− p−1) + p6̺(pe−2)
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for e > 2. One can now show that ̺(pe) 6 (e+1)p3e for all e > 1, by induction.
We then have ̺(k) ≪ε k

3+ε for any ε > 0. We therefore complete the proof of
the lemma by inserting this into (2.8) and redefining ε. �

2.2. Proof of Lemma 2.1. Using Lemma 2.2 we will establish the following
result.

Lemma 2.9. We have
∑

x∈(Z6=0)
4

|x|6X, ∆(x)6=�

∆bad(x)6Y 1/20

M1(x; Y ) ≪ X3Y 2 +X4Y 4/3 ≪ X3Y 2 +X5Y 2/3.

Proof. The second inequality follows since X4Y 4/3 6 max(X3Y 2, X5Y 2/3). To
prove the first inequality, we begin by considering dyadic ranges

Xi/2 < |xi| 6 Xi, for 1 6 i 6 4 (2.9)

and denote the corresponding contribution M(X1, . . . , X4; Y ). Then, on writ-

ing X̂ = X1X2X3X4 and

c(X1, . . . , X4; Y ) =

(
maxX4

i

X̂

)5/8(
Y 4/3 +

Y 2

X̂1/4

)
,

it follows from Lemma 2.2 that

M(X1, . . . , X4; Y ) ≪ c(X1, . . . , X4; Y )
∑

x

̟(∆(x))∆bad(x)
1/3L(σY , χ),

where ̟ is given by (2.1) and the sum is for x ∈ Z4 in the region (2.9) such
that ∆(x) 6= �. Note that we are free to include vectors with ∆bad(x) > Y 1/20

on the right, since L(σY , χ) > 0.
By checking the inequality at prime powers, one easily sees that

̟(n)
∏

pe‖n
e>2

pe/3 6
∑

s,t|n

s1/3

t
,

where s and t run over square-full and square-free integers respectively. It
follows that
∑

x

̟(∆(x))∆bad(x)
1/3L(σY , χ) 6

∑

s,t

s1/3

t

∑

d1,d2,d3,d4∈N
d1d2d3d4=[s,t]

∑

x∈S
L(σY , χ), (2.10)

where s and t run over square-full and square-free integers respectively, and
S = S(X1, . . . , X4; d1, . . . , d4) is the set of x ∈ Z4 in the region (2.9) such that
∆(x) 6= � and di | xi for 1 6 i 6 4.
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Let d̂ = d1d2d3d4. We claim that
∑

x∈S
L(σ, χ) ≪ X̂d̂−7/8, (2.11)

uniformly for σ > 1. We will prove this later, but first we observe that we can
now estimate (2.10) as

≪ X̂
∑

s,t

s1/3

t
τ4([s, t])[s, t]

−7/8.

The infinite sum has an Euler product, with factors of the shape

1 + 4p−1−7/8 +
∑

e>2

∑

f=0,1

pe/3−fτ4(p
e)p−7e/8 = 1 +O(p−13/12).

The resulting product therefore converges, so that (2.10) is O(X̂). We then
see that

M(X1, . . . , X4; Y ) ≪ c(X1, . . . , X4; Y )X̂

= (maxXi)
5/2 X̂3/8

(
Y 4/3 +

Y 2

X̂1/4

)
.

On summing over dyadic values for the Xi we obtain Lemma 2.9.
It remains to prove (2.11). Our key tool for the proof is a form of Burgess’

estimate [7]. If θ > 3/16 we have
∑

n6N

ψ(n) ≪θ N
1/2qθ,

where ψ is any non-principal character of modulus q. We obtain the same
bound for the corresponding sum over all integers n such that |n| 6 N . For
our purposes it will be enough to take θ = 1/5 in these estimates.

The character χ is non-principal, with modulus O(X̂). By the Burgess
bound coupled with partial summation, we see that

∑

n>N

χ(n)

nσ
≪ N1/2−σX̂1/5 ≪ N−1/2X̂1/5.

It follows that terms with n > X̂2/5 contribute O(1) to L(σ, χ), which is

satisfactory since d̂ 6 X̂ .
We proceed to consider the terms with n 6 X̂2/5. Suppose that Xi/di is

largest for i = 1, say. If we write x1 = d1q then

∑

x∈S

∑

n6X̂2/5

χ(n)

nσ
=

∑

x2,x3,x4

∑

n6X̂2/5

n odd

1

nσ

(
d1x2x3x4

n

)∑

q

( q
n

)
,
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where the sum over q is for integers with X1/2d1 < |q| 6 X1/d1, for which
qd1x2x3x4 is a non-square. In general, for any integer k, there are O(Q1/2)
integers q ∈ [−Q,Q] for which kq is a square. Thus if we adjust the sum
over q to include all integers with X1/2d1 < |q| 6 X1/d1, and then apply the
Burgess bound, we find that

∑

q

( q
n

)
≪ (X1/d1)

1/2n1/5,

provided that n is not a square. On the other hand, if n is a square, we have
a trivial bound O(X1/d1). Thus

∑

n6X̂2/5

n odd

1

nσ

∣∣∣∣∣
∑

q

( q
n

)∣∣∣∣∣≪
∑

n6X̂2/5

n1/5−σ(X1/d1)
1/2 +

∑

m6X̂1/5

m−2σ(X1/d1)

≪ X̂2/25(X1/d1)
1/2 +X1/d1.

Since X1/d1 > (X̂/d̂)1/4 we will have

X̂2/25(X1/d1)
1/2 6 X̂2/25(X1/d1)(X̂/d̂)

−1/8 6 (X1/d1)d̂
1/8.

When we sum over x2, x3, x4 we now find that

∑

x∈S

∑

n6X̂2/5

χ(n)

nσ
≪ X̂

d̂
d̂1/8 = X̂d̂−7/8.

This completes the proof of (2.11) and so the proof of the lemma. �

To finish the proof of Lemma 2.1 we proceed to show how to remove the
condition ∆bad(x) 6 Y 1/20 from Lemma 2.9. It follows from Lemma 2.7 that

∑

x∈(Z6=0)
4

|x|6X

∆bad(x)>Y 1/20

M1(x; Y ) ≪ε (XY )
ε
{
X3Y 2−1/480 +X4Y

}
.

When ε = 1/800 we have

(XY )εX3Y 2−1/480 = (X3Y 2)1−1/1600(X5Y 2/3)1/1600 6 X3Y 2 +X5Y 2/3

and

(XY )εX4Y 6 X13/3Y 10/9 = (X3Y 2)1/3(X5Y 2/3)2/3 6 X3Y 2 +X5Y 2/3.

This completes the proof of the first part of Lemma 2.1.
Next, if |x| 6 X with x ∈ (Z6=0)

4 and ∆(x) = k2 say, then 0 < |k| 6 X2, and
each such k corresponds to at most 8τ4(k

2) ≪ Xε vectors x. For each such
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x we use the bound M1(x; Y ) = Oε(Y
2+ε), which follows from Lemma 2.3.

Hence ∑

x∈(Z6=0)
4

|x|6X
∆(x)=�

M1(x; Y ) ≪ε X
2Y 2(XY )ε,

for any ε > 0, giving us the second part of Lemma 2.1.
Finally, with Sk(α;X) as in (2.4), we have

∑

x∈(Z6=0)
4

|x|6X, |x1|6X1

M1(x; Y ) 6

∫ 1

0

S1(α;X)3S1(α;X1)dα,

whence Hölder’s inequality yields

∑

x∈(Z6=0)
4

|x|6X, |x1|6X1

M1(x; Y ) 6

{∫ 1

0

|S1(α;X)|4dα
}3/4{∫ 1

0

|S1(α;X1)|4dα
}1/4

.

Appealing to (2.7), this is

≪ε (XY )
ε
(
X3Y 2 +X4Y

)3/4 (
X3

1Y
2 +X4

1Y
)1/4

≪ε (XY )
εX

3/4
1 X−3/4

(
X3Y 2 +X4Y

)
,

and the third part of Lemma 2.1 follows.

3. An asymptotic formula using lattice point counting

In this section we write

M4(y;R) = #
{
x ∈ Z4 : |x| 6 R, F (x;y) = 0

}
(3.1)

and prove an asymptotic formula for
∑

y∈Z4
prim

Y <|y|62Y

M4

(
y; (B/|y|2)1/3

)
= N1(B; Y ), (3.2)

say.

Theorem 3.1. Let Y > 1
2
. Then

N1(B; Y ) = B
∑

y∈Z4
prim

Y <|y|62Y

̺∞(y)

|y|2 +O(B2/3Y 4/3) +O(BY −1/3) +O(Y 4),

where

̺∞(y) =

∫ ∞

−∞

∫

[−1,1]4
e(−θF (x;y))dxdθ. (3.3)
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We note that if y has at least two non-zero components, then
∫

[−1,1]4
e(−θF (x;y))dx =

4∏

j=1

sin(2πθy2j )

πθy2j
≪y (1 + |θ|)−2,

so that the outer integral in (3.3) is absolutely convergent. On the other hand,
if y = (1, 0, 0, 0), for example, then

∫

[−1,1]4
e(−θF (x;y))dx = 8

sin(2πθ)

πθ
,

and the outer integral is conditionally convergent, with value 8.
We begin the proof by estimating M4(y;R) for an individual vector y, as

follows.

Lemma 3.2. Let y ∈ Z4
prim and put d(y) =

√
y41 + · · ·+ y44. Let V (y) be the

volume of the intersection of the cube [−1, 1]4 with the hyperplane

{x ∈ R4 : F (x;y) = 0}.
Then there exists a vector x1 = x1(y) ∈ Z4

prim satisfying

0 < |x1| ≪ |y|2/3 and F (x1;y) = 0, (3.4)

such that

M4(y;R) =
V (y)

d(y)
R3 +O

(
R2

|x1|2
)
+O(1).

If (y21, . . . , y
2
4) = (z1, . . . , z4) we may apply a rotationR ∈ SO4(R) to x and z

so as to move z to Rz = (0, 0, 0, z′4), say. Then V (y) will be the 3-dimensional
volume of the region {t ∈ R[−1, 1]4 : t4 = 0}.
Proof of Lemma 3.2. When y is primitive the function M4(y;R) counts vec-
tors x ∈ Z4 from a 3-dimensional lattice Λ of determinant d(y), as in [13,
Lemma 1(i)], for example. We now claim that

M4(y;R) =
V (y)

d(y)
R3 +O

(
R2

λ1λ2
+
R

λ1
+ 1

)
,

where the implied constant is absolute and λ1 6 λ2 6 λ3 are the successive
minima of Λ. If we had been using the L2-norm in place of the L∞-norm this
would have followed directly from Schmidt [21, Lemma 2]. One should note
here that, in Schmidt’s notation, Λk(|−i) contains the vectors g1, . . . , gk−i, and
has successive minima λ1, . . . , λk−i, so that d(Λk(|−i)) ≫k λ1 . . . λk−i. To han-
dle the L∞-norm one needs only trivial modifications to Schmidt’s argument,
which we leave to the reader. To complete the proof of Lemma 3.2 we note
that R2/(λ1λ2) 6 (R/λ1)

2 and R/λ1 6 max((R/λ1)
2, 1). Moreover, by the

definition of the successive minima the lattice Λ contains a vector of length



16 T.D. BROWNING AND D.R. HEATH-BROWN

λ1. Writing x1 for this vector we see that x1 will be primitive, and the lemma
follows, since λ1 6 (λ1λ2λ3)

1/3 ≪ d(y)1/3 ≪ |y|2/3. �

We turn now to the proof of Theorem 3.1. In our argument certain “bad”
vectors y will have to be dealt with separately. We denote the set of these by
B, and write G for the remaining set of good vectors. The definition of the
set B will be given below in (3.6), since it is hard to motivate at this stage.

For the bad vectors we note that

B
V (y)

|y|2d(y) ≪ BY −4,

whence

M4

(
y; (B/|y|2)1/3

)
= B

V (y)

|y|2d(y) +O(BY −4) +O
(
M4

(
y; (B/|y|2)1/3

))

when y ∈ B. It therefore follows from (3.2) along with Lemma 3.2 that

N1(B; Y ) = B
∑

y∈Z4
prim

Y <|y|62Y

V (y)

|y|2d(y) +O(BY −4#B) +O(Σ1)

+O(B2/3Y −4/3Σ2) +O(Y 4),

(3.5)

where
Σ1 =

∑

y∈B

M4

(
y; (B/|y|2)1/3

)
,

and
Σ2 =

∑

y∈G

|x1(y)|−2.

We begin by discussing Σ2, since this motivates our choice of the sets G and
B. We define

E(Y ) =
∑

y∈G

∑

x∈Z4
prim

0<|x|6c|y|2/3
F (x;y)=0

1

|x|2 ,

where c is the implied constant in (3.4). We shall prove the following bound
for this sum, which shows that the term Σ2 in (3.5) makes a satisfactory
contribution in Theorem 3.1.

Lemma 3.3. We have E(Y ) ≪ Y 8/3 for any Y > 1.

Proof. Our strategy for estimating E(Y ) will be to sort the inner sum into
dyadic intervals for |x|. When all the components of x are non-zero we shall
be able to invoke the second part of Lemma 2.1, and when exactly three of
the components of x are non-zero we will use Lemma 2.5. Thus the remaining
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vectors x are those with at most two non-zero components, and these will
correspond to y being in the bad set B, which we now proceed to describe.

If x has exactly one non-zero component the equation F (x;y) = 0 forces
the corresponding component of y to vanish. We therefore include vectors y

with
∏
yi = 0 in the bad set B.

Suppose on the other hand that exactly two components of x vanish, say
x3 = x4 = 0, and that

∏
yi 6= 0. Then (x1, x2) = 1, since x is primitive.

Moreover x1y
2
1 + x2y

2
2 = 0. If we write h = (y1, y2) then we must have x2 =

±(y1/h)
2 and x1 = ∓(y2/h)

2. It follows that |y1|/h 6 c1/2|y|1/3, and similarly
|y2|/h 6 c1/2|y|1/3. We then say that a vector y is “bad” if either

∏
yi = 0 or if

there are two components, y1 and y2 say, such that |y1|, |y2| 6 c1/2(y1, y2)|y|1/3.
Here c is the implied constant in (3.4). We now define

B =

{
y ∈ Z4

prim :
Y < |y| 6 2Y, either

∏
yi = 0 or else

|yi|, |yj| 6 c1/2(yi, yj)|y|1/3 for some i 6= j

}
. (3.6)

Similarly we write G for the complement of B in the set of y ∈ Z4
prim with

Y < |y| 6 2Y . Thus if y is in the complementary set G , any corresponding
vector x has at most one zero entry.

We are now ready to estimate E(Y ). Let S(L,G ) be the number of pairs
x,y that arise for which L/2 < |x| 6 L. Then

E(Y ) ≪
∑

L

L−2S(L,G ),

the sum over L being for powers of 2 only, with L ≪ Y 2/3. Our definitions
ensure that

S(L,G ) ≪M3(L, 2Y ) + Y T (L, 2Y, L, 2Y ),

in the notation of Lemmas 2.1 and 2.5, which then yield

S(L,G ) ≪ε L
3Y 2 + L5Y 2/3 + L2+εY 2+ε,

for any ε > 0. For L≪ Y 2/3 and ε = 3/10 this is ≪ L3Y 2 + L2Y 5/2, whence

E(Y ) ≪
∑

2i≪Y 2/3

(
2iY 2 + Y 5/2

)
≪ Y 8/3 + Y 5/2 log Y,

which is satisfactory for Lemma 3.3. �

We next estimate #B. There are O(Y 3) vectors y with
∏
yi = 0. For the

remaining bad vectors, if we have y1 = hz1, for example, then y2 = hz2 with
z1, z2 coprime and

|z1|, |z2| 6 c1/2|y|1/3 ≪ Y 1/3.

There are O(Y ) choices for h and O(Y 1/3) choices for each of z1 and z2, and
since there are O(Y 2) possible values for y3 and y4 we see that there are
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O(Y 11/3) options for y. Thus #B ≪ Y 11/3, so that the corresponding term in
(3.5) is satisfactory for Theorem 3.1.

It remains to consider Σ1. We begin by disposing of the contribution from
solutions x,y with

∏
xiyi = 0. We apply Lemma 2.6 with X ≪ B1/3Y −2/3

obtaining a bound Oε(BY
ε−1 + Y 4). The corresponding contribution to (3.5)

will turn out to be satisfactory for our purposes, as we shall see shortly. In
what follows we may assume

∏
xiyi 6= 0.

We now focus on terms for which y1 = hz1 and y2 = hz2 where z1 and z2
are coprime and 0 < |z1|, |z2| 6 c1/2|y|1/3, so that

(x1z
2
1 + x2z

2
2)h

2 + x3y
2
3 + x4y

2
4 = 0 (3.7)

with non-zero integer variables. We set

X = (BY −2)1/3 and Z = max{|z1|, |z2|},
whence 1 6 h 6 2Y/Z. When x1z

2
1+x2z

2
2 = 0 we have x3y

2
3+x4y

2
4 = 0 as well.

There are then O(Y/Z) choices for h, while Lemma 2.4 shows that there are
O(XZ) values for x1, x2, z1, z2 and O(XY ) possibilities for x3, x4, y3, y4. The
case x1z

2
1+x2z

2
2 = 0 therefore contributes O(X2Y 2) = O(B2/3Y 2/3) to Σ1. We

shall see in a moment that this makes a suitably small contribution to (3.5).
We count the remaining solutions according to the values taken by z1 and

z2. It will be convenient in what follows to write N(Y ; z1, z2) for the number
of solutions to the equation (3.7) in non-zero integers x1, . . . , x4, h, y3, y4 with
x1z

2
1 + x2z

2
2 6= 0 and

|x| 6 X, 1 6 h 6 2Y/Z and |y3|, |y4| 6 2Y.

It follows from our analysis thus far that

Σ1 ≪ε BY
ε−1 + Y 4 +B2/3Y 2/3 +

∑

0<|z1|,|z2|≪Y 1/3

N(Y ; z1, z2). (3.8)

We put t = x1z
2
1 + x2z

2
2 , which is assumed to be non-zero. For a given

non-zero t (and fixed z1, z2) the number of x1, x2 such that x1z
2
1 + x2z

2
2 = t

is O(1 + X/Z2). Moreover the equation th2 + x3y
2
3 + x4y

2
4 = 0 has at most

T (X, 2Y, 2XZ2, 2Y/Z) solutions, in the notation of Lemma 2.5, which then
shows that

N(Y ; z1, z2) ≪ε (1 +XZ−2)X2Y 1+εZ

for any fixed ε > 0. We insert this estimate into (3.8) and find that

Σ1 ≪ε BY
ε−1 + Y 4 +B2/3Y 2/3 + (Y 2/3 +X)X2Y 4/3+ε

≪ε Y
4 +B2/3Y 2/3+ε +BY ε−2/3.

Taking ε = 1/3 now gives us a suitable contribution to (3.5).
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Returning to (3.5), in order to complete the proof of Theorem 3.1 it remains
to show that

V (y)

d(y)
= ̺∞(y), (3.9)

for any non-zero vector y ∈ R4, where ̺∞(y) is defined in (3.3). It will be
convenient to put y2i = d(y)wi for 1 6 i 6 4. Then if ‖ · ‖2 denotes the
L2-norm, it follows that ‖w‖2 = 1. Moreover, in this notation we have

̺∞(y)d(y) =

∫ ∞

−∞

∫

[−1,1]4
e(−θw.x)dxdθ.

As already noted following the statement of Theorem 3.1, the repeated integral
is 8 if w has a single non-zero component. This suffices for (3.9), since one
easily sees that V (w) = 8 in this case.

On the other hand, if w has at least two non-zero components then, as
remarked earlier, the inner integral is O((1+|θ|2)−1), so that the double integral
is

lim
δ↓0

∫ ∞

−∞

(
sin(πδθ)

πδθ

)2 ∫

[−1,1]4
e(−θw.x)dxdθ

= lim
δ↓0

∫

[−1,1]4

∫ ∞

−∞

(
sin(πδθ)

πδθ

)2

e(−θw.x)dθdx.
(3.10)

In general if

K(u; δ) =

{
δ−2(δ − |u|), if |u| 6 δ,

0, if |u| > δ,
(3.11)

then

K(u; δ) =

∫ ∞

−∞
e(θu)

(
sin(πδθ)

πδθ

)2

dθ, (3.12)

so that the inner integral on the right of (3.10) is K(w.x; δ).
Since ‖w‖2 = 1 there exists a 4 × 4 orthogonal matrix M ∈ O4(R) such

that Mw = (1, 0, 0, 0). Then w.x = (Mw)TMx. Changing variables from x

to z = Mx, so that z runs over the set Z = M[−1, 1]4, we see that

̺∞(y)d(y) = lim
δ↓0

∫

Z

K(z1; δ)dz = meas{z ∈ Z : z1 = 0} = V (w) = V (y),

as required. This concludes the proof of Theorem 3.1.
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4. Counting points on quadrics

In this section we will establish an asymptotic formula for the smoothly
weighted counting function

Nw(P ) =
∑

x∈Z4

F (x)=0

w(P−1x),

as P → ∞, where F (x) is the non-singular integral diagonal quadratic form

F (x) = A1x
2
1 + A2x

2
2 + A3x

2
3 + A4x

2
4.

Here w : R4 → R>0 is a fixed infinitely differentiable weight function of com-
pact support, which vanishes in some neighbourhood of the origin. Our goal
is to establish an asymptotic formula even when the coefficients Ai are of size
a small power of P , and it will be crucial to our success that the size we are
able to handle is sufficiently large.

Our asymptotic formula for Nw(P ) is only valid for suitable weights w and
“generic” choices of the coefficients Ai. To specify the necessary conditions we
define

‖F‖ = max
16i64

|Ai|, ∆F = A1A2A3A4

(
6= 0
)
,

and
∆bad =

∏

pe‖∆F
e>2

pe. (4.1)

We then require that
w(x) = 0 for |x| 6 η, (4.2)

that
‖F‖1−η

6 |Ai|
(
6 ‖F‖

)
, for 1 6 i 6 4, (4.3)

and that
∆bad 6 ‖F‖η, (4.4)

for a small parameter η ∈ (0, 1
100

) at our disposal. The first two conditions
imply that

|∇F (x)| ≫η ‖F‖1−η for w(x) 6= 0, (4.5)

while the last condition implies in particular that ∆F 6= � when ‖F‖ > 1.
Our asymptotic formula involves the “singular integral”, defined to be

σ∞(w;F ) =

∫ ∞

−∞

∫

R4

w(x)e(−θF (x))dxdθ, (4.6)

and the “singular series”

S(F ) =
∏

p

lim
r→∞

p−3r#{x ∈ (Z/prZ)4 : F (x) ≡ 0 mod pr}. (4.7)
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We will see in Lemma 4.10 that this is convergent whenever ∆F 6= �. With
this notation our principal result in this section is the following.

Theorem 4.1. When (4.2), (4.3) and (4.4) hold we have

Nw(P ) = σ∞(w;F )S(F )P 2 +Ow,η(‖F‖−1/2+5ηP 3/2 + ‖F‖1/2+2ηP ),

provided that ‖F‖ > P η.

The main term here is typically of size around P 2‖F‖−1, so that we get an
asymptotic formula when P η 6 ‖F‖ 6 P 2/3+O(η). For comparison, Browning
[3, Prop. 2] shows that

Nw(P ) = σ∞(w;F )S(F )P 2 +Ow,η

(
‖F‖3+9ηP 3/2+η

)
,

for a special choice of weight function w, under the assumptions that ∆F 6= �

and that (4.3) and (4.4) hold. Theorem 4.1 refines this result considerably
for forms whose discriminant is close to being square-free, provided that the
coefficients of F are not too small compared with P . We should emphasize
that in both Theorem 4.1 and the result of Browning [3] the coefficients of
η are relatively unimportant. In particular they have no significance for the
current application.

The condition that ‖F‖ > P η is somewhat unnatural and deserves further
comment. Under this assumption together with the hypotheses (4.2), (4.3)
and (4.4) we are able to eliminate certain awkward terms that arise when we
apply Poisson summation. This is explained further in §4.5. At this point
it is crucial that the quadratic form F (x) is diagonal. We could remove the
condition ‖F‖ > P η and handle non-diagonal forms, but this would be at the
expense of a worse dependence on ‖F‖.
4.1. Preliminaries. Our proof of Theorem 4.1 uses the smooth δ-function
variant of the circle method introduced by Duke, Friedlander and Iwaniec [8],
and later developed by Heath-Brown [12, Thm. 1]. We proceed to review the
technical apparatus required.

For any q ∈ N, any c ∈ Z4 and any Q > 1, we define the complete exponen-
tial sum

Sq(c) =
∑∗

a mod q

∑

b mod q

eq (aF (b) + b.c) , (4.8)

and the oscillatory integral

Iq(c) =

∫

R4

w(P−1x)h

(
q

Q
,
F (x)

Q2

)
eq(−c.x)dx,

for a certain function h : (0,∞) × R → R described in [12, §3]. We note
here that h(x, y) is independent of F and Q and is infinitely differentiable for
(x, y) ∈ (0,∞) × R. Moreover h(x, y) is non-zero only for x 6 max{1, 2|y|}.
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When 1
2
6 x 6 1 and |y| 6 1

4
, for example, h(x, y) will be of exact order 1. It

then follows from [12, Thm. 2] that

Nw(P ) =
cQ
Q2

∑

c∈Z4

∞∑

q=1

q−4Sq(c)Iq(c). (4.9)

where the constant cQ satisfies cQ = 1 +ON(Q
−N ), for any N > 0.

We shall take Q =
√
‖F‖P 2 in our work. In our proof of Theorem 4.1

we shall often encounter a small positive parameter ε, and for the sake of
convenience we shall allow it to take different values at different stages of the
argument, so that xε log x≪ xε, for example. All of our implied constants are
allowed to depend on the weight function w and on η and ε, but on nothing
else unless specified. Ultimately we will take ε to be fixed in terms of η but
much smaller than it, so that the dependence on ε will disappear. As above we
assume that w, besides being infinitely differentiable and of compact support,
satisfies the condition (4.2).

We now wish to apply the bounds for the exponential integral Iq(c) that were
derived in [12, §§7–8]. Unfortunately, the implied constants in each of these
estimates is allowed to depend implicitly on the coefficients of F , a deficiency
that we shall need to remedy here.

Lemma 4.2. Let c ∈ Z4 be non-zero. Then the following hold:

(i) For any N > 0 we have

Iq(c) ≪N
P 5

q

‖F‖(N+1)/2

|c|N .

(ii) We have

Iq(c) ≪
q‖F‖2P 3

|∆F |1/2|c|
.

Proof. To begin with we may write

Iq(c) = P 4

∫

R4

w(x)h(r, G(x))e (−v.x) dx,

where r = q/Q, v = q−1Pc and G = ‖F‖−1F . In particular

∂k1+···+k4

∂xk11 . . . ∂xk44
G(x) ≪k1,...,k4 1,

for all x ∈ supp(w) and k1, . . . , k4 ∈ Z>0. The function h(x, y) is non-zero
only for x 6 max{1, 2|y|} and satisfies h(x, y) ≪ x−1. In fact, for any i, j > 0
and any N > 0, we have

∂i+jh(x, y)

∂ix∂yj
≪i,j,N x−1−i−j

(
xN +min{1, (x/|y|)N}

)
. (4.10)
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These facts are all explained in [12, Lemmas 4 and 5]. Repeated integration
by parts now establishes part (i).

Turning to part (ii), we see that Iq(c) = P 4r−1I(v), in the notation of [12,
Lemma 14], with f = rh. The argument in the proof of [12, Lemma 17]
shows that there exists a smooth weight function w1 : R4 → R>0, such that
supp(w1) ⊆ supp(w) and a function p(t) ≪ r such that

I(v) =

∫ ∞

−∞
p(t)

∫

R4

w1(x)e (tG(x)− v.x) dxdt.

We may analyse the inner integral J , say, using the smoothly weighted sta-
tionary phase bound worked out by Heath-Brown and Pierce in Lemmas 3.1
and 3.2 of [14]. Recall that G(x) = ‖F‖−1F (x) ≪ 1 for all x ∈ supp(w1) and
observe that integration by parts gives

∫

R4

|ŵ1(y)|dy ≪
∫

R4

min
{
1, |y|−1

}5
dy ≪ 1.

This shows that J = OM(|v|−M) for any M > 0 if |v| ≫ |t|, while we have
J = O(‖F‖2|∆F |−1/2t−2) otherwise. Applying these bounds with M = 2, and
noting that |∆F |1/2 6 ‖F‖2, the statement of part (ii) easily follows. �

The effect of part (i) is that the sum over c in (4.9) can be truncated to
|c| ≪ ‖F‖1/2Qε for any ε > 0, with negligible error. The following estimate
allows us to work with Iq(c) when c = 0.

Lemma 4.3. Assume that (4.2) and (4.3) hold. Then we have

qk
∂kIq(0)

∂qk
≪ ‖F‖ηP 4, for k ∈ {0, 1}.

Proof. Let k ∈ {0, 1} and recall the notation r = q/Q. Then

qk
∂kIq(0)

∂qk
= rkP 4

∫

R4

w(x)
∂kh(r, G(x))

∂rk
dx

≪ r−1P 4

∫

x∈supp(w)

(
r2 +min

{
1,

r2

G(x)2

})
dx,

on taking N = 2 in (4.10). We now appeal to (4.5), which implies that
|∇G(x)| ≫ ‖F‖−η for all x ∈ supp(w). Thus the measure of the set where
|G(x)| 6 z is O(z‖F‖η). The integral is therefore O(r‖F‖η), as in the proof
of [12, Lemma 15], and the lemma follows. �

We conclude this section by considering the integral

J(θ;w) =

∫

R4

w(x)e(−θG(x))dx. (4.11)
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Lemma 4.4. Under the assumptions (4.2) and (4.3) we have

J(θ;w) ≪N |θ|−N‖F‖2Nη

for any non-negative integer N .

Proof. To prove this we use the first derivative bound for smooth exponential
integrals, see Heath-Brown [12, Lemma 10]. First however we must reduce the
support of the weight function w by using Lemma 2 of [12]. This shows that
if 0 < δ < 1 then there is a smooth function wδ of compact support such that

w(x) = δ−4

∫

R4

wδ(δ
−1(x− y),y)dy.

Thus there is some vector y = y(δ) such that

J(θ;w) ≪ δ−4

∣∣∣∣
∫

R4

wδ(δ
−1(x− y),y)e(−θG(x))dx

∣∣∣∣ .

We will choose δ = ‖F‖−1min |Ai|. Thus δ > ‖F‖−η, by (4.3). We now see
that

J(θ;w) ≪
∣∣∣∣
∫

R4

w∗(u)e(−θG∗(u))du

∣∣∣∣ , (4.12)

where we have set w∗(u) = wδ(u,y) and G∗(u) = G(y + δu). According to
[12, Lemma 2], if w∗(u) 6= 0 then w(y+δu) 6= 0, so that |y+δu| > η, by (4.2).
It follows that |∇G∗(u)| ≫η δ

2 on the support of w∗. Moreover, the second
order derivatives of G∗ are O(δ2) and the higher derivatives vanish. We then
see from [12, Lemma 10] that

∫

R4

w∗(u)e(−θG∗(u))du ≪N,w,η |θ|−Nδ−2N

for any non-negative integer N . The reader should note that the implied
constant is independent of y and δ by the technical properties of wδ described
in [12, Lemma 2]. The statement now follows from (4.12). �

4.2. The exponential sums. In this section we summarise what we will need
to know about the exponential sums Sq(c) defined in (4.8). As proved in [12,
Lemma 23], these satisfy the multiplicativity property Sq1q2(c) = Sq1(c)Sq2(c)
for any coprime integers q1, q2. We begin by establishing the following basic
estimate.

Lemma 4.5. For any q ∈ N we have

Sq(c) ≪ q3
∏

16i64

(q, Ai, ci)
1/2.
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Proof. To begin with, for any prime power pr we have

Spr(c) =
∑∗

a mod pr

∏

16i64

G(aAi, ci; p
r), (4.13)

where

G(b, c; q) =
∑

x mod q

eq
(
bx2 + cx

)
(4.14)

denotes the generalised Gauss sum for any q ∈ N and b, c ∈ Z. For q = pr

we put β = vp(b). Breaking into residue classes modulo pr−min{β,r}, it is easy
to see that G(b, c; pr) = 0 unless pmin{β,r} | c. We conclude that if Spr(c) 6= 0
then we must have min{vp(Ai), r} 6 vp(ci), for 1 6 i 6 4.

Next, on inspecting the proof of [12, Lemma 25], we find that

Spr(c) 6 p3r#{y mod pr : pr | 2Aiyi for 1 6 i 6 4}1/2

6 p3r
∏

16i64

p(min{vp(Ai),r}+vp(2))/2

= p3r+2vp(2)
∏

16i64

pmin{vp(Ai),r,vp(ci)}/2.

The statement of the lemma now follows from multiplicativity. �

Our next result relies on an explicit evaluation of the Gauss sum (4.14). Let
b, c ∈ Z and let q be an odd integer. Then according to [15, p. 66], we have

G(b, c; q) = eq
(
−4bc2

)( b
q

)
δq
√
q, (4.15)

provided that (b, q) = 1. Here 4b denotes the multiplicative inverse of 4b
modulo q, and

δq =

{
1 if q ≡ 1 mod 4,

i if q ≡ 3 mod 4.

Define the dual form

F ∗(y) = A2A3A4y
2
1 + A1A3A4y

2
2 + A1A2A4y

2
3 + A1A2A3y

2
4. (4.16)

The following result follows on inserting (4.15) into (4.13).

Lemma 4.6. Let p ∤ 2∆F be a prime. Then

Spr(c) =

(
∆F

pr

)
p2rcpr(F

∗(c)),

where cpr(N) is the Ramanujan sum.
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By standard properties of the Ramanujan sum, this result implies that
Spr(c) = 0 unless p | F ∗(c), whenever p ∤ 2∆F and r > 2.

We proceed by using our work so far to study the asymptotic behaviour of
the sum

Σ(x; c) =
∑

q6x

q−3Sq(c), (4.17)

for suitable vectors c.

Lemma 4.7. Let ε > 0 and assume that F ∗(c) 6= 0. Then

|Σ(x; c)| 6
∑

q6x

q−3|Sq(c)| ≪ε x
ε|c|ε‖F‖ε

∏

16i64

(Ai, ci)
1/2.

Proof. Define the non-zero integer N = 2∆FF
∗(c). To handle Σ(x; c) we sum

trivially over q, finding that
∑

q6x

q−3|Sq(c)| =
∑

q26x
q2|N∞

q−3
2 |Sq2(c)|

∑

q16x/q2
(q1,N)=1

q−3
1 |Sq1(c)|.

It follows from Lemma 4.6 that the inner sum is restricted to square-free
integers q1 and that |Sq1(c)| 6 q21 . Lemma 4.5 yields

∑

q6x

q−3|Sq(c)| ≪ log x
∑

q26x
q2|N∞

|Sq2(c)|
q32

≪ log x
∑

q26x
q2|N∞

∏

16i64

(Ai, ci)
1/2.

The statement of the lemma follows on noting that there are Oε(N
εxε) values

of q2 that contribute to the remaining sum. �

We shall also need to study Σ(x; 0). First, we recall the definition (4.1) of
∆bad and establish the following result.

Lemma 4.8. Let r > 1 and p | ∆F , with p ∤ 2∆bad. Then Spr(0) = 0.

Proof. We return to (4.13) with c = 0. The assumption p ∤ 2∆bad implies
that vp(∆F ) = 1. We suppose without loss of generality that vp(A4) = 1 and
p ∤ A1A2A3. We may evaluate G(aAi, 0; p

r) using (4.15) for 1 6 i 6 3. Next,
on writing A′

4 = A4/p, it is easy to see that

G(aA4, 0; p
r) =

∑

x mod pr

epr−1

(
aA′

4x
2
)
=

{
p if r = 1,

(
aA′

4

pr−1 )δpr−1p
r+1
2 if r > 2.

Hence Spr(0) = 0 for r > 1, since the a-sum is
∑∗

a mod pr(
a
p
) = 0. �

We now have everything in place to study Σ(x; 0). This time we shall sum
non-trivially over q using the Burgess bound for short character sums.
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Lemma 4.9. Let ε > 0 and assume that ∆F 6= �. Then

Σ(x; 0) ≪ε |∆F |3/16+ε∆
3/8
bad x

1/2+ε.

Proof. Define the non-zero integer N = 2∆bad. We have

Σ(x; 0) =
∑

q26x
q2|N∞

q−3
2 Sq2(0)

∑

q16x/q2
(q1,N)=1

q−3
1 Sq1(0).

It follows from Lemma 4.8 that the inner sum is actually only over q1 which are
coprime to 2∆F . Setting A = 2∆F for convenience, it follows from Lemma 4.6
that

∑

q6X
(q,A)=1

q−3Sq(0) =
∑

q6X
(q,A)=1

(
∆F

q

)
ϕ∗(q),

where ϕ∗ = 1 ∗ h, with h(d) = µ(d)/d. Opening up ϕ∗ and inverting the order
of summation, we conclude that

∑

q6X
(q,A)=1

q−3Sq(0) =
∑

u6X
(u,A)=1

µ(u)

u

(
∆F

u

) ∑

v6X/u
(v,A)=1

(
∆F

v

)
.

According to Burgess [6, 7], the inner sum is Oε(|∆F |3/16+ε(X/u)1/2), for any
ε > 0. But then we have

∑

q6X
(q,A)=1

q−3Sq(0) ≪ε |∆F |3/16+εX1/2
∑

u6X

1

u3/2
≪ε |∆F |3/16+εX1/2.

Applying this with X = x/q2 and returning to the start of the argument, we
may now deduce from Lemma 4.5 that

Σ(x; 0) ≪ε |∆F |3/16+εx1/2
∑

q26x
q2|∆∞

bad

∏
16i64(q2, Ai)

1/2

q
1/2
2

≪ε |∆F |3/16+ε∆
3/8
badx

1/2+ε,

since there are Oε(|∆F |εxε) choices for q2 in this sum. This completes the
proof of the lemma. �

We end this section by considering the singular series (4.7), which we may
write as

S(F ) =
∏

p

∞∑

r=0

p−4rSpr(0).

We prove the following upper bound.
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Lemma 4.10. Whenever ∆F 6= � we have

S(F ) ≪ε ∆
1/4+ε
bad L(1, χF ) ≪ε ∆

1/4
bad‖F‖ε,

where χF is the quadratic character defined by taking χF (2) = 0 and

χF (p) =

(
∆F

p

)

for odd primes p.

Proof. When p ∤ 2∆F we have

Spr(0) =

(
∆F

pr

)
p2rϕ(pr),

by Lemma 4.6, whence

∏

p∤2∆F

∞∑

r=0

p−4rSpr(0) ≪ L(1, χF ).

The conductor of χF is O(‖F‖4), whence L(1, χF ) ≪ log(2 + ‖F‖) ≪ε ‖F‖ε.
The factor corresponding to primes for which p | ∆F and p ∤ 2∆bad is just

1, by Lemma 4.8. It therefore remains to consider primes p | 2∆bad. Suppose
that pfj‖2Aj with f1 6 f2 6 f3 6 f4, say. Then Lemma 4.5 yields

∞∑

r=0

p−4rSpr(0) ≪
∞∑

r=0

p−r
∏

16j64

min(pr/2, pfj/2).

If we bound the minimum by pr/2 for j = 4 we see that
∞∑

r=0

p−4rSpr(0) ≪
∞∑

r=0

p−r/2min(p3r/2, p(f1+f2+f3)/2) ≪ p(f1+f2+f3)/3.

If pe‖∆bad this is O(pe/4), so that primes which divide 2∆bad provide a total

Oε(∆
1/4+ε
bad ) for any ε > 0. The lemma then follows. �

4.3. The main term. We now collect our estimates together in order to com-
plete the proof of Theorem 4.1. Let ε > 0 and let C = ‖F‖1/2Qε. Returning
to (4.9), it follows from part (i) of Lemma 4.2 that

Nw(P ) =M(P ) + E(P ) +O(1),

where

M(P ) =
1

Q2

∞∑

q=1

q−4Sq(0)Iq(0) and E(P ) =
1

Q2

∑

c∈Z4

0<|c|≪C

∞∑

q=1

q−4Sq(c)Iq(c).
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In both M(P ) and E(P ) we recall that Iq(c) vanishes for q ≫ Q, by the
properties of the function h.

To handle M(P ) our first task is to relate Iq(0) to the singular integral,
given by (4.6). To begin with we note that

Iq(0) = P 4

∫

R4

w(x)h

(
q

Q
,G(x)

)
dx,

where G(x) = ‖F‖−1F (x). Since w is compactly supported we will have
|G(x)| 6 cw whenever w(x) 6= 0, for some constant cw depending only on w.
We choose a smooth weight function w0 : R → R supported on [−1−cw, 1+cw]
such that w0(t) = 1 for t ∈ [−cw, cw]. This choice can be made in an explicit
way such that w0 depends only on w. This allows us to write

Iq(0) = P 4

∫

R4

w(x)w0(G(x))h

(
q

Q
,G(x)

)
dx.

The function f(t) = w0(t)h(q/Q, t) is compactly supported with a continuous
second derivative. Recall the definition (3.11) of the function K(u; δ). The
above condition is enough to ensure that

∫ ∞

−∞
f(t)K(t− τ ; δ)dt→ f(τ) as δ ↓ 0,

uniformly in τ . As a result one sees that

Iq(0) = P 4 lim
δ↓0

∫

R4

∫ ∞

−∞
w(x)w0(t)h

(
q

Q
, t

)
K(t−G(x); δ)dtdx.

Using the equation (3.12) we are now led to the expression

Iq(0) = P 4 lim
δ↓0

∫ ∞

−∞

(
sin(πδθ)

πδθ

)2

J(θ;w)L(θ)dθ,

with J(θ;w) given by (4.11) and

L(θ) =

∫ ∞

−∞
w0(t)h

(
q

Q
, t

)
e(θt)dt.

The following result is concerned with estimating this integral.

Lemma 4.11. Assume that q 6 Q. Then

L(θ) = 1 +ON((q/Q)
N) +ON((q/Q)

N |θ|N)
for any integer N > 1.

We will prove this at the end of this section, but first we use it to com-
plete our treatment of Iq(0). Combining Lemma 4.4 with the trivial bound
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J(θ;w) ≪ 1 we have J(θ;w) ≪N (1 + |θ|)−2N‖F‖4Nη. The error terms in
Lemma 4.11 therefore contribute a total

≪N P 4

∫ ∞

−∞

(q/Q)N{1 + |θ|}N
{1 + |θ|}2N ‖F‖4Nηdθ ≪N P 4(q/Q)N‖F‖4Nη,

for any N > 2. Moreover
∫ ∞

−∞

(
sin(πδθ)

πδθ

)2

J(θ;w)dθ →
∫ ∞

−∞
J(θ;w)dθ

as δ ↓ 0. On replacing θ by ‖F‖θ we then see that

Iq(0) = P 4
{
‖F‖σ∞(w;F ) +ON((q/Q)

N‖F‖4Nη)
}

for any q 6 Q and any N > 2. In particular, if q 6 Q‖F‖−5η then, by taking
N suitably large, the error term can be made smaller than any given negative
power of P , by virtue of our assumption that ‖F‖ > P η.

We will need the following upper bound for the singular integral, in which
we do not make either of the assumptions (4.2) or (4.3).

Lemma 4.12. Suppose that ∆F 6= 0. Suppose either that w is a smooth weight
function of compact support, or that w is the characteristic function of [−κ, κ]4
for some κ > 0. Then σ∞(w;F ) ≪w |∆F |−1/4.

We will prove this in the next section. Taking the lemma as proved, we see
that (4.3) implies that

σ∞(w;F ) ≪ ‖F‖−1+η. (4.18)

We now have

M(P ) =
‖F‖σ∞(w;F )P 4

Q2

∑

q6Q‖F‖−5η

q−4Sq(0) +O
(∣∣T

(
Q‖F‖−5η

)∣∣+ 1
)
,

where

T (M) =
1

Q2

∑

q>M

q−4Sq(0)Iq(0).

Summation by parts yields

T (M) = −IM(0)

Q2M
Σ(M ; 0)− 1

Q2

∫ ∞

M

Σ(x; 0)
∂

∂x

Ix(0)

x
dx,

where Σ(x; 0) is given by (4.17). However Ix(0) vanishes identically when
x≫ Q, whence it follows from Lemmas 4.3 and 4.9 that

T (M) ≪ ‖F‖ηP 4

Q2M
sup

M6x≪Q
|Σ(x; 0)| ≪ε

‖F‖ηP 4

Q2M
|∆F |3/16+ε∆

3/8
badQ

1/2+ε.
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Taking M = Q‖F‖−5η with Q = P‖F‖1/2, and using the bounds |∆F | 6 ‖F‖4
and ∆bad 6 ‖F‖η, this yields

T (Q‖F‖−5η) ≪ε ‖F‖−1/2+51η/8+εP 3/2+ε.

Our assumption that ‖F‖ > P η enables us to replace P ε by ‖F‖ε/η, whence,
on choosing ε suitably small, we obtain the bound

M(P ) =
‖F‖σ∞(w;F )P 4

Q2

∑

q6Q‖F‖−5η

q−4Sq(0) +O
(
‖F‖−1/2+7ηP 3/2

)
.

A similar analysis shows that

‖F‖P 4

Q2

∑

q6Q‖F‖−5η

q−4Sq(0) =
‖F‖P 4

Q2

∞∑

q=1

q−4Sq(0) +O(‖F‖1/2+6ηP 3/2).

The infinite sum is just S(F ). Hence, using (4.18), we find that

M(P ) = σ∞(w;F )S(F )P 2 +O
(
‖F‖−1/2+7ηP 3/2

)
.

This is satisfactory for the statement of Theorem 4.1.

Proof of Lemma 4.11. When |θ| 6 1 the result is an immediate application
of Heath-Brown [12, Lemma 9]. Moreover, taking N = 2 in (4.10) yields
h(x, t) ≪ x + min(x−1, xt−2), whence one trivially has L(θ) ≪ 1 for q 6 Q.
We may therefore assume that qQ−1|θ| 6 1 6 |θ|. In this case we must modify
the proof of [12, Lemma 9]. It will be convenient to write x = q/Q and

X =
√
x/|θ|. Since w0 has compact support we may suppose that t ≪w 1.

Thus (4.10) implies that h(x, t) ≪N xN−1|t|−N for any N > 1. It then follows
that the range |t| > X contributes ON(x

N−1X1−N) = ON((x|θ|)(N−1)/2) to
L(θ). This is satisfactory for the error terms of Lemma 4.11, on redefining N .

When |t| 6 X we use Taylor’s theorem to approximate w0(t)e(θt) by a
polynomial of degree M , say, together with an error OM(XM+1|θ|M+1). Since
we have h(x, t) ≪ x + min(x−1, xt−2), as noted above, this error term con-
tributes OM((x|θ|)(M+1)/2) to L(θ), which again is satisfactory if M is large
enough. The polynomial produced by Taylor’s theorem has terms cmt

m with
cm ≪M |θ|m. When 1 6 m 6M we apply [12, Lemma 8], producing an overall
bound OM((X|θ|)m(x/X)M) for each value of m. One should note here firstly
that the required condition x ≪ min(1, X) holds, by virtue of the condition
x|θ| 6 1, and secondly that XxM−1 6 xMX−M for M > 1, since x 6 1 6 |θ|.
On considering the possible values for m ∈ {1, . . . ,M} we then see that each
monomial cmt

m contributes OM((x|θ|)M) + OM((x|θ|)(M+1)/2), which is satis-
factory whenM is taken large enough. Finally, the constant term c0 is handled
analogously using [12, Lemma 6], producing the same error term together with
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a main term c0. However the function w0 takes the value 1 at the origin, and
the lemma follows. �

4.4. The singular integral. We begin by proving Lemma 4.12. The function

J(θ;w) =

∫

R4

w(x)e(−θG(x))dx

is well-defined and continuous. We claim that J(θ;w) ∈ L1(R) for w as in the
lemma. If w is smooth and supported in [−κ, κ]4 then

J(θ;w) ≪w

∫

[−κ,κ]4
e(−θG(x) + x.y)dx

for some y ∈ R4, by Lemma 3.2 of Heath-Brown and Pierce [14]. The integral
on the right factors into four 1-dimensional integrals, with

∫ κ

−κ

e(−θAj‖F‖−1x2 + xyj)dx≪κ min

{
1 ,

√
‖F‖
|θAj |

}
.

It then follows that

J(θ;w) ≪
4∏

j=1

min

{
1 ,

√
‖F‖
|θAj|

}
≪ min

{
1 ,

‖F‖2
θ2|∆F |1/2

}
,

whence
∫ ∞

−∞
J(θ;w)dθ ≪

∫ ∞

−∞
min

{
1 ,

‖F‖2
θ2|∆F |1/2

}
dθ ≪ ‖F‖

|∆F |1/4
,

as required.

We now use the machinery developed above to see how to compare σ∞(w;F )
for different weights.

Lemma 4.13. Let w0(x) be the characteristic function of the region [−1, 1]4.
Suppose that w1(x) (respectively, w2(x)) is supported in the region η 6 |x| 6 1
(respectively, η 6 |x| 6 1+ η) and takes values in [0, 1] there. Suppose further
that w1(x) = 1 whenever 2η 6 |x| 6 1 − η (respectively, w2(x) = 1 whenever
2η 6 |x| 6 1). Then

σ∞(wi;F ) = σ∞(w0;F ) +O(η1/2|∆F |−1/4),

for i = 1, 2, the implied constant being absolute.
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Proof. We confine ourselves to the result for w1, the function w2 being treated
analogously. We first calculate that

∫ ∞

−∞
J(θ;w)dθ = lim

δ↓0

∫ ∞

−∞

(
sin(πδθ)

πδθ

)2

J(θ;w)dθ

= lim
δ↓0

∫ ∞

−∞

∫

R4

w(x)e(−θG(x))
(
sin(πδθ)

πδθ

)2

dxdθ.

The conditions for Fubini’s Theorem are satisfied, allowing us to switch the
two integrations. The relation (3.12) then shows us that

∫ ∞

−∞
J(θ;w)dθ = lim

δ↓0

∫

R4

w(x)K(−G(x); δ)dx. (4.19)

It follows that

‖F‖{σ∞(w1;F )− σ∞(w0;F )} = lim
δ↓0

∫

R4

{w1(x)− w0(x)}K(−G(x); δ)dx.

We have |w1(x) − w0(x)| 6 1 for all x, the difference being non-zero only if
either |x| 6 2η or there is some index i for which 1− η 6 |xi| 6 1. Hence

|w1(x)− w0(x)| 6
8∑

n=0

fn(x),

where each fn(x) is the characteristic function of a certain box I1 × . . .× I4.
For n = 0 this is just [−2η, 2η]4, but otherwise 3 of the intervals Ij have length
2, and the fourth has length η. Thus

‖F‖. |σ∞(w1;F )− σ∞(w0;F )| 6
8∑

n=0

lim
δ↓0

∫

R4

fn(x)K(−G(x); δ)dx.

The expression on the right may be evaluated via a further application of
(4.19). As in the proof of Lemma 4.12, we have

∫

Ij

e(θAj‖F‖−1x2)dx ≪ min

{
meas(Ij) ,

√
‖F‖
|θAj |

}
,

leading to a bound

‖F‖{σ∞(w1;F )− σ∞(w0;F )} ≪
∫ ∞

−∞
min

{
η ,

‖F‖2
θ2|∆F |1/2

}
dθ

≪ η1/2
‖F‖

|∆F |1/4
and the lemma follows. �
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It is convenient at this point to record some facts about τ∞, as given in
Theorem 1.1.

Lemma 4.14. Let ̺∞(y) be given by (3.3), and define

σ∞(x) =

∫ ∞

−∞

∫

[−1,1]4
e(−θF (x;y))dydθ. (4.20)

Then

τ∞ =

∫

[−1,1]4
̺∞(y)dy =

∫

[−1,1]4
σ∞(x)dx, (4.21)

Moreover, these last two integrals are absolutely convergent.

Proof. In order to verify (4.21) it is enough to confirm that the orders of
integration may be suitably changed, and this will be permissible provided
both ∫

[−1,1]4
e(−θF (x;y))dx and

∫

[−1,1]4
e(−θF (x;y))dy

are in L1(R× [−1, 1]4). However these are of order

4∏

i=1

min{1 , |θ|−1|yi|−2} and
4∏

i=1

min{1 , |θ|−1/2|xi|−1/2}

respectively, and so are both integrable. �

4.5. Analysis of E(P ). The key observation in handling E(P ) is that the hy-
pothesis ‖F‖ > P η in Theorem 4.1, along with the assumption (4.4), allow us
to restrict to c ∈ Z4 for which F ∗(c) 6= 0. Indeed, suppose for a contradiction
that c ∈ Z4 is such that 0 < |c| ≪ C and F ∗(c) = 0, where F ∗(c) is given by
(4.16). Let us assume, for example, that c1 6= 0. Now, if we write

A♭
1 =

∏

p‖A1

p∤A2A3A4

p,

then the equation F ∗(c) = 0 implies that A♭
1 | c1. Since 1 6 |c1| ≪ C we

would then deduce that A♭
1 ≪ C. However (4.3) and (4.4) yield

A♭
1 >

|A1|
∆bad

> ‖F‖1−2η.

Since C = ‖F‖1/2Qε with Q = ‖F‖1/2P , we therefore obtain a contradiction
if ε is small enough and P is large enough, since P η 6 ‖F‖.

We now have

E(P ) =
1

Q2

∑

c∈Z4

|c|≪C
F ∗(c)6=0

∞∑

q=1

q−4Sq(c)Iq(c).
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The analysis of quaternary quadratic forms, in Heath-Brown [12, §12] for ex-
ample, normally requires one to obtain some cancellation from the summation
over q, but this is no longer necessary because we have been able to remove
vectors c for which F ∗(c) = 0.

Noting that Iq(c) is only supported on q ≪ Q, we deduce from part (ii) of
Lemma 4.2 that

∞∑

q=1

q−4Sq(c)Iq(c) ≪
‖F‖2P 3

|∆F |1/2|c|
∑

q≪Q

q−3|Sq(c)|.

Lemma 4.7 now implies that

E(P ) ≪ ‖F‖2+εP 3+ε

|∆F |1/2Q2

∑

c∈Z4

0<|c|≪C

∏
16i64(Ai, ci)

1/2

|c| .

It remains to estimate the c-sum, which we temporarily denote by K. We
plainly have

K 6
∑

di|Ai

√
d1d2d3d4

∑

c∈Z4\{0}
ci≪C/di

1

max16i64 |dici|
.

The inner sum is

≪
(
C

di
+ 1

)(
C

dj
+ 1

)(
C

dk
+ 1

)
logC

dl

for some permutation {i, j, k, l} of {1, 2, 3, 4}. Multiplying this by
√
d1d2d3d4

and recalling that C = ‖F‖1/2Qε, this gives

K ≪
∑

di|Ai

logC√
dl

(
C +

√
di

)(
C +

√
dj

)(
C +

√
dk

)
≪ ‖F‖3/2+εP ε,

on employing the trivial estimate for the divisor function.
Absorbing P ε into ‖F‖ε, it now follows that

E(P ) ≪ ‖F‖5/2+εP

|∆F |1/2
.

Our hypotheses (4.3) implies that |∆F | > ‖F‖4−3η, from which one sees that
our bound for E(P ) is satisfactory for the error term given in Theorem 4.1.

5. Combining the various ingredients

Theorems 3.1 and 4.1 will be our main tools for the proof of Theorem 1.1. In
this section we begin by adapting them so as to count only primitive vectors.
We then apply Theorem 4.1 to the quadrics in y given by F (x;y) = 0, and
sum the resulting asymptotic formulae with respect to x. In doing so we must
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allow for those vectors x excluded by the conditions of the theorem. The
next stage is to remove the weight w occuring in Theorem 4.1. We then piece
together our two main estimates, and make suitable adjustments so as to cover
all primitive x,y with |x|3|y|2 6 B. In §6 we will show that the main terms
combine to give cB logB, as B → ∞, with the constant c given by (1.3).

5.1. Primitive solutions with small y. In analogy to (3.1) and (3.2) we
define

M5(y;R) = #
{
x ∈ Z4 : |x| 6 R, ∆(x) 6= �, F (x;y) = 0

}

and
N2(B; Y ) =

∑

y∈Z4
prim

Y <|y|62Y

M5

(
y; (B/|y|2)1/3

)
,

so that
N2(B; Y ) ≪ B +B5/3Y −8/3, (5.1)

by the first part of Lemma 2.1.
We may also estimate N2(B; Y ) by removing solutions with ∆(x) = �

from the counting function N1(B; Y ) given by Theorem 3.1. According to
Lemma 2.6 there are Oε(BY

−1+ε + Y 4) solutions with ∆(x) = 0. Moreover
there are O(X2) possible square values for ∆(x) 6= 0 when |x| 6 X , each
such value corresponding to Oε(X

ε) vectors x. Thus Lemma 2.3 shows that
solutions with ∆(x) = � 6= 0 contribute Oε(B

2/3+εY 2/3) to N1(B; Y ). Taking
ε = 2

15
we deduce that

B2/3+εY 2/3 = (B2/3Y 4/3)3/5(BY −1/3)2/5 6 B2/3Y 4/3 +BY −1/3.

It then follows from Theorem 3.1 that

N2(B; Y ) = B
∑

y∈Z4
prim

Y <|y|62Y

̺∞(y)

|y|2 +O(B2/3Y 4/3) +O(BY −1/3) +O(Y 4) (5.2)

for Y > 1
2
, where ̺∞(y) is given by (3.3).

We now set

M6(y;R) = #
{
x ∈ Z4

prim : |x| 6 R, ∆(x) 6= �, F (x;y) = 0
}

and
N3(B; Y ) =

∑

y∈Z4
prim

Y <|y|62Y

M6

(
y; (B/|y|2)1/3

)
,

whence
M6(y;R) =

∑

d6R

µ(d)M5(y;R/d).
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Our goal now is the following estimate.

Lemma 5.1. If 1
2
6 Y 6 B1/4 we have

N3(B; Y ) =
B

ζ(3)

∑

y∈Z4
prim

Y <|y|62Y

̺∞(y)

|y|2 +O(B2/3Y 4/3) +O(BY −1/3).

Proof. We start from the relation

N3(B; Y ) =
∑

d6(B/Y 2)1/3

µ(d)N2(B/d
3; Y ).

To estimate this sum we choose a parameterD in the range 1 6 D 6 B1/3Y −2/3

and use (5.2) for d 6 D and (5.1) for d > D. This yields

N3(B; Y ) = B

(
∑

d6D

µ(d)

d3

)
∑

y∈Z4
prim

Y <|y|62Y

̺∞(y)

|y|2 +O(B2/3Y 4/3) +O(BY −1/3)

+O(Y 4D) +O(BD−2) +O(B5/3D−4Y −8/3).

It follows from (3.9) that

∑

y∈Z4
prim

Y <|y|62Y

̺∞(y)

|y|2 =
∑

y∈Z4
prim

Y <|y|62Y

V (y)

|y|2d(y) ≪ 1,

so that the leading term is

B

ζ(3)

∑

y∈Z4
prim

Y <|y|62Y

̺∞(y)

|y|2 +O(BD−2).

Thus if we choose D = B1/3Y −4/3 we obtain

N3(B; Y ) =
B

ζ(3)

∑

y∈Z4
prim

Y <|y|62Y

̺∞(y)

|y|2 +O(B2/3Y 4/3) +O(BY −1/3) +O(B1/3Y 8/3).

Since Y 6 B1/4 the final error term is bounded by the first, as required. �

5.2. Primitive solutions for typical small x. We next perform a similar
computation for solutions in which x is small and y is large, counted via the
fibration into quadrics, using Theorem 4.1. We write

M7(x;P,w) =
∑

y∈Z4

F (x;y)=0

w(P−1y),
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where w(y) is an infinitely differentiable weight function of compact support
that vanishes for |y| 6 η. Then Theorem 4.1 shows that

M7(x;P,w) = σ∞(x;w)S(x)P 2 +Ow,η

(
|x|−1/2+7ηP 3/2 + |x|1/2+2ηP

)

when |x| > P η, provided that

|x|1−η
6 |xi|

(
6 |x|

)
, for 1 6 i 6 4, (5.3)

and that
∆bad(x) 6 |x|η. (5.4)

The singular integral and series are given by

σ∞(x;w) =

∫ ∞

−∞

∫

R4

w(y)e(−θF (x;y))dydθ (5.5)

and
S(x) =

∏

p

lim
r→∞

p−3r#{y ∈ (Z/prZ)4 : F (x;y) ≡ 0 mod pr}.

We now write
M8(x;P,w) =

∑

y∈Z4
prim

F (x;y)=0

w(P−1y)

and proceed to derive the following estimate.

Lemma 5.2. Suppose that x satisfies the conditions (5.3) and (5.4), and that
P η 6 |x| 6 P 2/3. We then have

M8(x;P,w) =
σ∞(x;w)S(x)

ζ(2)
P 2+Ow,η(|x|−1/2P 5/3+5η).+Ow,η(|x|−1/2P 5/3+4η).

(5.6)

Proof. Our starting point is the relation

M8(x;P,w) =
∑

d≪P

µ(d)M7(x;P/d, w)

= σ∞(x;w)S(x)P 2{ζ(2)−1 +O(P−1)}
+Ow,η

(
|x|−1/2+7ηP 3/2 + |x|1/2+2ηP 1+η

)
.

If we assume that |x| 6 P 2/3 the final error term is Ow,η(|x|−1/2P 5/3+5η). We
also observe that σ∞(x;w) ≪ |x|−1+η, as in (4.18), and that S(x) ≪ |x|η by
Lemma 4.10 and (5.4). The estimate (5.6) then follows. �

We are now ready to consider the average

N4(B;X,w) =
∑

x∈Z4
prim,∆(x)6=�

X<|x|62X

M8

(
x; (B/|x|3)1/2, w

)
,
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for which we have the following estimate.

Lemma 5.3. Let

B2η
6 X 6 B1/6−4η.B2η

6 X 6 B1/6−3η. (5.7)

Then if η is small enough we will have

N4(B;X,w) =
B

ζ(2)

∑

x∈Z4
prim,∆(x)6=�

X<|x|62X

σ∞(x;w)S(x)

|x|3 +Ow,η(B
1−η2/20).

Proof. We would like to apply Lemma 5.2 for those vectors x which satisfy
the conditions (5.3) and (5.4), and for which (B/|x|3)η/2 6 |x| 6 (B/|x|3)1/3.
This final constraint holds if X < |x| 6 2X with X satisfying (5.7). Moreover,
the error term contributes a total Ow,η(B

5/6+3ηX), which is satisfactory for X
in the range (5.7). Thus to complete our treatment of N4(B;X,w) we must
consider vectors x for which either (5.3) or (5.4) fails.

We begin by considering the number of solutions (x,y) for such x. By the
third part of Lemma 2.1 the number of solutions (x,y) for which (5.3) fails
will be

≪ε B
εX−3η/4{B +B1/2X5/2} ≪ε B

εX−3η/4{B +B11/12} ≪ε B
1+εX−3η/4.

This is satisfactory when B2η 6 X 6 B1/6−4η, provided that we take ε 6 η2.
Similarly, by Lemma 2.7, the number of solutions (x,y) for which (5.4) fails
will be

≪ε B
ε
{
BX−η/24 +B1/2X5/2

}

for any fixed ε > 0. As before, under the assumption (5.7) this becomes

O(B1−η2/20) if we choose ε small enough. Thus vectors x which fail to satisfy
either (5.3) or (5.4) will make a suitably small contribution to N4(B;X,w).

To complete the proof of Lemma 5.3 it remains to prove that

∑

x∈Z4
prim,∆(x)6=�

X<|x|62X
(5.3) or (5.4) fails

σ∞(x;w)S(x)

|x|3 ≪ X−η/5, (5.8)

since for X in the range (5.7) the right hand side will then be O(B−2η2/5),
which is satisfactory for Lemma 5.3. According to Lemmas 4.10 and 4.12 we
have

σ∞(x;w)S(x)

|x|3 ≪ε X
−3+ε ∆bad(x)

1/4

|x1x2x3x4|1/4
.
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Let s run over square-full positive integers, and write s = ∆bad(x) and n =
|x1x2x3x4|. Then vectors for which (5.3) fails will contribute

≪ε X
−3+ε

∑

s

s1/4
∑

n616X4−η

s|n

τ4(n)n
−1/4

≪ε X
−3+2ε

∑

s

∑

m616X4−η/s

m−1/4

≪ε X
−3+2ε

∑

s

X3−3η/4s−3/4.

However, if s runs over square-full integers the infinite sum
∑
s−3/4 converges,

so that the above will be O(X−η/2) if we choose ε small enough, which is
satisfactory for (5.8). Similarly, vectors for which (5.4) fails will contribute

≪ε X
−3+ε

∑

s>Xη

s1/4
∑

n616X4

s|n

τ4(n)n
−1/4

≪ε X
−3+2ε

∑

s>Xη

∑

m616X4/s

m−1/4

≪ε X
−3+2ε

∑

s>Xη

X3s−3/4.

Since ∑

s>S

s−3/4 ≪ S−1/4

for any S > 1, the above will be O(X−η/5) for small enough ε, which again
produces a satisfactory contribution to (5.8). This completes the proof of the
lemma. �

5.3. Removing the weights. The counting function N4(B;X,w) involves a
weight function w, and our next task is to remove it so as to produce

N5(B;X) =
∑

x∈Z4
prim,∆(x)6=�

X<|x|62X

∑

y∈Z4
prim

F (x;y)=0

w0((B/|x|3)−1/2y),

where w0 is the characteristic function of [−1, 1]4, as in Lemma 4.13. The
result is described in the following estimate.

Lemma 5.4. If X is in the range (5.7) we have

N5(B;X) =
B

ζ(2)

∑

x∈Z4
prim,∆(x)6=�

X<|x|62X

σ∞(x)S(x)

|x|3 +O(η1/2B) +Oη(B
1−η2/20).
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We remark that σ∞(x) = σ∞(x;w0) in view of (4.20) and (5.5).

Proof. Given η ∈ (0, 1
100

) we can construct specific weights w1, w2 depending
on η alone, and satisfying the conditions of Lemma 4.13. Thus for all u we
have 0 6 w1(u), w2(u) 6 1. Both functions vanish when |u| 6 η. The weight
w1 takes the value 1 for 2η 6 |u| 6 1− η and vanishes for |u| > 1; the weight
w2 takes the value 1 for 2η 6 |u| 6 1 and vanishes for |u| > 1+η. In particular
0 6 w1(u) 6 w0(u) for all u, so that N4(B;X,w1) 6 N5(B;X). The condition
that |(B/|x|3)−1/2y| 6 2η is equivalent to the condition |(B′/|x|3)−1/2y| 6 1
with B′ = 4η2B, whence

N5(B;X)−N5(4η
2B;X) 6 N4(B;X,w2).

Since the first part of Lemma 2.1 shows that

N5(4η
2B;X) ≪ η2/3B

for X 6 B1/6, we see that it will suffice to show that

N4(B;X,wi) =
B

ζ(2)

∑

x∈Z4
prim,∆(x)6=�

X<|x|62X

σ∞(x)S(x)

|x|3 +O(η1/2B) +Oη(B
1−η2/20).

for i = 1, 2. However according to Lemma 5.3 we have

N4(B;X,wi) =
B

ζ(2)

∑

x∈Z4
prim,∆(x)6=�

X<|x|62X

σ∞(x;wi)S(x)

|x|3 +Oη(B
1−η2/20)

for i = 1, 2. It needs to be stressed at this point that the implied constant for
the error term depends only on η, since the two weight functions are completely
fixed once η is chosen. Moreover our two weight functions do indeed vanish
on a neighbourhood of the origin as was required at the outset in §4.

We now use Lemma 4.13 to replace σ∞(x;wi) by σ∞(x), introducing an
error O(η1/2BS(X)) with

S(X) =
∑

x∈Z4
prim,∆(x)6=�

X<|x|62X

|x1x2x3x4|−1/4S(x)

|x|3 . (5.9)

We therefore deduce that

N5(B;X) =
B

ζ(2)

∑

x∈Z4
prim,∆(x)6=�

X<|x|62X

σ∞(x)S(x)

|x|3

+O(η1/2B) +O(η1/2BS(X)) +Oη(B
1−η2/20).

(5.10)
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In order to estimate the sum S(X) we apply Lemma 4.10 with ε = 1
20
, which

yields

S(X) ≪ X−3
∑

x∈Z4
prim,∆(x)6=�

X<|x|62X

|x1x2x3x4|−1/4∆bad(x)
3/10L(1, χ).

We proceed by mimicking the proof of Lemma 2.9. Let S(X1, . . . , X4;X)
denote the contribution to the right hand side from the dyadic ranges

Xi/2 < |xi| 6 Xi, for 1 6 i 6 4. (5.11)

It will be convenient to put X̂ = X1 . . .X4. Writing s = ∆bad(x), which is a
square-full integer, we conclude that

S(X1, . . . , X4;X) ≪ X−3X̂−1/4
∑

s square-full

s3/10
∑

d1,...,d4
d1...d4=s

∑

x∈S
L(1, χ),

where S is the set of x ∈ Z4 in the region (5.11) for which with ∆(x) 6= � and
di | xi for 1 6 i 6 4. Appealing to (2.11), it follows that

S(X1, . . . , X4;X) ≪ X−3X̂3/4
∑

s square-full

s3/10
∑

d1,...,d4
d1...d4=s

(d1 . . . d4)
−7/8

≪ X−3X̂3/4
∑

s square-full

τ4(s)s
−23/40

≪ X−3X̂3/4.

On summing over dyadic values for the Xi subject to maxXi ≪ X , we finally
conclude that

S(X) ≪ 1. (5.12)

Once inserted into (5.10), this therefore completes the proof of Lemma 5.4. �

5.4. The counting function N(Ω;B). Using Lemma 5.1, together with a
dyadic subdivision of the range for |y|, we find that

#

{
(x,y) ∈Z4

prim × Z4
prim :

∆(x) 6= �, F (x;y) = 0

|x|3|y|2 6 B, |y| 6 B1/4

}

=
B

ζ(3)

∑

y∈Z4
prim

|y|6B1/4

̺∞(y)

|y|2 +O(B).
(5.13)



DENSITY OF RATIONAL POINTS ON A QUADRIC BUNDLE 43

We would like to handle the range |x| 6 B1/6 similarly, using Lemma 5.4.
We claim that

#

{
(x,y) ∈Z4

prim × Z4
prim :

∆(x) 6= �, F (x;y) = 0

|x|3|y|2 6 B, |x| 6 B1/6

}

=
B

ζ(2)

∑

x∈Z4
prim

B2η6|x|6B1/6

∆(x)6=�

σ∞(x)S(x)

|x|3

+O(η1/2B logB) +Oη(B
1−η2/20 logB).

(5.14)

In order to prove this we must handle the contribution of the two ranges
|x| < B2η and B1/6−4η < |x| 6 B1/6, both for the number of solutions to
F (x;y) = 0, and for the second range in respect of the sum of leading terms.
Lemma 2.1 shows that N5(B;X) ≪ B when X ≪ B1/6, so that the two
awkward ranges contribute O(ηB logB) on the left, which is dominated by
the error term O(η1/2B logB) in (5.14). In view of Lemma 4.12, a range
X < |x| 6 2X contributes O(BS(X)) to the main term on the right in (5.14),
in the notation of (5.9). Using the bound (5.12), and summing over dyadic
values of X in the range B1/6−4η ≪ X ≪ B1/6 B1/6−3η ≪ X ≪ B1/6 we obtain
a contribution O(ηB logB), which again is satisfactory. This establishes the
claim in (5.14).

We now combine the estimates (5.13) and (5.14) so as to cover the entire
range |x|3|y|2 6 B in the definition (1.1) of the counting function N(Ω;B),
with Ω = X(Q) \ T and T being given by (1.2). We may remove the points
with |x| 6 B1/6 and |y| 6 B1/4 at a cost O(B), using Lemma 2.1. Passing to
the affine cone and allowing for multiplication of x and y by units, we therefore
reach the following conclusion.

Lemma 5.5. We have

N(Ω;B) =
B

4

(
1

ζ(3)
M1(B) +

1

ζ(2)
M2(B)

)

+O(η1/2B logB) +Oη(B
1−η2/20 logB).

where

M1(B) =
∑

y∈Z4
prim

|y|6B1/4

̺∞(y)

|y|2 and M2(B) =
∑

x∈Z4
prim

B2η6|x|6B1/6

∆(x)6=�

σ∞(x)S(x)

|x|3 .
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6. The final reckoning

In this section we shall produce asymptotic formulae forM1(B) andM2(B),
as B → ∞. We shall begin in §6.1 by dealing with M1(B), which is the
easier to handle, before developing the techniques further in §6.2 to handle
M2(B). Finally, in §6.3 we shall confirm that the two contributions combine
in a satisfactory manner to complete the proof of Theorem 1.1.

6.1. Analysis of M1(B). The goal of the present section is the following
result.

Lemma 6.1. We have

M1(B) =
1

2ζ(4)
τ∞ logB +O(1),

where τ∞ is given by (1.4).

We begin by using the Möbius function to detect the primitivity condition,
which shows that

M1(B) =
∑

k6B1/4

µ(k)

k2

∑

y∈Z4∩T0

̺∞(ky)

|y|2 ,

where

T0 = T0(k) = {y ∈ R4 : 1 6 |y| 6 B1/4/k}. (6.1)

One sees from the definition (3.3) that ̺∞(ky) = k−2̺∞(y), whence

M1(B) =
∑

k6B1/4

µ(k)

k4

∑

y∈Z4∩T0

̺∞(y)

|y|2 . (6.2)

We now wish to replace the sum over y by an integral. The argument will
make repeated use of the bound

̺∞(y) ≪ |y|−2, (6.3)

which is immediate from (3.9). We start with the following estimate.

Lemma 6.2. If mini |yi| > 2 then

̺∞(y)

|y|2 =

∫

[0,1]4

̺∞(y + t)

|y + t|2 dt+O
(
(min

i
|yi|)−1/3|∆(y)|−2/3|y|−2

)
.

Proof. We begin by showing that

∇̺∞(u) ≪ (min
i

|ui|)−1/3|∆(u)|−2/3. (6.4)
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Without loss of generality we may just examine the partial derivative with
respect to y1. Our definition (3.3) shows that

̺∞(u) =

∫ ∞

−∞

4∏

i=1

I(−θu2i )dθ,

where we write temporarily

I(ψ) =

∫ 1

−1

e(ψx)dx.

Then I(ψ) ≪ min{1, |ψ|−1} and

∂

∂u1
I(−θu21) = −4πiθu1

∫ 1

−1

xe(−θxu21)dx≪ |u1|−1.

Thus
∂

∂u1
̺∞(u) ≪ |u1|−1

∫ ∞

−∞
min{1, |θ|−3|u2u3u4|−2}dθ

≪ |u1|−1|u2u3u4|−2/3

≪ (min
i

|ui|)−1/3|∆(u)|−2/3,

as required.
We now use the decomposition

̺∞(y + t)

|y + t|2 − ̺∞(y)

|y|2 =
̺∞(y + t)− ̺∞(y)

|y + t|2 + ̺∞(y){|y + t|−2 − |y|−2}.

If |t| 6 1 and mini |yi| > 2 then

|yi + ti| > |yi| − |ti| > 1
2
|yi|,

so that |y + t|−2 ≪ |y|−2. Moreover the Mean Value Theorem shows that

|̺∞(y + t)− ̺∞(y)| 6 sup
06ξ61

∣∣∣∣
∂

∂ξ
̺∞(y + ξt)

∣∣∣∣ .

It then follows from (6.4) that

̺∞(y + t)− ̺∞(y)

|y + t|2 ≪ (min
i

|yi|)−1/3|∆(y)|−2/3|y|−2.

We also have

|y + t|−2 − |y|−2 = |y + t|−2|y|−2{|y + t|+ |y|}{|y| − |y + t|}.
Assuming as above that |t| 6 1 and |y| > 2 we see that |y| ≪ |y + t| ≪ |y|
and |y + t| − |y| ≪ 1, so that

̺∞(y){|y + t|−2 − |y|−2} ≪ |y|−3̺∞(y) ≪ (min
i

|yi|)−1/3|∆(y)|−2/3|y|−2,
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by (6.3). We therefore have

̺∞(y + t)

|y + t|2 =
̺∞(y)

|y|2 +O
(
(min

i
|yi|)−1/3|∆(y)|−2/3|y|−2

)
, (6.5)

and the lemma follows. �

Our next result converts the summation over y in (6.2) into an integral.

Lemma 6.3. We have
∑

y∈Z4∩T0

̺∞(y)

|y|2 = J1(B; k) +O(1),

where

J1(B; k) =

∫

T0(k)

̺∞(y)

|y|2 dy.

Proof. We define

X = {y ∈ Z4 : |y| 6 B1/4/k − 2, min |yi| > 2}
and

Y =
⋃

y∈X
(y + (0, 1]4).

The reader should note that these could be empty if k is large enough. The
sets y + (0, 1]4 forming Y are disjoint, and Y lies inside the set T0 defined in
(6.1). Moreover T0 \ Y is a subset of T1 ∪ T2, where

T1 = {t ∈ T0 : B
1/4/k − 3 6 |t| 6 B1/4/k},

and
T2 = {t ∈ T0 : min |ti| 6 3}.

It then follows from Lemma 6.2 and (6.3) that

∑

y∈Z4∩T0

̺∞(y)

|y|2 = J1(B; k) +O

(
2∑

i=0

Ei

)
,

where
E0 =

∑

y∈Z4∩T0

min |yi|>2

(min
i

|yi|)−1/3|∆(y)|−2/3|y|−2,

and

Ei =
∑

y∈Z4∩Ti

|y|−4 +

∫

Ti

|y|−4dy

for i = 1, 2. We readily find that Ei ≪ 1 for i = 0, 1, 2, and the lemma
follows. �
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In order to complete our argument we will need the following evaluation of
J1(B; k).

Lemma 6.4. If k 6 B1/4 we have

J1(B; k) = 2τ∞ log(B1/4/k),

with τ∞ given by (1.4).

Proof. We divide T0(k) into four (overlapping) pieces according to the index i
for which |y| = |yi|. We observe from (3.3) that ̺∞(y) is unchanged when we
permute the coordinates, and that ̺∞(y) = |y|−2̺∞(t1, t2, t3, 1) if |y| = |y4|
and ti = yi/|y| for i = 1, 2, 3. It therefore follows that

J1(B; k) = 8

∫ B1/4/k

1

dy4
y4

∫

[−1,1]3
̺∞(t1, t2, t3, 1)dt.

In a precisely similar way Lemma 4.14 yields

τ∞ =

∫

[−1,1]4
̺∞(y)dy = 8

∫ 1

0

y4dy4

∫

[−1,1]3
̺∞(t1, t2, t3, 1)dt,

and the lemma follows. �

We can now complete the proof of Lemma 6.1. Combining (6.2) with
Lemma 6.3 we obtain

M1(B) =
∑

k6B1/4

µ(k)

k4
J1(B; k) +O(1).

We have
∑

k6B1/4

µ(k)

k4
log k ≪ 1

and
∑

k6B1/4

µ(k)

k4
= ζ(4)−1 +O(B−3/4),

so that Lemma 6.4 yields

M1(B) =
2τ∞
ζ(4)

logB1/4 +O(1),

and the required estimate follows.
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6.2. Analysis of M2(B). We remind the reader that

M2(B) =
∑

x∈Z4
prim

B2η6|x|6B1/6

∆(x)6=�

σ∞(x)S(x)

|x|3

where

σ∞(x) =

∫ ∞

−∞

∫

[−1,1]4
e(−θF (x;y))dydθ

and

S(x) =

∞∑

q=1

q−4Sq, with Sq = Sq(x) =
∑∗

a mod q

∑

b mod q

eq (aF (x;b)) .

The goal of the present section is the following result.

Lemma 6.5. We have

M2(B) =
1

2
· ζ(2)

ζ(3)ζ(4)
· τ∞ logB +O (η logB) +Oη(1),

where τ∞ is given by (1.4).

In order to estimateM2(B) our plan will begin by showing that the singular
series S(x) can be replaced by a truncated sum

S(x;R) =
∑

q6R

q−4Sq,

for suitable R. Using Heath-Brown’s large sieve for real characters [11], we
shall ultimately succeed in showing that R can be taken an arbitrarily small
power of B, with acceptable error. The constraint ∆(x) 6= � can now be
replaced by ∆(x) 6= 0, again with an acceptable error. We then interchange
the q and x summations in M2(B) and approximate the x-sum by a 4-fold
integral. Lastly, the remaining q-sum will be extended to infinity to get our
final asymptotic formula for M2(B). Throughout this analysis we will use
repeatedly the estimate

σ∞(x) ≪ |∆(x)|−1/4

given by Lemma 4.12.
In order to carry out this plan we first make a crude first analysis of the tail

of the singular series S(x). Since ∆(x) 6= �, it follows from Lemma 4.9 and
partial summation that

∑

q>B

q−4Sq ≪ε |∆(x)|3/16∆bad(x)
3/8B−1/2+ε,
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for any ε > 0. Since |x|3 > |∆(x)|3/4, an application of Lemma 4.12 now shows
that the tail of the singular series contributes

≪ε B
−1/2+ε

∑

x∈Z4
prim

|x|6B1/6

∆bad(x)
3/8

|∆(x)|13/16

to M2(B). Writing s = ∆bad(x) and n = |∆(x)|, we see that this is

≪ε B
−1/2+ε

∑

s6B2/3

s square-full

s3/8
∑

n6B2/3

s|n

τ4(n)

n13/16
≪ε B

−3/8+2ε
∑

s square-full

1

s5/8
.

Taking ε = 1
8
and noting that the s-sum is convergent, this shows that

M2(B) =
∑

x∈Z4
prim

B2η6|x|6B1/6

∆(x)6=�

σ∞(x)S(x;B)

|x|3 +O
(
B−1/8

)
.

Building on this, we now show that the singular series can be truncated to a
much smaller power of B, with acceptable error.

Lemma 6.6. We have

M2(B) =
∑

x∈Z4
prim

B2η6|x|6B1/6

∆(x)6=�

σ∞(x)S(x;Bη/8)

|x|3 +Oη(1).

Proof. Since |x|3 > |∆(x)|3/4 and σ∞(x) ≪ |∆(x)|−1/4 it will be enough to
show that

E(B) =
∑

x∈Z4
prim

B2η6|x|6B1/6

∆(x)6=0

1

|∆(x)|

∣∣∣∣∣∣

∑

Bη/8<q6B

q−4Sq

∣∣∣∣∣∣
≪η 1.

Note that we have relaxed the condition ∆(x) 6= � to require only that ∆(x)
is non-zero. We shall write s = ∆bad(x) and n = ∆(x), so that ns−1 is square-
free. Since |∆(x)| > |x| > B2η, we are only interested in integers n in the
range B2η 6 |n| 6 B2/3.
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It follows from the multiplicativity of Sq that

∣∣∣∣∣∣

∑

Bη/8<q6B

q−4Sq

∣∣∣∣∣∣
6
∑

v6B
v|(2s)∞

v−4|Sv|

∣∣∣∣∣∣∣∣

∑

Bη/8/v<u6B/v
(u,2s)=1

u−4Su

∣∣∣∣∣∣∣∣
.

Lemma 4.5 shows that

Sv ≪ v3
∏

16i64

(v, xi)
1/2

6 v3(v4, x1 . . . x4)
1/2

≪ v3(v4, s)1/2

6 v3min(v4, s)1/2

6 v7/2s3/8

for v | (2s)∞. Moreover, Lemmas 4.6 and 4.8 imply that

Su =
(n
u

)
ϕ∗(u)u3,

when (u, 2s) = 1, where ϕ∗ = 1 ∗ h, with h(d) = µ(d)/d. Hence

E(B) ≪ε B
ε
∑

s6B2/3

s square-full

∑

v6B
v|(2s)∞

v−1/2s3/8
∑

B2η6|n|6B2/3

s|n

1

|n|

∣∣∣∣∣∣∣∣

∑

Bη/8/v<u6B/v
(u,2s)=1

(n
u

) ϕ∗(u)

u

∣∣∣∣∣∣∣∣
,

since the number of x associated to n is at most τ4(n) = Oε(B
ε).

We now write n = sm and split the ranges form and u into dyadic intervals.
This gives us values M and U 6 U1 6 2U , with

max

(
1 ,

B2η

s

)
≪M ≪ B2/3 and

Bη/8

v
≪ U ≪ B

v

such that

E(B) ≪ε
B2ε

MU

∑

s6B2/3

s square-full

∑

v6B
v|(2s)∞

v−1/2s−5/8
∑

M<m62M

∣∣∣∣∣
∑

U<u6U1

(m
u

)
αu,s

∣∣∣∣∣ ,

with

αu,s =

{
U ϕ∗(u)

u

(
4s
u

)
if u is odd,

0 if u is even.
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In particular αu,s ≪ 1. We now write

∑

M<m62M

∣∣∣∣∣
∑

U<u6U1

(m
u

)
αu,s

∣∣∣∣∣ =
∑

M<m62M

∑

U<u6U1

(m
u

)
αu,sβm,

with βm = ±1, and apply the large sieve for real characters in the form given
by Heath-Brown [11, Cor. 4]. This shows that

∑

M<m62M

∑

U<u6U1

(m
u

)
αu,sβm ≪ε (MU)ε{MU1/2 +M1/2U},

whence

E(B) ≪ε B
4ε

∑

s6B2/3

s square-full

∑

v6B
v|(2s)∞

v−1/2s−5/8{U−1/2 +M−1/2}.

However

U−1/2 +M−1/2 ≪ v1/2B−η/16 +min{1 , s1/2B−η}
≪ v1/2B−η/16 + 115/16(s1/2B−η)1/16

≪ B−η/16v1/2s1/32.

We therefore deduce that

E(B) ≪ε B
−η/16+4ε

∑

s6B2/3

s square-full

s−19/32
∑

v6B
v|(2s)∞

1 ≪ε B
−η/16+5ε,

since there are Oε((sB)ε) possible values for v, and the sum over square-full
s is convergent. Taking ε = η/80, we therefore conclude the proof of the
lemma. �

Next we wish to show that the condition ∆(x) 6= � can be replaced by
∆(x) 6= 0 with an acceptable error. We trivially have

|S(x;Bη/8)| 6
∑

q6Bη/8

q ≪ Bη/4.

Moreover Lemma 4.12 shows that σ∞(x) ≪ |∆(x)|−1/4. We now write ∆(x) =
n2 so that |x| 6 n2 6 |x|4. In particular we will have Bη 6 n 6 B1/3 and
|x|−3 6 n−3/2. Moreover each value of n corresponds to Oε(B

ε) vectors x.
Thus

∑

x∈Z4
prim

B2η6|x|6B1/6

∆(x)=� 6=0

σ∞(x)S(x;Bη/8)

|x|3 ≪ε B
η/4+ε

∑

Bη6n6B1/3

n−2 ≪ε B
−3η/4+ε.

This may be absorbed into the error term of Lemma 6.6 on choosing ε = 3η/4.
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Now that we have truncated the singular series satisfactorily, we may open
up the expression for S(x;Bη/8) and interchange the q-sum with the x-sum,
before breaking the latter into congruence classes modulo q. This leads to the
expression

M2(B) =
∑

q6Bη/8

q−4
∑

a,b mod q
(q,a)=1

cq(F (a;b))U(q; a) +Oη(1),

where cq(·) is the Ramanujan sum and

U(q; a) =
∑

x∈Z4
prim

B2η6|x|6B1/6

∆(x)6=0
x≡a mod q

σ∞(x)

|x|3 .

Any x counted by U(q; a) is automatically coprime to q. Using the Möbius
function to detect the residual primitivity of x we may now write

U(q; a) =
∑

k6B1/6

(k,q)=1

µ(k)

k3

∑

x∈Z4∩T0

x≡ka mod q

σ∞(kx)

|x|3 ,

where k is the multiplicative inverse of k modulo q and

T0 = T0(k) = {t ∈ (R 6=0)
4 : B2η/k 6 |t| 6 B1/6/k}. (6.6)

(The reader should note that this is not the same set that is defined in (6.1);
we recycle our notation for this and other similar sets.) Since σ∞(kx) =
k−1σ∞(x), this simplifies to give

U(q; a) =
∑

k6B1/6

(k,q)=1

µ(k)

k4

∑

x∈Z4∩T0

x≡ka mod q

σ∞(x)

|x|3 .

We therefore obtain the following formula.

Lemma 6.7. We have

M2(B) =
∑

q6Bη/8

q−4
∑

k6B1/6

(k,q)=1

µ(k)

k4

∑

a,b mod q
(q,a)=1

cq(F (a;b))
∑

x∈Z4∩T0

x≡ka mod q

σ∞(x)

|x|3 +Oη(1).

The next stage is to compare the x-sum to an integral. We start with the
following estimate, which is an analogue of Lemma 6.2.

Lemma 6.8. If mini |xi| > 2q then

σ∞(x)

|x|3 = q−4

∫

[0,q]4

σ∞(x+ t)

|x+ t|3 dt+O(q(min
i

|xi|)−1|∆(x)|−1/4|x|−3).
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Proof. The proof follows the same lines as that of Lemma 6.2. We begin by
showing that

∇σ∞(x) ≪ (min
i

|xi|)−1|∆(x)|−1/4. (6.7)

Without loss of generality it will suffice to examine the partial derivative with
respect to x1 in proving this. Our definition of the singular integral yields

σ∞(x) =

∫ ∞

−∞

4∏

i=1

I(−θxi)dθ,

where we write temporarily

I(ψ) =

∫ 1

−1

e(ψy2)dy.

By the standard second derivative test [23, Lemma 4.4] we see that

I(ψ) ≪ min{1, |ψ|−1/2}.
Moreover

∂

∂x1
I(−θx1) =

1

2x1

∫ 1

−1

y
∂

∂y
e(−θx1y2)dy.

The integral on the right is uniformly bounded, as one sees on integrating by
parts. Thus

∂

∂x1
I(−θx1) ≪ |x1|−1,

whence
∂

∂x1
σ∞(x) ≪ |x1|−1

∫ ∞

−∞
min{1, |θ|−3/2|x2x3x4|−1/2}dθ

≪ |x1|−1|x2x3x4|−1/3

≪ (min
i

|xi|)−1|∆(x)|−1/4,

as required.
We now use the decomposition

σ∞(x+ t)

|x+ t|3 − σ∞(x)

|x|3

=
σ∞(x+ t)− σ∞(x)

|x+ t|3 + σ∞(x){|x+ t|−3 − |x|−3}.

If |t| 6 q and mini |xi| > 2q we may show, as in the proof of (6.5), that

σ∞(x+ t)− σ∞(x)

|x+ t|3 ≪ |x|−3q sup
06ξ61

∣∣∣∣
∂

∂ξ
σ∞(x+ ξt)

∣∣∣∣

≪ q(min
i

|xi|)−1|∆(x)|−1/4|x|−3,
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via (6.7). Similarly, also as in the proof of (6.5), we will have

|x+ t|−3 − |x|−3 ≪ q|x|−4,

so that Lemma 4.12 yields

σ∞(x){|x+ t|−3 − |x|−3} ≪ q|∆(x)|−1/4|x|−4.

We therefore have

σ∞(x+ t)

|x+ t|3 =
σ∞(x)

|x|3 +O(q(min
i

|xi|)−1|∆(x)|−1/4|x|−3),

and the lemma follows. �

We are now ready to tackle the x-summation in Lemma 6.7.

Lemma 6.9. We have
∑

x∈Z4∩T0

x≡ka mod q

σ∞(x)

|x|3 = q−4J2(B; k) +O(qkB−3η/2),

where

J2(B; k) =

∫

T0(k)

σ∞(y)

|y|3 dy.

Proof. We define

X = {x ∈ Z4 : B2η/k + 2q 6 |x| 6 B1/6/k − 2q, min |xi| > 2q, x ≡ ka mod q}
and

Y =
⋃

x∈X
(x + (0, q]4).

The reader should note that these could be empty if k and q are large enough.
The sets x + (0, q]4 forming Y are disjoint, and both X and Y lie inside the
set T0 defined in (6.6). Moreover T0 \ Y is a subset of T1 ∪ T2 ∪ T3, where

T1 = {t ∈ T0 : B
2η/k 6 |t| 6 B2/η/k + 3q},

T2 = {t ∈ T0 : B
1/6/k − 3q 6 |t| 6 B1/6/k},

and

T3 = {t ∈ T0 : min |ti| 6 3q}.
It then follows from Lemma 6.8 that

∑

x∈Z4∩T0

x≡ka mod q

σ∞(x)

|x|3 = q−4J2(B; k) +O

(
3∑

i=0

Ei

)
, (6.8)
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where

E0 = q
∑

x∈Z4∩T0

min |xi|>2q

(min
i

|xi|)−1|∆(x)|−1/4|x|−3,

and

Ei =
∑

x∈Z4∩Ti

|∆(x)|−1/4|x|−3 + q−4

∫

Ti

|∆(y)|−1/4|y|−3dy

for i = 1, 2, 3. Note that we have dropped the condition x ≡ ka mod q in these
error terms. We now find that

E0 ≪ q
∑

2q6x16x2,x36x4

x4>B2η/k

x
−5/4
1 (x2x3)

−1/4x
−13/4
4 ≪ q3/4

∑

x4>B2η/k

x
−7/4
4 ≪ (qkB−2η)3/4,

for example. This holds whether k 6 B2η or not. Similar calculations show
that

E1 ≪
∑

B2η/k6x46B2η/k+3q

x−1
4 +

∫ B2η/k+3q

B2η/k

y−1
4 dy4 ≪ qkB−2η,

and

E2 ≪ qkB−1/6.

For the sum in E3 we have
∑

x∈T3

|∆(x)|−1/4|x|−3 ≪
∑

16x163q
16x2,x36x4

x4>B2η/k

(x1x2x3)
−1/4x

−13/4
4

≪ q3/4
∑

x4>B2η/k

x
−7/4
4

≪ (qkB−2η)3/4,

and similarly for the integral. Thus (6.8) becomes

∑

x∈Z4∩T0

x≡ka mod q

σ∞(x)

|x|3 = q−4J2(B; k) +O(qkB−3η/2),

as required. �

Combining Lemma 6.9 with Lemma 6.7 we see that

M2(B) =
∑

q6Bη/8

q−8ψ(q)
∑

k6B1/6

(k,q)=1

µ(k)

k4
J2(B; k) +Oη(1), (6.9)
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with

ψ(q) =
∑

a,b mod q
(q,a)=1

cq(F (a;b)).

We therefore need information about the function ψ.

Lemma 6.10. The function ψ is multiplicative, with

ψ(pf) =

{
ϕ(pf)p6f(1− p−4), if 2 | f,
0, if 2 ∤ f,

for every positive integer f .

Proof. The function ψ(q) is clearly multiplicative, and for prime powers we
have

ψ(pf) =
∑

c mod pf

(c,p)=1

∑

a,b mod pf

p∤a

epf (cF (a;b)) = ϕ(pf )
∑

a,b mod pf

p∤a

epf (F (a;b)),

on replacing ca by a. It follows that

ψ(pf ) = ϕ(pf)
∑

a,b mod pf

epf (F (a;b))− ϕ(pf)
∑

a,b mod pf

p|a

epf (F (a;b)).

Hence if we write

ψ1(p
f) =

∑

a,b mod pf

epf (F (a;b))

we will have ψ(pf) = ϕ(pf)ψ1(p
f)− p4ϕ(pf)ψ1(p

f−1). However, on performing
the summation over a we find that

ψ1(p
f) = p4f#{b mod pf : pf | (b21, . . . , b24)} = p4f(p[f/2])4.

The required formula for ψ(pf ) then follows. �

We also have the following evaluation of J2(B; k).

Lemma 6.11. We have

J2(B; k) = 3τ∞ log(B1/6−2η).

Proof. The argument is completely analogous to that used for Lemma 6.4,
based on the fact that σ∞(y) = |y|−1σ∞(t1, t2, t3, 1) if |y| = |y4| and ti = yi/|y|
for i = 1, 2, 3. We find that

J2(B; k) = 8

∫ B1/6/k

B2η/k

dy4
y4

∫

[−1,1]3
σ∞(t1, t2, t3, 1)dt,
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while Lemma 4.14 yields

τ∞ =

∫

[−1,1]4
σ∞(y)dy = 8

∫ 1

0

y24dy4

∫

[−1,1]3
σ∞(t1, t2, t3, 1)dt.

The lemma follows from these relations. �

We now have everything in place to complete the proof of Lemma 6.5. Ac-
cording to Lemma 6.11 we have

∑

k6B1/6

(k,q)=1

µ(k)

k4
J2(B; k) = 3τ∞ log(B1/6−2η)

∑

k6B1/6

(k,q)=1

µ(k)

k4

= 3τ∞ log(B1/6−2η)

∞∑

k=1
(k,q)=1

µ(k)

k4
+O(B−1/2 logB)

=
3τ∞ log(B1/6−2η)

ζ(4)

∏

p|q
(1− p−4)−1 +O(B−1/2 logB).

We can now insert this into (6.9), using Lemma 6.10 to observe that ψ(q) is
supported on the squares, with ψ(r2) ≪ r14. This leads to the estimate

M2(B) =
3τ∞ log(B1/6−2η)

ζ(4)

∞∑

q=1

q−8ψ(q)
∏

p|q
(1− p−4)−1 +Oη(1).

Finally we note that

∞∑

q=1

q−8ψ(q)
∏

p|q
(1− p−4)−1 =

∏

p

(
1 +

p−16ψ(p2) + p−32ψ(p4) + . . .

1− p−4

)

=
∏

p

(
1 + (1− p−1){p−2 + p−4 + . . .}

)

=
∏

p

(
1− p−3

1− p−2

)

=
ζ(2)

ζ(3)
.

We therefore conclude that

M2(B) =
ζ(2)

ζ(3)ζ(4)
3τ∞ log(B1/6−2η) +Oη(1).

Lemma 6.5 then follows.
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6.3. Conclusion. It is now time to bring Lemmas 6.1 and 6.5 together in
Lemma 5.5. This yields

N(Ω;B) =
B logB

4ζ(3)ζ(4)
τ∞ +O(η1/2B logB) +Oη(B).

This is an asymptotic formula which holds for any η ∈ (0, 1
100

). Suppose that

the error terms are E1+E2, in which |E1| 6 c1η
1/2B logB, and |E2| 6 c2(η)B.

We claim that the error terms may be replaced by o(B logB). To show this, we
suppose that some small ε > 0 is given, and we proceed to show that there is a
B(ε) such that |E1+E2| 6 εB logB whenever B > B(ε). Let η = {ε/(2c1)}2.
Then |E1| 6 1

2
εB logB for every B. With this value of η we then set

B(ε) = exp{2c2(η)/ε},

so that |E2| 6 1
2
εB logB for all B > B(ε). This proves our claim. It therefore

follows that

N(Ω;B) ∼ cB logB,

as B → ∞, with

c =
τ∞

4ζ(3)ζ(4)
.

In order to complete the proof of Theorem 1.1 it remains to check that
our leading constant agrees with the prediction by Peyre [19]. According to
Schindler [20, §3], the Peyre constant is equal to

1

4ζ(2)ζ(3)
· τ∞

∏

p

lim
t→∞

p−7tn(pt), (6.10)

where τ∞ is given by (1.4) and where n(pt) is the number of (x,y) ∈ (Z/ptZ)8

such that F (x;y) ≡ 0 mod pt. If t > 1 we have

n(pt) =
t∑

j=0

∑

y mod pt

(y,pt)=pj

#{x ∈ (Z/ptZ)4 : F (x;y) ≡ 0 mod pt}

=

[t/2]∑

j=0

∑

u mod pt−j

(u,p)=1

#{x ∈ (Z/ptZ)4 : F (x;u) ≡ 0 mod pt−2j}+O(p6t).
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Since p ∤ u the number of x ∈ (Z/pt−2j)4 such that pt−2j | F (x;u) is p3(t−2j).
Thus

n(pt) =

[t/2]∑

j=0

∑

u mod pt−j

(u,p)=1

p3t+2j +O(p6t)

=

[t/2]∑

j=0

{p4(t−j) − p4(t−j−1)}p3t+2j +O(p6t)

= {1− p−4}
[t/2]∑

j=0

p7t−2j +O(p6t)

= {1 + p−2}p7t +O(p6t).

It follows that p−7tn(pt) tends to 1 + p−2, so that (6.10) is

1

4ζ(2)ζ(3)
· τ∞

ζ(2)

ζ(4)
.

Thus our leading constant c in Theorem 1.1 agrees with the Peyre constant.
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