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Abstract

The taxicab number, 1729, is the smallest number that can be written as a sum of

two cubes in two different ways. It also has the following property: if we add its digits

we obtain 19. The number obtained from 19 reversing the order of its digits is 91. If we

multiply 19 by 91 we obtain again 1729. In the paper we study various generalizations

of this property.

1 Introduction

The taxicab number, 1729, became well known due to a discussion between Hardy and
Ramanujan [9]. It is the smallest positive integer that can be written in two ways as a sum
of two cubes: 13+123 and 93+103. The number 1729 also has a less well known property: if
we add its digits we obtain 19; multiplying 19 by 91, the number obtained from 19 reversing
the order of its digits, we obtain again 1729. It is not hard to show that the set of integers
with this property is finite and equal to {1, 81, 1458, 1729}.

In a conversation that the author had with his colleague, Professor Shiv Gupta, Shiv
asked if the second property can be generalized. One replaces the sum of the digits of an
integer by the sum of the digits times an integer multiplier and then multiplies the product
by the number obtained reversing the order of the digits in the product. The taxicab number
becomes a particular example with multiplier 1. A computer search produced a large number
of examples with larger multiplier. There are 23 integers less than 10000 having this property;
see sequence A305131 in the OEIS [10]. For example, 2268 has multiplier 2. The sum of the
digits is 18, one has 18× 2 = 36, and 36× 63 = 2268.

One may replace the last product in the above procedure by a sum. A computer search
showed that there are numbers that have the property for sums. There are 264 integers
less than 10000 having the property; see sequence A305130 in the OEIS [10]. For example,
121212 has multiplier 6734. The sum of the digits is 9, one has 9 × 6732 = 60606, and
60606 + 60606 = 121212.
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The paper is dedicated to the study of these properties. After the paper was submitted
for publication we learned from the editor that our work may be related to the study of Niven
(or Harshad) numbers. These are numbers divisible by the sum of their decimal digits. Niven
numbers have been extensively studied as one can see for instance from Cai [3], Cooper and
Kennedy [4], De Koninck and Doyon [6], Grundman [7]. One of the classes of integers we
study, that of multiplicative Ramanujan-Hardy numbers, is a subclass of the class of Niven
numbers. Of interest are also q-Niven numbers, which are numbers divisible by the sum of
their base q digits. See, for example, Fredricksen, Ionaşcu, Luca, and Stănică [8]. Some
other variants of Niven numbers can be found in Boscaro [1] and Bloem [2].

2 Statements of the main results

In what follows let b ≥ 2 be an arbitrary numeration base.

Definition 1. If N is a positive integer written in base b, we call reversal of N and let NR

denote the integer obtained from N by writing its digits in reverse order.

We observe that addition and multiplication are independent of the numeration base.
The operation of taking the reversal is not.

Let sb(N) denote the sum, done in base 10, of the base b digits of an integer N .

Definition 2. A positive integer N written in base b is called b-additive Ramanujan-Hardy

number, or simply b-ARH number, if there exists a positive integer M , called additive mul-

tiplier, such that
N = Msb(N) + (Msb(N))R, (1)

where (Msb(N))R is the reversal of base b-representation of Msb(N).

Definition 3. A positive integer N written in base b is called b-multiplicative Ramanujan-

Hardy number, or simply b-MRH number, if there exists a positive integer M , called multi-

plicative multiplier, such that

N = Msb(N) · (Msb(n))
R, (2)

where (Msb(N))R is the reversal of base b-representation of Msb(N).

To simplify the notation, let s(N), ARH, MRH denote s10(N), 10-ARH, 10-MRH.
While b-MRH numbers are b-Niven numbers, b-Niven numbers are not necessarily b-MRH

numbers.

Example 4. The number [144]7 is a 7-Niven number but not a 7-MRH number.

We observe that the notions of b-ARH and b-MRH numbers are dependent on the base.

Example 5. The number [12]10 is an ARH number, but [12]9 is not a 9-ARH number. The
number [81]10 is an MRH number, but [81]9 is not a 9-MRH number.
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Once these notions are introduced, several natural questions arise.

Question 6. Do there exist infinitely many b-ARH numbers?

Question 7. Do there exist infinitely many b-MRH numbers?

Question 8. Do there exist infinitely many additive multipliers?

Question 9. Do there exist infinitely many multiplicative multipliers?

In what follows, if x is a string of digits, we let (x)∧k denote the base 10 integer obtained
by repeating x k-times. We also let [x]b denote the value of the string x in base b.

The following example gives an explicit positive answer to Question 6 if b = 10.

Example 10. Consider the numbers

Nk = (12)∧3
k

, (3)

where k is a positive integer. All numbers Nk are ARH numbers and Niven numbers. In
particular, there exist infinitely many Niven numbers with no digit equal to zero.

Example 11. If we allow zero digits an infinity of b-MRH numbers is given by {[1(0)∧k]b|k ∈
N}. Last example has the unpleasant feature that the apparent multiplicative multiplier of
each b-MRH numbers is the number itself and the search for other multipliers is dependent
on the base. In order to avoid trivial considerations, we consider from now on only examples
of b-ARH and b-MRH numbers that have many digits different from zero.

It follows from the proof of Example 10 that Ms(Nk) = (Ms(Nk))
R. The following

theorem gives an example in which it is clear from the proof that Msb(Nk) 6= (Msb(Nk))
R

for an arbitrary even base b. One can read from the proof the explicit base b expansion of the
multipliers. Counting the multipliers shows that the set of multipliers of a b-ARH number
N can grow exponentially in terms of the number of digits of N .

Theorem 12. Consider the numbers

Nk = [(1)∧k]b, (4)

where b is even, k = [1(0)∧p]b, p ≥ 1, p an arbitrary natural number. All numbers Nk are

b-ARH numbers and not b-Niven numbers.

Each Nk has a subset of additive multipliers of cardinality 2
k−2p

2 consisting of all integers

[(1)∧pI]b, where I is a sequence of 0 and 1 of length k− 2p in which no two digits symmetric

about the center of the sequence are identical.

Example 13. We show an example that illustrates the results in Theorem 12. Assume that
b = 2, k = 16 = [10000]2, and p = 4. Then N16 = [(1)∧16]2 and s2(N16) = 24 = [10000]2. The

following 16 = 2
16−2·4

2 numbers are additive multipliers of N16:

[111100001111]2, [111100010111]2, [111100101011]2, [111100111100]2,

[111101001101]2, [111101010101]2, [111101101001]2, [111101110001]2,

[111110001110]2, [111110010110]2, [111110101010]2, [111110110010]2,

[111111001100]2, [111111010100]2, [111111101000]2, [111111110000]2.
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Remark 14. The numbers Nk may have other multipliers, besides those listed in Theorem
12. The growth of the set of multipliers can be larger than that shown in Theorem 12 and
depends on the numeration base; see Theorem 15. Nevertheless, for b = 2 there are no other
multipliers of Nk besides those listed in Theorem 12. We observe that the numbers Nk from
Theorem 12 have an even number of digits and the numbers Nk from Theorem 15 have an
odd number of digits.

Theorem 15. Consider the numbers

Nk = [(1)∧p(10)∧k−2p0(1)∧p]b, (5)

where b is even and k = [1(0)∧p]b, p ≥ 1, p arbitrary natural number. All numbers Nk are

b-ARH numbers and not b-Niven numbers.

For each Nk the set of additive multipliers has cardinality (b− 1)
k−2p

2 and consists of all

integers [(1)∧pI0]b, where I is a concatenation of k − 2p two digits strings of type 0α, α 6= 0,
in which any pair of nonzero digits symmetric about the center of I0 have their sum equal

to b.

Example 16. We show an example that illustrates the results in Theorem 15. Assume that
b = 4, k = 4 = [10]4, and p = 1. Then N4 = [1101001]4 and s4(N4) = 4 = [10]4. The

following 3 = 3
4−2·1

2 numbers are additive multipliers of N4:

[102020]4, [101030]4, [103010]4.

The following corollary of Theorem 35 gives a partial answer to Question 8.

Corollary 17. If b is even there exist infinitely many additive multipliers. Moreover, there

exists infinitely many b-ARH numbers that have at least two additive multipliers.

The numbers Nk from Theorems 12 and 15 are not b-MRH numbers.

Question 18. Do there exist infinitely many b-MRH numbers that have at least two mul-
tiplicative multipliers?

Corollary 19. If b is even there exist infinitely many b-ARH numbers that are not b-MRH.

Motivated by the results in Theorems 12 and 15 and by the examples of ARH and MRH
numbers shown in Sections 13 and 14, we introduce the following notions.

Definition 20. If N is a b-ARH number, let the multiplicity of N be the cardinality of the
corresponding set of additive multipliers.

Definition 21. If N is a b-MRH number, let the multiplicity of N be the cardinality of the
corresponding set of multiplicative multipliers.

Theorem 12 has the following corollary.
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Corollary 22. The multiplicity of b-ARH numbers is unbounded for any even base.

Question 23. Is the multiplicity of b-MRH numbers bounded?

Remark 24. For Questions 7 and 9 we do not have an answer with b-MRH numbers having
all digits different from zero. See Theorem 27 for an infinity of b-MRH numbers with half
of the digits different from zero. No prime number can be an MRH number. Note that no
integer with two prime factors in the prime factorization can be an MRH number. Such an
MRH number has the multiplier equal to 1 and among the MRH numbers with multiplier 1
none has two factors in the prime factorization.

The following theorem shows an infinity of b-Niven numbers that are not b-MRH numbers.

Theorem 25. Let b ≥ 2 be a numeration base. For n not divisible by b− 1 define

Rn =
bn − 1

b− 1
= [(1)∧n]b, n ≥ 1.

Then (b− 1)nRn is a b-Niven number that is not a b-MRH number.

For b-ARH numbers one has the following result.

Theorem 26. There exist infinitely many integers that are not b-ARH numbers.

The following Theorem gives a partial answer to Question 7.

Theorem 27. Let b odd and k ≥ 2. Then the numbers

Nk = [(b− 1)∧2
k−1−1(b− 2)(0)∧2

k−1−11]b (6)

are b-MRH numbers and sb(
√
Nk) = sb(Nk).

Moreover, if b ≡ 3 (mod 4) then
√
Nk is itself a b-Niven number.

Example 28. We illustrate the result in Theorem 27.

• For b = 3, k = 2 we get N2 = [2101]3 which is a 3-MRH number. Then
√

[2101]3 =
[22]3, s3([2101]3) = s3([22]3) = 4 and [22]3 is a 3-Niven number.

• For b = 5, k = 2 we get N2 = [4301]5 which is a 5-MRH number. Then
√

[4301]5 =
[44]5, s5([4301]5) = s([44]5) = 8 and [44]5 is a 5-Niven number.

• For b = 17, k = 5, N5 is a 17-MRH number, but
√
N5 is not a 17-Niven number.

• For b = 7, k = 2 we get N2 = [6501]7 which is a 7-MRH number. Then
√

[6501]7 =
[66]7, s7([6501]7) = s7([66]7) = 12 and [66]7 is a 7-Niven number.

Third item shows that the congruence condition in Theorem 27 is necessary. Second item
shows that

√
Nk may be a b-Niven number even without this condition.
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The following corollary of Theorem 27 gives a partial positive answer to Question 9.

Corollary 29. If b is odd there exist infinitely many multiplicative multipliers.

We show two unexpected corollaries of the proof of Theorem 27.

Corollary 30. If b is odd there exist infinitely many b-MRH numbers that are perfect squares.

Corollary 31. If b ≡ 3 (mod 4) there exists an infinity of b-MRH numbers N for which√
N is a b-Niven number and for which sb(N) = sb(

√
N).

The following notions of high degree b-Niven numbers are motivated by Corollary 31,
which provides plenty of examples.

Definition 32. An integer N is called quadratic b-Niven number if N and N2 are b-Niven
numbers. If in addition sb(N) = sb(N

2) then N is called strongly quadratic b-Niven number.

The study of high degree b-Niven numbers is continued in Niţică [11]. We show that for
each degree there exists an infinity of bases in which b-Niven numbers of that degree appear.

We show in Sections 13 that 6 is not an additive multiplier for base 10 and ARH numbers
without zero digits, and that 9 is not an additive multiplier for base 10. We show in Section
14 that 3 is not a multiplicative multiplier for base 10. We do not know how to answer the
following questions for any base.

Question 33. Do there exist infinitely many integers that are not additive multipliers?

Question 34. Do there exist infinitely many integers that are not multiplicative multipliers?

In what follows let ⌊x⌋ denote the integer part, let ln x denote the natural logarithm and
let logb x denote base b logarithm of the positive real number x.

The following theorems give bounds for the number of digits in a b-ARH number in terms
of the multiplier.

Theorem 35. Let N be a b-ARH number with k digits and additive multiplier M . Then

k ≤
{

M + 2, if b ≥ 4;

M + 3, if b = 2 or b = 3.

Corollary 36. For fixed additive multiplier M and base b, the set of b-ARH numbers with

multiplier M is finite.

Theorem 37. Let N be a b-ARH number with k digits and additive multiplier M . Under

any of the following assumptions:

• b ≥ 10 and M ≥ b6;

• 3 ≤ b ≤ 9 and M ≥ b7;
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• b = 2 and M ≥ b8,

one has

k ≤ 2⌊logb M⌋. (7)

The following theorems give bounds for the number of digits in a b-MRH number in terms
of the multiplier.

Theorem 38. Let N be a b-MRH number with k digits and multiplicative multiplier M .

Then

k ≤











M + 4, if b ≥ 6;

M + 5, if b = 5;

M + 7, if 2 ≤ b ≤ 4.

Theorem 38 shows that a MRH number with multiplicity 1 can have at most 5 digits. A
computer search shows that the set of all such numbers is indeed {1, 81, 1458, 1729}.

Corollary 39. For fixed multiplicative multiplier M and base b, the set of b-MRH numbers

with multiplier M is finite.

Theorem 40. Let N be a b-MRH number with k digits and multiplicative multiplier M .

Under any of the following assumptions:

• b ≥ 9 and M ≥ b9;

• 5 ≤ b ≤ 8 and M ≥ b10;

• b = 4 and M ≥ b11;

• b = 3 and M ≥ b12;

• b = 2 and M ≥ b16;

one has

k ≤ 3⌊logb M⌋. (8)

We summarize the rest of the paper. Example 10 is proved in Section 3, Theorem 12
is proved in Section 4, Theorem 5 is proved in Section 5, Theorem 26 is proved in Section
7, Theorem 25 is proved in Section 6, Theorem 27 is proved in Section 8, Theorem 35 is
proved in Section 9, Theorem 37 is proved in Section 10, Theorem 38 is proved in Section 11,
and Theorem 40 is proved in Section 12. In Section 13 we show examples of ARH numbers
and ask additional questions and in Section 14 we show examples of MRH numbers and ask
additional questions. In Section 15 we describe an approach to Question 7 if b = 10.
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3 Proof of Example 10

Proof. One obtains a formula for Nk by adding two geometric series.

Nk = 102·3
k−1 + 102·3

k−3 + . . .+ 10

+2(102·3
k−2 + 102·3

k−4 + . . .+ 1)

= 12 · 10
2·3k − 1

99
= 4 · 10

2·3k − 1

33
.

(9)

Note that s(Nk) = 3k+1. We show by induction that s(Nk) divides Nk. The case k = 0
gives s(N0) = 3 which divides N0 = 12. Assume that for fixed k, s(Nk) divides Nk.

Nk+1 = 4 · 10
2·3k+1 − 1

33
= 4 · (10

2·3k)3 − 13

33

= 4 · 10
2·3k − 1

33
· (104·3k + 102·3

k

+ 1) = Nk · (104·3
k

+ 102·3
k

+ 1),

(10)

which is clearly divisible by s(Nk+1) = 3k+2 due to Nk divisible by s(Nk) = 3k+1 and
104·3

k

+ 102·3
k

+ 1 divisible by 3. Therefore s(Nk) divides Nk and Nk is a Niven number.
Observe now that Nk/2 = (Nk/2)

R. It follows from (3) and the fact that Nk is divisible
by s(Nk) = 3k+1 that Nk/2 is divisible by s(Nk). We conclude that Nk is an ARH number
with additive multiplier M = Nk/(2s(Nk)).

4 Proof of Theorem 12

Proof. Let Nk = [(1)∧k]b where k is even and k = [1(0)∧p]b, p ≥ 1, p arbitrary natural
number. Then sb(Nk) = [1(0)∧p]b. Let M = [(1)∧pI]b, where I is a string of 0 and 1 of length
k−2p in which no two digits symmetric about the center of the sequence are identical. Note
that MR = [(I)R(1)∧p]b. The following calculation shows that Nk is a b-ARH number. Note
that I + (I)R = [(1)∧k−2p]b.

sb(Nk) ·M + (sb(Nk) ·M)R

= [1(0)∧p]b · [(1)∧pI]b + ([1(0)∧p]b · [(1)∧pI]b)R

= [(1)∧pI(0)∧p]b + ([(1)∧pI(0)∧p]b)
R

= [(1)∧pI(0)∧p]b + [(0)∧p(I)R(1)∧p]b = [(1)∧k]b = Nk.

In order to count the multipliers, observe that the length of the string I is k − 2p. If we
know half of its digits we can find the other half using that no two digits symmetric about

the center of the string are identical. The number of strings of 0 and 1 of length k−2p
2

is 2
k−2p

2 .
Finally, observe that Nk is not divisible by sb(Nk), so Nk is not a b-Niven number..
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5 Proof of Theorem 15

Proof. Let Nk = [(1)∧p(10)∧k−2p0(1)∧p]b where b is even and k = [1(0)∧p]b, p ≥ 1. Then
sb(Nk) = [1(0)∧p]b. Let M = [(1)∧pI0]b. Note that MR = [0(I)R(1)∧p]b. The following
calculation shows that Nk is a b-ARH number. Note that I0 + 0(I)R = [(10)∧k−2p0]b.

sb(Nk) ·M + (sb(Nk) ·M)R

= [1(0)∧p]b · [(1)∧pI0]b + ([1(0)∧p]b · [(1)∧pI0]b)R

= [(1)∧pI0(0)∧p]b + ([(1)∧pI0(0)∧p]b)
R

= [(1)∧pI0(0)∧p]b + [(0)∧p0(I)R(1)∧p]b = [(1)∧p(10)∧k−2p0(1)∧p]b = Nk.

In order to count the multipliers, observe that the number of nonzero digits in the string
I0 is k−2p. If we know half of the nonzero digits we can find the other half using that no two
digits symmetric about the center of the string I0 are identical. There are k−2p

2
positions to

be filled and each one can be filled in b−1 ways. To show that there are no other multiplier it
is enough to prove, using induction on length, that the string [(10)∧k−2p0]b cannot be written
as a sum of a string J and its reversal except if J = I0, where I is as above. Finally, observe
that Nk is not divisible by sb(Nk), so Nk is not a b-Niven number.

6 Proof of Theorem 25

Proof. McDaniels proved [5, Theorem 2] that if b = 10 and m ≤ 9Rn then s(9mRn) = 9n.
The proof is valid in any base b and follows readily upon writing m as:

m =
k

∑

i=0

aib
i, k < n. (11)

It gives that if m ≤ (b − 1)Rn then sb((b − 1)mRn) = (b − 1)n. If m = n one has sb((b −
1)nRn) = (b − 1)n, which shows that (b − 1)nRn is a b-Niven number. By contradiction,
assume that (b− 1)nRn is a b-MRH number with multiplier M . It follows that:

(b− 1)nM((b− 1)nM)R = (b− 1)nRn. (12)

We recall that a base b number is divisible by b−1 if the sum of its base b digits is divisible
by b−1. The divisibility test and b−1 6 |n imply that b−1 6 |Rn, but b−1|((b−1)nM)R. As
b−1 6 |n, there are at least two factors of b−1 in the factorization of the left hand side of (12)
and only one factor of b− 1 in the right hand side of (12). This gives a contradiction.

7 Proof of Theorem 26

Proof. A b-ARH number is a sum of an integer and its reversal. In order to prove the
theorem it is enough to show that there exist infinitely many integers that are not a sum of

9



an integer and its reversal. There are bk − bk−1 = bk−1(b− 1) base b k-digit numbers. Those
of type N+NR, either have N = [akak−1 · · ·a2a1]b with ak+a1 ≤ b−1, or have N with k−1

digits. There are b(b−1)
2

· bk−2 k-digit numbers with ak + a1 ≤ b− 1 and there are bk−1 − bk−2

(k − 1)-digit numbers. Overall, we have

b(b− 1)

2
· bk−2 + (bk−1 − bk−2) = bk−1

(

b+ 1

2

)

− bk−2

k-digit numbers of type N +NR. Hence there are

bk − bk−1 −
(

bk−1

(

b+ 1

2

)

− bk−2

)

= bk−1

(

b− 3

2

)

+ bk−2 (13)

k-digit numbers that are not of type N +NR. The right hand side of equation (13) has limit
∞ as k → ∞ for b ≥ 3 and this ends the proof if b ≥ 3. If b = 2, consider the numbers
[(1)∧k]2. These are not ARH-numbers if k is odd.

8 Proof of Theorem 27

Proof. As gcd(b, 2) = 1 Euler’s Theorem implies that 2k divides bφ(2
k)− 1. Clearly b− 1 also

divides bφ(2
k) − 1. Assume that gcd(2k, b − 1) = 2ℓ. Then 2k−ℓ(b − 1) divides bφ(2

k) − 1 =
b2

k−1 − 1. Consider the product

(b2
k−1 − 1)2 = b2·2

k−1 − 2b2
k−1

+ 1.

The product is divisible by 2k−1(b−1), written in base b equals Nk, and sb(Nk) = 2k−1(b−1).
We conclude that Nk is a b-MRH number.

To finish the proof of the theorem observe that if b ≡ 3 (mod 4) then gcd(2k, b− 1) = 2.
Therefore 2k−1(b− 1) divides b2

k − 1 = [(b− 1)2
k−1]b. Finally

sb(
√

Nk) = sb([(b− 1)2
k−1]b) = 2k−1(b− 1)|b2k − 1 =

√

Nk.

9 Proof of Theorem 35

Proof. As N has k digits one has that:

N ≥ bk−1. (14)

The largest possible value for sb(N) is (b − 1)k. We observe that reversing the order of
the digits in an integer increases its value by at most b times. One has that:

Msb(N) + (Msb(N))R ≤ (b2 − 1)kM. (15)

10



Combining equations (1), (14), (15) one has that:

bk−1 ≤ (b2 − 1)kM. (16)

We prove by induction on the variable k that:

bk−1 > (b2 − 1)kM, for k ≥ M + 3,M ≥ 1, b ≥ 4, (17)

which combined with (16) gives a contradiction and ends the proof of Theorem 35 for b ≥ 4.
In the first step k = M + 3. The statement in (17) becomes

bM+2 > (b2 − 1)(M2 + 3M), for M ≥ 1, b ≥ 4. (18)

We prove (18) by induction on the variable M . In the initial step M = 1 and one has

b3 > 4(b2 − 1) ⇔ b2(b− 4) + 4 > 0,

which is clearly true for b ≥ 4.
Now assume that (18) is true forM and prove it forM+1. Using the induction hypothesis

one has that:
bM+3 = b · bM+2 > b · (b2 − 1)(M2 + 3M). (19)

In order to finish the proof by induction, we still need to check that:

b · (b2 − 1)(M2 + 3M) ≥ (b2 − 1)
(

(M + 1)2 + 3(M + 1)
)

. (20)

After simplifications, (20) becomes

(b− 1)M2 + (3b− 5)M − 4 ≥ 0. (21)

As the left hand side of (21) is larger than M2 + 4M − 4, which is positive if M ≥ 2, we
conclude that (21) is true for all M ≥ 1 and finish the proof of (18).

We continue with the general step in the proof of (17). By induction:

bk = b · bk−1 > b(b2 − 1)kM. (22)

We still need to check that

b(b2 − 1)kM ≥ (b2 − 1)k(M + 1), (23)

which is obvious and finishes the proof of (18) and that of Theorem 35 for base b ≥ 4.
Now assume b = 3. Equation (16) is still valid.
We prove by induction on the variable k that:

bk−1 > (b2 − 1)kM, for k ≥ M + 4,M ≥ 1. (24)

Equations (16) and (24) give a contradiction that finishes the proof of the theorem.

11



If k = M + 4 one has that:

bM+3 > (b2 − 1)(M2 + 4M), for M ≥ 1, (25)

which we prove by induction on M .
The case M = 1 is true. We assume (25) true for M and prove it for M+1. By induction

one has that:
bM+4 = b · bM+3 > b(b2 − 1)(M2 + 4M).

To finish the proof of (25) we still need to check that:

b(b2 − 1)(M2 + 4M) ≥ (b2 − 1)
(

(M + 1)2 + 4(M + 1)
)

, (26)

which simplifies to (b− 1)M2 + (4b− 6)M − 5 ≥ 0 and is true for M ≥ 1, b = 3.
The rest of the proof of (24) follows from (22) and (23).
Assume b = 2. Equation (16) is still valid.
We prove by induction on the variable k that:

bk−1 > (b2 − 1)kM, for k ≥ M + 4,M ≥ 3. (27)

Equations (16) and (27) give a contradiction that ends the proof of the theorem for b =
2,M ≥ 3.

If k = M + 4 one has that:

2M+3 > 3(M2 + 4M), for M ≥ 3, (28)

which we prove by induction on M .
The case M = 3 is true. Assume now that (28) is true for M and prove it for M + 1.

2M+4 = 2 · 2M+3 > 6(M2 + 4M).

To finish the proof we still need to check that:

6(M2 + 4M) ≥ 3
(

(M + 1)2 + 4M
)

.

The equation simplifies to M2 + 2M − 1 ≥ 0 and it is true for M ≥ 3.
To finish the proof of the theorem if b = 2, it remains to discuss the cases M = 1,M = 2.
Let M = 1. If k ≤ 4 the theorem is trivially true, so assume k ≥ 5. Let N be a 2-ARH

number with k digits and M = 1. Then s2(N) ≤ k and N ≥ 2k−1. This implies

2k−1 ≤ 3k. (29)

One shows that 3k < 2k−1 for k ≥ 5 and gets a contradiction.
Let M = 2. If k ≤ 4 the theorem is trivially true, so assume k ≥ 5. Let N be a 2-ARH

number with k digits and M = 2. Then s2(N) ≤ k and N ≥ 2k−1. This implies

2k−1 ≤ 6k. (30)

One shows that 6k < 2k−1 for k ≥ 5 and gets a contradiction.
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10 Proof of Theorem 37

Proof. It follows from formula (16) in the proof of Theorem 35 that:

bk−1 ≤ (b2 − 1)kM. (31)

We show by induction on the variable k that:

bk−1 > (b2 − 1)kM if M ≥ b6, k ≥ 2⌊logb M⌋ + 1, b ≥ 10 (32)

which together with (31) ends the proof of Theorem 37 for base b ≥ 10.
First we show by induction on the variable M that:

M > 2b2(b2 − 1) logb M + b2(b2 − 1) if M ≥ b5, b ≥ 10. (33)

If M = b6 (33) is equivalent to

b3 + 13b(1− b2) > 0, (34)

which is true if b ≥ 10.
Now assume that (33) is true for a fixed M . One has

M + 1 > 2b2(b2 − 1) logb M + b(b2 − 1) + 1.

To finish the proof of (33) we still need to check that:

2b2(b2 − 1) logb M + b2(b2 − 1) + 1 ≥ 2b2(b2 − 1) logb(M + 1) + b2(b2 − 1),

which after simplifications becomes

1 ≥ 2b2(b2 − 1) (logb(M + 1)− logb M) ,

which is true due to M ≥ b5 and the Mean Value Theorem.
We start the proof of (32). In the first step k = 2⌊logb M⌋ + 1 and (32) becomes

b2⌊logb M⌋ > (b2 − 1)M(2⌊logb M⌋ + 1). (35)

Due to logb M − 1 ≤ ⌊logbM⌋ ≤ logb M one has

b2⌊logb M⌋ ≥ b2(logb M−1)

(b2 − 1)M(2⌊logb M⌋ + 1) ≤ (b2 − 1)M(2 logb M + 1).
(36)

In order to prove (35) it is enough to show that

b2(logb M−1) > (b2 − 1)M(2 logb M + 1),

which is equivalent to (33). This ends the proof of the first induction step.

13



Now assume that (32) is true for fixed k and show that it is true for k + 1. Due to the
induction hypothesis one has that:

bk ≥ b · (b2 − 1)kM.

To finish the proof of (32) we still need to check that

b · (b2 − 1)kM > b(b2 − 1)(k + 1)M,

which is obviously true.
The proofs of the other cases are similar. The only significant difference appears in (34).

If 3 ≤ b ≤ 9, (34) becomes b4 − 15(b2 − 1) ≥ 0, which is true. If b = 2 (34) becomes
b6 > 17(b2 − 1), which is true.

11 Proof of Theorem 38

Proof. As N has k digits one has that:

N ≥ bk−1. (37)

The largest possible value for sb(N) is (b − 1)k. Reversing the order of the digits in an
integer increases its value by at most b times. One has that:

Msb(N) · (Msb(N))R ≤ b(b− 1)2k2M2. (38)

Combining equations (2), (37), (38) one has that:

bk−1 ≤ b(b− 1)2k2M2. (39)

Now we prove by induction on the variable k that:

bk−1 > b(b− 1)2k2M2, for k ≥ M + 5,M ≥ 1, b ≥ 6 (40)

which combined with (39) ends the proof of Theorem 38 for b ≥ 6.
In the initial induction step k = M + 5. The statement in (40) becomes

bM+4 > b(b− 1)2(M + 5)2M2, for M ≥ 1, b ≥ 6. (41)

We prove (41) by induction on the variable M . If M = 1 (41) becomes b5 > 36b(b− 1)2,
which is true if b ≥ 6.

Now we assume that (41) is true for M and prove it for M + 1. From the induction
hypothesis one has that:

bM+5 = b · bM+4 > b · b(b− 1)2(M + 5)2M2. (42)

14



In order to finish the proof, we still need to check that:

b · b(b− 1)2(M + 5)2M2 ≥ b(b− 1)2(M + 6)2(M + 1)2 (43)

for M ≥ 1.
After simplifications, (43) becomes

(b− 1)M4 + (10b− 14)M3 + (25b− 61)M2 − 84M − 36 ≥ 0, (44)

which is true for M ≥ 1 and b ≥ 6.
This finishes the proof of (41).
We continue with the general step in the proof of (40). By induction

bk = b · bk−1 > b · b(b− 1)2k2M2.

To finish the proof of (40) we still need to check that

b · b(b− 1)2k2M2 ≥ b(b− 1)2(k + 1)2M2,

which after simplifications becomes (b− 1)k2 − 2k − 1 ≥ 0. This is true if k ≥ 1 and b ≥ 6.
This finishes the proof of Theorem 38 for b ≥ 6.
The proof of the case b = 5 is similar. The only significant changes appear in (41) and in

(44). Equation (41) simplifies to b5 > 49(b− 1)2, which is true for b = 5, and (44) becomes

(b− 1)M4 + (12b− 16)M3 + (36b− 78)M2 − 112M − 49 ≥ 0,

which is true if b = 5.
If 2 ≤ b ≤ 4, using M ≥ 1, the statement in the theorem is true if k ≤ 8. We can assume

k ≥ 9.
If b = 4 (39) is still true and gives 4k−2 ≤ 9k2M2. It is easy to show by induction that for

k ≥ 9 one has 4k−2 > 9k2(k− 8)2. If k ≥ M + 8 this implies 4k−2 > 9k2M2, a contradiction.
If b = 3, (39) is still true and gives 3k−2 ≤ 4k2M2. It is easy to show by induction that for

k ≥ 9 one has 3k−2 > 4k2(k− 8)2. If k ≥ M + 8 this implies 3k−2 > 8k2M2, a contradiction.
If b = 2, (39) is still true and gives 2k−2 ≤ k2M2. It is easy to show by induction that for

k ≥ 9 one has 2k−2 > k2(k−8)2. If k ≥ M+8 this implies 2k−2 > 8k2M2, a contradiction.

12 Proof of Theorem 40

Proof. It follows from formula (39) in the proof of Theorem 38 that:

bk−1 ≤ b(b− 1)2k2M2. (45)

We prove by induction on the variable k that:

bk−1 > b(b− 1)2k2M2 for M ≥ b9, k ≥ 3⌊logbM⌋ + 1, b ≥ 9, (46)
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which combined with (45) finishes the proof of Theorem 40.
We start showing by induction on M that:

M > (b− 1)2b4(3 logb M + 1)2for M ≥ b9, b ≥ 9. (47)

If M = b9 (47) becomes, after cancellations,

b5 > 282(b− 1)2 (48)

which is true for b ≥ 9.
We assume now that (47) is true for fixed M . We show that it is true for M + 1. From

the induction hypothesis one has that:

M + 1 > (b− 1)2b4(3 logb M + 1)2 + 1.

To finish the proof of (47), one still needs to check that:

(b− 1)2b4(3 logb M + 1)2 + 1 ≥ (b− 1)2b4 (3 logb(M + 1) + 1)2 ,

which after algebraic manipulations becomes

1 ≥ b4(b− 1)2(3 logb(M + 1)− 3 logb M)(3 logb(M + 1)M + 2). (49)

Due to the Mean Value Theorem, (49) follows if we show that:

1 ≥ 3b4(b− 1)2 · 1

M

(

3 logb(M
2 +M) + 2

)

. (50)

Consider the function g(M) = 1
M
[3 logb(M

2 +M) + 2], with derivative:

g′(M) =
1
ln b

· 3
M2+M

· (2M + 1)M − (3 logb(M
2 +M) + 2)

M2
.

For M ≥ b9 the first term in the numerator of g′(M) is ≤ 6 and the absolute value of
the second term is ≥ 30. We conclude that g′(M) is negative and g(M) is decreasing on the
interval [b9,+∞). The value of

3 · b4(b− 1)2 · g(M) (51)

for M = b9 is larger than 168(b−1)2

b5
, which shows that (50) is true if b ≥ 9. Consequently (49)

and (47) are true.
We start the proof of (46). In the first step k = 3⌊logb M⌋ + 1. Equation (46) becomes

b3⌊logb M⌋ > (b− 1)2b(3⌊logb M⌋ + 1)2M2. (52)

Due to logb M − 1 ≤ ⌊logbM⌋ ≤ logb M , (52) follows if we prove that

b3(logb M−1) ≥ (b− 1)2bM2(3 logb M + 1)2 for M ≥ b9. (53)
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After algebraic manipulations (53) is exactly (47), so it is true. Now we show the general
induction step for (46). Assume (46) valid for fixed M . Then one has that:

bk ≥ b · bk−1 ≥ b · (b− 1)2bk2M2.

To finish we still need to check that:

b · (b− 1)2bk2M2 ≥ (b− 1)2b(k + 1)2M2,

which after simplifications becomes bk2 ≥ k2 +2k+1 which is true for k ≥ 1. This ends the
proof of the case b ≥ 9.

The proofs of the other cases are similar and the only significant changes appear in
checking the equation (48) and checking that expression (51) is less than 1. Due to our
assumptions the equation remains valid and the expression is less than 1.

13 Examples of ARH numbers

M N
1 18, 99
2 12, 33, 66, 99
3 99
4 99
5 11,22,33,44,55,66,77,88,99
6
7 747

Table 1: ARH numbers with multipliers 1, 2, 3, 4, 5, 7 and without zero digits.

We list in Table 1 small additive multipliers M and the corresponding ARH numbers N
without zero digits. Theorem 35 shows that an ARH number with multiplier 6 has at most
8 digits. A computer search through all integers with at most 8 digits and all digits different
from zero, shows that 6 is not an additive multiplier for numbers with all digits different
from zero. If we allow for zero digits one finds that 909 is an ARH number with multiplier
6. A computer search through all integers with at most 11 digits shows that 9 is not an
additive multiplier. These observations motivate Question 33.

We observe that certain ARH numbers, for example 99, have several additive multipliers,
respectively 1, 2, 3, 4, 5. We also observe that certain multipliers, for example 5, have associ-
ated several ARH numbers, respectively 11, 22, 33, 44, 55, 66, 77, 88, 99. The last observation
motivates the following definition and questions.

Definition 41. If M is an additive multiplier in a base b, let the multiplicity of M be the
cardinality of the corresponding set of b-ARH numbers.
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Question 42. If we fix the multiplicity and the base, is the set of additive multipliers
infinite?

Question 43. If we fix the base, is the multiplicity of additive multipliers bounded?

14 Examples of MRH numbers

We list in Table 2 small multiplicative multipliers M and the corresponding MRH numbers
N . Theorem 38 shows that a MRH number with multiplier 3 has at most 7 digits. A
computer search through all integers with at most 7 digits shows that 3 is not a multiplicative
multiplier. This motivates Question 34.

M N
1 1, 18, 1458, 1729
2 2268, 736
3
4 1944, 7744
5 71685

Table 2: MRH numbers with multipliers 1, 2, 3, 4, 5 and without zero digits.

One can also arrange the data as in Table 3, where, for small values of k, we list multi-
plicative multipliers M and the corresponding MRH numbers N with k digits.

We observe from Table 3 that certain MRH numbers, for example, 332424, 132192,
and 3252312, have several multipliers (respectively {27, 38}, {12, 34}, {72, 82}). We also
observe from Table 2 that certain multipliers, for example 4, have associated several MRH
numbers, respectively 1944, 7744. The last observation motivates the following definition
and questions.

Definition 44. If M is a multiplicative multiplier in base b, let the multiplicity of M be the
cardinality of the corresponding set of b-MRH numbers.

Question 45. If we fix the multiplicity and the base, is the set of multiplicative multipliers
infinite?

Question 46. If we fix the base, is the multiplicity of multiplicative multipliers bounded?

15 Conclusion

In this paper for any numeration base b we introduce two new classes of integers, b-ARH
numbers and b-MRH numbers. They have properties that generalize a property of the taxicab
number 1729. The second class is a subclass of the class of b-Niven numbers. We ask several
natural questions about these classes and partially answer some of them. In particular, we
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k M N k M N
1 1 1 7 22 9379678

2 1 81 28 6527836

3 2 736 29 9253987

4 1 1458, 1729 32 2892672
2 2268 33 8673885
4 1944, 7744 34 7526716

5 5 71685 38 3773932, 6362226
7 23632 39 5673564
8 94528 41 2187391
9 42282 49 4274613, 8239644
14 51142 63 1821771
23 78246 72 7651584

6 12 132192 73 2895472
14 188356, 247324 82 7651584
19 161595 84 3252312

21 433755, 496692 8 37 13184839
22 234256 46 11361448
23 685584 48 14292288
26 258778 53 15437628
27 332424 61 15178752
29 679354 66 15995232
31 122512 89 7331464
33 176418 66 15995232
34 132192, 751842 68 11715516
36 271188 71 16746912
37 215821 74 12419568, 15478432
38 332424 75 19348875
39 145314 76 17433792
44 235224 77 19552995

78 12661272, 22694256
79 11437225
86 21371688
89 12918439

Table 3: MRH numbers with 1, 2, 3, 4, 5, 6, 7, 8 digits and no zero digits.

19



show that the class of b-ARH numbers is infinite if b is even and that the class of b-MRH
numbers is infinite if b is odd.

Among the questions left open, the most intriguing is if the set of MRH numbers with
all digits different from zero is infinite. One way to attack it is to find an infinity of integers
N such that N = NR, N is divisible by s(N2), and N2 has no digit equal to zero. Then the
squares are an infinity of MRH numbers with nonzero digits. Our data shows some examples
of such integers.

• N2 = 188356 = 4342, s(N2) = 31|434,

• N2 = 234256 = 4842, s(N2) = 22|484,

• N2 = 685584 = 8282, s(N2) = 36|828.
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