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BOUNDING COHOMOLOGY ON A SMOOTH PROJECTIVE SURFACE

SICHEN LI

ABSTRACT. The following conjecture arose out of discussions between B. Harbourne, J.

Roé, C. Cilberto and R. Miranda: for a smooth projective surface X there exists a positive

constant cX such that h1(OX(C)) ≤ cXh0(OX(C)) for every prime divisor C on X . We

show that the conjecture is true for some smooth projective surfaces with Picard number 2.

1. INTRODUCTION

In this note we work over the field C of complex numbers. By a (negative) curve on

a surface we will mean a reduced, irreducible curve (with negative self-intersection). By a

(−k)-curve, we mean a negative curve C with C2 = −k < 0.

The bounded negativity conjecture (BNC for short) is one of the most intriguing problems

in the theory of projective surfaces and can be formulated as follows.

Conjecture 1.1. [3, Conjecture 1.1] For a smooth projective surface X there exists an inte-

ger b(X) ≥ 0 such that C2 ≥ −b(X) for every curve C ⊆ X .

Let us say that a smooth projective surface X has

b(X) > 0

if there is at least one negative curve on X .

In [7], T. Bauer, P. Pokora and D. Schmitz established the following theorem.

Theorem 1.2. [7, Theorem] For a smooth projective surface X over an an algebraic closed

field the following two statements are equivalent:

(i) X has bounded Zariski denominators.

(ii) X satisfies the BNC.

Here, X has bounded Zariski denominators (cf. [7]) if there exists an integer d(X) ≥
1 such that for every pseudo-effective integral divisor D the denominators in the Zariski

decomposition of D are bounded from above by d(X) (cf. [19, 10]).
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2 SICHEN LI

The main aim of this note is to study the following conjecture, which implies Conjec-

ture 1.1 (cf. [9, Proposition 14]).

Conjecture 1.3. [2, Conjecture 2.5.3] Let X be a smooth projective surface. Then there

exists a positive constant cX such that h1(OX(C)) ≤ cXh
0(OX(C)) for every curve C on

X .

In [2], the authors disproved Conjecture 1.3 by giving a counterexample of surface of

general type (cf. [2, Corollary 3.1.2]). However, they pointed out that it could still be

true that Conjecture 1.3 holds when restricted to rational surfaces, in any characteristic.

Indeed, the smooth projective rational surfaces with an effective anticanoncial divisor satisfy

Conjecture 1.3 (cf. [2, Proposition 3.1.3]). In particular, if X is the blow-up of P2 at n

generic points and cX = 0, then Conjecture 1.3 for this X is an equivalent version of the

SHGH conjecture as follows.

Conjecture 1.4. [2, Conjecture 2.5.1] Let X be the blow-up of P2 at n generic points. Then

h1(X,OX(C)) = 0 for every curve C on X .

In order to give our main result, we now recall the following question posed in [9].

Question 1.5. [9, Question 4] Does there exist a constant m(X) such that (KX ·D)
D2 < m(X)

for any effective divisor D with D2 > 0 on a smooth projective surface X?

If Conjecture 1.3 is true for a smooth projective surface X , then X is affirmative for

Question 1.5 (cf. [9, Proposition 15]). This motivates us to give the following definition.

Definition 1.6. Let X be a smooth projective surface.

(1) For every R-divisor D with D2 6= 0 on X , we define a value of D as follows:

lD :=
(KX ·D)

max

{

1, D2

} .

(2) For every R-divisor D with D2 = 0 on X , we define a value of D as follows:

lD :=
(KX ·D)

max

{

1, h0(OX(D))

} .

(3) X satisfies Hyp(A) if NE(X) =
∑ρ(X)

i=1 R≥0[Ci] such that each Ci is a curve. Here,

ρ(X) is the Picard number of X .

(4) X satisfies Hyp(B) if there exists a positive constant m(X) such that lC ≤ m(X)

for every curve C2 6= 0 on X .

(5) X satisfies Hyp(C) if there exists a positive constant m(X) such that lC ≤ m(X)

for every curve C on X .
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To solve Conjecture 1.3 partially, for the case when ρ(X) = 2, we give the main result as

follows.

Theorem 1.7. Let X be a smooth projective surface. The following statements hold.

(1) If X satisfies the BNC and there exists a positive constant m(X) such that lC ≤
m(X) for every curve C on X and D2 ≤ m(X)h0(OX(D)) for every curve D with

lD > 1 and D2 > 0 on X , then X satisfies Conjecture 1.3.

(2) Suppose κ(X) = 0 and the canonical divisor KX is nef. Then X satisfies Conjec-

ture 1.3.

(3) Suppose ρ(X) = 2 and κ(X) = −∞. Then X satisfies Hyp(B). In particular,

every ruled surface with invariant e > 0 satisfies Conjecture 1.3.

(4) Suppose ρ(X) = 2 and X has two negative curves. Then X satisfies Conjecture 1.3.

(5) Supoose ρ(X) = 2, κ(X) = 1 and b(X) > 0. Then X satisfies Conjecture 1.3.

(6) Suppose ρ(X) = 2 and X satisfies Hyp(A). Then X satisfies Hyp(B).

Remark 1.8. (1) It is hard to establish that there exists a positive constant m(X) such

that lD ≤ m(X) for D ∈ |nC| with the Iitaka dimension κ(X,C) = 1 and n ≫ 0,

where C is a curve on X . This is related to effectivity of Iitaka fibrations, which

are known for the pluricanonical system |mKX | of every smooth projective variety

X in arbitrary dimension (cf. [12, 18, 8]). Therefore, we have to consider a weaker

hypothesis Hyp(B).

(2) In [16, Claim 2.11], we give a classification of the smooth projective surfaces X

with ρ(X) = 2 and two negative curves C1 and C2. Here, the closed Mori cone

NE(X) = R≥0[C1]+R≥0[C2], i.e, X satisfies Hyp(A). Moreover, see Remark 2.11

about Theorem 1.7(6).

2. THE PROOF OF THEOREM 1.7

In this section, we divide our proof of Theorem 1.7 into some steps.

Proof of Theorem 1.7 (1). Take a curve C on X . Note that by Serre duality (cf. [11, Corol-

lary III.7.7 and III.7.12]), h2(OX(C)) = h0(OX(KX − C)) ≤ pg(X). As a result,

h2(OX(C))− χ(OX) ≤ q(X)− 1. (2.1)

Here, pg(X) and q(X) are the geometric genus of X and the irregularity of X respectively.

Our main condition is the following:

(*) There exists a positive constant m(X) such that lC ≤ m(X) for every curve C on X

and D2 ≤ m(X)h0(OX(D)) for every curve D with lD > 1 and D2 > 0 on X .

We divide the proof into the following three cases.

Case (i). Suppose C2 > 0. Then by Riemann-Roch theorem (cf. [11, Theorem V.1.6]),

h1(OX(C)) = h0(OX(C)) + h2(OX(C))− χ(OX) +
C2(lC − 1)

2
. (2.2)
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If lC ≤ 1, then Equation (2.1) and (2.2) imply that h1(OX(C)) ≤ h0(OX(C)) + q(X)− 1,

which is the desired result by cX := q(X). If lC > 1, then Equation (2.1) and (2.2) and the

condition (*) imply that 2h1(OX(C)) ≤ (m2(X)−m(X) + 2)h0(OX(C)) + 2(q(X)− 1),

which is the desired result by 2cX := m2(X)−m(X) + q(X).

Case (ii). Suppose C2 = 0. Then by Riemann-Roch theorem,

2h1(OX(C)) = 2h2(OX(C))− 2χ(OX) + h0(OX(C))(lC + 2), (2.3)

which, Equation (2.1) and the condition (*) imply that

2h1(OX(C)) ≤ 2(q(X)− 1) + h0(OX(C))(m(X) + 2),

which is the desired result by 2cX := m(X) + 2q(X).

Case (iii). Suppose C2 < 0. Then h0(OX(C)) = 1. Since X satisfies the BNC, there

exists a positive constant b(X) such that every curve C on X has C2 ≥ −b(X). By Riemann-

Roch theorem,

2h1(OX(C)) = 2 + 2h2(OX(C))− 2χ(OX) + lC − C2, (2.4)

which, Equation (2.1) and the condition (*) imply that 2h1(OX(C)) ≤ 2q(X) + m(X) +

b(X), which is the desired result by 2cX := 2q(X) +m(X) + b(X).

In all, we complete the proof of Theorem 1.7(1). �

Remark 2.1. (1) Suppose X satisfies Conjecture 1.3. Then by [9, Proposition 15], Equa-

tion (2.3) and (2.4), X satisfies Hyp(B) and Hyp(C).

(2) The condition of Theorem 1.7(1) may be not necessary. Let cX ≫ 1. Take a curve

C with C2 > 0 on X . Suppose X satisfies Conjecture 1.3. Then Equation (2.1) and

(2.2) imply that

C2(lC − 1)

2
= h1(OX(C))− h0(OX(C))− h2(OX(C)) + χ(OX)

≤ (cX − 1)h0(OX(C)) + χ(OX).

If we can find a sequence
{

lCi

}

on X such that C2
i > 0, lCi

> 1 and limi→∞ lCi
=

1, then it is unknown that there exists a positive constant m(X) such that C2 ≤
m(X)h0(OX(C)) for every curve C with C2 > 0 and lC > 1 on X . Therefore, the

following question is asked.

Question 2.2. Let X be a smooth projective surface. Suppose X satisfies Conjecture 1.3.

Is there a positive constant m(X) such that C2 ≤ m(X)h0(OX(C)) for every curve C with

C2 > 0 and lC > 1 on X?

Proof of Theorem 1.7(2). Since κ(X) = 0 and KX is nef, KX ≡ 0 (numerical). As a

result, lC = 0 for every curve C on X . By the adjunction formula, C2 ≥ −2. By Riemann-

Roch theorem, 2h1(OX(C)) = 2h0(OX(C)) + 2h2(OX(C)) − 2χ(OX) − C2, which and

Equation (2.1) imply that h1(OX(C)) ≤ (q(X) + 1)h0(OX(C)). Therefore, X satisfies

Conjecture 1.3. �
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Lemma 2.3. Every ruled surface satisfies Hyp(B). In particular, every ruled surface with

either invariant e > 0 or e = 0 over a curve of genus g ≤ 1 satisfy Conjecture Conjec-

ture 1.3.

Proof. Let π : X → B be a ruled surface over a smooth curve B of genus g, with invariant

e. Let C ⊆ X be a section, and let f be a fibre. By [11, Proposition V.2.3 and 2.9],

Pic X ∼= ZC ⊕ π∗PicB,C · f = 1, f 2 = 0, C2 = −e,KX ≡ −2C + (2g − 2− e)f.

Let D ≡ aC + bf with a, b ∈ Z be a curve on X . Now we divide the remaining proof into

the following four cases.

Case 1. Suppose e > 0. Then by [11, Proposition V.2.20(a)], a > 0, b ≥ ae. As a result,

every curve D( 6= C, f) has D2 > 0, (C ·D) ≥ 0 and (f ·D) > 0. Thus,

lD =
(KX ·D)

D2

≤ 2(C ·D) + |2g − 2− e|(f ·D)

a(C ·D) + b(f ·D)

≤ max

{

2

a
,
|2g − 2− e|

b

}

.

Here, a and b are positive integers. Therefore, X satisfies Hyp(B) and Hyp(C). If b ≥
2g − 2− e, then

(KX −D)D = −(2 + a)(C ·D) + (2g − 2− e− b)(f ·D) ≤ 0. (2.5)

By Riemann-Roch theorem, Equation (2.1) and (2.5) imply that

h1(OX(D)) = h0(OX(D)) + h2(OX(D)) +
(KX −D)D

2
− χ(OX)

≤ q(X)h0(OX(D)).

If b < 2g−2− e, then a < (2g−2− e)e−1 by b ≥ ae. As a result, D2 < 2(2g−2− e)2e−1.

Hence, by Theorem 1.7(i), X satisfies Conjecture 1.3.

Case 2. Suppose e = 0 and g ≤ 1. Then by [11, Proposition V.2.20(a)], a > 0 and b ≥ 0.

As a result, (KX −D)D = −(2+ a)b+ a(2g− 2− b) ≤ 0, which and Equation (2.1) imply

that

h1(OX(D)) = h0(OX(D)) + h2(OX(D)) +
(KX −D)D

2
− χ(OX)

≤ q(X)h0(OX(D)).

Therefore, X satisfies Conjecture 1.3. In particular, by Remark 2.1(1), X satisfies Hyp(B).

Case 3. Suppose e = 0 and g ≥ 2. Then by [11, Proposition V.2.20(a)], a > 0 and b ≥ 0.

As a result, every curve D( 6= aC, f) has D2 > 0, (C ·D) > 0 and (f · D) > 0. Note that
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every curve D has zero self-intersection if and only if either D ≡ aC or D ≡ f . Suppose

b > 0. Then

lD =
(KX ·D)

D2

≤ 2(C ·D) + |2g − 2|(f ·D)

a(C ·D) + b(f ·D)

≤ max

{

2

a
,
|2g − 2|

b

}

.

Here, a and b are positive integers. Therefore, X satisfies Hyp(B).

Case 4. Suppose e < 0. Then by [11, Proposition V.2.21], every curve D has either

D2 = 0 or D2 > 0. Moreover, D2 > 0 implies that D is ample and a > 0, b > 1
2
ae. Now

suppose D2 > 0. Then D · C > 0 and D · f > 0. Take C ′ = C + 1
2
ef and then D · C ′ > 0

and

lD =
(KX ·D)

D2

=
−2(C ·D) + (2g − 2− e)(f ·D)

a(C ′ ·D) + (b− 1
2
ae)(f ·D)

≤ |4g − 4− 2e|
2b− ae

.

Here, 2b− ae is a positive integer. Therefore, X satisfies Hyp(B).

In all, we complete the proof of Lemma 2.3. �

It is well-known that the smooth projective surfaces satisfy the minimal model conjecture

(cf. [13, 5]) as follows.

Lemma 2.4. Let X be a smooth projective surface. If the canonical divisor KX is pseudo-

effective, then the Kodaira dimension κ(X) ≥ 0.

Lemma 2.5. Let X be a smooth projective surface with ρ(X) = 2. If κ(X) = −∞, then

X satisfies Hyp(B). In particular, every ruled surface with either invariant e > 0 or e = 0

over a curve of genus g ≤ 1 and one point blow-up of P2 satisfy Conjecture 1.3.

Proof. Let S be a relatively minimal model of X . A smooth projective surface S is relatively

minimal if it has no (−1)-rational curves. By the Enrique-Kodaira classification of relatively

minimal surfaces (cf. [11, 6, 13]), it must be one of the following cases: a surface with nef

canonical divisor, a ruled surface or P2. Since κ(X) = −∞, by Lemma 2.4, KX is not nef.

Therefore, S is either a ruled surface or P2. As a result, ρ(X) = 2 implies that X is either

a ruled surface or one point blow-up of P2. By Lemma 2.3, every ruled surface satisfies

Hyp(B). In particular, every ruled surface with invariant e > 0 and every ruled surface with

e = 0 over a curve of genus g ≤ 1 satisfy Conjecture 1.3. Now suppose π : X → P2 is one

point blow-up of P2 with a exceptional curve E and Pic(P2) = Z[H ], where H = OP2(1).

Then KX = π∗(−3H) + E and C = π∗(dH)−mE, where m := multp(π∗C) and C is a
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curve on X . Note that d ≥ m since π∗C is a plane projective curve. Thus, every curve C (not

E) on X has C2 ≥ 0 and then C is nef. Since −KX is ample, C −KX is ample. Therefore,

by Kadaira vanishing theorem, h1(OX(C)) = 0. Therefore, X satisfies Conjecture 1.3. By

Remark 2.1(1), X satisfies Hyp(B). �

Lemma 2.6. Let X be a smooth projective surface with ρ(X) = 2. Then the following

statements hold.

(i) NE(X) = R≥0[f1] + R≥0[f2], f
2
1 ≤ 0, f 2

2 ≤ 0 and f1 · f2 > 0. Here, f1, f2 are

extremal rays.

(ii) If a curve C has C2 ≤ 0, then C ≡ af1 or C ≡ bf2 for some a, b ∈ R>0.

(iii) Suppose a divisor D ≡ a1f1 + a2f2 with a1, a2 > 0 in (i). Then D is big. Moreover,

if D is a curve, then D is nef and big and D2 > 0.

Proof. By [13, Lemma 1.22], (i) and (ii) are clear since ρ(X) = 2. For (iii), D ≡ a1f1+a2f2

with a1, a2 > 0 is an interior point of Mori cone, then by [15, Theorem 2.2.26], D is big.

Moreover, if D is a curve, then D is nef. As a result, D2 > 0. �

Lemma 2.7. Let X be a smooth projective surface with ρ(X) = 2. If X has two negative

curves C1 and C2, then the nef cone Nef(X) is

Nef(X) =

{

a1C1+a2C2

∣

∣

∣

∣

a1(C1·C2) ≥ a2(−C2
2 ), a2(C1·C2) ≥ a1(−C2

1 ), a1 > 0, a2 > 0

}

.

Proof. Since ρ(X) = 2, NE(X) = R≥0[C1] + R≥0[C2] by Lemma 2.6(ii). As a result, an

effective R- divisor D ≡ a1C1+a2C2 is nef if and only if D ·C1 ≥ 0 and D ·C2 ≥ 0, which

imply the desired result. �

Lemma 2.8. Let X be a smooth projective surface with ρ(X) = 2. Suppose X has two

negative curves C1 and C2. Then X satisfies Conjecture 1.3.

Proof. Note that NE(X) = R≥0[C1] + R≥0[C2] by Lemma 2.6(ii). We first show that X

satisfies Hyp(B). By [16, Claim 2.11], κ(X) ≥ 0, i.e., there exists a positive integral

number m such that h0(X,OX(mKX)) ≥ 0. Therefore, KX is Q-effective divisor. As a

result, KX ≡ aC1 + bC2 with a, b ∈ R≥0. Take a curve D ≡ a1C1 + a2C2 with a1, a2 > 0,

then by Lemma 2.6(iii), D2 > 0. As a result, D · C ≥ 0 and X has no any curves with zero

self-intersection. D2 ≥ 1 implies that either D · C1 ≥ 1 and D · C2 ≥ 0 or D · C1 ≥ 0 and

D · C2 ≥ 1. Without loss of generality, suppose that D · C2 ≥ 0 and D · C1 ≥ 1. Then

a1 ≥ (C2
1 + (C1 · C2)

2(−C2
2 )

−1)−1. Here, C2
1 + (C1 · C2)

2(−C2
2 )

−1 > 0 since ρ(X) = 2.

By symmetry and Lemma 2.7,

ai ≥ c := min

{

(C2
i +

(C1 · C2)
2

−C2
j

)−1,
−C2

j

(C1 · C2)
(C2

i +
(C1 · C2)

2

−C2
j

)−1

}

,
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where i 6= j ∈ {1, 2}. Therefore,

lD =
a(D · C1) + b(D · C2)

a1(D · C1) + a2(D · C2)

≤ max

{

a

c
,
b

c

}

.

So X satisfies Hyp(B). If a1 > a and a2 > b, then

(KX −D)D = (a− a1)(D · C1) + (b− a2)(D · C2) < 0.

This and Equation (2.1) imply that

h1(OX(D)) = h0(OX(D)) + h2(OX(D)) +
(KX ·D)−D2

2
− χ(OX)

≤ q(X)h0(OX(D)).

If a1 ≤ a or a2 ≤ b, then by Lemma 2.7, a2 ≤ a(C1·C2)(−C2
2 )

−1 or a1 ≤ b(C1·C2)(−C2
1 )

−1.

As a result,

D2 ≤ max

{

2a2(C1 · C2)
2(−C2

2 )
−1, 2b2(C1 · C2)

2(−C2
1 )

−1

}

.

Therefore, X satisfies Conjecture 1.3 by Theorem 1.7(1). �

Lemma 2.9. Let X be a smooth projective surface with ρ(X) = 2. If κ(X) = 1 and

b(X) > 0, then X satisfies Conjecture 1.3.

Proof. Since κ(X) = 1, ρ(X) = 2 and κ(X) is a birational invariant, KX is nef and semi-

ample. By [4, Proposition IX.2], we have K2
X = 0 and there is a surjective morphism

p : X → B over a smooth curve B, whose general fibre F is an elliptic curve. Note that X

has exactly one negative curve C by b(X) > 0 and [16, Claim 2.14]. In fact, p is an Iitaka

fibration of X . In [12], S. Iitaka proved that if m is any natural number divisible by 12 and

m ≥ 86, then |mKX | defines the Iitaka fibration. Hence, there exists a curve F as a general

fiber of p such that F ≡ mKX . Then by Lemma 2.6(i)(ii), NE(X) = R≥0[F ] + R≥0[C].

Note that (F · C) > 0 since ρ(X) = 2. Take a curve D ≡ a1F + a2C with a1, a2 ≥ 0. By

Lemma 2.6(iii), D2 > 0 if and only if a1, a2 > 0, D2 = 0 if and only if D ≡ a1F . Now

suppose D ≡ a1F . Then lD = 0. Note that h1(OX(D)) ≤ q(X)h0(OX(D)) by Riemann-

Roch theorem and Equation (2.1). Now suppose D2 > 0. Then (F ·D) ≥ 1 and (C ·D) ≥ 0,

which imply that

a2 ≥ (F · C)−1, a1 ≥ a2(−C2)(F · C)−1. (2.6)

Therefore, by Equation (2.6),

lD =
(F ·D)

m(a1(F ·D) + a2(C ·D))

≤ (F · C)2(−mC2)−1.

Hence, X satisfies Hyp(C). If ma1 ≥ 1, then (KX − D)D = (1 − ma1)(KX · D) −
a2(C · D) ≤ 0. As a result, h1(OX(D)) = q(X)h0(OX(C)) by Riemann-Roch theorem



BOUNDING COHOMOLOGY 9

and Equation (2.1). If ma1 < 1, then by Equation (2.6), a2 < (F · C)(−mC2)−1. So

D2 < 2m−2(F · C)2(−C2)−1. Hence, by Theorem 1.7(1), X satisfies Conjecture 1.3. �

Lemma 2.10. Let X be a smooth projective surface with ρ(X) = 2. Suppose X satisfies

Hyp(A). Then X satisfies Hyp(B). Moreover, if NE(X) is generated by two curves with

zero Iitaka dimension, then X satisfies Hyp(C).

Proof. By Lemma 2.5, we can assume that κ(X) ≥ 0, i.e., there exists a positive integral

number m such that h0(X,OX(mKX)) ≥ 0. Therefore, KX is Q-effective divisor. Since

X satisfies Hyp(A), by Lemma 2.6(ii)(i), NE(X) = R≥0[C1] + R≥0[C2]. Here, C1 and C2

are two curves and C2
1 , C

2
2 ≤ 0. As a result, KX ≡ aC1 + bC2 with a, b ≥ 0.

If C2
1 < 0 and C2

2 < 0, it follows from Lemma 2.8 and Remark 2.1(1).

Now suppose C2
1 = 0. Then X has at most one negative curve. By Lemma 2.6(iii),

D2 > 0 if and only if D ≡ a1C1 + a2C2 with a1, a2 > 0, D2 > 0 if and only if D is nef and

big. As a result, D2 > 0 implies that (D · C1) ≥ 1, i.e., a2 ≥ (C1 · C2)
−1. Now we divide

the remaining proof into the following two cases.

Case (i). Suppose C2
2 = 0. Then X has no negative curve. If D2 > 0, then (D · C2) ≥ 1,

which implies that a1 ≥ (C1 · C2)
−1. Therefore,

lD =
a(D · C1) + b(D · C2)

a1(D · C1) + a2(D · C2)

≤ max

{

a(C1 · C2), b(C1 · C2)

}

.

Therefore, X satisfies Hyp(B). Moreover, if κ(X,C1) = κ(X,C2) = 0, then X has only

two curves with zero self-intersection. Hence, X satisfies Hyp(C).

Case (ii). Suppose C2
2 < 0. X has only one negative curve C2. If D2 > 0, then (D ·C2) ≥

0, which implies that a1 ≥ a2(−C2
2 )(C1 · C2)

−1. Therefore,

lD =
a(D · C1) + b(D · C2)

a1(D · C1) + a2(D · C2)

≤ max

{

a(−C2
2 )

−1(C1 · C2)
2, b(C1 · C2)

}

.

Therefore, X satisfies Hyp(B). Moreover, if κ(X,C1) = 0, then X has only one curve

with zero self-intersection. Hence, X satisfies Hyp(C). �

Remark 2.11. For the examples of Lemma 2.10, there exists a K3 surface with two nega-

tive curves (cf. [14, Theorem 2], [16, Claim 2.12]), Lemma 2.9 is an example of X with

κ(X,C1) = 1 and κ(X,C2) = 0. The remaining case is that κ(X) ≥ 0, C2
1 = 0 and

κ(X,C1) = κ(X,C2) = 0. J. Roé told us that there is an example for the case as follows.

Example 2.12. (J. Roé’s example) Let π : X → Y be one-point blow-up of a smooth

projective surface Y with ρ(Y ) = 1. Then one extremal ray in NE(X) is the exceptional

curve E = C2. Since ρ(Y ) = 1, the other extremal ray is determined by the Seshadri



10 SICHEN LI

constant (cf. [15, Definition 5.1.1]). Let A be the ample generator of Pic (Y ). Because of

the duality between Nef(X) and NE(X) (cf. [15, Proposition 1.4.28]), the class of [C1] is

π∗A−mE, where m = A2

e
and e is the Seshadri constant of A at the point that is blown-up.

The assumption C2
1 = 0 implies that m = e =

√
A2. This does happen for the general

smooth surfaces of degree e2 in P3 (cf. [17, 1]). The easiest case would be a general point p

on a general quartic surface Y ⊆ P3. Blow it up. A is the pullback to Y of the hyperplane

class in P3. C1 has class π∗A − 2E, which is given by the strict transform of the nodal

quartic curve obtained as intersection of the quartic surface with its tangent plane at p. So

C1 is a plane nodal quartic, and it has genus g ≥ 2. The restriction of n(π∗A−2E) to C1 has

degree zero. To prove that κ(X,C1) = 0, we need to check that nC1 is the only section of

n(π∗A−2E). Note that the degree zero intersection divisor is not torsion in Pic (C1), which

is true if p and Y are general. Assume that another section D such that D ∼Q nC1 + T ,

where effective Q-divisor T is algebraically equivalent to zero. As a result, T |C1
= 0, a

contradiction.

Proof of Theorem 1.7(3)∼(6). (3) follows from Lemma 2.5. (4) follows from Lemma 2.8.

(5) follows from Lemma 2.9. (6) follows from Lemma 2.10. �

We end by posing the following problem.

Problem 2.13. Classify all algebraic surfaces with Hyp(B).

Remark 2.14. For every smooth projective surface X , we conjecture thatX satisfiesHyp(B)

if X satisfies Hyp(A).
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