RAISING THE LEVEL AT YOUR FAVORITE PRIME

LUIS DIEULEFAIT AND EDUARDO SOTO

ABSTRACT. In this paper we prove a level raising theorem for some weight 2 trivial character newforms at almost *every* prime p. This is done by ignoring the residue characteristic at which the level raising appears.

INTRODUCTION

For a newform h and a prime \mathfrak{l} in $\overline{\mathbb{Z}}$ consider the semisimple 2 dimensional continuous Galois representation $\overline{\rho}_{h,\mathfrak{l}}$ with coefficients in $\mathbb{F}_{\mathfrak{l}} = \overline{\mathbb{Z}}/\mathfrak{l}$ attached to h and let $\{a_p(h)\}_p \subset \overline{\mathbb{Z}}$ be the sequence of prime index Fourier coefficients of h. Let f and g be newforms of weight 2 and trivial character. We say that f and g are *Galoiscongruent* if there is some prime \mathfrak{l} in $\overline{\mathbb{Z}}$ such that $\overline{\rho}_{f,\mathfrak{l}}, \overline{\rho}_{g,\mathfrak{l}}$ are isomorphic. This is equivalent to

$$a_p(f) \equiv a_p(g) \pmod{\mathfrak{l}}$$

for all but finitely many p. In 1990 Ribet proved the following

Theorem (K. Ribet). Let f be a newform in $S_2(\Gamma_0(N))$ such that the mod \mathfrak{l} Galois representation

 $\bar{\rho}_{f,\mathfrak{l}}: \operatorname{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q}) \longrightarrow \operatorname{GL}_2(\mathbb{F}_{\mathfrak{l}})$

is absolutely irreducible. Let $p \nmid N$ be a prime satisfying

$$a_p(f) \equiv \varepsilon(p+1) \pmod{\mathfrak{l}}$$

for some $\varepsilon \in \{\pm 1\}$. Then there exists a newform g in $S_2(\Gamma_0(pM))$, for some divisor M of N such that $\bar{\rho}_{f,\mathfrak{l}}$ is isomorphic to $\bar{\rho}_{g,\mathfrak{l}}$. If $2 \notin \mathfrak{l}$ then g can be chosen with $a_p(g) = \varepsilon$.

Hence under some conditions one can raise the level of f at p. That is, there is a newform g Galois-congruent to f with level divisible by p once. When considering level-raisings of f at p we will tacitly assume that p is not in the level of f. In this paper we do level raising at every p > 2 by admitting congruences at any prime \mathfrak{l} . More precisely, we prove the following.

Theorem 1. Let f be a newform in $S_2(N)$ and let p be a prime not dividing N. Assume that

(AbsIrr) $\bar{\rho}_{f,\mathfrak{l}}$ is absolutely irreducible for every \mathfrak{l} .

(a₂) If p = 2 assume that $a_2(f)^2 \neq 8$.

Then there exists some M dividing N and some newform g in $S_2(Mp)$ such that f and g are Galois-congruent.

The first author is partially supported by MICINN grant MTM2015-66716-P.

The second author is partially supported by MICINN grant MTM2016-78623-P.

We proof Theorem 1 and a variant of it in section 3. A theorem of B. Mazur implies that Theorem 1 applies to *most* of the rational elliptic curves. We exhibit an infinite family of modular forms satisfying (AbsIrr) with coefficient fields constant equal to \mathbb{Q} , see section 4

Remark. It is worth remarking the existence of infinite families with coefficient fields of unbounded degree satisfying all of the condition (AbsIrr), see [9].

Lemma 2.3 together with Ribet's theorem imply that we can choose the sign of $a_p(g)$ when the congruence of f and g is in odd characteristic. An obstruction appears in characteristic 2 since Ribet's methods identify 1, -1 mod 2. Le Hung and Li [12] have recently provided a solution to this problem for some f arising from elliptic curves using 2-adic modularity theorems of [1] for the ordinary case and quaternion algebras for the supersingular case. In this paper we treat the ordinary case.

Theorem 2. Let f be a newform in $S_2(N)$, let p be a prime not dividing 6N and choose a sing $\varepsilon \in \{\pm 1\}$. Assume that f satisfies **(AbsIrr)** and for every $\mathfrak{l} \ni 2$ assume that

(**DiehReal**) $\bar{\rho}_{f,\mathfrak{l}}$ has dihedral image induced from a real quadratic extension,

$$({f 2Ord}) \,\, ar
ho_{f,\mathfrak{l}}|_{G_2} \simeq \left(egin{array}{cc} 1 & * \ & 1 \end{array}
ight).$$

Then there exists some M dividing N and some newform g in $S_2(Mp)$ such that f and g are Galois-congruent and $a_p(g) = \varepsilon$.

We deal with this obstruction in section 3.2 following techniques in [12].

Let E/\mathbb{Q} be an elliptic curve. Modularity theorems attach to E a newform f(E) such that $\bar{\rho}_{f,\mathfrak{l}} \simeq E[\ell] \otimes_{\mathbb{F}_{\ell}} \mathbb{F}_{\mathfrak{l}}$ modulo semisimplification, for every \mathfrak{l} . We obtain an application to elliptic curves.

Theorem 3. Let E/\mathbb{Q} be an elliptic curve such that

- E has no rational q-isogeny for every q prime,
- $\mathbb{Q}(E[2])$ has degree 6 over \mathbb{Q} .

Let p be a prime of good reduction. Then there exists some divisor M of the conductor of E and some newform g in $S_2(Mp)$ such that f(E) and g are Galois-congruent. Let $\varepsilon \in \{\pm 1\}$. Assume further that

- $p \geq 5$,
- E has good or multiplicative reduction at 2 and
- E has positive discriminant

then g can be chosen with $a_p(g) = \varepsilon$.

Notation. Let \mathbb{Q} denote the algebraic closure of \mathbb{Q} in \mathbb{C} . Let $\overline{\mathbb{Z}}$ be the ring of algebraic integers contained in $\overline{\mathbb{Q}}$. We use p, q, ℓ to denote rational primes and $\mathfrak{l}, \mathfrak{l}'$ to denote primes of $\overline{\mathbb{Z}}$. We use *prime* of $\overline{\mathbb{Z}}$ to refer to maximal ideals of $\overline{\mathbb{Z}}$, i.e. non-zero prime ideals. We denote by $\mathbb{F}_{\mathfrak{l}}$ the residue field of \mathfrak{l} and ℓ its characteristic. We consider modular forms as power series with complex coefficients and for a newform f we define by \mathbb{Q}_f its field of coefficients, that is the number field $\mathbb{Q}_f = \mathbb{Q}(\{a_p\}_p)$. We denote by $G_{\mathbb{Q}}$ the absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$ and by G_p a decomposition group of p contained in $G_{\mathbb{Q}}$.

1. Newforms

Let $\Gamma_0(N)$ be the subgroup of $\operatorname{SL}_2(\mathbb{Z})$ corresponding to upper triangular matrices mod N. The space $S_2(N) := S_2(\Gamma_0(N))$ of weight 2 level N trivial Nebentypus cusp forms is a finite dimensional vector space over \mathbb{C} . For every M dividing N, $S_2(M)$ contributes in $S_2(N)$ under the so-called degeneracy maps $S_2(M) \longrightarrow S_2(N)$. Let $S_2(N)^{old}$ be the subspace of $S_2(N)$ spanned by the images of the degeneracy maps for every $M \mid N$. Let $S_2(N)^{new}$ be the orthogonal space of $S_2(N)^{old}$ with respect to the Peterson inner product. A theorem of Atkin-Lehner says that $S_2(N)^{new}$ admits a basis of Hecke eigenforms called newforms, this basis is unique.

1.1. Galois representation. Let f be a newform of level N and let \mathfrak{l} be a prime of residue characteristic ℓ . A construction of Shimura (see [7] section 1.7) attaches to f an abelian variety A_f over \mathbb{Q} of dimension $n = [\mathbb{Q}_f : \mathbb{Q}]$. A_f has good reduction at primes not dividing N. Let $\mathbb{Q}_{f,\mathfrak{l}}$ denote the completion of \mathbb{Q}_f with respect to \mathfrak{l} . Working with the Tate module $\mathcal{V}_{\ell}(A_f) = \varprojlim_n A_f[\ell^n] \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}$ one can attach to A_f a continuous Galois representation

$$\rho_{f,\mathfrak{l}}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_2(\mathbb{Q}_{f,\mathfrak{l}})$$

such that $det \rho_{f,\mathfrak{l}}$ is the ℓ -adic cyclotomic character and $tr \rho_{f,\mathfrak{l}}(Frob_p) = a_p(f)$ for every $p \nmid N\ell$. Indeed, $\mathcal{V}_{\ell}(A_f)$ and $\rho_{f,\mathfrak{l}}$ are unramified at $p \nmid N\ell$ by Neron-Ogg-Shafarevich criterion. Then $\bar{\rho}_{f,\mathfrak{l}}$ is obtained as the semisimple reduction of $\rho_{f,\mathfrak{l}}$ mod \mathfrak{l} tensor $\mathbb{F}_{\mathfrak{l}}$.

Next definition is central in this paper.

Definition 1.1. Let f, g be newforms of weight two, level N, N' respectively and trivial character.

• We say that f and g are *Galois-congruent* if there is some prime \mathfrak{l} in \mathbb{Z} such that

 $\bar{\rho}_{f,\mathfrak{l}} \simeq \bar{\rho}_{g,\mathfrak{l}}.$

- We say that g is a level-raising of f at p if f and g are Galois-congruent and $p \parallel N'$ but $p \nmid N$.
- We say that g is a strong level-raising of f at p over \mathfrak{l} if g is a level raising of f at p with N' = Np.

Remark 1.2. From Brauer-Nesbitt theorem ([6] theorem 30.16) we have that a semisimple Galois representation $\bar{\rho}$: $\operatorname{Gal}(\bar{\mathbb{Q}} \mid \mathbb{Q}) \to GL_2(\bar{\mathbb{F}}_{\ell})$ is uniquely determined by the characteristic polynomial function. Hence $\bar{\rho}$ is determined by tr and det. Since all Galois representations we consider have cyclotomic determinant Galois-congruence is equivalent to congruence on traces of unramified Frobenius (cf. Chebotarev density theorem, [17] Corollary 2).

Remark 1.3. Let R be a ring at which 2 is invertible and A a free R-module of rank 2. For an endomorphism f of A we have that $tr(f^2) = tr(f)^2 - 2det(A)$ and hence det is determined by tr. This is [7] Proposition 2.6 b) for d = 2 and gives necessary conditions on existence of Galois-Congruency for general weights and levels (cf. [16]).

Remark 1.4. With our definition Le Hung and Li [12] do strong level raising at a set of primes with some extra requirements always in characteristic 2.

Let ω_{ℓ} denote the mod ℓ cyclotomic character and for $\alpha \in \mathbb{Z}$ let λ_{α} be the unique unramified character $\lambda_{\alpha} : G_p \to \mathbb{F}_{\mathfrak{l}}^{\times}$ sending the arithmetic Frobenius $Frob_p$ to $\alpha \mod \mathfrak{l}$. We collect in the following theorem work of Deligne, Serre, Fontaine, Edixhoven, Carayol and Langlands. It gives some necessary conditions for levelraising existence.

Theorem 1.5. Let g be a newform in $S_2(Mp)$ with $p \nmid 2M$ and fix a prime \mathfrak{l} . Then

$$\bar{\rho}_{g,\mathfrak{l}}|_{G_p} \simeq \begin{pmatrix} \omega_{\ell} & * \\ & 1 \end{pmatrix} \otimes \lambda_{a_p(g)}.$$

Let f be a newform $S_2(N)$, $p \nmid 2N$ and fix a prime \mathfrak{l} containing p. Then either $\overline{\rho}_{f,\mathfrak{l}}|_{G_p}$ is irreducible or

$$\bar{\rho}_{f,\mathfrak{l}}|_{G_p} \simeq \left(\begin{array}{cc} \omega_p \lambda_{a_p(f)^{-1}} & * \\ & \lambda_{a_p(f)} \end{array}\right)$$

with * 'peu ramifié'.

Proof. Case $p \in \mathfrak{l}$ is Theorem 6.7 in [3] for k = 2. Because $a_p(g) \in \{\pm 1\}$, we have that g is ordinary at p. Case $p \notin \mathfrak{l}$ follows from Carayol's theorem in [5].

The statement for f is Corollary 4.3.2.1 in [4].

Following corollaries were inspired by Proposition 6 in [2].

Corollary 1.6. Let $f \in S_2(N)$, $g \in S_2(Mp)$ be Galois-congruent newforms over \mathfrak{l} , $p \nmid 2NM$. Then

$$a_p(f) \equiv a_p(g)(p+1) \pmod{\mathfrak{l}}.$$

Proof. Case $p \notin \mathfrak{l}$. We have that $tr\bar{\rho}_{g,\mathfrak{l}}(Frob_p) = a_p(g)(p+1)$. On the other hand $\bar{\rho}_{f,\mathfrak{l}}$ is unramified at p and has trace $a_p(f)$ at $Frob_p$.

Case $p \in \mathfrak{l}$. The isomorphism $\bar{\rho}_{f,\mathfrak{l}}|_{G_p} \simeq \bar{\rho}_{g,\mathfrak{l}}|_{G_p}$ implies that $\bar{\rho}_{f,\mathfrak{l}}|_{G_p}$ reduces and we have equality of characters

$$\{\omega_p \lambda_{a_p(g)}, \lambda_{a_p(g)}\} = \{\omega_p \lambda_{a_p(f)^{-1}}, \lambda_{a_p(f)}\}\$$

The mod p cyclotomic character is ramified since $p \neq 2$. In particular $a_p(g) \equiv a_p(f) \pmod{\mathfrak{l}}$.

As a consequence we obtain a result on congruent modular forms with levelraising.

Corollary 1.7. Let $f \in S_2(N)$, $g \in S_2(Mp)$ be newforms, $p \nmid 2NM$. If f and g are congruent, that is

 $a_n(f) \equiv a_n(g) \pmod{\mathfrak{l}}$ for every n,

then

 $\ell = p$ and $a_p(f) \equiv a_p(g) = \pm 1 \pmod{\mathfrak{l}}.$

Proof. Congruency implis Galois-congruency. We have that

$$a_p(g) \equiv a_p(f) \equiv a_p(g)(p+1) \pmod{\mathfrak{l}}.$$

The corollary follows since $a_p(g) \in \{\pm 1\}$.

1.2. **Ribet's level raising.** Ribet's theorem says that the necessary condition of Corollary 1.6 for level-raising turns out to be enough modulo some irreducibility condition.

Theorem 1.8 (Ribet's level raising theorem). Let f be a newform in $S_2(N)$ such that the mod \mathfrak{l} Galois representation

$$\bar{\rho}_{f,\mathfrak{l}}: \operatorname{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q}) \longrightarrow \operatorname{GL}_2(\mathbb{F}_{\mathfrak{l}})$$

is absolutely irreducible. Let $p \nmid N$ be a prime satisfying

$$a_p(f) \equiv \varepsilon(p+1) \pmod{\mathfrak{l}}$$

for some $\varepsilon \in \{\pm 1\}$. Then there exists a newform g in $S_2(pM)$, for some divisor M of N such that $\bar{\rho}_{f,\mathfrak{l}}$ is isomorphic to $\bar{\rho}_{g,\mathfrak{l}}$. If $2 \notin \mathfrak{l} g$ can be chosen with $a_p(g) = \varepsilon$.

- **Remarks 1.9.** Ribet's original approach deals with modular Galois representations $\bar{\rho}$ so that in particular there is some newform f such that $\bar{\rho} \simeq \bar{\rho}_{f,\mathfrak{l}}$. His approach deals with traces of Frobenii, this forces him to deal with unramified primes only, hence the hypothesis $p \neq \ell$. As he explains later the theorem can be stated in terms of Hecke operators and hence in terms of Fourier coefficients even if $p = \ell$, when f is p-new.
 - Every normalized Hecke eigenform f' has attached a unique newform f so that the I-adic Galois representations attached to f' are the ones attached to f. Furthermore, the level of f divides the level of f'. Hence p-new in Ribet's article means new of level pM for some $M \mid N$.

We introduce a definition in order to deal with the irreducibility condition.

Definition 1.10. Let $f \in S_2(N)$ be a newform, let \mathfrak{l} be a prime of $\overline{\mathbb{Z}}$ and let $\bar{\rho}_{f,\mathfrak{l}} : \operatorname{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q}) \to \operatorname{GL}_2(\overline{\mathbb{F}}_{\mathfrak{l}})$ denote the semisimple mod \mathfrak{l} Galois representation attached to f by Shimura. We say that f satisfies condition (AbsIrr) if $\bar{\rho}_{f,\mathfrak{l}}$ is absolutely irreducible for every prime \mathfrak{l} .

In section 5 we provide explicit examples with $\mathbb{Q}_f = \mathbb{Q}$. See [9] Theorem 6.2 for a construction of families $\{f_n\}$ for which the set of degrees $\{\dim_{\mathbb{Q}} \mathbb{Q}_{f_n}\}_n$ is unbounded.

2. Bounds and arithmetics of Fourier coefficients

In light of Ribet's theorem and the following well-known properties of Fourier coefficients we study some arithmetic properties of $p + 1 \pm a_p$.

Theorem 2.1. Let f be a newform in $S_2(N)$ and let a_p be the p-th Fourier coefficient of f, p prime. Then

(i) $a_p \in \overline{\mathbb{Z}}$,

- (ii) a_p is totally real. That is, its minimal polynomial splits over \mathbb{R} ,
- (iii) (Hasse-Weil Theorem) $|\sigma(a_p)| \leq 2\sqrt{p}$ for every embedding $\sigma : \mathbb{Q}(a_p) \hookrightarrow \mathbb{R}$.

We say that $a_p \in \overline{\mathbb{Q}}$ is a *p*-th Fourier coefficient if a_p satisfies conditions (i) - (iii).

2.1. Arithmetic lemmas. Let K be a number field with ring of integers \mathcal{O} . Let S be the set of complex embeddings $\sigma : K \to \mathbb{C}$ of K. For every $\alpha \in \mathcal{O}$ we consider the norm

$$N_K(\alpha) = \prod_{\sigma \in S} \sigma(\alpha)$$

and the characteristic polynomial

$$P_{\alpha}(X) = \prod_{\sigma \in S} X - \sigma(\alpha).$$

One has that $P_{\alpha}(0) = (-1)^{|S|} N_K(\alpha)$. Following well-known lemma is basic algebraic number theory.

Lemma 2.2. Let K be a number field and α an algebraic integer of K. Then $P_{\alpha}(X) \in \mathbb{Z}[X]$ and $N_{K}(\alpha) \in \mathbb{Z}$. A rational prime ℓ divides $N_{K}(\alpha)$ if and only if there is some prime \mathfrak{l} in \mathbb{Z} of residue characteristic ℓ such that $\alpha \equiv 0 \pmod{\mathfrak{l}}$. In particular α is a unit of \mathcal{O} if and only if $N_{K}(\alpha) = \pm 1$.

Proof. Let $n = |S| = \dim_{\mathbb{Q}} K$. Consider the embedding $\iota : K \longrightarrow End_{\mathbb{Q}}(K)$, where $\iota(\alpha)$ is the multiplication-by- α morphism. A choice of integral basis of Kinduces an embedding $\iota : K \longrightarrow M_{n \times n}(\mathbb{Q})$ with $\iota(\mathcal{O}) \subset M_{n \times n}(\mathbb{Z})$. Then $P_{\alpha}(X)$ is the characteristic polynomial of $\iota(\alpha)$ by Cayley-Hamilton theorem. For a nonzero $\alpha \in \mathcal{O}$ one has that $|N_K(\alpha)| = |\mathcal{O}/\alpha\mathcal{O}| = \prod_i |\mathcal{O}/\mathfrak{p}_i^{e_i}|$ where $\alpha\mathcal{O} = \prod_i \mathfrak{p}_i^{e_i}$ is the factorization in prime ideals of the ideal generated by α . Thus ℓ divides $N_K(\alpha)$ if and only if some prime \mathfrak{p} of \mathcal{O} containing ℓ divides $\alpha\mathcal{O}$. Moreover, the map $MaxSpec(\mathbb{Z}) \to MaxSpec(\mathcal{O})$ given by $\mathfrak{l} \mapsto \mathfrak{l} \cap \mathcal{O}$ is surjective and the lemma follows. \Box

Lemma 2.3. Let a_p be a p-th Fourier coefficient.

(a) $(p+1+a_p)(p+1-a_p)$ is unit in $\overline{\mathbb{Z}}$ if and only if p=2 and $a_2^2=8$. (b) If p>3 then $p+1 \pm a_p$, is not unit in $\overline{\mathbb{Z}}$.

Proof. Let $K = \mathbb{Q}(a_p)$ and $S = \{\sigma \in \mathbb{Q}(a_p) \longrightarrow \mathbb{R}\}$ be the set of embeddings. Its cardinality equals n the degree of $\mathbb{Q}(a_p) \mid \mathbb{Q}$.

(a) We have

$$\sigma((p+1+a_p)(p+1-a_p)) = (p+1)^2 - \sigma(a_p)^2$$

$$\geq (p+1)^2 - 4p$$

$$= (p-1)^2$$

> 1

Hence $N_K((p+1+a_p)(p+1-a_p)) \ge (p-1)^{2n} \ge 1$. Equalities hold if and only if p = 2 and $9 - a_2^2 = 1$.

(b) Since $\sigma(p+1\pm a_p) \ge p+1-2\sqrt{p} = (\sqrt{p}-1)^2$ then

$$N_K(p+1 \pm a_p) \ge (\sqrt{p}-1)^{2n} > 1$$

provided that p > 3.

Lemma 2.4 (Avoiding p). Fix a positive odd integer n. There exists an integer C_n such that if a_p is a p-th coefficient of degree n with $p > C_n$ then there is a prime \mathfrak{l} not over p such that

$$\mathfrak{l} \mid (a_p + p + 1)(a_p - p - 1).$$

Proof. Let $K = \mathbb{Q}(a_p)$ and assume that $(p+1+a_p)(p+1-a_p)$ factors as product of primes over p in the ring of integers of K. Then $N_K(p+1-a_p)$, $N_K(p+1+a_p)$ are powers of p in the closed interval $I = [(\sqrt{p}-1)^{2n}, (\sqrt{p}+1)^{2n}]$. We can take pgreat enough so that p^n is the unique power of p in I. Thus

$$N_K(p+1-a_p) = N_K(p+1+a_p) = p^n$$

$$N_K(-p-1-a_p) = (-1)^n N_K(p+1+a_p) = -p^n$$

In particular $0 \equiv P_{a_p}(p+1) - P_{a_p}(-p-1) = 2p^n \pmod{p+1}.$

We can describe the bound C_n : conditions $p^{n+1}, p^{n-1} \notin I$ are equivalent to

$$\begin{split} p &> \left(\frac{p}{p-2\sqrt{p}+1}\right)^n =: \alpha(p,n), \\ p &> \left(\frac{p+2\sqrt{p}+1}{p}\right)^n =: \beta(p,n) \end{split}$$

Notice that $\beta < \alpha$ and that p satisfies $p > \alpha(p, n)$ if and only if $x^n > x^{n-1} + 1$ where $x^{2n} = p$. Since n is odd we can take θ the greatest real root of $X^n - X^{n-1} - 1$ and $C_n := \theta^{2n}$. Notice that C_n/n^2 has finite limit.

Lemma 2.5. The best bound for n = 1 is $C_1 = 2$.

Proof. Notice that $(p+1)^2 - a_p^2 = 1$ if p = 2, $a_p = \pm 1$. Following the notation above we have that $\theta = 2$ for n = 1 and $C_1 = 4$ works. Thus it is enough to check that $(4 - a_3)(4 + a_3)$ is not \pm a power of 3. Both factors are positive by Hasse's bound. Thus $4 + a_3 = 3^a$, $4 - a_3 = 3^b$ and $3^a + 3^b = 8$.

3. Proofs

3.1. Proof of main result and variant.

Proof of Theorem 1. Let $f \in S_2(N)$ new and $p \nmid N$. We need to check that Ribet's theorem applies for some \mathfrak{l} . By Lemmas 2.1 and 2.3, $(p+1+a_p)(p+1-a_p)$ is not invertible in $\overline{\mathbb{Z}}$. Hence it is contained in a maximal ideal \mathfrak{l} . That is, either $a_p \equiv p+1 \pmod{\mathfrak{l}}$ or $a_p \equiv -p-1 \pmod{\mathfrak{l}}$.

Following variant allows us to do level-raising at p over characteristic $\ell \neq p$. This together with Corollary 1.7 ensures that the predicted Galois-congruency is not a cogruence of *all* Fourier coefficients, at least when the level-raising is at $p \neq 2$.

Theorem 3.1. Let f be a newform in $S_2(N)$ such that $n := \dim_{\mathbb{Q}} K_f$ is odd. Assume that

(AbsIrr) $\bar{\rho}_{f,\mathfrak{l}}$ is absolutely irreducible for every \mathfrak{l} .

There exists a constat C > 0 such that for every prime p > C f has a level-raising g at p over a prime l of residue characteristic different from p. C depens only on n.

Proof. Let $f \in S_2(N)$ new. Due to (AbsIrr) it is enough to find a maximal ideal \mathfrak{l} not over p. This is done in Lemma 2.4.

3.2. Choice of sign mod 2. In this section we adapt some ideas of [12] to our case. The strategy is to solve a finitely ramified deformation problem. This kind of deformation problem consists on specifying the ramification behavior at all but one chosen prime q. If such a deformation problem has solution and some modularity theorem applies this provides newforms with specified weight, character and prime-to-q part level. If one chooses an auxiliary prime q, a twist argument kills the ramification at q so that one recovers a newform with the specified weight, character and level.

Fix a prime ideal $\mathfrak{l} \ni 2$ of \mathbb{Z} . Let ρ_2 be a Galois representation $G_{\mathbb{Q}} \to \mathrm{SL}_2(\mathbb{F}_{\mathfrak{l}})$ with dihedral image D and let $E = \mathbb{Q}^D$ be the number field fixed by ker ρ_2 . The order of an element in $\mathrm{SL}_2(\mathbb{F}_{\mathfrak{l}})$ is either 2 or odd. This forces D to have order $2r, 2 \nmid r$. In particular $E \mid \mathbb{Q}$ has a unique quadratic subextension $K \mid \mathbb{Q}$ and ρ_2 is induced from a character $\chi : \mathrm{Gal}(\mathbb{Q} \mid K) \to \mathbb{F}_{\mathfrak{l}}^{\times}$ of order r.

We say that q is an *auxiliary prime* for ρ_2 if

- $q \equiv 3 \pmod{4}$ and
- ρ_2 is unramified at q and $\rho_2(Frob_q)$ is non-trivial of odd order.

Proposition 3.2. Let g be a newform in $S_2(Mq^{\alpha})$, $q \nmid M$, such that $\bar{\rho}_{g,\mathfrak{l}}$ is unramified at an auxiliary prime q. Then either g or $g \otimes (\frac{1}{\alpha})$ has level M.

Proof. $\bar{\rho}_{g,\mathfrak{l}}(Frob_q)$ has different eigenvalues by the order condition, thus $\rho_{g,\mathfrak{l}}|_{I_q}$ factors through a quadratic character η of I_q (Lemma 3.4 in [12]). By the structure of tame inertia at $q \neq 2$ there is a unique open subgroup in I_q of index 2 and $\eta : I_q \twoheadrightarrow$ $\operatorname{Gal}(\mathbb{Q}_q^{ur}(\sqrt{q}) | \mathbb{Q}_q^{ur}) \simeq \{\pm 1\}$. If η is trivial then $\alpha = 0$ and we are done. Otherwise, η extends locally to $G_q \twoheadrightarrow \operatorname{Gal}(\mathbb{Q}_q(\sqrt{-q}) | \mathbb{Q}_q)$ and globally to the Legendre symbol

$$\left(\frac{\cdot}{q}\right): G_{\mathbb{Q}} \twoheadrightarrow \operatorname{Gal}(\mathbb{Q}(\sqrt{-q}) \mid \mathbb{Q}) \simeq \{\pm 1\}.$$

Legendre symbol over q is only ramified at q and the proposition follows.

Auxiliary primes are inert at $\mathbb{Q}(i)$ and split at K by a parity argument. In particular, ρ_2 has auxiliary primes only if $K \neq \mathbb{Q}(i)$.

Lemma 3.3. Let $\rho_2 : G_{\mathbb{Q}} \to \mathrm{SL}_2(\mathbb{F}_1)$ be a Galois representation as above. Assume that ρ_2 is not ramified at p and that $K \neq \mathbb{Q}(i)$. Then the set of auxiliary primes for ρ_2 splitting at $\mathbb{Q}(\sqrt{p})$ has positive density in the set of all primes.

Proof. As in Lemma 3.2 of [12] E and $\mathbb{Q}(i, \sqrt{p})$ are linearly disjoint since E is unramified at p and $K \neq \mathbb{Q}(i)$. Chebotarev density theorem implies the lemma. \Box

Theorem 3.4. Let f be a newform in $S_2(N)$, p be a prime not dividing 6N and $\varepsilon \in \{\pm 1\}$ a sign. Assume that $a_p \equiv 1 + p \mod \mathfrak{l}$ for some prime \mathfrak{l} containing 2. Assume that

(1) $\bar{\rho}_{f,\mathfrak{l}}$ has dihedral image induced from a real quadratic extension, and (2) (20rd) $\bar{\rho}_{f,\mathfrak{l}}|_{G_2} \simeq \begin{pmatrix} 1 & * \\ & 1 \end{pmatrix}$. then there exists some M dividing N and some newform g in $S_2(Mp)$ such that f and g are Galois-congruent and $a_p(g) = \varepsilon$.

Proof. Let q be an auxiliary prime for $\bar{\rho}_{f,\mathfrak{l}}|_{G_2}$ splitting at $\mathbb{Q}(\sqrt{p})$. By Theorem 4.2 of [12] there is some newform g in $S_2(Npq^{\alpha})$ with $a_p(g) = \varepsilon$. Let g' be the newform in $S_2(Np)$ obtained by Proposition 3.2. Then $a_p(g') = a_p(g)$ since $\left(\frac{p}{q}\right) = 1$. \Box

Proof of Theorem 2. By Lemma 2.3 there are some maximal ideals \mathfrak{l}^+ , \mathfrak{l}^- such that $a_p(f) \equiv p+1 \pmod{\mathfrak{l}^+}$ and $a_p(f) \equiv -p-1 \pmod{\mathfrak{l}^-}$. If $2 \notin \mathfrak{l}^+$, \mathfrak{l}^- then Ribet's theorem applies and we are done. Otherwise apply previous theorem.

4. Case n = 1. Elliptic curves and Q-isogenies

Let E/\mathbb{Q} be an elliptic curve and let E_p/\mathbb{F}_p be the mod p reduction of (the Néron model of) E for a prime p. Consider the integer $c_p = p + 1 - \#E_p$. Then there is a unique newform f of weight 2 such that $a_p(f) = c_p$ for every prime p. This is a consequence of modularity of elliptic curves over \mathbb{Q} . In particular, $\bar{\rho}_{f,\mathfrak{l}}$ and $E[\ell] \otimes \mathbb{F}_{\mathfrak{l}}$ are isomorphic up to semisimplification for every prime \mathfrak{l} . In this section we characterize elliptic curves whose corresponding newform f satisfies (AbsIrr).

Let E/\mathbb{Q} be an elliptic curve, ℓ an odd prime and $c \in \operatorname{Gal}(\mathbb{C} \mid \mathbb{R}) \subset \operatorname{Gal}(\mathbb{Q} \mid \mathbb{Q})$ be the complex conjugation. Then c acts on $E[\ell]$ with characteristic polynomial $X^2 - 1$. This follows from the existence of Weil pairing. In particular $E[\ell]$ is irreducible if and only if $E[\ell] \otimes \mathbb{F}_{\mathfrak{l}}$ is irreducible. We say that E satisfies (Irr) if $E[\ell]$ is irreducible for every ℓ . From a particular study of the case $\ell = 2$ one obtains the

Lemma 4.1. Let E/\mathbb{Q} be an elliptic curve. Then E satisfies (AbsIrr) if and only E satisfies (Irr) and $\mathbb{Q}(E[2])$ has degree 6 over \mathbb{Q} .

4.1. Isogenies. In practice one can deal with (Irr) by studying the graph of isogeny classes. LMFDB project has computed in [13] a huge amount of elliptic curves and isogenies. We recall some well known results on this topic.

Let E, E' be elliptic curves defined over \mathbb{Q} . An *isogeny* is a nonconstant morphism $E \longrightarrow E'$ of abelian varieties over \mathbb{Q} . The map

$$\begin{array}{ccc} \{E \to E' \text{ isogeny}\}/\cong & \longrightarrow & \{\text{finite } \mathbb{Z}[\operatorname{Gal}(\bar{\mathbb{Q}} \mid \mathbb{Q})]\text{-submodules of } E\} \\ \varphi & \longmapsto & Ker \, \varphi \end{array}$$

defines a bijection. Hence, the torsion group E[n] corresponds to the multiplicationby-n map $E \xrightarrow{[n]} E$ under the bijection.

Lemma 4.2. Let E/\mathbb{Q} be an elliptic curve. The following are equivalent

- (1) E satisfies (Irr).
- (2) the graph of isogeny classes of E is trivial.
- (3) every finite $\mathbb{Z}[\operatorname{Gal}(\mathbb{Q} \mid \mathbb{Q})]$ -submodule of E is of the form E[n] for some n.

Proof. Let $G_{\mathbb{Q}}$ denote the absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$. We will prove that $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$. For the first implication let $E \xrightarrow{\varphi} E'$ be an isogeny. Then there exists a maximal n such that φ factors as

$$E \xrightarrow{[n]} E \xrightarrow{\psi} E'$$

for some isogeny $\psi : E \to E'$. It can be checked that n is the biggest integer satisfying $E[n] \subset Ker \varphi$. Let $r = \#Ker \psi$. If $p \mid n$ then $E[p] \cap Ker \psi$ is a nontrivial subrepresentation of E[p]. If E satisfies (Irr) then r = 1 and ψ is an isomorphism. For the second let H be a finite $\mathbb{Z}[G_{\mathbb{Q}}]$ -submodule of E. It corresponds to some isogeny $E \xrightarrow{\varphi} E'$ with kernel equal to H. By hypothesis E and E' are isomorphic say $E' \xrightarrow{h} E$. Thus $h \circ \varphi$ is an endomorphism of E defined over \mathbb{Q} and hence $h \circ \varphi = [n]$ for some n. The last implication is trivial. \Box

If the isograph is unkown one can still do something. In 1978 Barry Mazur proved (see [14]) the

Theorem 4.3 (B. Mazur). Let E/\mathbb{Q} be an elliptic curve and let ℓ be a prime such that $E[\ell]$ is reducible. Then

$$\ell \in \mathcal{T} := \{2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163\}.$$

Hence, there is a complete list of possible irreducible submodules of $E[\ell]$. We will use Mazur's theorem later in order to exhibit a family of elliptic curves satisfying (Irr).

4.2. **Twists.** Condition (AbsIrr) is invariant under \mathbb{Q} -isomorphism. This follows from the fact that Galois representations attached to \mathbb{Q} -isomorphic rational elliptic curves differ by finite character. The useful invariant in this context is the *j*-invariant. More precisely, the map

$$j: Ell := \{E/\mathbb{Q} \text{ elliptic curve }\}/\cong_{\bar{\mathbb{Q}}} \longrightarrow \begin{array}{c} \mathbb{Q} \\ E \end{array} \xrightarrow{} j(E)$$

is a bijection, hence (AbsIrr) is codified in the *j*-invariant.

Definition 4.4. Let $a/b \in \mathbb{Q}$, with a, b coprime integers. The Weil height of a/b is $h(a/b) := \max\{|a|, |b|\}.$

Let S be a subset of Ell. We say that S has Weil density d if

$$\lim_{n \to \infty} \frac{\#\{E \in S : h(j(E)) \le n\}}{\#\{x \in \mathbb{Q} : h(x) \le n\}} = d.$$

Proposition 4.5. Let S be the set elliptic curves satisfying (AbsIrr) modulo isomorphism. Then S has Weil density 1.

Proof. j-invariant morphism extends to an isomorphism $X(1)_{\mathbb{Q}} \to \mathbb{P}^{1}_{\mathbb{Q}}$ of rational algebraic curves. Here $X(1)_{\mathbb{Q}}$ denotes a rational model of the trivial-level modular curve. Hence *Ell* is the set $Y(1)(\mathbb{Q}) \subseteq X(1)(\mathbb{Q})$ of rational non-cuspidal points of X(1). Let $p \geq 2$ be prime and let $X_{0}(p)_{\mathbb{Q}}$ a model over \mathbb{Q} of the modular curve of level $\Gamma_{0}(p)$. We have the forgetful map $X_{0}(p) \to X(1)$ which is a morphism of algebraic curves of degree p + 1. Elliptic curves not satisfying (Irr) correspond to non-cuspidal points in the image of $f_{p}: X_{0}(p)(\mathbb{Q}) \to X(1)(\mathbb{Q})$, for $p \leq 163$ by Mazur. Either $X_{0}(p)$ has genus 0, in which case $p \in \{2, 3, 5, 7, 13\}$, or $X_{0}(N)$ has positive genus, in which case $p \in \{11, 17, 19, 37, 43, 67, 163\}$ and $X_{0}(p)(\mathbb{Q})$ is finite. Image of f_{p} has 0 Weil density in X(1) for every $p \leq 163$, this follows from Theorem B.2.5 in [11] for the genus 0 case. In particular elliptic curves satisfying (Irr) have density 1. One can deal similarly with the condition dim_{$\mathbb{Q}} <math>\mathbb{Q}(E[2]) = 6$.</sub>

5. Examples

5.1. A family of elliptic curves. In this section we give a family of elliptic curves over \mathbb{Q} satisfying (*AbsIrr*). First we find a family of elliptic curves with irreducible 2-torsion as $\overline{\mathbb{F}}_2[G_{\mathbb{Q}}]$ -module. This is done by exhibiting a family of rational cubic polynomials with symmetric Galois group. Second we take a subfamily with irreducible ℓ -torsion as $\mathbb{F}_{\ell}[G_{\mathbb{Q}}]$ -module, for every $\ell \in \mathcal{T}$.

Lemma 5.1. Let $n \neq \pm 1$ be integer such that 3n is not square. The polynomial $P_n(X) = X^3 - 3(n+1)X + 2(n+1)$ has Galois group isomorphic to S_3 .

Proof. Let us see that P_n is irreducible over \mathbb{Q} when $n \neq 0, \pm 1$. Consider a factorization $P_n(X) = (X - a)(X^2 + bX + c)$ over the integers. By equating coefficients we have that

$$\begin{cases} a = b \\ 2a^2 + 3ac - 2c = 0 \\ -ac = 2(n+1) \end{cases}$$

The conic $0 = 18(2X^2 + 3XY - 2Y) = (6X + 9Y + 4)(6X - 4) + 16$ has finitely many integer points, namely

$$(a,b) \in \{(0,0), (-2,1), (1,-2), (2,-2)\}$$

In particular P_n is irreducible if and only if $n \notin \{-1, 0, 1\}$. In this case either P_n has Galois group of order three or P_n has Galois group isomorphic to S_3 , the latter corresponds to the nonsquare discriminant case. The discriminant of P_n is $\Delta_n = 3n \cdot 36(n+1)^2$ and the lemma follows.

Lemma 5.2. Consider the elliptic curve defined over \mathbb{F}_{1427} given by the equation

$$\bar{E}: Y^2 = X^3 + 3 \cdot 11X - 2 \cdot 11$$

Then $\overline{E}[\ell]$ is irreducible over \mathbb{F}_{ℓ} for every $\ell \in \mathcal{T}$.

Proof. It can be checked that $\#\bar{E} = 1424$. Let φ denote the Frobenius over 1427, then φ satisfies

$$\varphi^2 - 4\varphi + 1427 = 0$$

as an endomorphism of \overline{E} . The polynomial $X^2 - 4X + 1427$ is irreducible over \mathbb{F}_{ℓ} for every $\ell \in \mathcal{T}$ and hence $\overline{E}[\ell]$ is irreducible.

Theorem 5.3. Let n be an integer such that

$$k \equiv -11 \pmod{1427}.$$

Then the elliptic curve given by the equation

$$E_k: Y^2 = X^3 - 3kX + 2k$$

satisfyes (AbsIrr). In particular it is Galois-congruent to infinitely many newforms.

Proof. Since -12 is not a square in \mathbb{F}_{1427} Lemma 5.1 applies and since $E_k[\ell]$ is unramified over 1427 for every $\ell \in \mathcal{T}$ the theorem follows.

Remark 5.4. Notice that Theorem 3.1 together with Lemma 2.5 say that every level-raising of E_k at p > 2 can be done far from p. This together with Corollary 1.7 implies that odd level-raisings of E_k can be chosen not congruent.

5.2. Control of M. Let f be a newform of level N and let \mathfrak{l} be a prime. If $\overline{N} = N(\overline{\rho}_{f,\mathfrak{l}})$ denotes the prime-to- ℓ conductor of $\overline{\rho}_{f,\mathfrak{l}}$ then $\overline{N} \mid N$. With this in mind we manage in next theorem to take M = N.

Theorem 5.5. Let E/\mathbb{Q} be an elliptic curve such that

- (i) E has trivial graph of isogeny classes,
- (ii) $\mathbb{Q}(E[2])$ has degree 6 over \mathbb{Q} ,
- *(iii)* E is semistable with good reduction at 2,
- (iv) $\Delta(E)$ is square-free.

Let N denote the conductor of E and let $p \nmid N$ be a prime. Then there exists some newform $g \in S_2(Np)$ Galois-congruent to f(E).

Proof. Let \mathfrak{l} be a prime and g a newform in $S_2(Mp)$ such that g is a level raising of E over \mathfrak{l} . Let us prove that M = N. Since $\Delta(E)$ is squre-free then $E[\ell]$ is ramified at every prime $p \mid N, p \neq \ell$, and the prime-to- ℓ conductor N_{ℓ} of E is the prime-to- ℓ conductor of $E[\ell]$ (cf. Proposition 2.12 in [7]). In particular

$$M \in \{N, N/\ell\}.$$

Assume that $M \neq N$, then $N = M\ell$ and $\ell \neq 2$ since E has good reduction at 2. Theorem 1.5 (or Tate's *p*-adic uniformization) says that $E[\ell]|_{G_{\ell}}$ is reducible. In particular

$$E[\ell]|_{G_{\ell}} \simeq \bar{\rho}_{f,\mathfrak{l}}|_{G_{\ell}} \simeq \begin{pmatrix} \omega_{\ell} \lambda_{a_{\ell}(f)^{-1}} & * \\ & \lambda_{a_{\ell}(f)} \end{pmatrix}$$

with * 'peu ramifié'. This together with Proposition 8.2 of [10] and Proposition 2.12 of [7] leads to a contradiction.

Remarks 5.6. • Condition (*iii*) is equivalent to N being odd and square-free. • The rational elliptic curve of conductor 43 satisfies coditions (*i*) - (*iv*).

6. An application: safe chains

When considering safe chains as in [8] (Steinberg) level-raising at an appropriate (small) prime is a useful tool. In particular, this combined with a standard modular congruence gives an alternative way of introducing a "MGD" prime to the level. Having a MGD prime in the level is one of the key ingredients in a safe chain. Therefore, one could expect to use generalizations of Theorem 1 to build safe chains in more general settings. In the process of doing so one can rely on tools as in [9] to ensure that the condition (AbsIrr) holds when required.

Acknowledgements

We would like to thank Samuele Anni, Sara Arias-de-Reyna, Roberto Gualdi, Xavier Guitart and Xavier Xarles for helpful conversation and comments.

References

- Allen, Patrick B.: Modularity of nearly ordinary 2-adic residually dihedral Galois representations. Compos. Math. 150 (2014), no. 8, 1235–1346.
- [2] Billerey, Nicolas; Chen, Imin; Dieulefait, Luis; Freitas, Nuno: A multi-Frey approach to Fermat equations of signature (r,r,p). arXiv:1703.06530, March 2017.

- [3] Breuil, Christophe: Sur quelques représentations modulaires et p-adiques de GL₂(Q_p). II. J. Inst. Math. Jussieu 2 (2003), no. 1, 23–58.
- [4] Breuil, Christophe; Mézard, Ariane: Multiplicités modulaires et représentations de $\operatorname{GL}_2(\mathbb{Z}_p)$ et de $\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ en $\ell = p$. With an appendix by Guy Henniart. Duke Math. J. 115 (2002), no. 2, 205–310.
- [5] Carayol, Henri: Sur les représentations l-adiques associées aux formes modulaires de Hilbert. Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 409–468.
- [6] Curtis, Charles W.; Reiner, Irving: Representation theory of finite groups and associative algebras. Wiley Interscience, New York, 1962.
- [7] Darmon, Henri; Diamond, Fred; Taylor, Richard: Fermat's last theorem. Elliptic curves, modular forms and Fermat's last theorem (Hong Kong, 1993), 2–140, Int. Press, Cambridge, MA, 1997.
- [8] Dieulefait, Luis: Automorphy of Symm⁵(GL(2)) and base change. J. Math. Pures Appl. (9) 104 (2015), no. 4, 619–656.
- [9] Dieulefait, Luis; Wiese, Gabor: On modular forms and the inverse Galois problem. Trans. Amer. Math. Soc. 363 (2011), no. 9, 4569–4584.
- [10] Edixhoven, Bas: The weight in Serre's conjectures on modular forms. Invent. Math. 109 (1992), no. 3, 563–594.
- [11] Hindry, Marc; Silverman, Joseph H.: Diophantine geometry. An introduction. Graduate Texts in Mathematics, 201. Springer-Verlag, New York, 2000. xiv+558 pp.
- [12] Le Hung, Bao V.; Li Chao: Level raising mod 2 and arbitrary 2-Selmer ranks arXiv:1501.01344, April 2016.
- [13] The LMFDB Collaboration, The L-functions and Modular Forms Database, http://www.lmfdb.org, 2013, [Online; accessed 9 October 2017].
- [14] Mazur, Barry. Rational isogenies of prime degree (with an appendix by D. Goldfeld). Invent. Math. 44 (1978), no. 2, 129–162.
- [15] Ribet, Kenneth A.: Raising the levels of modular representations. Séminaire de Théorie des Nombres, Paris 1987–88, 259–271, Progr. Math. 81, Birkhäuser Boston, Boston, MA, 1990.
- [16] Serre, Jean-Pierre: Sur les représentations modulaires de degré 2 de Gal(Q/Q). Duke Math. J. 54 (1987), no. 1, 179−230.
- [17] Serre, Jean-Pierre: Abelian l-adic representations and elliptic curves. With the collaboration of Willem Kuyk and John Labute. Revised reprint of the 1968 original. Research Notes in Mathematics, 7. A K Peters, Ltd., Wellesley, MA, 1998.

L. DIEULEFAIT: DEPARTAMENT DE MATEMÀTIQUES I INFORMÀTICA, UNIVERSITAT DE BARCELONA, GRAN VIA DE LES CORTS CATALANES, 585, 08007, BARCELONA, SPAIN *E-mail address*: ldieulefait@ub.edu

E. Soto: Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007, Barcelona, Spain

E-mail address: eduard.soto@ub.edu