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RAISING THE LEVEL AT YOUR FAVORITE PRIME

LUIS DIEULEFAIT AND EDUARDO SOTO

Abstract. In this paper we prove a level raising theorem for some weight 2
trivial character newforms at almost every prime p. This is done by ignoring the
residue characteristic at which the level raising appears.

Introduction

For a newform h and a prime l in Z̄ consider the semisimple 2 dimensional con-
tinuous Galois representation ρ̄h,l with coefficients in Fl = Z̄/l attached to h and let
{ap(h)}p ⊂ Z̄ be the sequence of prime index Fourier coefficients of h. Let f and
g be newforms of weight 2 and trivial character. We say that f and g are Galois-
congruent if there is some prime l in Z̄ such that ρ̄f,l, ρ̄g,l are isomorphic. This is
equivalent to

ap(f) ≡ ap(g) (mod l)

for all but finitely many p. In 1990 Ribet proved the following

Theorem (K. Ribet). Let f be a newform in S2(Γ0(N)) such that the mod l Galois
representation

ρ̄f,l : Gal(Q | Q) −→ GL2(Fl)

is absolutely irreducible. Let p ∤ N be a prime satisfying

ap(f) ≡ ε(p+ 1) (mod l)

for some ε ∈ {±1}. Then there exists a newform g in S2(Γ0(pM)), for some divisor
M of N such that ρ̄f,l is isomorphic to ρ̄g,l. If 2 /∈ l then g can be chosen with
ap(g) = ε.

Hence under some conditions one can raise the level of f at p. That is, there is a
newform g Galois-congruent to f with level divisible by p once. When considering
level-raisings of f at p we will tacitly assume that p is not in the level of f . In this
paper we do level raising at every p > 2 by admitting congruences at any prime l.
More precisely, we prove the following.

Theorem 1. Let f be a newform in S2(N) and let p be a prime not dividing N .
Assume that
(AbsIrr) ρ̄f,l is absolutely irreducible for every l.
(a2) If p = 2 assume that a2(f)

2 6= 8.
Then there exists some M dividing N and some newform g in S2(Mp) such that f
and g are Galois-congruent.
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We proof Theorem 1 and a variant of it in section 3. A theorem of B. Mazur implies
that Theorem 1 applies to most of the rational elliptic curves. We exhibit an infinite
family of modular forms satisfying (AbsIrr) with coefficient fields constant equal
to Q, see section 4

Remark. It is worth remarking the existence of infinite families with coefficient
fields of unbounded degree satisfying all of the condition (AbsIrr), see [9].

Lemma 2.3 together with Ribet’s theorem imply that we can choose the sign
of ap(g) when the congruence of f and g is in odd characteristic. An obstruction
appears in characteristic 2 since Ribet’s methods identify 1,−1 mod 2. Le Hung and
Li [12] have recently provided a solution to this problem for some f arising from
elliptic curves using 2-adic modularity theorems of [1] for the ordinary case and
quaternion algebras for the supersingular case. In this paper we treat the ordinary
case.

Theorem 2. Let f be a newform in S2(N), let p be a prime not dividing 6N and
choose a sing ε ∈ {±1}. Assume that f satisfies (AbsIrr) and for every l ∋ 2
assume that
(DiehReal) ρ̄f,l has dihedral image induced from a real quadratic extension,

(2Ord) ρ̄f,l|G2
≃

(

1 ∗
1

)

.

Then there exists some M dividing N and some newform g in S2(Mp) such that f
and g are Galois-congruent and ap(g) = ε.

We deal with this obstruction in section 3.2 following techniques in [12].
Let E/Q be an elliptic curve. Modularity theorems attach to E a newform f(E)

such that ρ̄f,l ≃ E[ℓ] ⊗Fℓ
Fl modulo semisimplification, for every l. We obtain an

application to elliptic curves.

Theorem 3. Let E/Q be an elliptic curve such that

• E has no rational q-isogeny for every q prime,
• Q(E[2]) has degree 6 over Q.

Let p be a prime of good reduction. Then there exists some divisor M of the conduc-
tor of E and some newform g in S2(Mp) such that f(E) and g are Galois-congruent.
Let ε ∈ {±1}. Assume further that

• p ≥ 5,
• E has good or multiplicative reduction at 2 and
• E has positive discriminant

then g can be chosen with ap(g) = ε.

Notation. Let Q̄ denote the algebraic closure of Q in C. Let Z̄ be the ring of
algebraic integers contained in Q̄. We use p, q, ℓ to denote rational primes and l, l′

to denote primes of Z̄. We use prime of Z̄ to refer to maximal ideals of Z̄, i.e. non-
zero prime ideals. We denote by Fl the residue field of l and ℓ its characteristic. We
consider modular forms as power series with complex coefficients and for a newform
f we define by Qf its field of coefficients, that is the number field Qf = Q({ap}p).
We denote by GQ the absolute Galois group Gal(Q̄ | Q) and by Gp a decomposition
group of p contained in GQ.
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1. Newforms

Let Γ0(N) be the subgroup of SL2(Z) corresponding to upper triangular matrices
mod N . The space S2(N) := S2(Γ0(N)) of weight 2 level N trivial Nebentypus cusp
forms is a finite dimensional vector space over C. For every M dividing N , S2(M)
contributes in S2(N) under the so-called degeneracy maps S2(M) −֒→ S2(N). Let
S2(N)old be the subspace of S2(N) spanned by the images of the degeneracy maps
for every M | N . Let S2(N)new be the orthogonal space of S2(N)old with respect to
the Peterson inner product. A theorem of Atkin-Lehner says that S2(N)new admits
a basis of Hecke eigenforms called newforms, this basis is unique.

1.1. Galois representation. Let f be a newform of level N and let l be a prime of
residue characteristic ℓ. A construction of Shimura (see [7] section 1.7) attaches to
f an abelian variety Af over Q of dimension n = [Qf : Q]. Af has good reduction
at primes not dividing N . Let Qf,l denote the completion of Qf with respect to l.
Working with the Tate module Vℓ(Af) = lim←−nAf [ℓ

n]⊗Zℓ
Qℓ one can attach to Af a

continuous Galois representation

ρf,l : GQ −→ GL2(Qf,l)

such that detρf,l is the ℓ-adic cyclotomic character and trρf,l(Frobp) = ap(f) for
every p ∤ Nℓ. Indeed, Vℓ(Af) and ρf,l are unramified at p ∤ Nℓ by Neron-Ogg-
Shafarevich criterion. Then ρ̄f,l is obtained as the semisimple reduction of ρf,l mod
l tensor Fl.
Next definition is central in this paper.

Definition 1.1. Let f , g be newforms of weight two, level N , N ′ respectively and
trivial character.

• We say that f and g are Galois-congruent if there is some prime l in Z̄ such
that

ρ̄f,l ≃ ρ̄g,l.

• We say that g is a level-raising of f at p if f and g are Galois-congruent and
p ‖ N ′ but p ∤ N .
• We say that g is a strong level-raising of f at p over l if g is a level raising
of f at p with N ′ = Np.

Remark 1.2. From Brauer-Nesbitt theorem ([6] theorem 30.16) we have that a
semisimple Galois representation ρ̄ : Gal(Q̄ | Q)→ GL2(F̄ℓ) is uniquely determined
by the characteristic polynomial function. Hence ρ̄ is determined by tr and det.
Since all Galois representations we consider have cyclotomic determinant Galois-
congruence is equivalent to congruence on traces of unramified Frobenius (cf. Cheb-
otarev density theorem, [17] Corollary 2).

Remark 1.3. Let R be a ring at which 2 is invertible and A a free R-module
of rank 2. For an endomorphism f of A we have that tr(f 2) = tr(f)2 − 2det(A)
and hence det is determined by tr. This is [7] Proposition 2.6 b) for d = 2 and
gives necessary conditions on existence of Galois-Congruency for general weights
and levels (cf. [16]).
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Remark 1.4. With our definition Le Hung and Li [12] do strong level raising at a
set of primes with some extra requirements always in characteristic 2.

Let ωℓ denote the mod ℓ cyclotomic character and for α ∈ Z̄ let λα be the unique
unramified character λα : Gp → F×

l sending the arithmetic Frobenius Frobp to
α mod l. We collect in the following theorem work of Deligne, Serre, Fontaine,
Edixhoven, Carayol and Langlands. It gives some necessary conditions for level-
raising existence.

Theorem 1.5. Let g be a newform in S2(Mp) with p ∤ 2M and fix a prime l. Then

ρ̄g,l|Gp
≃

(

ωℓ ∗
1

)

⊗ λap(g).

Let f be a newform S2(N), p ∤ 2N and fix a prime l containing p. Then either ρ̄f,l|Gp

is irreducible or

ρ̄f,l|Gp
≃

(

ωpλap(f)−1 ∗
λap(f)

)

with ∗ ‘peu ramifié’.

Proof. Case p ∈ l is Theorem 6.7 in [3] for k = 2. Because ap(g) ∈ {±1}, we have
that g is ordinary at p. Case p /∈ l follows from Carayol’s theorem in [5].
The statement for f is Corollary 4.3.2.1 in [4]. �

Following corollaries were inspired by Proposition 6 in [2].

Corollary 1.6. Let f ∈ S2(N), g ∈ S2(Mp) be Galois-congruent newforms over l,
p ∤ 2NM . Then

ap(f) ≡ ap(g)(p+ 1) (mod l).

Proof. Case p /∈ l. We have that trρ̄g,l(Frobp) = ap(g)(p + 1). On the other hand
ρ̄f,l is unramified at p and has trace ap(f) at Frobp.
Case p ∈ l. The isomorphism ρ̄f,l|Gp

≃ ρ̄g,l|Gp
implies that ρ̄f,l|Gp

reduces and we
have equality of characters

{ωpλap(g), λap(g)} = {ωpλap(f)−1 , λap(f)}
The mod p cyclotomic character is ramified since p 6= 2. In particular ap(g) ≡ ap(f)
(mod l). �

As a consequence we obtain a result on congruent modular forms with level-
raising.

Corollary 1.7. Let f ∈ S2(N), g ∈ S2(Mp) be newforms, p ∤ 2NM . If f and g are
congruent, that is

an(f) ≡ an(g) (mod l) for every n,

then
ℓ = p and ap(f) ≡ ap(g) = ±1 (mod l).

Proof. Congruency implis Galois-congruency. We have that

ap(g) ≡ ap(f) ≡ ap(g)(p+ 1) (mod l).

The corollary follows since ap(g) ∈ {±1}. �
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1.2. Ribet’s level raising. Ribet’s theorem says that the necessary condition of
Corollary 1.6 for level-raising turns out to be enough modulo some irreducibility
condition.

Theorem 1.8 (Ribet’s level raising theorem). Let f be a newform in S2(N) such
that the mod l Galois representation

ρ̄f,l : Gal(Q | Q) −→ GL2(Fl)

is absolutely irreducible. Let p ∤ N be a prime satisfying

ap(f) ≡ ε(p+ 1) (mod l)

for some ε ∈ {±1}. Then there exists a newform g in S2(pM), for some divisor M
of N such that ρ̄f,l is isomorphic to ρ̄g,l. If 2 /∈ l g can be chosen with ap(g) = ε.

Remarks 1.9. • Ribet’s original approach deals with modular Galois repre-
sentations ρ̄ so that in particular there is some newform f such that ρ̄ ≃ ρ̄f,l.
His approach deals with traces of Frobenii, this forces him to deal with un-
ramified primes only, hence the hypothesis p 6= ℓ. As he explains later the
theorem can be stated in terms of Hecke operators and hence in terms of
Fourier coefficients even if p = ℓ, when f is p-new.
• Every normalized Hecke eigenform f ′ has attached a unique newform f so
that the l-adic Galois representations attached to f ′ are the ones attached to
f . Furthermore, the level of f divides the level of f ′. Hence p-new in Ribet’s
article means new of level pM for some M | N .

We introduce a definition in order to deal with the irreducibility condition.

Definition 1.10. Let f ∈ S2(N) be a newform, let l be a prime of Z and let
ρ̄f,l : Gal(Q | Q) → GL2(Fl) denote the semisimple mod l Galois representation
attached to f by Shimura. We say that f satisfies condition (AbsIrr) if ρ̄f,l is
absolutely irreducible for every prime l.

In section 5 we provide explicit examples with Qf = Q. See [9] Theorem 6.2 for a
construction of families {fn} for which the set of degrees {dimQQfn}n is unbounded.

2. Bounds and arithmetics of Fourier coefficients

In light of Ribet’s theorem and the following well-known properties of Fourier
coefficients we study some arithmetic properties of p+ 1± ap.

Theorem 2.1. Let f be a newform in S2(N) and let ap be the p-th Fourier coefficient
of f , p prime. Then

(i) ap ∈ Z,
(ii) ap is totally real. That is, its minimal polynomial splits over R,
(iii) (Hasse-Weil Theorem) |σ(ap)| ≤ 2

√
p for every embedding σ : Q(ap) −֒→ R.

We say that ap ∈ Q is a p-th Fourier coefficient if ap satisfies conditions (i)−(iii).
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2.1. Arithmetic lemmas. Let K be a number field with ring of integers O. Let
S be the set of complex embeddings σ : K → C of K. For every α ∈ O we consider
the norm

NK(α) =
∏

σ∈S

σ(α)

and the characteristic polynomial

Pα(X) =
∏

σ∈S

X − σ(α).

One has that Pα(0) = (−1)|S|NK(α). Following well-known lemma is basic algebraic
number theory.

Lemma 2.2. Let K be a number field and α an algebraic integer of K. Then
Pα(X) ∈ Z[X ] and NK(α) ∈ Z. A rational prime ℓ divides NK(α) if and only if
there is some prime l in Z̄ of residue characteristic ℓ such that α ≡ 0 (mod l). In
particular α is a unit of O if and only if NK(α) = ±1.
Proof. Let n = |S| = dimQK. Consider the embedding ι : K −֒→ EndQ(K),
where ι(α) is the multiplication-by-α morphism. A choice of integral basis of K
induces an embedding ι : K −֒→ Mn×n(Q) with ι(O) ⊂ Mn×n(Z). Then Pα(X) is
the characteristic polynomial of ι(α) by Cayley-Hamilton theorem. For a nonzero
α ∈ O one has that |NK(α)| = |O/αO| =

∏

i |O/peii | where αO =
∏

i p
ei
i is the

factorization in prime ideals of the ideal generated by α. Thus ℓ divides NK(α)
if and only if some prime p of O containing ℓ divides αO. Moreover, the map
MaxSpec(Z̄) → MaxSpec(O) given by l 7→ l ∩ O is surjective and the lemma
follows. �

Lemma 2.3. Let ap be a p-th Fourier coefficient.

(a) (p+ 1 + ap)(p+ 1− ap) is unit in Z̄ if and only if p = 2 and a22 = 8.
(b) If p > 3 then p+ 1± ap, is not unit in Z̄.

Proof. Let K = Q(ap) and S = {σ ∈: Q(ap) −֒→ R} be the set of embeddings. Its
cardinality equals n the degree of Q(ap) | Q.

(a) We have

σ((p+ 1 + ap)(p+ 1− ap)) = (p+ 1)2 − σ(ap)2

≥ (p + 1)2 − 4p

= (p− 1)2

≥ 1.

Hence NK((p+ 1+ ap)(p+ 1− ap)) ≥ (p− 1)2n ≥ 1. Equalities hold if and only
if p = 2 and 9− a22 = 1.

(b) Since σ(p+ 1± ap) ≥ p+ 1− 2
√
p = (

√
p− 1)2 then

NK(p+ 1± ap) ≥ (
√
p− 1)2n > 1

provided that p > 3.

�
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Lemma 2.4 (Avoiding p). Fix a positive odd integer n. There exists an integer Cn
such that if ap is a p− th coefficient of degree n with p > Cn then there is a prime
l not over p such that

l | (ap + p+ 1)(ap − p− 1).

Proof. Let K = Q(ap) and assume that (p + 1 + ap)(p + 1 − ap) factors as product
of primes over p in the ring of integers of K. Then NK(p+ 1− ap), NK(p+ 1+ ap)
are powers of p in the closed interval I = [(

√
p − 1)2n, (

√
p + 1)2n]. We can take p

great enough so that pn is the unique power of p in I. Thus

NK(p+ 1− ap) = NK(p+ 1 + ap) = pn

NK(−p− 1− ap) = (−1)nNK(p+ 1 + ap) = −pn

In particular 0 ≡ Pap(p+ 1)− Pap(−p− 1) = 2pn (mod p+ 1). �

We can describe the bound Cn: conditions p
n+1, pn−1 /∈ I are equivalent to

p >

(

p

p− 2
√
p+ 1

)n

=: α(p, n),

p >

(

p+ 2
√
p+ 1

p

)n

=: β(p, n)

Notice that β < α and that p satisfies p > α(p, n) if and only if xn > xn−1+1 where
x2n = p. Since n is odd we can take θ the greatest real root of Xn −Xn−1 − 1 and
Cn := θ2n. Notice that Cn/n

2 has finite limit.

Lemma 2.5. The best bound for n = 1 is C1 = 2.

Proof. Notice that (p+1)2−a2p = 1 if p = 2, ap = ±1. Following the notation above
we have that θ = 2 for n = 1 and C1 = 4 works. Thus it is enough to check that
(4− a3)(4 + a3) is not ± a power of 3. Both factors are positive by Hasse’s bound.
Thus 4 + a3 = 3a, 4− a3 = 3b and 3a + 3b = 8. �

3. Proofs

3.1. Proof of main result and variant.

Proof of Theorem 1. Let f ∈ S2(N) new and p ∤ N . We need to check that Ribet’s
theorem applies for some l. By Lemmas 2.1 and 2.3, (p+ 1 + ap)(p+ 1− ap) is not
invertible in Z̄. Hence it is contained in a maximal ideal l. That is, either ap ≡ p+1
(mod l) or ap ≡ −p− 1 (mod l). �

Following variant allows us to do level-raising at p over characteristic ℓ 6= p. This
together with Corollary 1.7 ensures that the predicted Galois-congruency is not a
cogruence of all Fourier coefficients, at least when the level-raising is at p 6= 2.

Theorem 3.1. Let f be a newform in S2(N) such that n := dimQKf is odd.
Assume that
(AbsIrr) ρ̄f,l is absolutely irreducible for every l.
There exists a constat C > 0 such that for every prime p > C f has a level-raising

g at p over a prime l of residue characteristic different from p. C depens only on n.
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Proof. Let f ∈ S2(N) new. Due to (AbsIrr) it is enough to find a maximal ideal
l not over p. This is done in Lemma 2.4. �

3.2. Choice of sign mod 2. In this section we adapt some ideas of [12] to our
case. The strategy is to solve a finitely ramified deformation problem. This kind of
deformation problem consists on specifying the ramification behavior at all but one
chosen prime q. If such a deformation problem has solution and some modularity
theorem applies this provides newforms with specified weight, character and prime-
to-q part level. If one chooses an auxiliary prime q, a twist argument kills the
ramification at q so that one recovers a newform with the specified weight, character
and level.
Fix a prime ideal l ∋ 2 of Z̄. Let ρ2 be a Galois representation GQ → SL2(Fl) with

dihedral image D and let E = Q̄D be the number field fixed by ker ρ2. The order of
an element in SL2(Fl) is either 2 or odd. This forces D to have order 2r, 2 ∤ r. In
particular E | Q has a unique quadratic subextension K | Q and ρ2 is induced from
a character χ : Gal(Q̄ | K)→ F×

l of order r.
We say that q is an auxiliary prime for ρ2 if

• q ≡ 3 (mod 4) and
• ρ2 is unramified at q and ρ2(Frobq) is non-trivial of odd order.

Proposition 3.2. Let g be a newform in S2(Mqα), q ∤ M , such that ρ̄g,l is unramified
at an auxiliary prime q. Then either g or g ⊗

(

·
q

)

has level M .

Proof. ρ̄g,l(Frobq) has different eigenvalues by the order condition, thus ρg,l|Iq factors
through a quadratic character η of Iq (Lemma 3.4 in [12]). By the structure of tame
inertia at q 6= 2 there is a unique open subgroup in Iq of index 2 and η : Iq ։

Gal(Qur
q (
√
q) | Qur

q ) ≃ {±1}. If η is trivial then α = 0 and we are done. Otherwise,
η extends locally to Gq ։ Gal(Qq(

√−q) | Qq) and globally to the Legendre symbol
( ·
q

)

: GQ ։ Gal(Q(
√
−q) | Q) ≃ {±1}.

Legendre symbol over q is only ramified at q and the proposition follows. �

Auxiliary primes are inert at Q(i) and split at K by a parity argument. In
particular, ρ2 has auxiliary primes only if K 6= Q(i).

Lemma 3.3. Let ρ2 : GQ → SL2(Fl) be a Galois representation as above. Assume
that ρ2 is not ramified at p and that K 6= Q(i). Then the set of auxiliary primes for
ρ2 splitting at Q(

√
p) has positive density in the set of all primes.

Proof. As in Lemma 3.2 of [12] E and Q(i,
√
p) are linearly disjoint since E is

unramified at p and K 6= Q(i). Chebotarev density theorem implies the lemma. �

Theorem 3.4. Let f be a newform in S2(N), p be a prime not dividing 6N and
ε ∈ {±1} a sign. Assume that ap ≡ 1 + p mod l for some prime l containing 2.
Assume that

(1) ρ̄f,l has dihedral image induced from a real quadratic extension, and

(2) (2Ord) ρ̄f,l|G2
≃

(

1 ∗
1

)

.
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then there exists some M dividing N and some newform g in S2(Mp) such that f
and g are Galois-congruent and ap(g) = ε.

Proof. Let q be an auxiliary prime for ρ̄f,l|G2
splitting at Q(

√
p). By Theorem 4.2

of [12] there is some newform g in S2(Npq
α) with ap(g) = ε. Let g′ be the newform

in S2(Np) obtained by Proposition 3.2. Then ap(g
′) = ap(g) since

(

p

q

)

= 1. �

Proof ot Theorem 2. By Lemma 2.3 there are some maximal ideals l+, l− such that
ap(f) ≡ p + 1 (mod l+) and ap(f) ≡ −p − 1 (mod l−). If 2 /∈ l+, l− then Ribet’s
theorem applies and we are done. Otherwise apply previous theorem. �

4. Case n = 1. Elliptic curves and Q-isogenies

Let E/Q be an elliptic curve and let Ep/Fp be the mod p reduction of (the Néron
model of) E for a prime p. Consider the integer cp = p + 1 − #Ep. Then there
is a unique newform f of weight 2 such that ap(f) = cp for every prime p. This
is a consequence of modularity of elliptic curves over Q. In particular, ρ̄f,l and
E[ℓ] ⊗ Fl are isomorphic up to semisimplification for every prime l. In this section
we characterize elliptic curves whose corresponding newform f satisfies (AbsIrr).
Let E/Q be an elliptic curve, ℓ an odd prime and c ∈ Gal(C | R) ⊂ Gal(Q̄ | Q) be

the complex conjugation. Then c acts on E[ℓ] with characteristic polynomial X2−1.
This follows from the existence of Weil pairing. In particular E[ℓ] is irreducible if
and only if E[ℓ]⊗Fl is irreducible. We say that E satisfies (Irr) if E[ℓ] is irreducible
for every ℓ. From a particular study of the case ℓ = 2 one obtains the

Lemma 4.1. Let E/Q be an elliptic curve. Then E satisfies (AbsIrr) if and only
E satisfies (Irr) and Q(E[2]) has degree 6 over Q.

4.1. Isogenies. In practice one can deal with (Irr) by studying the graph of
isogeny classes. LMFDB project has computed in [13] a huge amount of elliptic
curves and isogenies. We recall some well known results on this topic.
Let E,E ′ be elliptic curves defined over Q. An isogeny is a nonconstant morphism

E −→ E ′ of abelian varieties over Q. The map

{E → E ′ isogeny}/∼= −→ {finite Z[Gal(Q̄ | Q)]-submodules of E}
ϕ 7−→ Ker ϕ

defines a bijection. Hence, the torsion group E[n] corresponds to the multiplication-

by-n map E
[n]→ E under the bijection.

Lemma 4.2. Let E/Q be an elliptic curve. The following are equivalent

(1) E satisfies (Irr).
(2) the graph of isogeny classes of E is trivial.
(3) every finite Z[Gal(Q̄ | Q)]-submodule of E is of the form E[n] for some n.

Proof. Let GQ denote the absolute Galois group Gal(Q̄ | Q). We will prove that

(1) ⇒ (2) ⇒ (3) ⇒ (1). For the first implication let E
ϕ→ E ′ be an isogeny. Then

there exists a maximal n such that ϕ factors as

E
[n]−→ E

ψ−→ E ′
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for some isogeny ψ : E → E ′. It can be checked that n is the biggest integer
satisfying E[n] ⊂ Ker ϕ. Let r = #Ker ψ. If p | n then E[p]∩Ker ψ is a nontrivial
subrepresentation of E[p]. If E satisfies (Irr) then r = 1 and ψ is an isomorphism.
For the second let H be a finite Z[GQ]-submodule of E. It corresponds to some

isogeny E
ϕ→ E ′ with kernel equal to H . By hypothesis E and E ′ are isomorphic say

E ′ h→ E. Thus h ◦ϕ is an endomorphism of E defined over Q and hence h ◦ϕ = [n]
for some n. The last implication is trivial. �

If the isograph is unkown one can still do something. In 1978 Barry Mazur proved
(see [14]) the

Theorem 4.3 (B. Mazur). Let E/Q be an elliptic curve and let ℓ be a prime such
that E[ℓ] is reducible. Then

ℓ ∈ T := {2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163}.
Hence, there is a complete list of possible irreducible submodules of E[ℓ]. We will

use Mazur’s theorem later in order to exhibit a family of elliptic curves satisfying
(Irr).

4.2. Twists. Condition (AbsIrr) is invariant under Q̄-isomorphism. This follows
from the fact that Galois representations attached to Q̄-isomorphic rational ellip-
tic curves differ by finite character. The useful invariant in this context is the
j-invariant. More precisely, the map

j : Ell := {E/Q elliptic curve }/ ∼=Q̄ −→ Q
E 7−→ j(E)

is a bijection, hence (AbsIrr) is codified in the j-invariant.

Definition 4.4. Let a/b ∈ Q, with a, b coprime integers. The Weil height of a/b is

h(a/b) := max{|a|, |b|}.
Let S be a subset of Ell. We say that S has Weil density d if

lim
n→∞

#{E ∈ S : h(j(E)) ≤ n}
#{x ∈ Q : h(x) ≤ n} = d.

Proposition 4.5. Let S be the set elliptic curves satisfying (AbsIrr) modulo iso-
morphism. Then S has Weil density 1.

Proof. j-invariant morphism extends to an isomorphism X(1)Q → P1
Q of rational

algebraic curves. Here X(1)Q denotes a rational model of the trivial-level modular
curve. Hence Ell is the set Y (1)(Q) ⊆ X(1)(Q) of rational non-cuspidal points of
X(1). Let p ≥ 2 be prime and let X0(p)Q a model over Q of the modular curve
of level Γ0(p). We have the forgetful map X0(p) → X(1) which is a morphism of
algebraic curves of degree p + 1. Elliptic curves not satisfying (Irr) correspond
to non-cuspidal points in the image of fp : X0(p)(Q) → X(1)(Q), for p ≤ 163 by
Mazur. Either X0(p) has genus 0, in which case p ∈ {2, 3, 5, 7, 13}, or X0(N) has
positive genus, in which case p ∈ {11, 17, 19, 37, 43, 67, 163} and X0(p)(Q) is finite.
Image of fp has 0 Weil density in X(1) for every p ≤ 163, this follows from Theorem
B.2.5 in [11] for the genus 0 case. In particular elliptic curves satisfying (Irr) have
density 1. One can deal similarly with the condition dimQQ(E[2]) = 6. �
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5. Examples

5.1. A family of elliptic curves. In this section we give a family of elliptic curves
over Q satisfying (AbsIrr). First we find a family of elliptic curves with irre-
ducible 2-torsion as F̄2[GQ]-module. This is done by exhibiting a family of rational
cubic polynomials with symmetric Galois group. Second we take a subfamily with
irreducible ℓ-torsion as Fℓ[GQ]-module, for every ℓ ∈ T .
Lemma 5.1. Let n 6= ±1 be integer such that 3n is not square. The polynomial
Pn(X) = X3 − 3(n+ 1)X + 2(n+ 1) has Galois group isomorphic to S3.

Proof. Let us see that Pn is irreducible over Q when n 6= 0,±1. Consider a factor-
ization Pn(X) = (X − a)(X2 + bX + c) over the integers. By equating coefficients
we have that











a = b

2a2 + 3ac− 2c = 0

−ac = 2(n+ 1)

The conic 0 = 18(2X2 + 3XY − 2Y ) = (6X + 9Y + 4)(6X − 4) + 16 has finitely
many integer points, namely

(a, b) ∈ {(0, 0), (−2, 1), (1,−2), (2,−2)}.
In particular Pn is irreducible if and only if n /∈ {−1, 0, 1}. In this case either
Pn has Galois group of order three or Pn has Galois group isomorphic to S3, the
latter corresponds to the nonsquare discriminant case. The discriminant of Pn is
∆n = 3n · 36(n+ 1)2 and the lemma follows. �

Lemma 5.2. Consider the elliptic curve defined over F1427 given by the equation

Ē : Y 2 = X3 + 3 · 11X − 2 · 11.
Then Ē[ℓ] is irreducible over Fℓ for every ℓ ∈ T .
Proof. It can be checked that #Ē = 1424. Let ϕ denote the Frobenius over 1427,
then ϕ satisfies

ϕ2 − 4ϕ+ 1427 = 0

as an endomorphism of Ē. The polynomial X2 − 4X + 1427 is irreducible over Fℓ
for every ℓ ∈ T and hence Ē[ℓ] is irreducible. �

Theorem 5.3. Let n be an integer such that

k ≡ −11 (mod 1427).

Then the elliptic curve given by the equation

Ek : Y
2 = X3 − 3kX + 2k

satisfyes (AbsIrr). In particular it is Galois-congruent to infinitely many new-
forms.

Proof. Since −12 is not a square in F1427 Lemma 5.1 applies and since Ek[ℓ] is
unramified over 1427 for every ℓ ∈ T the theorem follows. �

Remark 5.4. Notice that Theorem 3.1 together with Lemma 2.5 say that every
level-raising of Ek at p > 2 can be done far from p. This together with Corollary
1.7 implies that odd level-raisings of Ek can be chosen not congruent.
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5.2. Control of M . Let f be a newform of level N and let l be a prime. If N̄ =
N(ρ̄f,l) denotes the prime-to-ℓ conductor of ρ̄f,l then N̄ | N . With this in mind we
manage in next theorem to take M = N .

Theorem 5.5. Let E/Q be an elliptic curve such that

(i) E has trivial graph of isogeny classes,
(ii) Q(E[2]) has degree 6 over Q,
(iii) E is semistable with good reduction at 2,
(iv) ∆(E) is square-free.

Let N denote the conductor of E and let p ∤ N be a prime. Then there exists some
newform g ∈ S2(Np) Galois-congruent to f(E).

Proof. Let l be a prime and g a newform in S2(Mp) such that g is a level raising of
E over l. Let us prove that M = N . Since ∆(E) is squre-free then E[ℓ] is ramified
at every prime p | N , p 6= ℓ, and the prime-to-ℓ conductor Nℓ of E is the prime-to-ℓ
conductor of E[ℓ] (cf. Proposition 2.12 in [7]). In particular

M ∈ {N,N/ℓ}.
Assume that M 6= N , then N = Mℓ and ℓ 6= 2 since E has good reduction at
2. Theorem 1.5 (or Tate’s p-adic uniformization) says that E[ℓ]|Gℓ

is reducible. In
particular

E[ℓ]|Gℓ
≃ ρ̄f,l|Gℓ

≃
(

ωℓλaℓ(f)−1 ∗
λaℓ(f)

)

with ∗ ‘peu ramifié’. This together with Proposition 8.2 of [10] and Proposition 2.12
of [7] leads to a contradiction. �

Remarks 5.6. • Condition (iii) is equivalent to N being odd and square-free.
• The rational elliptic curve of conductor 43 satisfies coditions (i)− (iv).

6. An application: safe chains

When considering safe chains as in [8] (Steinberg) level-raising at an appropriate
(small) prime is a useful tool. In particular, this combined with a standard modular
congruence gives an alternative way of introducing a “MGD” prime to the level.
Having a MGD prime in the level is one of the key ingredients in a safe chain.
Therefore, one could expect to use generalizations of Theorem 1 to build safe chains
in more general settings. In the process of doing so one can rely on tools as in [9]
to ensure that the condition (AbsIrr) holds when required.
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