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Abstract: We introduce the description of a Wilson surface as a 2-dimensional topolog-

ical quantum field theory with a 1-dimensional Hilbert space. On a closed surface, the

Wilson surface theory defines a topological invariant of the principal G-bundle P → Σ.

Interestingly, it can interact topologically with 2-dimensional Yang-Mills and BF theories

modifying their partition functions. We compute explicitly the partition function of the

2-dimensional Yang-Mills theory with a Wilson surface. The Wilson surface turns out to be

nontrivial for the gauge group G non-simply connected (and trivial for G simply connected).

In particular we study in detail the cases G = SU(N)/Zm, G = Spin(4l)/(Z2 ⊕ Z2) and

obtain a general formula for any compact connected Lie group.
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1 Introduction

The discussion of surface observables in gauge theories has been ongoing for quite some

time. Wilson surfaces, domain walls, surface defects etc appear in many domains of physics

and mathematics, from gauge theories to condensed matter. They have been studied

extensively in literature [1–7]. In most cases a 1-dimensional observable, namely a Wilson

line [8–16], is generalized to 2 dimensions by introducing higher gauge fields defined on

surfaces. Our approah is different, it is based as well on a definition of a Wilson line, but

doesn’t involve introducing higher gauge fields.

The basis for our construction is a 1-form standard gauge field taking values in a Lie

algebra. A Wilson surface is defined by an orientable surface Σ and a representation Rλ

of the gauge group G. In [17] we obtained its description as a 2-dimensional topological

σ-model:

Sλ(a, b,A) =

∫

Σ
Tr(b(d(A+ a) + (A+ a)2)) =

∫

Σ
Tr(bFA+a), (1.1)

where λ ∈ Λ∗ is the highest weight of the representation Rλ, b is a scalar field taking

values in g∗ and constrained to be a conjugate of λ ∈ Λ∗, A is a background gauge field,

and a is an auxiliary gauge field. Interpreting A + a as a new gauge field allows us to

interpret a Wilson surface as an independent 2-dimensional BF-theory with a constraint

on the B-field.

In this article we start with the action functional (1.1) and canonically quantize it. Our

first result is the partition function formula for this Wilson surface theory. To describe the

formula we first recall some topological facts. Principal G-bundles P → Σ over a closed
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surface Σ are classified by the elements γ ∈ π1(G) in the fundamental group of the gauge

group G [18, 19]. The gauge group can be represented as G = G̃/Γ, where G̃ is the universal

cover of G and Γ ⊂ Z(G̃) is a proper subgroup of the center of G̃. Since Γ ∼= π1(G), for

every element γ ∈ π1(G) in the fundamental group there exists a corresponding element

Cγ ∈ Γ ⊂ Z(G̃) in the center of the covering group. Then the partition function for the

particular equivalence class of principal bundles P → Σ, defined by γ ∈ π1(G), is given by:

ZΣ
WS(Cγ , λ) =

χλ(Cγ)

dλ
= eiϕγ ∈ U(1), (1.2)

where χλ(Cγ) is a value of the character χλ on the element Cγ and dλ is the dimension

of the representation. This is a 2-dimentional topological quantum field theory with a

1-dimensional Hilbert space.

Our second result is the description of topological interactions of Wilson surfaces with

2-dimensional topological gauge theories, namely with BF and Yang-Mills theories. Their

partition functions on a surface Σ are obtained by summation over all the classes of principal

G-bundles defined over the given surface [20–22]. When we insert a Wilson surface into 2-

dimensional Yang-Mills or BF, it interacts topologically with the background gauge theory,

as the gauge connections A and A+ a are defined on the same principal G-bundle P → Σ.

The presence of a Wilson surface modifies the partition function of the background theory

multiplying by a phase (1.2) the individual contributions for each class of principal bundles:

Zinteract =
∑

γ∈π1(G)

Zbackgr(Cγ) · e
iϕγ . (1.3)

Next, we study concrete examples of 2-dimensional Yang-Mills theory with a Wilson

surface for the gauge groupsG = SU(N)/Zm (m divides N) and G = Spin(4N)/(Z2⊕Z2).
1

Since Yang-Mills in 2 dimensions is exactly solvable, we can obtain explicit formulas for

the partition function in the presence of a Wilson surface.

In case of G = SU(N)/Zm the fundamental group is π1(G) ∼= Zm and the Wilson

surface phase eiϕk is defined by the angle:

ϕk =
2πk

m
· [λ],

where k = 0, 1, ...,m − 1 labels the elements of π1(G), and [λ] ∈ Zm is an integer mod m

denoting the equivalence class of the highest weight λ characterising the Wilson surface.

For G = Spin(4N)/(Z2 ⊕ Z2) the fundamental group is π1(G) ∼= Z2 ⊕ Z2 and the Wilson

surface is defined by the angle:

ϕk1,k2 = π(k1[λ1] + k2[λ2]),

where a pair (k1, k2) labels the elements of π1(G), with k1, k2 ∈ {0, 1}, and [λ1], [λ2] ∈ Z2

are integers modulo 2 given by two linear combinations of the components of same highest

1The examples of G = U(1), SU(2), SO(3) were computed in [17].

– 2 –



weight λ characterizing the Wilson surface.

Eventually, we obtain the formula of the partition function for 2D-YM with a Wilson

surface for any compact connected Lie group G = G̃/Γ. In this case the Wilson surface

phase is defined by the angle:

ϕk1,...,ki =
∑

i

ki < λ, ci >= 2π
∑

i

ki
mi

[λi].

Here we account for the most general case, when the fundamental group of G is given by a

product of i cyclic groups: π1(G) = Zm1×......×Zmi
. Thenmi is the number of elements in

Zmi
, the index ki = 0, ...,mi − 1 labels the elements in the i-th factor, kici ∈ h ⊂ Lie(G̃) is

an element of the Cartan subalgebra such that ei
∑

i kici = Ck1,...,ki ∈ Γ ∼= π1(G) is a central

element of the covering group G̃, λ ∈ h∗ is the highest weight of the representation of G

characterizing the Wilson surface, <,> is the invariant scalar product defined on Lie(G̃)

and [λi] ∈ Zmi
are integers modulo mi given by i linear combinations of the components

of same highest weight λ.

For a closed surface the Wilson surface is nontrivial for G non-simply connected, and

it is not visible (eiϕ = 1) for G simply connected. Also the value of λ plays a role: for λ

being the highest weight of a representation of the gauge group G itself the Wilson surface

is trivial, and it is nontrivial if λ labels a representation of the universal cover G̃ which

does not descend to G. On a closed surface, the partition function of the Wilson surface is

a topological invariant of the principal G-bundle.

Acknowledgements. Our deepest gratitude is to A. Alekseev for inspiration through-

out this work. We also thank D. Nedanovski, who participated in the early stages of the

project and independently confirmed our computation for G = SU(N)/ZN , F. Valach

for illuminating discussions and all the inhabitants of Villa Battelle Math Department in

Geneva for inspiring atmosphere. Our research was supported in part by the grant 178794,

the grant MODFLAT of the European Research Council (ERC) and the NCCR SwissMAP

of the Swiss National Science Foundation.

2 Wilson surface theory

2.1 Wilson surface observables

Recall the construction of Wilson surface observables from [17]. Let G be the gauge group,

g its Lie algebra, (x, y) → Tr(xy) an invariant scalar product on g and P a principal G-

bundle over a surface Σ. We denote by h ⊂ g a Cartan subalgebra and by Λ∗ ⊂ h∗ the

weight lattice.

A Wilson surface observable is described by an auxiliary 2-dimensional gauge theory

on the surface Σ. The fields in this theory are a g∗-valued scalar field b and a g-valued

1-form a. The action depends on the following data: the background gauge filed A and the
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weight λ ∈ Λ∗. For a trivial G-bundle it is given by

Sλ(a, b,A) =
∫

Σ Tr(b(FA − (dgg−1 +A)2 + (dgg−1 +A+ a)2)

=
∫

Σ Tr(b(d(A+ a) + (A+ a)2)),
(2.1)

where we identifed g∗ with g using the scalar product and integrated by parts using the

equality Trb[dgg−1, a] = Tr[b, dgg−1]a = −Tr(db)a. The field b = gλg−1 belongs to the

same conjugacy class as the fixed element λ, the combination A + a is a new gauge field.

Note that integrating out a in (2.1) yields the Diakonov-Petrov action [17, 23] for a Wilson

surface:

SDP =

∫

Σ
Tr(b(FA − (dgg−1 +A)2). (2.2)

The construction (2.1) also works on nontrivial bundles. A ∈ Ω1(P, g) is the connection

on P , its curvature FA ∈ Ω2
hor(P, g)

G is a horizontal 2-form taking values in g. The auxiliary

gauge field a is such that a ∈ Ω1
hor(P, g)

G and the sum A+ a defines a new connection on

P with a curvature FA+a = d(A + a) + (A + a)2, FA+a ∈ Ω2
hor(P, g)

G. The field b takes

values in Ω0
hor(P, g)

G. The combination Tr(bFA+a) is then a basic 2-form which decends to

Σ. One can show this in the following way. The 2-form bFA+a is G-equivariant, i.e. with

respect to a gauge transformations by h : Σ → G:

g 7→ hg , A 7→ hAh−1 − dhh−1 , b 7→ hbh−1 , a 7→ hah−1,

it transforms as bhFAh+ah = hbFA+ah
−1, yeilding Tr(bhFAh+ah) = Tr(bFA+a). Acting by

the contraction we obtain:

ıξ♯Tr(bFA+a) = ıξ♯Tr (b(FA+a
2+dgg−1a+adgg−1+Aa+aA)) = Tr (b(−ξa+aξ+ξa−aξ)) = 0,

where ξ ∈ g induces the fundamental vector field ξ♯ ∈ X(Σ), and we have used that

ıξ♯(dg) = −ξg, ıξ♯A = ξ (by definition of connection), ıξ♯FA = 0, ıξ♯a = 0 (FA and a are

horizontal). This computation proves that G-invariant form Tr(bFA+a) is horizontal, and

hence basic.

The meaning of λ ∈ Λ∗
+ is as follows. The integral weights of the representations of

G form the weight lattice Λ∗ ⊂ h∗. Dominant integral weights Λ∗
+ ⊂ Λ∗ are in one to one

correspondence with irreducible representations of G [24, 25]. The element λ ∈ Λ∗
+ is the

highest weight of some representation of G, it is a parameter characterising the Wilson

surface. For example, for G = SU(2) or G = SO(3) we talk about a Wilson surface of spin

λ. Note that in case when G is not simply connected but is a quotient G = G̃/Γ, where G̃

is its universal cover and Γ ⊂ Z(G̃) is a subgroup of the center of G̃, the weight lattices are

related as Λ∗

G ⊂ Λ∗

G̃
. A representation of G̃ can be considered as projective representation

of G, and λ is allowed to take values in Λ∗

G̃
, and, as we will see later, these are exactly the

values which describe the presence of nontrivial Wilson surfaces.
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2.2 Quantum Wilson surfaces

Rewriting the action for a Wilson surface (2.1) with respect to the new connection A+ a

gives us a 2-dimensional BF theory [26] described on Σ:

Sλ(a, b,A) =

∫

Σ
Tr(bFA+a). (2.3)

Recall canonical quantization of BF -theory on a surface [20, 21]. For simplicity let

first Σ be a cylinder C, the G-bundle P will be necessarily trivial. We chose space and time

coordinates (x, t) in a way that the boundary of C is given by two closed curves γ1 and γ2,

situated on equal time slices, and x is a periodic coordinate of period L. We associate to

γi a gauge invariant wave function ψ(A) which is a function of holonomy of A around γi:

ψ[Ui] = ψ[Pe
∫ L
0

dxA1 ].

The Hilbert space Hγ of such a theory is given by G-invariant L2 functions on G.

Hγ admits a natural basis in terms of characters of representations, and any wave function

ψ(A) ∈ Hγ has an expansion in characters χR(U), where R is a representation. The bound-

aries are oriented, the wave functions on the incoming and outgoing boundary components

are denoted by χR(Ui) and χR(Uj) respectively.

In BF-theory Hamiltonian vanishes (as expected for a topological field theory), so the

partition function reduces to:

ZC
BF (U1, U2) =

∑

R

χR(U1)χR(U2).

For a generic surface with genus g and r boundary components the BF partition

function reads:

ZΣ
BF (U1, ..., Ur) =

∑

R

d2−2g−r
R χR(U1)...χR(Ur),

where dR is the dimension of the representation and all the boundaries are chosen to be

outgoing.

To obtain the formula for a closed surface we proceed as follows. The partition function

will necessarily depend on the equivalence class of G-bundle over Σ. Recall the classification

of principal G-bundles over Σ by the elements of the fundamental group of G: π1(G) ∼= Γ ⊂

Z(G̃). Consider a surface with just one puncture, i.e. one boundary component. Gluing

this puncture to an infinitesimal disc yeilds a closed surface, and this operation is described

by identifying U = Ci, where Ci ∈ Γ is a central element of G̃.

The contribution to the partition function of each class [P ] of a principal G-bundle

over the surface is given by:

ZΣ
BF (Ci) =

∑

R

d1−2g
R χR(Ci). (2.4)

The total partition function for BF-theory on a closed surface Σ is then a sum over
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equivalence classes of principal G-bundles over Σ:

ZΣ
BF =

1

#Γ

∑

Ci∈Γ

∑

R

d1−2g
R χR(Ci), (2.5)

where #Γ is the cardinality of Γ.

Note that the sum over R in (2.5) converges only for surfaces Σ with genus g > 1.

Now we explain how to construct the partition function for a Wilson surface. In

contrast with BF-theory, the g∗-valued field b = gλg−1 is now the conjugation of the

same fixed element λ ∈ Λ∗

G̃
. The Hilbert space becomes one-dimensional choosing one

representation Rλ, and the partition function is just a phase. The normalization of the

states is such that || < χλ(U)|χλ(U) > ||2 = 1.

The state corresponding to a disc is given by

Zdisc
WS (U, λ) = χλ(U). (2.6)

The orientation of the disc chosen in a way that U is a holonomy of the connection A+ a

around an outgoing boundary.

The Wilson surface on a pair of pants has the formula:

Zp−o−p
WS (U1, U2, U3, λ) = χλ(U1)χλ(U2)χλ(U3), (2.7)

where U1, U2, U3 are holonomies of A + a around one incoming and 2 outoing boundary

components.

Any other orientable surface can be obtained by gluing those elementary components

together. The partition function for a surface of arbitrary genus with r boundary compo-

nents is a product of r states living on the boundaries (here chosen to be outgoing):

ZΣ
WS(U1, ...., Ur , λ) = χλ(U1)......χλ(Ur).

The expression for a closed surface for a particular class [P ] of principal bundles P → Σ

is

ZΣ
WS(Ci, λ) =

χλ(Ci)

dλ
. (2.8)

For a nontrivial central element Ci this is an element of U(1): ZΣ
WS(Ci, λ) ∈ U(1). In

case when P is a trivial bundle, the Wilson surface is always trivial: ZΣ
WS(Ptriv , λ) = 1.

3 Topological interactions with 2-dimensional gauges theories

In general case our observable could be understood as a surface defect embedded into a

higher dimensional space-time. But in this paper we want to test it in the context of 2-

dimensional gauge theories, which can be solved exactly. In this case the Wilson surface is

a “global” observable, defined on the entire 2-dimensional space-time Σ.
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3.1 BF theory with a Wilson surface

The action functional for BF theory with a Wilson surface is:

Sλ
BF (A, a,B, b) =

∫

Σ
Tr(BFA) +

∫

Σ
Tr(bFA+a), (3.1)

where B ∈ Ω0(P, g∗)G, A ∈ Ω1(P, g) is the background gauge field, FA ∈ Ω2
hor(P, g)

G its

curvature.

These two BF theories are not completely independent, they interact topologically:

the connections A and A+a are defined on the same principal G-bundle, so the characters

χR(U(A)) and χλ(U(A+ a)) are taken on the same central element.

Then the partition function for a closed surface with a Wilson surface of weight λ is

obtained by taking a product of partition functions defined in the previous section for each

class [P ] and then summing over all the equivalence classes:

Zλ
BF =

1

#Γ

∑

Ci∈Γ

χλ(Ci)

dλ

∑

R

d1−2g
R χR(Ci). (3.2)

3.2 2D-YM theory with a Wilson surface

Consider 2D-YM in the first order formalism. The action functional for the theory with a

Wilson surface is:

Sλ
YM (A, a,B, b) =

∫

Σ
Tr(BFA +

e2

2
B2d2σ) +

∫

Σ
Tr(bFA+a), (3.3)

where B is an auxiliary field taking values in g∗ and d2σ is the area element on Σ. Again, we

see that the action splits into two theories interacting topologically through the connections

A and A + a defined on the same principal bundle. The partition function for each class

[P ] will be a product of the partition function for 2D-YM and the partition function for

the Wilson surface.

The Hamiltonian of the first theory is H = e2

2 TrB
2. The Hamiltonian of the second

theory vanishes. The basis for the Hilbert space is given by gauge invariant functions

ψR(A, a) = χR(U(A))χλ(U(A + a)), where R runs through the irreps of G, λ choses one

irrep of G, and U(A), U(A+a) are holonomies of the connections A and A+a respectively.

The eigenvalues of the Hamiltonian on ψ(A, a) are given by quadratic Casimir C2(R) of the

representation R, just like for the 2D YM without Wilson surface, as only the Hamiltonian

of 2D YM contributes to the total theory.

Then the time evolution operator takes value e−τC2(R) on the functions ψR(A, a), where

τ = e2

2 σ absorbs the YM coupling constant e2 and the area of the surface σ.

The partition function for a closed surface with a Wilson surface of weight λ is given

by the following formula:

Zλ
YM (τ) =

1

#Γ

∑

Ci∈Γ

∑

R

d1−2g
R e−τC2(R)χR(Ci)

χλ(Ci)

dλ
. (3.4)
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4 Exact results for 2D-YM theory interacting with a Wilson surface

Yang-Mills theory in 2 dimensions is exactly solvable [27–36], this allows us to obtain

explicit formulas for partition function in the presence of a Wilson surface. In [17] we

computed the partition functions for 2D Yang-Mills with a Wilson surface for the gauge

groups U(1), SU(2) and SO(3). Now we are going to generalize this result to G being any

compact connected Lie group.

4.1 SU(N) and the groups covered by SU(N)

To visualize the result of topological interactions with a Wilson surface, we first perform

a detailed computation for the case of G̃ = SU(N). The center of SU(N) is given by:

Z(SU(N)) = {e
2πik
N IdN | k = 0, ..., N − 1} = ZN . And the subgroups of the centre are

Γ = Zm where m devides N . We consider G = SU(N)/Zm.

The rank of SU(N) is equal to N−1, i.e. the basis of Cartan subalgebra h has N−1 ele-

ments. In the defining presentation the basis of h is given by: hn = diag(0......., 1,−1, ......0)

with matrix elements hnn = 1, hn+1,n+1 = −1. Then any element h ∈ h can be represented

in terms of the basis as h =
∑N−1

n=1 anhn, with an ∈ R linear coefficients. Exponenti-

ating elements h ∈ h we obtain the maximal torus of SU(N): H = eih = ei
∑

anhn =

diag(eiθ1 , eiθ2 , ...., eiθN−1 , e−i
∑N−1

i=1 θi) ∈ T.

The center Z(SU(N)), and hence its proper subgroup Γ ⊂ Z(SU(N)) ⊂ T , is a

subgroup of the maximal torus: Γ ∋ Ck = eiθkIdN ∈ T , with θk = 2πk/m.

Consider the elements of the Cartan subalgebra ck = diag(θk, θk, ......,−(N−1)θk)N×N ∈

h, such that Ck = eick ∈ Z(SU(N)). In terms of the basis of h they are given as follows:

ck = diag(θk, θk, ......,−(N − 1)θk) = θk · diag(1, 1, ......., 1,−(N − 1)) = θk ·
∑N−1

n=1 nhn.

Then the central elements of SU(N) are given by Ck = eiθk
∑N−1

n=1 nhn ∈ Z(SU(N)).

The irreducible representations of SU(N) are labeled by highest weights with N − 1

independent elements: µ = (µ1, ..., µN−1).

The central elements in the representation Rµ of highest weight µ are obtained as:

Rµ(e
iθk

∑N−1
n=1 nhn) = eiθk

∑N−1
n=1 nRµ(hn).

The natural choice for the basis of Rµ is in terms of the weight vectors vi with v1 the

highest weight vector. In this basis Rµ(hn) are diagonal and yield weights while acting on

the basis vectors. A central element Ck is a multiple of identity, therefore Rµ(Ck) has to

be a multiple of identity as well, so it’s enough to compute it just on the highest weight

vector:

Rµ(Ck) = ei
2πk
m

∑N−1
n=1 nµn · IddRµ

. (4.1)

The linear combination
∑N−1

n=1 nµn is an integer, but the expression (4.1) depends only on

the value of this sum modulo m, as ei
2πk
m

∑N−1
n=1 nµn = ei

2πk
m

(
∑N−1

n=1 nµn+m). This allows us to

define the equivalence classes of the highest weight µ:

[µ] ≡ [

N−1
∑

n=1

nµn] ∈ Zm. (4.2)
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Note that the irreps of G̃ descend to the irreps of G if
∑N−1

n=1 nµn = 0 mod m. In

terms of weight lattices Λ∗

G ⊂ Λ∗

G̃
⊂ h∗, where Λ∗

G̃
is the weight lattice for SU(N), Λ∗

G is

the weight lattice for G = SU(N)/Zm.

The characters of the central elements in the representations Rµ are as follows:

χRµ(Ck) = Tr(ei
2πk
m

∑N−1
n=1 nµn · IddRµ

) = dRµ · (ei
2πk
m )[µ]. (4.3)

We keep the notation ZYM (τ) for the partition function of the free 2D-YM theory and

Zλ
YM (τ) for the theory with a Wilson surface of the highest weight λ.

Without Wilson surface the partition function for SU(N)/Zm is given by

ZYM (τ) =
1

m

m−1
∑

k=0

∑

Rµ(SU(N))

dRµ

1−2ge−τC2(Rµ)χRµ(Ck), (4.4)

where the sum is over the representations Rµ of SU(N), and k labels central elements in

the subgroup Γ.

The computation gives the following result:

ZYM (τ) =
1

m

m−1
∑

k=0

∑

Rµ(SU(N))

d2−2g
Rµ

e−τC2(Rµ)(ei
2πk
m )[µ] =

∑

Rµ(SU(N))

d2−2g
Rµ

e−τC2(Rµ) 1

m

m−1
∑

k=0

(ei
2πk
m )[µ],

(4.5)

where the sum over k is equal to m for [µ] = 0 and zero otherwise. The condition cor-

responds to those representations of SU(N) in which the central elements are all trivial,

that is to the representations of SU(N)/Zm:

ZYM (τ) =
∑

Rµ(G=SU(N)/Zm)

d2−2g
Rµ

e−τC2(Rµ). (4.6)

Now let us introduce a Wilson surface of weight λ:

Zλ
YM (τ) = 1

#Γ

∑m−1
k=0

∑

Rµ(SU(N)) d
1−2g
Rµ

e−τC2(Rµ)χRµ(Ck)
χλ(Ck)

dλ

= 1
m

∑m−1
k=0

∑

Rµ(SU(N)) d
1−2g
Rµ

e−τC2(Rµ) dλ·(e
i 2πk

m )[λ]

dλ
dR · (ei

2πk
m )[µ]

= 1
m

∑m−1
k=0

∑

Rµ(SU(N)) d
2−2g
Rµ

e−τC2(Rµ)(ei
2πk
m )[µ]+[λ],

(4.7)

where [λ] = [
∑N−1

n=1 nλn] ∈ Zm are equivalence classes of the Wilson surface weight λ.

In more detail, we consider a quotient map Λ∗

G̃
∋ λ 7→ (

∑N−1
n=1 nλn)modm ∈ Zm and the

highest weights for Wilson surfaces will belong to equivalence classes [λ] ∈ Λ∗

G̃
/Λ∗

G
∼= Zm.

Note that in case when λ ∈ Λ∗

G, i.e.
∑N−1

n=1 nλn = 0 mod m, the Wilson surface is not

visible: Zλ(τ) = Z(τ).

The sum over k in (4.7) is different from zero only for [µ] + [λ] = 0, and the partition

function formula for 2D-YM with a Wilson surface yields:

Zλ
YM (τ) =

∑

µ∈Λ∗

G̃
, [µ+λ]=0

dim2−2g
Rµ

e−τC2(Rµ) =
∑

µ∈[−λ]

dim2−2g
Rµ

e−τC2(Rµ),
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where the sum now goes over the representations Rµ+λ of G = SU(N)/Zm of highest

weights µ+ λ, i.e. [µ] = [−λ] ∈ Λ∗

G̃
/Λ∗

G.

Note that in case when G = SU(N), i.e. the gauge group is simply connected, the

presence of the Wilson surface makes no impact on the partition function. Let us look at

this situation in more detail. There is just one class of principal SU(N)-bundles over a

surface Σ – trivial SU(N)-bundle. The SU(N) partition function without Wilson surface

is given by:

Z
SU(N)
YM (τ) =

∑

Rµ

d1−2g
Rµ

e−τC2(Rµ)χR(e) =
∑

Rµ

d2−2g
Rµ

e−τC2(Rµ), (4.8)

where e is identity.

And adding a Wilson surface of weight λ leaves the partition function unchanged:

Z
λ,SU(N)
YM (τ) =

∑

Rµ

d1−2g
Rµ

e−τC2(Rµ)χR(e)
χλ(e)

dλ
=

∑

Rµ

d2−2g
Rµ

e−τC2(Rµ). (4.9)

4.2 Generalization for any compact connected Lie group

The result explained in the explicit example of the previous section remains valid for all

compact connected Lie groups. All of them (with the exception of exceptional ones) have

as a universal cover one of the following groups: SU(N), Spin(N), Sp(N) and can be

obtained by taking a quotient by a subgroup Γ of the center.

The case of G̃ = SU(N) has been discussed in the previous section. For Spin(N),

N ≥ 3 the data is as follows:

Z(Spin(N)) =











Z2 if N = 2l + 1, Γ = Z2,

Z4 if N = 4l + 2, Γ = Z2 or Γ = Z4,

Z2 ⊕ Z2 if N = 4l, Γ = Z2 or Γ = Z2 ⊕ Z2.

(4.10)

The group Sp(N) has the center Z(Sp(N)) = Z2.

Among the exceptional groups only E6 and E7 are interesting for our purposes, the

rest of them (G2, F4 and E8) are simply-connected and have a trivial center. The real

compact forms of E6 and E7 are not simply-connected. The universal cover of E6 has the

center Z(Ẽ6) = Z3, and the universal cover of E7 has the center Z(Ẽ7) = Z2.

We consider the gauge group G = G̃/Γ. The center of the cover Z(G̃) ⊂ T is a

subgroup of the maximal torus. T is given by the elements H = eih ∈ T , where h ∈ h is in

the Cartan subalgebra.

The irreducible representations of G̃ are labeled by highest weight with n independent

elements, where n is the rank of G̃: (µ1, ..., µn).

In most cases the center of G̃, or its proper subgroup Γ, is given by Zm for somem ∈ Z,

and the calculation looks similar to the G̃ = SU(N) example. But in general Γ can be

represented by a product of i cyclic groups: Γ = Zm1 × ...... × Zmi
. We take the elements

∑

i kici ∈ h in the Cartan subalgebra h of G̃ and exponentiate them to get the central

elements Ck1....ki = ei
∑

i kici ∈ Z(G̃). Here we account for the structure of Γ: the index i

– 10 –



refers to the i-th factor in the product and the coefficient ki labels the elements inside each

factor Zmi
.

In terms of the basis of the Cartan subalgebra hj ∈ h we can express
∑

i kici =
∑

i 2π
ki
mi

∑n
j=1(ai)jhj , where n is the dimension of h, mi is the number of the elements

in Zmi
and (ai)j are real linear coefficients describing ci and depending on the choice of a

basis hi.

The representation Rµ of a central element Ck1,...,ki is given by the formula: Rµ(Ck1,...,ki) =

Rµ(e
i
∑

i kici) = ei
∑

i kiRµ(ci). The characters of the central elements in the representations

Rµ are:

χRµ(Ck1,...,ki) = Tr(ei
∑

i kiRµ(ci)) = dRµ · ei
∑

i ki<µ,ci> = dRµ · e
i2π

∑
i

ki
mi

[µi]. (4.11)

Here we have rewritten the pairing
∑

i ki < µ, ci > in the following way: < µ,
∑

i kici >=

i2π
∑

i
ki
mi

∑n
j=1(ai)jµj = i2π

∑

i
ki
mi

[µi], where (ai)j are linear coefficients producing dif-

ferent linear combinations of µjs for each ki-th element. The i different linear combi-

nations
∑n

j=1(ai)jµj ∈ Z define i types of equivalence classes of the highest weight µ:

[
∑n

j=1(ai)jµj] ≡ [µi] ∈ Zmi
, where [µi] is an integer modulo mi.

Without Wilson surface the partition function for G is given by:

ZYM (τ) =
∑

i

1

mi

mi−1
∑

ki=0

∑

Rµ(G)

d1−2g
Rµ

e−τC2(Rµ)χRµ(Ck1,...,ki), (4.12)

where the sum is over the representation Rµ of G = G̃/Γ and i coefficients ki label a central

element in the subgroup Γ.

Using (4.11) we compute:

ZYM (τ) =
∑

i
1
mi

∑mi−1
ki=0

∑

Rµ(G) d
2−2g
Rµ

e−τC2(Rµ) · eiki<µ,ci>

=
∑

Rµ(G) d
2−2g
Rµ

e−τC2(Rµ)
∑

i
1
mi

∑mi

ki=0 e
i2π

ki
mi

[µi].
(4.13)

Here each sum over ki in the second line is different from zero and is equal to mi

only if µi = 0 mod mi (i.e. [µi] = 0) . This condition corresponds to choosing only

those representations of G̃ in which the elements Ck1,....,ki ∈ Γ are all trivial, i.e. the

representations of G = G̃/Γ:

ZYM (τ) =
∑

Rµ(G=G̃/Γ)

d2−2g
Rµ

e−τC2(Rµ). (4.14)

Now let us introduce a Wilson surface of weight λ. Just like any highest weight,

λ will belong to i types of equivalence classes defined by the pairing ki < λ, ci >=

2π ki
mi

∑n
j=1(ai)jλj , where (ai)j are real linear coefficients for the pairing with the ki-th

element and
∑n

j=1(ai)jλj is an integer. Then the weight λ will be characterised by belong-
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ing to i types of equivalence classes: [λi] = [
∑n

j=1(ai)jλj ] ∈ Zmi
. The partition function

with a Wilson surface of weight λ is given by:

Zλ
YM (τ) =

∑

i
1
mi

∑mi−1
ki=0

∑

Rµ(G) d
1−2g
Rµ

e−τC2(Rµ)χRµ(Ck1,...,ki)
χλ(Ck1,...,ki

)

dλ

=
∑

i
1
mi

∑mi−1
ki=0

∑

Rµ(G) d
2−2g
Rµ

e−τC2(Rµ)eiki<µ,ci>eiki<λ,ci>

=
∑

i
1
mi

∑mi−1
ki=0

∑

Rµ(G) d
2−2g
R e−τC2(Rµ)e

i2π
ki
mi

[µi]e
i2π

ki
mi

[λi]

=
∑

Rµ(G) d
2−2g
R e−τC2(Rµ)

∑

i
1
mi

∑mi−1
ki=0 e

i2π
ki
mi

[µi+λi].

(4.15)

Now each sum over ki is different from zero and is equal to mi only if [µi + λi] = 0 for

all i. This results in:

Zλ
YM (τ) =

∑

Rµ+λ(G=G̃/Γ)

dim2−2g
Rµ

e−τC2(Rµ), (4.16)

where the sum is over such representations Rµ(G̃), that the representations of G̃ with the

highest weight µ+ λ would correspond to the representations of G = G̃/Γ.

4.3 Example of G = Spin(4l)/(Z2 ⊕ Z2)

Now let us illustrate the formulas (4.15), (4.16) with an example of a gauge group with

π1(G) ∼= Γ = Zm1 × ...... × Zmi
. The covering group G̃ = Spin(4l) has the center given

by a product of two copies of Z2: Z(Spin(4l)) = Z2 ⊕ Z2. If we factorize by the entire

center we get G = Spin(4l)/Z2 ⊕ Z2. We start with the central elements of G̃ = Spin(4l):

Ck1k2 = ei(k1c1+k2c2) ∈ Z2⊕Z2, where k1c1+k2c2 = πk1
∑n

i=1(a1)ihi+πk2
∑n

i=1(a2)ihi ∈ h

are in the Cartan subalgebra of Spin(4l), the coefficients kj = 0, 1 label the elements in

the j-th copy of Z2, and (a1)i, (a2)i are real coefficients describing the elements c1 and c2
respectively and depending on the choice of a basis hi.

The representation Rµ of a central element Ck1k2 is given by the formula: Rµ(Ck1k2) =

Rµ(e
i(k1c1+k2c2)) = ei(k1Rµ(c1)+k2Rµ(c2)). The characters of the central elements in the rep-

resentations Rµ are:

χRµ(Ck1k2) = Tr(ei(k1Rµ(c1)+k2Rµ(c2))) = dRµ · ei(k1<µ,c1>+k2<µ,c2>) = dRµ · e
iπ(k1[µ1]+k2[µ2]).

(4.17)

Here we’ve computed the pairing < µ, k1c1 + k2c2 > explicitly: iπ(k1
∑n

i=1(a1)iµi +

k2
∑n

i=1(a2)iµi) ≡ iπ(k1[µ1] + k2[µ2]). We denote by [µ1] and [µ2] two different linear

combinations (
∑n

i=1(a1)iµi ∈ Z and
∑n

i=1(a2)iµi ∈ Z) of the components of the same

highest weight µ modulo 2.

Without Wilson surface the partition function for G = Spin(4l)/Z2 ⊕ Z2 is given by:
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ZYM (τ) = 1
4

∑1
k1=0

∑1
k2=0

∑

Rµ(Spin(4l))
d1−2g
Rµ

e−τC2(Rµ)χRµ(Ck1k2)

= 1
4

∑1
k1=0

∑1
k2=0

∑

Rµ(Spin(4l))
d2−2g
Rµ

e−τC2(Rµ) · ei(k1<µ,c1>+k2<µ,c2>)

=
∑

Rµ(Spin(4l))
d2−2g
Rµ

e−τC2(Rµ) · 1
4

∑1
k1=0

∑1
k2=0 e

iπ(k1[µ1]+k2[µ2])

=
∑

Rµ(Spin(4l)/(Z2⊕Z2))
d2−2g
Rµ

e−τC2(Rµ).

(4.18)

In more detail, the sum in the first line of (4.18) runs over the representations Rµ of

Spin(4l) and in the last line - over the representations Rµ of Spin(4l)/(Z2 ⊕ Z2). The

change happens for the following reason. Each sum over ki in the second line is equal to

zero, or to 2 if
∑n

i=1 aiµi is even, i.e. [µi] = 0. This condition corresponds to chosing only

those representations of Spin(4l) in which the elements Ck1k2 ∈ Z2 ⊕ Z2 are all trivial, i.e.

the representations of Spin(4l)/(Z2 ⊕ Z2).

When we introduce a Wilson surface of weight λ, it will involve defining two equiv-

alence classes for λ from the pairing < λ, kici >: [λ1] = [
∑n

j=1(a1)jλj] ∈ Z2 and [λ2] =

[
∑n

j=1(a2)jλj ] ∈ Z2. The partition function in the presence of a Wilson surface is modified

in the following way:

Zλ
YM (τ) = 1

4

∑1
k1=0

∑1
k2=0

∑

Rµ(Spin(4l))
d1−2g
Rµ

e−τC2(Rµ)χRµ(Ck1k2)
χλ(Ck1k2

)

dλ

= 1
4

∑1
k1=0

∑1
k2=0

∑

Rµ(Spin(4l))
d2−2g
Rµ

e−τC2(R−µ)ei<µ,k1c1+k2c2>ei<λ,k1c1+k2c2>

= 1
4

∑1
k1=0

∑1
k2=0

∑

Rµ(Spin(4l))
d2−2g
R e−τC2(R)ei(k1[µ1]+k2[µ2])ei(k1[λ1]+k2[λ2])

=
∑

Rµ(Spin(4l))
d2−2g
R e−τC2(R) 1

4

∑1
k1=0

∑1
k2=0 e

iπ(k1[µ1+λ1]+k2[µ2+λ2])

=
∑

µ1∈[−λ1], µ2∈[−λ2]
dim2−2g

Rµ
e−τC2(Rµ),

(4.19)

Here the sum over each ki is different from zero only for µi + λi even. This condition

reduces the sum in the last line to the sum over such representations Rµ(Spin(4l)) that

the representations of Spin(4l) with the highest weight µ + λ would correspond to the

representations of Spin(4l)/(Z2 ⊕ Z2).
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