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As it is known, the Lorentz and CPT symmetries are violated [1H3] when we add the four-
dimensional gravitational Chern-Simons term, in the weak (linearized) gravity case, looking like
Ly = LA €0,0,0P (0,07 RS — 0,0,h7*), to the Einstein-Hilbert Lagrangian [4-7]. This term has
been shown to arise as a quantum correction in a theory describing coupling of gravity to fermions
[5-7], and recently, it has been shown [7] that this term displays the ambiguity, similar to that one
of the Carroll-Field-Jackiw term Lopy = %bue“”’\pr,\AP [8-10].

In this work we have interested in extending the generation of the gravitational Chern-Simons
term to the finite temperature case. The main motivation for this study is the interest to the
anomalies in the curved spacetime, initially inspired by [11], where the triangle anomaly of the
gauge field has been studied in the curved spacetime at the finite temperature. In fact, here we
meet the appearance of new non-dissipative energy transport phenomena, observed in relativistic
hydrodynamics [12], given by J. = 0, where J. is the energy current, o is the transport coefficient
(conductivity), and & is a vector or pseudo-vector inducing the transport. In this scenario, an
important study has been carried out in [13], where the emergence of the energy current J. as a
consequence of mixed gauge and gravitational fields, in a Weyl semimetal system, was claimed as
a manifestation of the axial magnetic effect (AME), with w; = %eijk(‘)jAk being the axial magnetic
field and 0 = o4y g the temperature-dependent conductivity. Thus, the aim we pursue in this
paper is the calculation of another temperature-dependent contribution for the same energy current,
due only to the gravitational fields, through the chiral vortical effect (CVE) [14, [15], where now
w; = %eijk(‘)jhok is generated by the metric fluctuation h, .

Our starting point is the fermionic action (see f.e. [3]) given by
4 i wonaa A n noa
Sp= [ dwe | 5e"apy* Dutp — mipth — buet )y 159 |, (1)
where €', is the tetrad, e = det ey, and Dy = 9,9 — iw, Y (Dyp = Optp + iw,1p), with w, =
%wubcabc being the spin connection, and o%¢ = %[’yb,’yc]. Note that, in the term bue“azﬁ’y“’yg)w, we

have the Lorentz-violating coefficient b, and the CPT-violating operator et oy ys1h.

In order to obtain the effective action, we must consider the fermionic generating functional
Zy = / Dy Dipetv = ettt (2)
so that after we perform the fermionic integration, we get
- Z‘ a e a a
Sef = —iTrIn ¢ e’y'0, —em —ebyet Y 'ys +ee oy wy ), (3)

where Tr stands for the trace over Dirac matrices as well as for the functional trace corresponding

to the integration in momentum and coordinate spaces.



Throughout this paper, we use the weak field approximation, in which the tetrad and the
connection are expressed in terms of the metric fluctuation h,, as e, q = Nua + %hua and wyqp =

$(Ophya — Oahyp) [16]. Thus, we have
= iTrn i — m — Bs — Sl 0+ s (b Db, I AP
Set = —iIrln |4 m— P75 4hu1/7 + 32( O ) P (4)

Then, in order to single out the quadratic terms in h,, within the effective action, we rewrite
the expression ([{]) as Seg = Sg?f) + § Sgg), where the contribution of an arbitrary n-th order in
the metric fluctuation yields "

) = it { o [t = Dibwdii 1]} o)
n i —m — pys [4 32

As our goal is the generation of the gravitational Chern-Simons action, we will single out above
terms of the second order in h,, and first order in b,. Firstly, let us analyze the term coming from
n =1, given by
1
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Then, after we carry out the traces over the integration in spaces, we obtain

SgS) [h] = Z/d4$ h;w ngpo hpcry (7)
with
e — Ly, / A S(p)bysS(p)Py "0 (8)
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where the symbol tr means that the trace is only over Dirac matrices and S(p) = (p —m)~".

Now, let us consider the terms coming from n = 2, given by
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By using the key identity of the derivative expansion approach h,,(x)S(p) = S(p — i0)hu(x), in

order to disentangle the traces over x, and p,, we arrive at

S0 = [ e, (0 4 107) By, 10

where
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and
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By considering the whole expression for the vacuum polarization tensor, given by II**? =

HPo 4 %Hff”m + %Hé“’po, with 9, — k,,, we obtain
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where we have first calculated the trace over the Dirac matrices and afterwards, integrated over the
momentum p,, and parameter  of the Feynman parametrization. For more details, see [17] for the
tensor 11,77 and [5] for the tensors II,*”? and IIZ"*. In these works |5, [17] it was argued that the
divergent term disappears when the zero mass limit is taken. However, now, we are observing that
the divergent contributions cancel each other, so that, finally, we have the general gauge-invariant
expression ([I3]).

By looking again at Eq. (I3]), we can easily analyze the limits k2 < m? (m # 0) and k% > m?
(m = 0), so that we get
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and
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respectively. Then, we note that the gravitational Chern-Simons term is not generated in the case
of m #£ 0, i.e., for massive fermions.

As we are interested in considering the finite temperature effects, we carry out the Wick rotation
and split the internal momentum p,, into its spatial and temporal components. For this, we take

into account the replacements: n** — —6* i.e., p?> — —6*ptp”, and so on,

dPp d'p . [ dpo
4-D 3—d .
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and pt — p* 4 pout, to separate the integration variables, with p* = (0,p) and v = (1,0,0,0).

Besides, let us assume from now on the system to be in thermal equilibrium with a temperature

T = B~1, so that the antiperiodic (or periodic) boundary conditions for fermions (or bosons) lead

to discrete values of pg = (2n +1)F (or ko = %ﬂ), where n (or ) is an integer.



Thus, by doing these considerations, after the calculation of the trace in (8], we arrive at:
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Now, it is convenient to perform the replacement
172
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because of the symmetry of our integrals. By the same reasons, we can discard the odd power
contributions of p,, and pg, so that we can write
VO'
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where we have used the identity
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to consider
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Then, after the integration, the tensor I’ (k) takes the form

107 (k) = A(k, m)n"® e kb, + B(k, m)n"" bie"* ky, (22)

where the coefficients A(k, m) and B(k, m), carrying out the dependence over the external momen-

tum k,, the mass m, and the temperature 3, in an arbitrary dimension d, are given by

r(1-49)

Alk,m) = LRI =S (5 + m?) a2 (23a)
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In order to do the above summations, we use the expression [18]

Z [(n+ b)? + a2] A= % + 4sin(7A) fa(a, b) (24)

n



with
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This solution is valid only for A < 1, aside from the poles at A = 1/2,—1/2,-3/2,---. However,

this restriction can be circumvented if we use the recurrence relation
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once, twice, and so on, until A is placed in the range of validity.

Then, by using the expression (24]), the coefficients A(k, m) and B(k,m) can be rewritten as
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where { = 5= is an adimensional parameter. Note that A(k,m) has a pole in d — 3, for m # 0.
Therefore, in order to cancel this singularity, as we have observed above in (I3]), and to com-

plete the calculation, let us focus on the tensors ngp 7 and IILY77, given by Eqgs. (1) and (12)),

respectively. To calculate the trace over the Dirac matrices, we first use the ciclic property of the

trace, to move -5 matrix to the end of the expression, so that finally we obtain
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where we have considered 9, — k,, and p|' = p* — k#. This procedure is similar to the one used
in the 't Hooft-Veltman prescription [19]. By power counting, the terms (p? — m?)p” P eHPEAD, Dy
and (p% —m?)p¥p® et b, py are cubically divergent. These terms are also not transversal, however,
they cancel each other already in the integrand, when we consider IT)**” +II2""?. So, the remaining
divergences are at most quadratic, and thus gauge invariance is restored.

However, it is interesting to carry out the separation

(p? — m?)etP b, ky _ 3 (p? — m?)etP" b, ky B (p? — m?2)eP b, ky
2
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in TI"*? in which we can rewrite (7)), such that TI}"*7 + IT¥""7 =TI} + TI4"*7, where
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and II#77 (k) = f[gy“ ?(—k). Thus, we need only to calculate 1:[5 YP? so that after using the Feynman
parametrization, we have
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However, as we focus on finite temperature effects, let us perform the Wick rotation and split the
momentum in the above expression. The result is
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Now, in order to select the tensorial structures of the above result ([B0), let us consider the

expressions ([I8) and

—4
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as well as the identity (20]), so that we obtain
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with
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_dy ,3-d 1 d—4
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where M? = m? — z(z — 1)k?. Note that, in the zero temperature and mass limit, i.e., if the
summation over integer n is replaced by the integral % [ dpo and m — 0, we obtain C = —lglf_,% =
—FEk* and D = 0 = F = G = H, which matches the known zero-temperature result (I5) [5]. In
order to further simplify the above equations, we can make the change of variables py — pg + xko
(actually, one should, first, do this change of variables, and then, introduce the discrete pg), which
allows to rule out the dependence on kg, except in M.

Now, by manipulating these expressions (33]), we found the relations

k2G(k,m) + koH (k,m) = 2koD(k,m), (34a)
k21(k,m) 4 koJ(k,m) = 0, (34b)
EL(k,m) 4 koD(k,m) = 0, (34c)
E*F(k,m) + koI(k,m) = —D(k,m) + B(k,m), (34d)
C(k,m) + k*E(k,m) + koG(k,m) = 2koL(k,m) — A(k,m), (34e)

where the functions A(k, m) and B(k,m) were already defined in (23]). From these relations, the

tensor ([B2]) can be rewritten as follows:
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where the structures (g”” — k;’;“) and (%k” —u” ) are gauge invariant. In fact, only the mass

dependent term, k,:#, is not gauge invariant, however, when we collect all contributions to the
vacuum polarization tensor, given by I = TI;"77 4 1I"P7 + LTIE777 = IL"77 + 11", we

can easily observed the gauge invariance in I1#*??. Thus, by dropping the last three terms, which



evidently do not contribute to the gravitational Chern-Simons term, we have

s = [A(k,m) + C(k, m)] (nw -EE >ewf“bm
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In the above coefficients, if we return to the pg integral, i.e., % Zpo — % [ dpo, after the calculation,
we obtain exactly the result (I3]), as expected. We note that, unlike the previous papers [12, 13, 20,
21], where massless chiral fermions were considered, we carry out our calculations for a completely
arbitrary spinor.

Now, let us show explicitly the cancellation of the singularity between the coefficients A(k, m)
and C(k,m), as implicitly observed in (I3). As the divergent term is only mass-dependent (see
second term of (26al)), we first take into account kg = 0 in Eq. (B83al), and then, by evaluating the

summation over pg, we obtain

(4 ,u?’_d 1 d=3 sin (Z4) T (%4 ,u?’_d
C(k,m)|kp=0 = %/ dz (M?) 2 [(3—d)M?+ (d — 1)m?] + (2)2 5 =)
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% J g 96 loanh(m)) = 2](E7 — €5TRACE - &%) 4 (d = 2)(67 - ), (37)
where & = 52—2:‘[ Now, in order to single out the pole part (PP) of the above expression, let us

finally consider k — 0, so that we get

d—1

) s 1
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which precisely cancels the pole part of the coefficient A(0,m). Therefore, we are seeing that IT1+#/*?
([B6)) is finite even when the mass is taken into account.

Our next step is to calculate the coefficients ([B3]), by considering, in the coefficients accompa-
nying k% and T2, the static limit (kg = 0, k— 0), which is the one used to obtain the anomalous
conductivities (i.e., the chiral vortical conductivity) in Weyl semimetals (m = 0) [22]. Furthermore,
if we do not take into account these conditions, additional term with five and more derivatives will

arise. Then, by using these considerations, we can evaluate the coefficients ([B3]), as follows:

so(mdy, 3—d —d 00
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= E) (398“)
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Thus, for Eq. (36]), we obtain

2 Vo
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We note that the above term u”u%bye? u,.ky, with the coefficient L 12 , is the one that contributes
to the chiral vortical conductivity, which was obtained in Refs. [20, 21], in the context of Kubo
formulation and derivative expansion. However, as we can see, our result (40) is a general one,
gauge invariant, and finite.

By returning to the coordinate space, through the replacement k* — i0*, we have

1 K. 1% UV QO
Scs[h] = / d*z by, {— TP AbO (Oh,” — 0"0%hyo)
T2 000" 000°
_ PR oY v oY o
15 boe!P" O < 5 u > ( 0 u )hpo} . (41)
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We note that the nonlocality of our result is a price we pay for the gauge invariance. The similar
situation was found to occur for the one-derivative term in [17].

It is instructive to compare the four-dimensional gravitational Chern-Simons term with the two-
dimensional one. As it is well known, see f.e. [23], the two-dimensional gravitational Chern-Simons

term is known to have the form

Sop = Pa/Igl(fr+ 1% = - / 2207, (42)

- 8n2
where f = " f,,, 9l =1, and fuw = Oya, — Ovay, = \/HEWf. The © is the Chern-Simons
coefficient.

Let us proceed along the lines developed in [24]. First, we choose ©® = x%b,, where b, is a

constant vector implementing the Lorentz symmetry breaking. Then, we have
Sop = = [ Paabuevo 43
2D = o rx%bo e 0y a, . (43)
Now, we integrate by parts and disregard the superficial term, so that we arrive at
Sop = L b, el A 44
2D = —5 b Ay (44)

Here, we have the new vector A, = f d?xa,. It is constant since the coordinate dependence is
integrated out. However, in our theory there is only one privileged direction, that is, the b, vector,
which requires A, = Ab,. But in this case our Chern-Simons term identically disappears, so, for
the Lorentz symmetry breaking of this form, the two-dimensional gravitational Chern-Simons term
is equal to zero. This result can be confirmed by direct calculations of Eq. (I0), in two dimensions,
as well. The Eq. (7)) is not considered, because in two dimensions the spin connection w,, vanishes.

Let us discuss our results. We proved that the four-dimensional gravitational Chern-Simons
term turns out to be finite (I3]), despite the initial expression for it strongly (cubically) diverges.
We also found that differently from the previous papers studying gravitational anomalies at finite
temperature [12, (13, 120, [21], our result (36]) is obtained for the presence of one fermion only, and
it is generic, without any restrictions for the spinor fields, while in these references the spinors are
suggested to be massless and chiral. Differently from these papers, we started from the action with
the explicit Lorentz symmetry breaking, considered the coupling of fermion to the gravity only, and
carried all calculations explicitly with use of the Matsubara frequencies methodology, without use
the derivative expansion. Also, we noted that our result ([@0Q) for the gravitational Chern-Simons
term was obtained in the zero mass limit, however, for the non-zero mass case the gauge symmetry

is observed as well (see Eq. ([6])). Then, we can conclude that our result is consistent with the

12



previous studies. It is necessary to note that, unlike many other finite temperature studies, our

result displays very simple temperature dependence, which moreover monotonously grows with the

temperature. This can indicate that our theory is probably an effective one for the low-temperature

regime, while the whole temperature range should be described by a more involved theory.
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