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ON THE SEMI-SIMPLICITY CONJECTURE FOR Qab

MARCO D’ADDEZIO

Abstract. We show that the semi-simplicity conjecture for finitely generated fields follows

from the conjunction of the semi-simplicity conjecture for finite fields and for the maximal

abelian extension of the field of rational numbers.

1. Notation

1.1. Let k be a field, k an algebraic closure and ℓ a prime number different from the charac-

teristic of k. Write Γk for the Galois group Gal(k/k). We denote by RepQℓ
(Γk) the neutral

Tannakian category of continuous finite-dimensional Qℓ-linear representations of Γk. We shall
refer to the objects in RepQℓ

(Γk) simply as (ℓ-adic) representations of Γk.

Let Rep
geo
Qℓ

(Γk) be the smallest neutral Tannakian subcategory of RepQℓ
(Γk), closed under

subquotients, which contains all the ℓ-adic representations of Γk of the form H i
ét(Xk,Qℓ), where

i is an integer, X is a smooth and projective variety over k and Xk := X ⊗k k. We shall say

that an object in Rep
geo
Qℓ

(Γk) is an ℓ-adic representation coming from geometry.

1.2. Let K be a field of characteristic 0 and V a finite-dimensional K-vector space. We say that

a linear endomorphism ϕ of V is semi-simple if it is diagonalizable after a finite extension of
K. Let Vρ be an ℓ-adic representation of ΓQ and p 6= ℓ a prime number where Vρ is unramified,
we say that ρ is semi-simple at p if one (or equivalently any) Frobenius element at p acts via a

semi-simple automorphism.

1.3. For a ring R and a positive integer n we write R[ζn] for the ring quotient R[t]/(tn − 1)
and R[ζ∞] for the ring colimit lim

−→n
R[ζn]. If ℓ is a prime number, we denote by R[ζℓ∞ ] the ring

lim
−→n

R[ζℓn ]. Besides, we denote by Qab the maximal abelian extension of Q in Q.

2. Introduction

2.1. Let k be a field, we consider the following statement.

S(k): For every prime number ℓ different from the characteristic of k, an ℓ-adic repre-
sentation of Γk coming from geometry is semi-simple.

Grothendieck and Serre conjectured that for every finitely generated field k, the assertion S(k)
is true, [Tat65]. This conjecture is commonly known as the semi-simplicity conjecture. Note

that the conjecture predicts that S(k) is true even for fields that are infinite Galois extensions of
a finitely generated field. Indeed, if k′/k is a Galois extension then S(k) implies S(k′) because
the restriction of a semi-simple representation to a normal subgroup is semi-simple. For this

reason, Grothendieck–Serre semi-simplicity conjecture predicts, for example, that the ℓ-adic
representions of ΓQab coming from geometry are semi-simple. On the other hand, it is worth
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recalling that S(k) is false in general. For example, over the local fields Qp and C((t)) the
representations coming from geometry are not semi-simple in general.

In this article, we prove the following implication.

Theorem 2.2 (Theorem 4.2). Let k be a Galois extension of a finitely generated field. The

conjunction of S(Fp) for every prime number p and S(Qab) implies S(k).

2.3. Let us make a brief summary on what is already known about Grothendieck–Serre semi-
simplicity conjecture. The first result was obtained in 1948 by Weil, who proved the conjecture
for abelian varieties (and hence for curves) over finite fields. In this case, the semi-simplicity

follows from the positivity of the Rosati involution. Later, in 1983, Faltings proved the semi-
simplicity conjecture for abelian varieties over number fields, as an intermediate step of his
proof of the Mordell conjecture. By the work of Deligne, both these results extend to K3

surfaces, thanks to the Kuga–Satake construction.
In 1980, Deligne obtained a general semi-simplicity result in positive characteristic, as a

consequence of his theory of weights.

Theorem 2.4 ([Del80, Théorème 3.4.1.(iii)]). Let X be a normal scheme of finite type over

Fp. For every ι-pure lisse Qℓ-sheaf over X, the inverse image over XFp
is semi-simple. In

particular, for every finitely generated field extension k∞/Fp, the assertion S(k∞) is true.

Note that Theorem 2.4 is related to the semi-simplicity conjecture because when k is a finitely
generated field extension of Fp, the representations of k coming from geometry are direct sum

of pure representations, [Del74]. Using Theorem 2.4, Lei Fu proved the following.

Theorem 2.5 ([Fu99]). Let X be a normal connected scheme of finite type over Fp and let F

be a ι-pure lisse Qℓ-sheaf over X. If there exists a closed point x of X such that the Frobenius
automorphism of F at x is semi-simple, then F is a semi-simple lisse sheaf over X. In partic-
ular, for every finitely generated field k of positive characteristic p, the assertion S(Fp) implies
S(k).

The idea of the proof of Theorem 2.5 is to use the exact sequence

(2.1) 1 → ΓkFp
→ Γk → Gal(Fp/Fp) → 1

where k is the function field of X. Thanks to (2.5) one can combine the semi-simplicity of
the restriction to ΓkFp

provided by Theorem 2.4 and the condition at x in order to get the

semi-simplicity of the entire representation of Γk.

We end this section mentioning the main general result which is known so far on the semi-
simplicity conjecture in characteristic 0.

Theorem 2.6 ([Ser00]). If k is a finitely generated field of characteristic 0, then S(Q) implies
S(k).

The theorem is an application of Serre’s specialization method via Hilbert’s irreducibility

theorem.

3. Some analogies

Our work is based on the analogy between the field of rational numbers and the function
field Fp(t), or more precisely between the Galois extensions Qab/Q and Fp(t)/Fp(t). Note that
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both extensions are the maximal cyclotomic extensions of the respective base fields. The Galois

group Gal(Qab/Q) is canonically isomorphic to Ẑ×. If we denote by δ : ΓQ ։ Ẑ× the quotient
induced by this identification, we get an exact sequence

(3.1) 1 → ΓQab → ΓQ
δ
−→ Ẑ× → 1,

which is the analogue of (2.1). Following this analogy, we intend to investigate in this article

the following conjecture which is inspired by Theorem 2.5.

Conjecture A. If an ℓ-adic representation of ΓQ coming from geometry is semi-simple at some

unramified prime number p different from ℓ, then it is semi-simple as a representation of ΓQ.

We shall show in the next section how to adapt Fu’s proof of Theorem 2.5 in order to

prove that S(Qab) implies Conjecture A. But before going into further details, we would like
to speculate a bit more on S(Qab). Continuing the previous analogy, we wonder whether is it
possible to prove S(Qab), as for Theorem 2.4, via a suitable theory of weights for the ℓ-adic

representations of ΓQab . Note that one cannot hope that every pure ℓ-adic representation of ΓQ

is semi-simple when restricted to ΓQab, as we illustrate in the following example.

Example 3.1. Let K/Q be an imaginary quadratic extension and let K−
∞/K be the anti-

cyclotomic Zℓ-extension of K, namely that Zℓ-extension of K which is also a non-abelian Galois
extension of Q. We choose an isomorphism of the Galois group Gal(K−

∞/Q) with Zℓ ⋊ Z/2,

where Zℓ corresponds to Gal(K−
∞/K) and Z/2 acts non-trivially on Zℓ. Write χ for the non-

trivial character of Gal(K/Q). We claim that there exists a non-trivial extension of ℓ-adic
representations of ΓQ

0 → χ → V → Qℓ → 0

which becomes trivial when restricted to ΓK−

∞

. This is constructed by mapping

(1, 0) 7→

(
1 1
0 1

)
and (0, 1) 7→

(
−1 0
0 1

)
.

This extension is non-trivial when restricted to ΓQab because K−
∞ is not in Qab. On the other

hand, V is manifestly pure of weight 0.

In order to exclude extensions as the one presented in the previous example, it is reasonable to

add conditions on the ℓ-adic representations considered using ℓ-adic Hodge theory. For example,
in Example 3.1, since V |Γ

Qab

ℓ

is a unipotent non-trivial representation, it is not Hodge–Tate,

[BC09, §2.4.5]. On the other hand, the ℓ-adic representations coming from geometry are de
Rham at ℓ, [Fal89]. Let us explain a refined hope.

3.2. In order to prove S(Qab), one has to show that extensions of representations of ΓQab

coming from geometry are all trivial. It is easy to see that, without loss of generality, one can
simply consider extensions of the trivial representation by another representation.

Let V be an ℓ-adic representation of ΓQ coming from geometry and of weight 0 and let N
be a multiple of the product of all the prime numbers where V is ramified. We consider the

vector space
H := H1

ét(Spec(Z[ζ∞, N−1]), V )

endowed with the left action of the group Aut(Z[ζ∞, N−1]) = Ẑ× acting by pushforward. The
group H parametrises all the extensions of Qℓ by V |Γ

Qab
which are unramified away of N . We
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choose a prime number p ∤ Nℓ and a lift of p via the quotient map Ẑ×
։ (Ẑ/Zp)

×, denoted by

p̃ ∈ Ẑ×. Write ϕp̃ for the endomorphism of H induced by p̃. Also, let Hg ⊆ H be the Selmer
group obtained by imposing local de Rham conditions at ℓ, as in [BK90]. Suppose that the
following assumption is true.

W (V,N): For every eigenvalue α of ϕp̃ acting on Hg there exists an embedding ι : Qℓ →֒ C such
that |ι(α)| > 1.

Then it follows that ϕp̃ acts without fixed points on Hg. In turn, this implies that every

extension of Qℓ by V over Spec(Z[ζ∞, N−1]) which descends to Spec(Z[N−1]) and comes from
geometry is trivial. We proved the following.

Proposition 3.3. If W (V,N) is true for every V and N as above, then S(Qab) is true.

4. Our main results

We choose a closed embedding ΓQp ⊆ ΓQ induced by a field embedding Q →֒ Qp and a
Frobenius lift Fp ∈ ΓQp ⊆ ΓQ. We want to prove in this section the following result.

Theorem 4.1. Let ρ be an ℓ-adic representation of ΓQ which is semi-simple when restricted to

ΓQab . If there exists a prime number p 6= ℓ and a Frobenius element Fp ∈ ΓQ such that ρ(Fp)

is semi-simple, then ρ is a semi-simple representation of ΓQ. In particular, S(Qab) implies

Conjecture A.

Before going into the proof, let us first see how to deduce from Theorem 4.1 the main result
of our article.

Theorem 4.2. Let k be a Galois extension of a finitely generated field. The conjunction of
S(Fp) for every prime number p and S(Qab) implies S(k).

Proof. If k has positive characteristic p, thanks to Theorem 2.5, we have that S(Fp) implies
S(k). We pass to characteristic 0. Thanks to Theorem 2.6, it is enough to prove S(Q). Also, in

light of Theorem 4.1, we know that S(Qab) implies Conjecture A. Let us show how to deduce
S(Q) from here. Let X be a smooth projective variety over Q and let i be a natural number.
We choose a prime number p where X admits good reduction X/Fp. Thanks to S(Fp), we

know that the Frobenius acting on H i
ét(XFp

,Qℓ) is semi-simple. By the smooth and proper

base-change theorem, the action of Fp on H i
ét(XQ,Qℓ) is semi-simple as well. By virtue of

Conjecture A, this implies that the representation of ΓQ on H i
ét(XQ,Qℓ) is semi-simple. Since

this holds for every X and i, we get S(Q). �

In order to prove Theorem 4.1, we adapt Fu’s proof in [Fu99] to our situation following the

analogy in §3. For this purpose, we introduce an ad hoc notion of a Weil group of Q.

Definition 4.3. For every n ∈ Z, the element Fn
p ∈ ΓQ acts on ΓQab by conjugation. This

induces a continuous action of Z, with the discrete topology, on ΓQab . Let WQ,Fp be semi-direct

product ΓQab ⋊Z as topological groups, where Z acts as above. We say that WQ,Fp is the Weil
group of Q with respect to Fp.
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4.4. The group WQ,Fp sit in the following commutative diagram with exact rows.

(4.1)

1 ΓQab WQ,Fp Z 1

1 ΓQab ΓQ Ẑ× 1

where the injective map WQ,Fp →֒ ΓQ sends 1 ∈ Z to Fp. Following the proof of [Fu99], it is
rather straightforward to prove that if ρ is a representation satisfying the hypothesis in Theorem

4.1, then ρ|WQ,Fp
is semi-simple. The additional issue in our set-up is that the subgroup WQ,Fp

is not dense in ΓQ. The closure of WQ,Fp in ΓQ is not even of finite index. Nonetheless, it is
still possible to prove the following result.

Proposition 4.5. Let ρ be an ℓ-adic representation of ΓQ. If for some prime number p 6= ℓ
and for some choice of Fp its restriction to WQ,Fp is semi-simple, then ρ is a semi-simple

representation of ΓQ.

In order to prove Proposition 4.5, we need a couple of preparatory lemmas. We start by

recalling a well-known fact on the quotients of Ẑ×. It is worth mentioning that this lemma is
also one of the main ingredients in the proof of Moonen’s recent result on the semi-simplicity
conjecture, [Moo17].

Lemma 4.6. There exits a unique continuous quotient Ẑ×
։ Zℓ up to automorphisms of the

target.

Proof. By the Chinese remainder theorem, Ẑ× is isomorphic to the product
∏

ℓ′ Z
×
ℓ′ where ℓ′

varies among all the prime numbers. We choose a continuous isomorphism between Z×
ℓ /torsion

and Zℓ which, in turn, induces a quotient π : Ẑ×
։ Z×

ℓ /torsion = Zℓ.

Passing to the unicity, let π′ : Ẑ×
։ Zℓ be another Zℓ-quotient of Ẑ

×. We want to check that

π and π′ are the same up to automorphisms of Zℓ. To do this, we may replace Ẑ× with the dense
subgroup

⊕
ℓ′ Z

×
ℓ′ ⊆

∏
ℓ′ Z

×
ℓ′ . Since Zℓ is torsion-free and there are no non-trivial morphisms

Zℓ′ → Zℓ when ℓ′ 6= ℓ, every continuous morphism from
⊕

ℓ′ Z
×
ℓ′ to Zℓ factors through π.

Therefore, there exists a continuous endomorphism α of Zℓ such that π′ = α ◦ π. Since π′ is

surjective, α is surjective. This implies that α is an automorphism, as we wanted. �

We fix from now on a quotient morphism δℓ : ΓQ ։ Zℓ.

Construction 4.7. Let ρ be an ℓ-adic representation of ΓQ. We write Π for the image of ΓQ

and Π0 for the image of ΓQab . We also denote by Π the quotient Π/Π0 and by π the natural

projection π : Π ։ Π. We obtain the following commutative diagram of profinite groups with
exact rows

1 ΓQab ΓQ Ẑ× 1

1 Π0 Π Π 1.

ρ

δ

ρ

π

Lemma 4.8. The group Π is either a finite abelian group or it admits a surjective morphism
πℓ : Π ։ Zℓ with finite kernel such that δℓ = πℓ ◦ π ◦ ρ.
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Proof. The group Π is a closed subgroup of the topological group GL(Vρ), thus it can be
endowed with the structure of an ℓ-adic analytic group, [DSMS91, Theorem 9.6]. By [ibid.,
Theorem 8.32], this implies that Π contains an open topologically finitely generated pro-ℓ-

subgroup. Since π is surjective, the same is then true for Π. Besides, note that the group Π,

being a quotient of Ẑ×, is an abelian group.
Let Πℓ ⊆ Π be the maximal pro-ℓ-subgroup of Π. By the previous, Πℓ is a finitely generated

Zℓ-module. Moreover, since Π is abelian, the inclusion Πℓ ⊆ Π admits a retraction. This

implies that there exists a surjective morphism Ẑ×
։ Πℓ. By Lemma 4.6, Πℓ is a Zℓ-module of

rank at most 1. This means precisely that either Π is finite or it admits a quotient πℓ : Π ։ Zℓ

with finite kernel. In the second case, thanks to Lemma 4.6, up to post-composing πℓ with an
automorphism of Zℓ, the quotients δℓ and πℓ ◦ π ◦ ρ are equal. This concludes the proof.

�

4.9. Proof of Proposition 4.5. Let Π1 be the closure of the image of WQ,Fp in Π. In light of
[Fu99, Lemma 1], it is enough to show that Π1 has finite index in Π. We note that since Π1

contains Π0, if we set Π1 := π(Π1), then [Π : Π1] = [Π : Π1]. Thanks to this we are reduced to
showing that Π1 has finite index in Π.

By Lemma 4.8, we have two cases. If Π is finite the result holds trivially. If Π is infinite,

we take πℓ : Π ։ Zℓ as in the lemma. Since πℓ has finite kernel, to prove that Π1 has finite
index in Π it is enough to show that πℓ(Π1) has finite index in Zℓ. The profinite group Π1

is topologically generated by ρ(Fp), therefore the group πℓ(Π1) is topologically generated by

δℓ(Fp). We conclude the proof by virtue of the following lemma.
�

Lemma 4.10. If ℓ 6= p, the closure of the group generated by δℓ(Fp) in Zℓ is an open subgroup.

Proof. Let H be the closure of the group generated by δℓ(Fp) in Zℓ. Since H is a subgroup, for

every n ∈ Z the multiplication by n in Zℓ maps H to H. This implies that H is an ideal of the
DVR Zℓ. It remains to show that H 6= (0) or, equivalently, that δℓ(Fp) 6= 0.

By Lemma 4.6, the quotient δℓ factors through Gal(Q(ζℓ∞)/Q). Let Qur
p be the maximal

unramified extension of Qp in Qp. The restriction of δℓ to ΓQp factors through Gal(Qur
p /Qp),

because the extension Q(ζℓ∞)/Q is unramified at p. To summarize we have the following
commutative diagram

ΓQp Gal(Qur
p /Qp)

ΓQ Gal(Q(ζℓ∞)/Q) Zℓ.

δℓ

By definition, the image of Fp ∈ ΓQp in Gal(Qur
p /Qp) is the Frobenius lift. Therefore, the

image of Fp in Gal(Q(ζℓ∞)/Q) is the unique automorphism of Q(ζℓ∞) which raises each root
of unit to its p-th power. This automorphism has manifestly infinite order in Gal(Q(ζℓ∞)/Q).
Since the quotient Gal(Q(ζℓ∞)/Q) ։ Zℓ has finite kernel, this implies that δℓ(Fp) 6= 0, as we

wanted.
�
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4.11. Proof of Theorem 4.1. By Proposition 4.5, it is enough to check that ρ is semi-simple
when restricted to WQ,Fp ⊆ ΓQ. Let G0 be the Zariski closure of Π0 in GL(Vρ) and let GFp

be the semi-direct product G0 ⋊ Z as group schemes where 1 ∈ Z acts on G0 as ρ(Fp) acts on

G0 by conjugation. We define ρ̃ : WQ,Fp → GFp as the only morphism making the following
diagram commuting

1 ΓQab WQ,Fp Z 1

1 G0 GFp Z 1.

ρ|Γ
Qab ρ̃

Let σ : GFp → GL(Vρ) be the representation which extends the tautological representation

G0 →֒ GL(Vρ) by sending 1 ∈ Z to ρ(Fp). The composition σ ◦ ρ̃ : WQ,Fp → GL(Vρ) is equal
to ρ. Since ρ̃ has Zariski-dense image, in order to show that the restriction of ρ to WQ,Fp is

semi-simple it is enough to check that σ is semi-simple.
The group G0 is reductive because, by assumption, ρ is semi-simple when restricted to ΓQab .

Thanks to [Del80, Lemme 1.3.10], there exists a Qℓ-point g in the centre of GFp of the form

(g′, d) where g′ ∈ G0(Qℓ) and d 6= 0. Since ρ(Fp) is semi-simple, we may apply [Fu99, Lemma

2] to the representation σ, obtaining thereby the desired result.
�
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