ON CERTAIN MEAN VALUES OF LOGARITHMIC DERIVATIVES OF L-FUNCTIONS AND THE RELATED DENSITY FUNCTIONS

MASAHIRO MINE

Abstract. We study some "density function" related to the value-distribution of L-functions. The first example of such a density function was given by Bohr and Jessen in 1930s for the Riemann zeta-function. In this paper, we construct the density function in a wide class of L-functions. We prove that certain mean values of L-functions in the class are represented as integrals involving the related density functions.

1. INTRODUCTION

We begin with recalling a classical result on the value-distribution of the Riemann zeta-function $\zeta(s)$ obtained by Bohr and Jessen. For any $\sigma > 1/2$, let

$$
G = \{ s = \sigma + it \mid \sigma > 1/2 \} \setminus \bigcup_{\rho = \beta + i\gamma} \{ s = \sigma + i\gamma \mid 1/2 < \sigma \le \beta \},
$$

where ρ runs through all zeros of $\zeta(s)$ with $\beta > 1/2$. Then we define $\log \zeta(s)$ for $s \in G$ by analytic continuation along the horizontal line. Fix a rectangle R in the complex plane whose edges are parallel to the coordinate axes, and denote by $\mathcal{V}_{\sigma}(T,R)$ the Lebesgue measure of the set

$$
\{t \in [-T, T] \mid \sigma + it \in G, \ \log \zeta(\sigma + it) \in R\}.
$$

Bohr and Jessen [\[1,](#page-17-0) [2\]](#page-17-1) proved that there exists the limit value

(1.1)
$$
\mathcal{W}_{\sigma}(R) = \lim_{T \to \infty} \frac{1}{2T} \mathcal{V}_{\sigma}(T, R)
$$

for any fixed $\sigma > 1/2$. They also showed that there exists a non-negative real valued continuous function $\mathcal{M}_{\sigma}(z)$ such that the formula

(1.2)
$$
\mathcal{W}_{\sigma}(R) = \int_{R} \mathcal{M}_{\sigma}(z) |dz|
$$

holds with $|dz| = (2\pi)^{-1} dx dy$. Their study was developed in various ways, for example, Jessen–Wintner [\[14\]](#page-17-2), Borchsenius–Jessen [\[3\]](#page-17-3), Laurinčikas [\[17\]](#page-17-4), and Matsumoto [\[21\]](#page-17-5).

Matsumoto [\[22\]](#page-18-0) generalized limit formula [\(1.1\)](#page-0-0) in a quite wide class of zetafunctions, which is now called the *Matsumoto zeta-functions*. On the other hand, an analogue of integral formula [\(1.2\)](#page-0-1) was obtained only in some restricted cases, for example, the case of Dedekind zeta-functions of finite Galois extensions of \mathbb{Q} [\[23\]](#page-18-1), and automorphic L-functions of normalized holomorphic Hecke-eigen cusp forms of

²⁰¹⁰ Mathematics Subject Classification. Primary 11M41; Secondary 11R42.

Key words and phrases. L-functions, value-distribution, density function.

level N [\[25\]](#page-18-2). Thus it is worth studying "density functions" such as $\mathcal{M}_{\sigma}(z)$ for more general zeta- or L-functions.

Kershner and Wintner [\[16\]](#page-17-6) proved analogues of formulas [\(1.1\)](#page-0-0) and [\(1.2\)](#page-0-1) for $(\zeta'/\zeta)(s)$. In this paper, we construct the density functions $M_{\sigma}(z;F)$ for functions $F(s)$ in a subclass of the Matsumoto zeta-functions and generalize Kershner– Wintner's result.

2. L-functions and the related density functions

2.1. Class of L-functions. We introduce the class S_I as the set of all functions $F(s)$ represented as Dirichlet series

$$
F(s) = \sum_{n=1}^{\infty} \frac{a_F(n)}{n^s}
$$

in some half plane that satisfy the following axioms:

- (1) *Ramanujan hypothesis.* Dirichlet coefficients $a_F(n)$ satisfy $a_F(n) \ll_{\epsilon} n^{\epsilon}$ for every $\epsilon > 0$.
- (2) *Analytic continuation.* There exists a non-negative integer m such that $(s 1)^m F(s)$ is an entire function of finite order.
- (3) *Functional equation.* $F(s)$ satisfies a functional equation of the form

$$
\Lambda_F(s) = \omega \overline{\Lambda_F(1-\overline{s})},
$$

where

$$
\Lambda_F(s) = F(s)Q^s \prod_{j=1}^r \Gamma(\lambda_j s + \mu_j),
$$

with some $|\omega|=1, Q>0, \lambda_j>0, \text{Re}(\mu_j)\geq 0.$

(4) *Polynomial Euler product.* For $\sigma > 1$, $F(s)$ is expressed as the infinite product

$$
F(s) = \prod_{p} \prod_{j=1}^{g} \left(1 - \frac{\alpha_j(p)}{p^s} \right)^{-1},
$$

where g is a positive constant and $\alpha_i(p) \in \mathbb{C}$.

(5) *Prime mean square.* There exists a positive constant κ such that

$$
\lim_{x \to \infty} \frac{1}{\pi(x)} \sum_{p \le x} |a_F(p)|^2 = \kappa,
$$

where $\pi(x)$ stands for the number of prime numbers less than or equal to x. The above axioms come from two classes of L-functions introduced by Selberg [\[29\]](#page-18-3) and Steuding [\[30\]](#page-18-4). We see that the class S_I is just equal to the intersection of these classes, and it is also a subclass of the Matsumoto zeta-functions, see Section 2 of [\[30\]](#page-18-4).

Let $N_F(\sigma, T)$ be the number of zeros $\rho = \beta + i\gamma$ of $F(s)$ with $\beta > \sigma$ and $0 < \gamma < T$. Then for the function $F(s)$ satisfying axioms (1)–(4), there exists a positive constant b such that for any $\epsilon > 0$,

$$
(2.1) \t\t N_F(T,\sigma) \ll_{\epsilon} T^{b(1-\sigma)+\epsilon}
$$

as $T \to \infty$, uniformly for $\sigma \geq 1/2$ [\[15,](#page-17-7) Lemma 3]. From the proof of [\[15\]](#page-17-7), estimate [\(2.1\)](#page-1-0) generally holds with $b = 4(d_F + 3)$, where d_F is the degree of F defined by

$$
d_F = 2\sum_{j=1}^r \lambda_j.
$$

The constant b is taken smaller in some special cases, for example, Heath-Brown $[8]$ showed that the Dedekind zeta-functions attached to algebraic number fields of degree $d \geq 3$ satisfy [\(2.1\)](#page-1-0) with $b = d$, and Perelli [\[26\]](#page-18-5) obtained it with $b = d_F$ in a subclass of the Selberg class.

Next, we define the subclass S_{II} as the set of all $F(s)$ satisfying axioms (1)–(5) and the following (6):

(6) *Zero density estimate.* There exist positive constants c and A such that

$$
(2.2) \t\t N_F(T,\sigma) \ll T^{1-c(\sigma-\frac{1}{2})}(\log T)^A
$$

as $T \to \infty$, uniformly for $\sigma \geq 1/2$.

There are many zeta- or L-functions that belong to the class S_I , for instance, the Riemann zeta-functions $\zeta(s)$, Dirichlet L-functions $L(s, \chi)$ of primitive characters χ , Dedekind zeta-functions $\zeta_K(s)$, automorphic L-functions $L(s, f)$ of normalized holomorphic Hecke-eigen cusp forms f with respect to $SL_2(\mathbb{Z})$. Furthermore, estimate [\(2.2\)](#page-2-0) is proved for $\zeta(s)$ by Selberg [\[28\]](#page-18-6), for $L(s, \chi)$ by Fujii [\[4\]](#page-17-9), and for $L(s, f)$ by Luo [\[19\]](#page-17-10), and hence they belong to the subclass S_{II} .

2.2. Statements of results. For an integrable function $f(z)$, we denote its Fourier transform and Fourier inverse transform by

$$
\widehat{f}(z) = f^{\wedge}(z) = \int_{\mathbb{C}} f(w)\psi_z(w) |dw| \text{ and } f^{\vee}(z) = \int_{\mathbb{C}} f(w)\psi_{-z}(w) |dw|,
$$

respectively, where $\psi_w(z) = \exp(i \operatorname{Re} (z \overline{w}))$ is an additive character of $\mathbb C$ and $|dw|$ is the measure $(2\pi)^{-1}dudv$ for $w=u+iv$. According to [\[11,](#page-17-11) Section 9] or [\[12,](#page-17-12) Section 5], we then define the class Λ as

$$
\Lambda = \{ f \in L^1 \mid f, \widehat{f} \in L^1 \cap L^{\infty} \text{ and } (f^{\wedge})^{\vee} = f \text{ holds} \}.
$$

We see that any Schwartz function belongs to the class Λ , and especially, any compactly supported C^{∞} -function does.

The first main result of this paper is related to the mean values of L-functions.

Theorem 2.1. Let $F \in \mathcal{S}_I$. Let σ_1 be a large fixed positive real number. Let $\theta, \delta > 0$ *be real numbers with* $\delta + 3\theta < 1/2$ *. Let* $\epsilon > 0$ *be a small fixed real number. Let* $\Phi \in \Lambda$ *. Then there exists a constant* $T_1 = T_1(F, \sigma_1, \theta, \delta, \epsilon) > 0$ *such that the following formula*

(2.3)
$$
\frac{1}{T} \int_0^T \Phi\left(\frac{F'}{F}(\sigma + it)\right) dt = \int_{\mathbb{C}} \Phi(z) M_{\sigma}(z; F) |dz| + E
$$

holds for all $T \geq T_1$ *and for all* $\sigma \in [1 - b^{-1} + \epsilon, \sigma_1]$ *, where* $M_{\sigma}(z; F)$ *is a non-negative real valued continuous function uniquely determined from* F(s)*, and the constant* b *is that in* [\(2.1\)](#page-1-0)*. The error term* E *is estimated as*

(2.4)
$$
E \ll \exp\left(-\frac{1}{4}(\log T)^{\frac{2}{3}\theta}\right) \int_{\Omega} |\widehat{\Phi}(z)| |dz| + \int_{\mathbb{C}\backslash\Omega} |\widehat{\Phi}(z)| |dz|,
$$

4 M. MINE

where the implied constant depends only on F, σ_1, ϵ *, and*

$$
\Omega = \{ z = x + iy \in \mathbb{C} \mid -(\log T)^{\delta} \le x, y \le (\log T)^{\delta} \}.
$$

Moreover, if $F \in S_{II}$ *, then there exists a constant* $T_{II} = T_{II}(F, \sigma_1, \theta, \delta) > 0$ *such that* [\(2.3\)](#page-2-1) and [\(2.4\)](#page-2-2) hold together with $T \geq T_H$ and $\sigma \in [1/2 + (\log T)^{-\theta}, \sigma_1]$, where the *implied constant depends only on* F and σ_1 .

Then, let again R be a rectangle in the complex plane whose edges are parallel to the axes, and define $V_{\sigma}(T, R; F)$ as the Lebesgue measure of the set of all $t \in$ [0, T] for which $(F'/F)(\sigma + it)$ belongs to R. Denote by ν_k the usual k-dimensional Lebesgue measure. The second result is an analogue of Bohr–Jessen's limit theorem for $(F'/F)(s)$.

Theorem 2.2. Let $F \in \mathcal{S}_I$. Let σ be fixed with $\sigma > 1 - b^{-1}$, where the constant b is *that in* [\(2.1\)](#page-1-0). Let $\epsilon > 0$ *be an arbitrarily small real number. Then we have*

(2.5)
$$
\frac{1}{T}V_{\sigma}(T, R; F) = \int_{R} M_{\sigma}(z; F) |dz| + O\left((\nu_2(R) + 1)(\log T)^{-\frac{1}{2} + \epsilon}\right)
$$

as $T \rightarrow \infty$ *, where the implied constant depends only on* F, σ *, and* ϵ *. Moreover, if* $F \in \mathcal{S}_{II}$, then [\(2.5\)](#page-3-0) holds with any fixed $\sigma > 1/2$.

2.3. Remarks on the related works. The Riemann zeta-function $\zeta(s)$ is a typical example of the member of the subclass S_{II} . In this case, Theorem [2.1](#page-2-3) is essentially Theorem 1.1.1 of [\[5\]](#page-17-13), and the density function $M_{\sigma}(z;\zeta)$ was used to study of the distribution of zeros of $\zeta'(s)$ in [\[6\]](#page-17-14).

Theorem [2.2](#page-3-1) is related to the study on the *discrepancy estimates* for zeta-functions. Let

$$
\mathcal{D}_{\sigma}(T,R) = \frac{1}{2T} \mathcal{V}_{\sigma}(T,R) - \mathcal{W}_{\sigma}(R).
$$

We know that $\mathcal{D}_{\sigma}(T, R) = o(1)$ as $T \to \infty$ by [\(1.1\)](#page-0-0). Matsumoto [\[20\]](#page-17-15) gave a better upper bound for $\mathcal{D}_{\sigma}(T, R)$, which was improved by Harman and Matsumoto [\[7\]](#page-17-16). They proved

$$
\mathcal{D}_{\sigma}(T,R) \ll (\nu_2(R) + 1)(\log T)^{-A(\sigma) + \epsilon}
$$

for an arbitrarily small $\epsilon > 0$, where

$$
A(x) = \begin{cases} (x-1)/(3+2x) & \text{if } x > 1, \\ (4x-2)/(21+8x) & \text{if } 1/2 < x \le 1. \end{cases}
$$

Matsumoto [\[24\]](#page-18-7) also generalized this result for Dedekind zeta-functions even in the case of non-Galois extensions. We note that $A(x) \leq 1/2$ for any $x > 1/2$. Though the difference of logarithms and logarithmic derivatives exists, Theorem [2.2](#page-3-1) gives a better estimate on the discrepancy for $(F'/F)(s)$.

Recently, Ihara and Matsumoto studied density functions such as $\mathcal{M}_{\sigma}(z)$ more precisely, and named them "M-functions" for L-functions, see [\[10](#page-17-17)[–13\]](#page-17-18).

3. Proof of Theorem [2.1](#page-2-3)

We begin with considering the case of $\Phi = \psi_z$ in Theorem [2.1.](#page-2-3) The following proposition is a key for the proof of the theorem:

Proposition 3.1. Let $F(s)$ be a function satisfying axioms (1)–(4). Let σ_1 be a large *fixed positive real number. Let* θ , $\delta > 0$ *be real numbers with* $\delta + 3\theta < 1/2$ *. Let* $\epsilon > 0$ *be a small fixed real number. Then there exists a constant* $T_1 = T_1(F, \sigma_1, \theta, \delta, \epsilon) > 0$ *such that we have*

(3.1)
$$
\frac{1}{T} \int_0^T \psi_z \left(\frac{F'}{F} (\sigma + it) \right) dt = \widetilde{M}_\sigma(z; F) + O\left(\exp\left(-\frac{1}{4} (\log T)^{\frac{2}{3}\theta} \right) \right)
$$

for all $T \geq T_1$ *, for all* $\sigma \in [1 - b^{-1} + \epsilon, \sigma_1]$ *, and for all* $z \in \Omega$ *, where* $M_{\sigma}(z; F)$ *is a function uniquely determined from* F(s)*. The implied constant depends only on* F, σ_1 *and* ϵ *. If* $F(s)$ *further satisfies axiom* (6)*, there exists a constant* T_{II} = $T_{\text{II}}(F,\sigma_1,\theta,\delta) > 0$ such that [\(3.1\)](#page-4-0) holds together with $T \geq T_{\text{II}}$ and $\sigma \in [1/2 + 1]$ $(\log T)^{-\theta}, \sigma_1$, where the implied constant depends only on F and σ_1 .

We first prove Proposition [3.1](#page-4-1) in Section [3.1.](#page-4-2) We sometimes omit details of the proofs there since they strongly follow Guo's method in [\[5\]](#page-17-13). Towards the proof of Theorem [2.1,](#page-2-3) we next consider in Section [3.2](#page-9-0) the growth of the function $M_{\sigma}(z; F)$ of [\(3.1\)](#page-4-0). We finally complete the proof of Theorem [2.1](#page-2-3) in Section [3.3.](#page-13-0)

3.1. **Proof of Proposition [3.1.](#page-4-1)** Let $F(s)$ be a function satisfying axiom (4). Then we see that

$$
\frac{F'}{F}(s) = -\sum_{n=1}^{\infty} \frac{\Lambda_F(n)}{n^s}, \qquad \sigma > 1,
$$

where $\Lambda_F(n)$ is given by $\Lambda_F(n) = (\alpha_1(p)^m + \cdots + \alpha_g(p)^m) \log p$ if $n = p^m$ and $\Lambda_F(n) = 0$ otherwise. In this section, we approximate $(F'/F)(\sigma + it)$ by some Dirichlet polynomials. First, we define

$$
w_X(n) = \begin{cases} 1 & \text{if } 1 \le n \le X, \\ \frac{\log(X^2/n)}{\log X} & \text{if } X \le n \le X^2 \end{cases}
$$

for $X > 1$. We approximate $(F'/F)(\sigma + it)$ by the following function $f_X(t, \sigma; F)$:

$$
f_X(t, \sigma; F) = -\sum_{n \le X^2} \frac{\Lambda_F(n)}{n^{\sigma+it}} w_X(n).
$$

Lemma 3.2. Let $F(s)$ be a function satisfying axioms (1)–(4). Let σ_1 be a large *fixed positive real number. Let* $\epsilon > 0$ *be a small fixed real number. Then there exists an absolute constant* $T_0 > 0$ *such that we have*

(3.2)
$$
\frac{1}{T} \int_0^T \psi_z \left(\frac{F'}{F} (\sigma + it) \right) dt = \frac{1}{T} \int_0^T \psi_z (f_X(t, \sigma; F)) dt + E_1
$$

for all $T \geq T_0$ *, for all* $\sigma \in [1 - b^{-1} + \epsilon, \sigma_1]$ *, and for all* $z \in \mathbb{C}$ *. The error term* E_1 *is estimated as for any* $X, Y > 1$

$$
(3.3)
$$

$$
E_1 \ll \frac{1}{T} + YT^{-\frac{b}{2}\{\sigma - (1 - b^{-1} + \frac{\epsilon}{2})\}} + \frac{|z|}{\log X} \left(\frac{X \log Y \log T}{Y} + \frac{X^{-\frac{1}{2}\{\sigma - (1 - b^{-1} + \frac{\epsilon}{2})\}} \log T}{\{\sigma - (1 - b^{-1} + \frac{\epsilon}{2})\}^2} + \frac{X}{T} + X^{-\sigma} \log^2 T \right),
$$

6 M. MINE

where the implied constant depends only on F *. If* $F(s)$ *further satisfies axiom* (6)*, then* [\(3.2\)](#page-4-3) *holds with* $\sigma \in [1/2 + (\log T)^{-\theta}, \sigma_1]$ *, and we have*

(3.4)
$$
E_1 \ll \frac{1}{T} + YT^{-\frac{c}{2}(\sigma - \frac{1}{2})}(\log T)^A + \frac{|z|}{\log X} \left(\frac{X \log Y \log T}{Y} + \frac{X^{-\frac{1}{2}(\sigma - \frac{1}{2})} \log T}{(\sigma - \frac{1}{2})^2} + \frac{X}{T} + X^{-\sigma} \log^2 T \right),
$$

where the implied constant depends only on F*.*

Proof. This lemma is an analogue of Lemma 2.1.4 of [\[5\]](#page-17-13). Let $\mathscr{B}_Y(\sigma, T; F)$ be the set of all $t \in [0, T]$ for which $|\gamma - t| \leq Y$ holds with some zeros $\rho = \beta + i\gamma$ of $F(s)$ satisfying $\beta \geq \frac{1}{2}$ $\frac{1}{2}(\sigma + 1 - b^{-1} + \frac{\epsilon}{2})$ $\frac{\epsilon}{2}$). Then we see that E_1 is

$$
(3.5) \ll \frac{1}{T} + \frac{\nu_1(\mathscr{B}_Y(\sigma, T; F))}{T} + \frac{|z|}{T} \int_{[1,T] \cap \mathscr{B}_Y(\sigma, T; F)^c} \left| \frac{F'}{F}(\sigma + it) - f_X(t, \sigma; F) \right| dt,
$$

since $|\psi_z(w) - \psi_z(w')| \leq |z||w - w'|$. By the definition of $\mathscr{B}_Y(\sigma, T; F)$, we have

$$
\nu_1(\mathscr{B}_Y(\sigma,T;F)) \le 2YN_F\left(\frac{1}{2}\left(\sigma+1-b^{-1}+\frac{\epsilon}{2}\right),T\right).
$$

Furthermore, estimate (2.1) implies that the second term of (3.5) is

$$
\ll Y T^{1-\frac{b}{2}\{\sigma-(1-b^{-1}+\frac{\epsilon}{2})\}}
$$

for $\sigma > 1 - b^{-1} + \epsilon/2$. Then we estimate the third term. For this, Guo used the formula of [\[27,](#page-18-8) Lemma 2], and we need a similar formula for general $F(s)$. We first recall that the following estimate

(3.6)
$$
\frac{F'}{F}(s) \ll \log^2(|t|+2)
$$

holds if $s = \sigma + it$ satisfies $-1 \leq \sigma \leq 2$ and has distance $\gg \log(|t| + 2)^{-1}$ from zeros and poles of $F(s)$. This can be easily deduced from axioms (1)–(4). Let $c = \max\{2, 1 + \sigma\}$ and choose $T_m \in (m, m + 1]$ and $0 < \delta < 1$ such that the edges $[c + iT_m, -\delta + iT_m]$, $[c - iT_m, -\delta - iT_m]$, and $[-\delta - iT_m, -\delta + iT_m]$ have distance $\gg \log(|t|+2)^{-1}$ from zeros and poles of $F(s)$. Then, we consider the integral

$$
\frac{1}{2\pi i} \int_{c-iT_m}^{c+iT_m} \frac{F'}{F}(z) \frac{X^{z-s} - X^{2(z-s)}}{(z-s)^2} dz.
$$

We see that

$$
\lim_{m \to \infty} \frac{1}{2\pi i} \int_{c-iT_m}^{c+iT_m} \frac{F'}{F}(z) \frac{X^{z-s} - X^{2(z-s)}}{(z-s)^2} dz = -f_X(t, \sigma; F) \log X
$$

and change the contour by the edges $[c + iT_m, -\delta + iT_m]$, $[c - iT_m, -\delta - iT_m]$, and $[-\delta - iT_m, -\delta + iT_m]$. The integrals on the horizontal edges tend to 0 as $m \to \infty$ due to estimate (3.6) , and we have also by (3.6) ,

$$
\frac{1}{2\pi i} \int_{-\delta - i T_m}^{-\delta + i T_m} \frac{F'}{F}(z) \frac{X^{z-s} - X^{2(z-s)}}{(z-s)^2} dz \ll_{\sigma_0} X^{-\sigma} \log^2 T
$$

for any $\sigma \geq \sigma_0 > 0$ and $t \in [1, T]$. Calculating the residues, we obtain the following formula:

(3.7)
$$
\frac{F'}{F}(s) = f_X(t, \sigma; F) - \frac{m_1}{\log X} \frac{X^{1-s} - X^{2(1-s)}}{(1-s)^2} + \frac{m_0}{\log X} \frac{X^{-s} - X^{-2s}}{s^2} + \frac{1}{\log X} \sum_{\rho} \frac{X^{\rho-s} - X^{2(\rho-s)}}{(\rho-s)^2} + O_{\sigma_0} \left(\frac{1}{\log X} X^{-\sigma} \log^2 T \right),
$$

where $m_1, m_0 \geq 0$ are orders of the possible pole of $F(s)$ at $s = 1$ and the possible zero of $F(s)$ at $s = 0$, respectively, and ρ runs through nontrivial zeros of $F(s)$. In order to complete the proof of Lemma [3.2,](#page-4-4) we must consider the contributions of the second, third, and fourth terms of [\(3.7\)](#page-6-0). They are estimated by an argument similar to the proof of Lemma 2.1.4 of [\[5\]](#page-17-13). Thus we find the first part of Lemma [3.2.](#page-4-4)

All changes that we need for the proof of the second part are just replacing the definition of $\mathscr{B}_Y(\sigma,T;F)$ with the set of all $t \in [0,T]$ for which $|\gamma - t| \leq Y$ holds with some zeros $\rho = \beta + i\gamma$ of $F(s)$ satisfying $\beta \geq \frac{1}{2}$ $rac{1}{2}(\sigma + \frac{1}{2})$ $(\frac{1}{2})$. By the axiom (6), we have

$$
\nu_1(\mathscr{B}_Y(\sigma,T;F)) \le 2YN_F\left(\frac{1}{2}\left(\sigma+\frac{1}{2}\right),T\right) \ll YT^{1-\frac{c}{2}(\sigma-\frac{1}{2})}(\log T)^A.
$$

The remaining estimates are given in a similar way.

$$
\qquad \qquad \Box
$$

Towards the next step, we define

$$
g_X(t, \sigma; F) = -\sum_{n \le X^2} \frac{\Lambda_F(n)}{n^{\sigma+it}} \quad \text{and} \quad h_X(t, \sigma; F) = -\sum_{p \le X^2} \sum_{m=1}^{\infty} \frac{\Lambda_F(p^m)}{p^{m(\sigma+it)}}
$$

for $X > 1$. Then we have the following three lemmas:

Lemma 3.3. *Let* F(s) *be a function satisfying axioms* (1) *and* (4)*. Then there exists an absolute constant* $T_0 > 0$ *such that we have*

$$
\frac{1}{T} \int_0^T \psi_z(f_X(t, \sigma; F)) dt = \frac{1}{T} \int_0^T \psi_z(g_X(t, \sigma; F)) dt + E_2
$$

for all $T \geq T_0$ *, for all* $\sigma > 1/2$ *, and for all* $z \in \mathbb{C}$ *. The error term* E_2 *is estimated as*

(3.8)
$$
E_2 \ll \frac{g|z| \log X}{(2\sigma - 1)^{\frac{1}{2}}} \left(1 + \frac{X^2}{T}\right)^{\frac{1}{2}} X^{\frac{1}{2} - \sigma}
$$

for any $X > 1$ *. The implied constant is absolute.*

Lemma 3.4. *Let* F(s) *be a function satisfying axioms* (1) *and* (4)*. Then there exists an absolute constant* $T_0 > 0$ *such that we have*

$$
\frac{1}{T} \int_0^T \psi_z(g_X(t, \sigma; F)) dt = \frac{1}{R} \int_0^R \psi_z(g_X(r, \sigma; F)) dr + E_3
$$

for all $R \geq T \geq T_0$ *, for all* $\sigma > 1/2$ *, and for all* $z \in \mathbb{C}$ *. The error term* E_3 *is estimated as*

(3.9)
$$
E_3 \ll \frac{g^N X^{5N}}{T} (1+|z|^2)^{\frac{N}{2}} + \frac{(8g|z|)^N}{N!} \left(1 + \frac{X^N}{T}\right) \left\{ (\zeta(2\sigma)^{\frac{1}{2}} \log X)^N \left(\frac{N}{2}\right)! + \zeta'(2\sigma)^N \right\}
$$

for any X > 1 *and any large even integer* N*. The implied constant is absolute.*

Lemma 3.5. *Let* F(s) *be a function satisfying axioms* (1) *and* (4)*. Then there exists an absolute constant* $T_0 > 0$ *such that we have*

$$
\frac{1}{R} \int_0^R \psi_z(g_X(r, \sigma; F)) dr = \frac{1}{R} \int_0^R \psi_z(h_X(r, \sigma; F)) dr + E_4
$$

for all $R \geq T \geq T_0$ *, for all* $\sigma > 1/2$ *, and for all* $z \in \mathbb{C}$ *. The error term* E_4 *is estimated as*

$$
(3.10)\qquad \qquad E_4 \ll \frac{g|z|\log X}{2\sigma - 1}X^{1-2\sigma}
$$

for any $X > 1$ *. The implied constant is absolute.*

These lemmas are analogues of Lemmas 2.2.5, 2.1.6, and 2.1.10 in [\[5\]](#page-17-13). Note that we have $|\Lambda_F(n)| \leq g\Lambda(n)$ due to axioms (1) and (4), where $\Lambda(n) = \Lambda_c(s)$ is the usual von Mangolt function. In fact, by axiom (4) we have $\Lambda_F(p^m) = (\alpha_1(p)^m +$ $\ldots + \alpha_g(p)^m) \log p$, and by axiom (1) the absolute values of $\alpha_j(p)$ are less than or equal to 1; see Lemma 2.2 of [\[30\]](#page-18-4). Therefore we obtain these lemmas by replacing $\Lambda(n)$ with $\Lambda_F(n)$ in the proofs of the corresponding lemmas in [\[5\]](#page-17-13).

Let $F(s)$ be a function satisfying axioms (1)–(4). Let σ_1 be a large fixed positive real number. Let $\epsilon > 0$ be a small fixed real number. By the above lemmas, we have for all $R \geq T \geq T_0$ and for all $\sigma \in [1 - b^{-1} + \epsilon, \sigma_1],$ $\sqrt{2}$. $\sqrt{3}$

$$
(3.11)
$$

$$
\frac{1}{T} \int_0^T \psi_z \left(\frac{F'}{F} (\sigma + it) \right) dt = \frac{1}{R} \int_0^R \psi_z (h_X(r, \sigma; F)) dr + E_1 + E_2 + E_3 + E_4,
$$

where the error terms E_j are estimated as in (3.3) , (3.8) , (3.9) , and (3.10) . Let $\theta, \delta > 0$ with $\delta + 3\theta < 1/2$. We take X, Y, and N as the following functions in T:

$$
X = \exp((\log T)^{\theta_1}), \quad Y = \exp((\log T)^{\theta_2}), \quad \text{and} \quad N = 2\lfloor(\log T)^{\theta_3}\rfloor,
$$

where $\theta_1 = (5/3)\theta$, $\theta_2 = (\theta_1 + 1 - \theta)/2$, $\theta_3 = ((2\delta + \theta + 2\theta_1) + (1 - \theta_1))/2$. Moreover, let $T_0' = T_0'(\theta, \epsilon) \ge T_0$ with

$$
(\log T'_0)^{-\theta} \le \epsilon/2.
$$

Then we have $\sigma \geq 1 - b^{-1} + \epsilon/2 + (\log T)^{-\theta}$ for $T \geq T'_0$. Hence, there exists a positive real number $T_1 = T_1(F, \theta, \delta, \epsilon) \geq T'_0$ such that we have

(3.12)
$$
E_1 + E_2 + E_3 + E_4 \ll \exp\left(-\frac{1}{4}(\log T)^{\frac{2}{3}\theta}\right)
$$

for all $T \geq T_1$ and for all $z \in \Omega$ with the implied constant depending only on F and $\epsilon.$

Then, let $F(s)$ further satisfy axiom (6). In this case, we obtain that the formula [\(3.11\)](#page-7-2) holds for all $R \geq T \geq T_0$ and for all $\sigma \in [1/2 + (\log T)^{-\theta}, \sigma_1]$, where the error terms E_i are estimated as in [\(3.4\)](#page-5-2), [\(3.8\)](#page-6-1), [\(3.9\)](#page-7-0), and [\(3.10\)](#page-7-1). Therefore there exists a positive real number $T_{II} = T_{II}(F, \theta, \delta) > T_0$ such that we have the same estimate as [\(3.12\)](#page-7-3) for all $T \geq T_{\text{II}}$ and for all $z \in \Omega$.

Next, applying Lemma 2 of [\[9\]](#page-17-19), we see that

(3.13)
$$
\lim_{R \to \infty} \frac{1}{R} \int_0^R \psi_z(h_X(r, \sigma; F)) dr = \prod_{p \le X^2} \int_0^1 \psi_z \left(\sum_{m=1}^\infty \frac{\Lambda_F(p^m)}{p^{m\sigma}} e^{2\pi i m\theta} \right) d\theta
$$

since the system

$$
\left\{\frac{\log p}{2\pi} \; \middle| \; p \text{ is a prime number}\right\}
$$

is linearly independent over Q. We define

(3.14)
$$
\widetilde{M}_{\sigma,p}(z;F) = \int_0^1 \psi_z \left(\sum_{m=1}^\infty \frac{\Lambda_F(p^m)}{p^{m\sigma}} e^{2\pi im\theta} \right) d\theta.
$$

Then we obtain the following lemma on $\widetilde{M}_{\sigma,p}(z;F)$, which is proved in Section [3.2.](#page-9-0)

Lemma 3.6. Let $F(s)$ be a function satisfying axioms (1) and (4). Let σ_1 be a large *fixed positive real number. Let* θ , $\delta > 0$ *be real numbers with* $\delta + 3\theta < 1/2$ *. Then there exists a positive real number* $T_0 = T_0(F, \sigma_1, \theta, \delta)$ *such that we have*

$$
\prod_{p>X^2} \widetilde{M}_{\sigma,p}(z;F) = 1 + O\left(\exp\left(-\frac{1}{4} (\log T)^{\frac{2}{3}\theta}\right)\right)
$$

for all $T \geq T_0$ *, for all* $\sigma \in [1/2 + (\log T)^{-\theta}, \sigma_1]$ *, and for all* $z \in \Omega$ *. Here we denote* $X = \exp((\log T)^{\frac{5}{3}\theta})$, and the implied constant depends only on F and σ_1 .

We prove Proposition [3.1](#page-4-1) with the above preliminary lemmas.

Proof of Proposition [3.1.](#page-4-1) By [\(3.11\)](#page-7-2), [\(3.12\)](#page-7-3), and [\(3.13\)](#page-8-0), we have

$$
\frac{1}{T} \int_0^T \psi_z \left(\frac{F'}{F} (\sigma + it) \right) dt = \prod_{p \le X^2} \widetilde{M}_{\sigma, p}(z; F) + O\left(\exp \left(-\frac{1}{4} (\log T)^{\frac{2}{3}\theta} \right) \right).
$$

We consider the replacement of the product $\prod_{p\leq X^2} \widetilde{M}_{\sigma,p}(z;F)$ with $\prod_p \widetilde{M}_{\sigma,p}(z;F)$, where the error is estimated as \sim 1

 $\overline{1}$

$$
\left|\prod_{p}\widetilde{M}_{\sigma,p}(z;F)-\prod_{p\leq X^2}\widetilde{M}_{\sigma,p}(z;F)\right|\leq \left|\prod_{p>X^2}\widetilde{M}_{\sigma,p}(z;F)-1\right|,
$$

since $|\widetilde{M}_{\sigma,p}(z;F)| \leq 1$ by definition. Hence we have

$$
\prod_{p \le X^2} \widetilde{M}_{\sigma,p}(z;F) = \prod_p \widetilde{M}_{\sigma,p}(z;F) + O\left(\exp\left(-\frac{1}{4}(\log T)^{\frac{2}{3}\theta}\right)\right)
$$

by Lemma [3.6.](#page-8-1) Therefore Proposition [3.1](#page-4-1) follows if we define

$$
\widetilde{M}_{\sigma}(z;F) = \prod_{p} \widetilde{M}_{\sigma,p}(z;F).
$$

 \Box

3.2. Estimates on $\widetilde{M}_{\sigma}(z;F)$. In this section, we examine some analytic properties of the function $\widetilde{M}_{\sigma}(z;F)$. By definition [\(3.14\)](#page-8-2) and $\psi_z(w) = \exp(i \operatorname{Re} (z\overline{w}))$, we have

$$
\widetilde{M}_{\sigma,p}(z;F) = \int_0^1 \exp(ixa_p(\theta,\sigma;F) + iyb_p(\theta,\sigma;F))\,d\theta,
$$

where $z = x + iy$ and $a_p(\theta, \sigma; F), b_p(\theta, \sigma; F)$ are functions such that

$$
a_p(\theta, \sigma; F) = \sum_{m=1}^{\infty} \frac{1}{p^{m\sigma}} \{ \text{Re } \Lambda_F(p^m) \cos(2\pi m\theta) - \text{Im } \Lambda_F(p^m) \sin(2\pi m\theta) \},
$$

$$
b_p(\theta, \sigma; F) = \sum_{m=1}^{\infty} \frac{1}{p^{m\sigma}} \{ \text{Re } \Lambda_F(p^m) \sin(2\pi m\theta) + \text{Im } \Lambda_F(p^m) \cos(2\pi m\theta) \}.
$$

Then we define

(3.15)
$$
\widetilde{M}_p(s, z_1, z_2; F) = \int_0^1 \exp(iz_1 a_p(\theta, s; F) + iz_2 b_p(\theta, s; F)) d\theta
$$

for Re s > 0 and $z_1, z_2 \in \mathbb{C}$. We have $\overline{M}_{\sigma,p}(x+iy;F) = \overline{M}_p(\sigma, x, y; F)$ if $\sigma > 0$ and $x, y \in \mathbb{R}$. For the study on the function $M_n(s, z_1, z_2; F)$, the following lemma is fundamental, which is easily deduced from the expansion of $\exp(z)$ and the calculations of integrals.

Lemma 3.7. *Let* F(s) *be a function that satisfies axiom* (4)*. Then we have*

(3.16)
$$
M_p(s, z_1, z_2; F) = 1 - \mu_p + R_p
$$

for $\sigma = \text{Re } s > 0$ *and* $z_1, z_2 \in \mathbb{C}$ *, where*

$$
\mu_p = \mu_p(s, z_1, z_2; F) = \frac{z_1^2 + z_2^2}{4} \sum_{m=1}^{\infty} \frac{|\Lambda_F(p^m)|^2}{p^{2ms}},
$$

\n
$$
R_p = R_p(s, z_1, z_2; F) = \int_0^1 \sum_{k=3}^{\infty} \frac{i^k}{k!} \{z_1 a_p(\theta, s; F) + z_2 b_p(\theta, s; F)\}^k d\theta.
$$

Therefore, if μ_p and R_p are sufficiently small, we have

(3.17)
$$
\log \widetilde{M}_p(s, z_1, z_2; F) = -\mu_p + R_p + O(|\mu_p|^2 + |R_p|^2),
$$

where log is the principal blanch of logarithm. Using Lemma [3.7,](#page-9-1) we study the function

(3.18)
$$
\widetilde{M}(s, z_1, z_2; F) = \prod_p \widetilde{M}_p(s, z_1, z_2; F).
$$

Proposition 3.8. *Let* F(s) *be a function satisfying axioms* (1) *and* (4)*. Assume that* (s, z_1, z_2) *varies on* $\{ \text{Re } s > 1/2 \} \times \mathbb{C} \times \mathbb{C}$ *. If we fix two of the variables, the function* $M(s, z_1, z_2; F)$ *is holomorphic with respect to the reminder variable.*

Proof. Let K be any compact subset on the half plane ${Re s > 1/2}$, and let K_1, K_2 be any compact subsets on \mathbb{C} . Assume that $(s, z_1, z_2) \in K \times K_1 \times K_2$, and let σ_0 be the smallest real part of $s \in K$. As in Section [3.1,](#page-4-2) we have $|\Lambda(p^m)| \le g \log p$, where g is the constant in axiom (4). Then we obtain

$$
\mu_p \ll \frac{g^2 (\log p)^2}{p^{2\sigma_0}}
$$
 and $R_p \ll \frac{g^3 (\log p)^3}{p^{3\sigma_0}}$,

where the implied constants depend only on K, K_1, K_2 . Thus, by [\(3.17\)](#page-9-2), we have $\log M_p(s, z_1, z_2; F) \ll g^2(\log p)^2 p^{-2\sigma_0}$ for all $p > M$, where $M = M(K, K_1, K_2)$ is a sufficiently large constant that depends only on K , K_1 , and K_2 . The series $\sum_{p} (\log p)^2 p^{-2\sigma_0}$ converges since $\sigma_0 > 1/2$; therefore infinite product [\(3.18\)](#page-9-3) uniformly converges on $K \times K_1 \times K_2$. Every local parts $\widetilde{M}_p(s, z_1, z_2; F)$ are holomorphic, and hence we have the result. hence we have the result.

We estimate the growth of $\widetilde{M}(s, z_1, z_2; F)$ with z_1 and z_2 near the real axis.

Proposition 3.9. *Let* F(s) *be a function satisfying axioms* (1)*,* (4)*, and* (5)*. Let* $\sigma > 1/2$ *be an arbitrarily fixed real number. Then there exist positive constants* $K = K(\sigma; F)$ and $c = c(\sigma; F)$ *such that for all* $x, y \in \mathbb{R}$ *with* $|x| + |y| \geq K$ *, and for all non-negative integers* m *and* n*, we have*

$$
\frac{\partial^{m+n}}{\partial z_1^m \partial z_2^n} \widetilde{M}(\sigma, z_1, z_2; F) \ll \exp\left(-c(|x|+|y|)^{\frac{1}{\sigma}} (\log(|x|+|y|))^{\frac{1}{\sigma}-1}\right)
$$

for any $z_1, z_2 \in \mathbb{C}$ *with* $|z_1 - x| < 1/4$, $|z_2 - y| < 1/4$. The implied constant depends *only on* m *and* n*.*

Proof. Let $K > 1$ and $c_0 < 1$ be positive constants chosen later, and assume that $x, y \in \mathbb{R}$ with $|x| + |y| \geq K$. We define

$$
P_0 = \left(\frac{g(|x| + |y|)}{c_0} \log \frac{g(|x| + |y|)}{c_0}\right)^{\frac{1}{\sigma}}
$$

for any fixed $\sigma > 1/2$. Then for any $p \ge P_0$, we see that

$$
\frac{(|x| + |y|)g \log p}{p^{\sigma}} \le \frac{(|x| + |y|)g \log P_0}{P_0^{\sigma}} \le c_0 c_1
$$

with an absolute constant $c_1 > 0$. Hence, we estimate μ_p and R_p in Lemma [3.7](#page-9-1) arbitrarily small if we let the constant c_0 suitably small. Thus formula (3.17) holds. We then replace μ_p in [\(3.17\)](#page-9-2) with the real number

$$
\mu'_{p} = \mu'_{p}(\sigma, x, y; F) = \frac{x^{2} + y^{2}}{4} \sum_{m=1}^{\infty} \frac{|\Lambda_{F}(p^{m})|^{2}}{p^{2m\sigma}}.
$$

The error of the replacement is estimated as

$$
|\mu_p - \mu'_p| \le (|x| + |y|) \sum_{m=1}^{\infty} \frac{|\Lambda_F(p^m)|^2}{p^{2m\sigma}}
$$

if we assume that $|z_1 - x| < 1/2$ and $|z_2 - y| < 1/2$. Moreover, we have

$$
\mu_p^2 \ll \left(\frac{(|x| + |y|)g \log p}{p^{\sigma}}\right)^4 \le \frac{(|x| + |y|)g \log P_0}{P_0^{\sigma}} \left(\frac{(|x| + |y|)g \log p}{p^{\sigma}}\right)^3
$$

$$
\ll \frac{(|x| + |y|)^3 g^3 (\log p)^3}{p^{3\sigma}}
$$

and

$$
R_p \ll (|x|+|y|)^3 \left(\sum_{m=1}^{\infty} \frac{|\Lambda_F(p^m)|}{p^{m\sigma}}\right)^3 \ll \frac{(|x|+|y|)^3 g^3 (\log p)^3}{p^{3\sigma}},
$$

where all implied constants are absolute. Therefore by [\(3.17\)](#page-9-2) we have for any $p \ge P_0$,

$$
\left| \log \widetilde{M}_p(\sigma, z_1, z_2; F) + \frac{x^2 + y^2}{4} \sum_{m=1}^{\infty} \frac{|\Lambda_F(p^m)|^2}{p^{2m\sigma}} \right|
$$

$$
\leq (|x| + |y|) \sum_{m=1}^{\infty} \frac{|\Lambda_F(p^m)|^2}{p^{2m\sigma}} + B(|x| + |y|)^3 \frac{g^3 (\log p)^3}{p^{3\sigma}}
$$

with some absolute constant $B > 0$. Thus for sufficiently large K, if $|x| + |y| \ge K$, then we obtain

Re log
$$
\widetilde{M}_p(\sigma, z_1, z_2; F)
$$

\n
$$
\leq -A(|x|+|y|)^2 \sum_{m=1}^{\infty} \frac{|\Lambda_F(p^m)|^2}{p^{2m\sigma}} + B(|x|+|y|)^3 \frac{g^3(\log p)^3}{p^{3\sigma}}
$$
\n
$$
\leq -A(|x|+|y|)^2 \frac{|\Lambda_F(p)|^2}{p^{2\sigma}} + B(|x|+|y|)^3 \frac{g^3(\log p)^3}{p^{3\sigma}}
$$

with some absolute constant $A > 0$. Note that

$$
\Lambda_F(p) = (\alpha_1(p) + \cdots \alpha_g(p)) \log p = -a_F(p) \log p
$$

from axiom (4). Hence, we have

$$
(3.19)
$$
\n
$$
\left| \prod_{p \ge P_0} \widetilde{M}_p(\sigma, z_1, z_2; F) \right|
$$
\n
$$
\le \exp \left(-A(|x| + |y|)^2 \sum_{p \ge P_0} \frac{|a_F(p)|^2 (\log p)^2}{p^{2\sigma}} + B(|x| + |y|)^3 g^3 \sum_{p \ge P_0} \frac{(\log p)^3}{p^{3\sigma}} \right)
$$
\n
$$
\le \exp \left(-A(|x| + |y|)^2 \sum_{p \ge P_0} \frac{(\log p)^2}{p^{2\sigma}} |a_F(p)|^2 + Bc_0 c_1 g^2 (|x| + |y|)^2 \sum_{p \ge P_0} \frac{(\log p)^2}{p^{2\sigma}} \right).
$$

Then we estimate

$$
\sum_{p \ge P_0} \frac{(\log p)^2}{p^{2\sigma}} |a_F(p)|^2 \text{ and } \sum_{p \ge P_0} \frac{(\log p)^2}{p^{2\sigma}}.
$$

We see that for any $\sigma > 1/2$, there exists a constant $X_0(\sigma; F) > 0$ such that for any $X \geq X_0(\sigma; F),$

$$
\sum_{p\geq X} \frac{(\log p)^2}{p^{2\sigma}} |a_F(p)|^2 \geq \frac{\kappa}{2(2\sigma - 1)} X^{1 - 2\sigma} \log X
$$

$$
\sum_{p\geq X} \frac{(\log p)^2}{p^{2\sigma}} \leq \frac{2}{2\sigma - 1} X^{1 - 2\sigma} \log X.
$$

Indeed, the first inequality is deduced by summing by parts with axiom (5), and we obtain the second inequality in a similar way. Then, we let $c_0 = c_0(F)$ smaller so

that $2Bc_0c_1g^2 < A\kappa/2$. If we let $K = K(\sigma, F)$ suitably large, then we obtain for $|u| + |v| \ge K,$

$$
- A(|x| + |y|)^2 \sum_{p \ge P_0} \frac{(\log p)^2}{p^{2\sigma}} |a_F(p)|^2 + Bc_0c_1g^2(|x| + |y|)^2 \sum_{p \ge P_0} \frac{(\log p)^2}{p^{2\sigma}}
$$

$$
\le -c(|x| + |y|)^{\frac{1}{\sigma}} (\log(|x| + |y|))^{\frac{1}{\sigma} - 1}
$$

with some positive constant $c = c(\sigma; F)$. Hence we obtain

$$
(3.20) \qquad \left|\prod_{p\geq P_0} \widetilde{M}_p(\sigma, z_1, z_2; F)\right| \leq \exp\left(-c(|x|+|y|)^{\frac{1}{\sigma}}(\log(|x|+|y|))^{\frac{1}{\sigma}-1}\right).
$$

The estimate on the contributions of $\widetilde{M}_p(\sigma, z_1, z_2; F)$ for $p < P_0$ remains. By definition [\(3.15\)](#page-9-4), we see that

$$
\left| \widetilde{M}_p(\sigma, z_1, z_2; F) \right| \leq \int_0^1 \exp(-\operatorname{Im}(z_1) a_p(\theta, \sigma; F) - \operatorname{Im}(z_2) b_p(\theta, \sigma; F)) d\theta
$$

$$
\leq \int_0^1 \exp(|a_p(\theta, \sigma; F)| + |b_p(\theta, \sigma; F)|) d\theta
$$

$$
\leq \exp\left(C \frac{g \log p}{p^{\sigma}}\right)
$$

with some absolute positive constant C since $|z_1 - x| < 1/2$, $|z_2 - y| < 1/2$, and $x, y \in \mathbb{R}$. Thus we have

$$
\left|\prod_{p
$$

Then we see that for $|x| + |y| \ge K$,

(3.21)
$$
\left|\prod_{p\leq P_0} \widetilde{M}_p(\sigma,z_1,z_2;F)\right| \leq \exp\left(C'(|x|+|y|)^{\frac{3}{4\sigma}}\right),
$$

where $C' = C'(F)$ is some positive constant. Therefore we obtain

$$
(3.22) \qquad \left| \widetilde{M}(\sigma, z_1, z_2; F) \right| \le \exp\left(-c(|x| + |y|)^{\frac{1}{\sigma}} (\log(|x| + |y|))^{\frac{1}{\sigma} - 1} \right)
$$

by [\(3.20\)](#page-12-0) and [\(3.21\)](#page-12-1), where $c = c(\sigma; F)$ is some positive constant. We finally assume that $|z_1 - x| < 1/4$ and $|z_2 - y| < 1/4$. Then, applying Cauchy's integral formula, we have

$$
\frac{\partial^{m+n}}{\partial z_1^m \partial z_2^n} \widetilde{M}(\sigma, z_1, z_2; F) = \frac{m!n!}{(2\pi i)^2} \iint_{\substack{|\xi_1 - z_1| = 1/4, \\|\xi_2 - z_2| = 1/4}} \frac{\widetilde{M}(\sigma, \xi_1, \xi_2; F)}{(\xi_1 - z_1)^{m+1}(\xi_2 - z_2)^{n+1}} d\xi_1 d\xi_2.
$$

Therefore by estimate (3.22) , the desired result follows.

Remark 3.10. We find that $\widetilde{M}_{\sigma}(z; F)$ is a Schwartz function according to Proposition [3.9.](#page-10-0) Hence its Fourier inverse

$$
M_{\sigma}(z;F) = \int_{\mathbb{C}} \widetilde{M}_{\sigma}(w;F)\psi_{-z}(w) |dw|
$$

is also a Schwartz function, and belongs to the class Λ. Thus we have $\widetilde{M}_{\sigma}(z;F)$ = $(M_{\sigma}(z; F))^{\wedge}$. By a simple calculation, we see that $M_{\sigma}(z; F)$ is real valued.

Finally, we prove Lemma [3.6](#page-8-1) in Section [3.1.](#page-4-2)

Proof of Lemma [3.6.](#page-8-1) Assume $p \geq X^2$ with $X = \exp((\log T)^{\frac{5}{3}\theta})$. Then we see that $\mu_p = \mu_p(\sigma, x, y; F)$ and $R_p = R_p(\sigma, x, y; F)$ in Lemma [3.7](#page-9-1) are small when T is sufficiently large. In fact, we have for $p \geq X^2$,

$$
\mu_p \ll (x^2 + y^2) \frac{g^2 (\log p)^2}{p^{2\sigma}} \ll \{(|x| + |y|) g X^{1-2\sigma} \log X\}^2.
$$

By the setting for $X, z = x + iy$, and σ , we have

$$
X^{1-2\sigma}\log X \leq \exp\left(-\frac{1}{4}(\log T)^{\frac{2}{3}\theta}\right) \to 0
$$

as $T \to \infty$. The argument for R is similar. Hence by [\(3.17\)](#page-9-2), we obtain

$$
\log \widetilde{M}_{\sigma,p}(z;F) \ll (x^2 + y^2) \frac{(\log p)^2}{p^{2\sigma}},
$$

where the implied constant depends only on F . Therefore we have

$$
\prod_{p \ge X^2} \widetilde{M}_{\sigma,p}(z;F) = \exp\left(\sum_{p \ge X^2} \log \widetilde{M}_{\sigma,p}(z;F)\right)
$$

$$
= 1 + O\left((x^2 + y^2) \sum_{p \ge X^2} \frac{(\log p)^2}{p^{2\sigma}}\right).
$$

Applying the prime number theorem, we estimate the above error term as

$$
(x^2 + y^2) \sum_{p \ge X^2} \frac{(\log p)^2}{p^{2\sigma}} \ll (x^2 + y^2) \frac{X^{2(1-2\sigma)} \log X}{(\sigma - \frac{1}{2})^2} \le \exp\left(-\frac{1}{4} (\log T)^{\frac{2}{3}\theta}\right)
$$

by the assumptions on X, $z = x + iy$, and σ . Here the implied constant depends only on F and σ_1 .

3.3. Completion of the proof.

Proof of Theorem [2.1.](#page-2-3) We only consider the case of $F \in \mathcal{S}_{I}$ since the case $F \in \mathcal{S}_{II}$ follows completely in an analogous way. By the definition of the class Λ , for any $\Phi \in \Lambda$ we have

$$
\Phi(w) = \int_{\mathbb{C}} \widehat{\Phi}(z) \psi_{-z}(w) \, |dw|.
$$

Hence, by Proposition [3.1,](#page-4-1) we see that for all $T \geq T_I$,

$$
\frac{1}{T} \int_0^T \Phi\left(\frac{F'}{F}(\sigma + it)\right) dt = \int_{\Omega} \widehat{\Phi}(z) \frac{1}{T} \int_0^T \psi_{-z} \left(\frac{F'}{F}(\sigma + it)\right) dt |dz| + E_1
$$

$$
= \int_{\Omega} \widehat{\Phi}(z) \widetilde{M}_{\sigma}(-z; F) |dz| + E_1 + E_2
$$

$$
= \int_{\mathbb{C}} \widehat{\Phi}(z) \widetilde{M}_{\sigma}(-z; F) |dz| + E_1 + E_2 + E_3,
$$

where the error terms are estimated as

$$
E_1 = \int_{\mathbb{C}\backslash\Omega} \widehat{\Phi}(z) \frac{1}{T} \int_0^T \psi_{-z} \left(\frac{F'}{F} (\sigma + it) \right) dt |dz| \ll \int_{\mathbb{C}\backslash\Omega} |\widehat{\Phi}(z)| |dz|,
$$

\n
$$
E_2 \ll \exp\left(-\frac{1}{4} (\log T)^{\frac{2}{3}\theta} \right) \int_{\Omega} |\widehat{\Phi}(z)| |dz|,
$$

\n
$$
E_3 \ll \int_{\mathbb{C}\backslash\Omega} |\widehat{\Phi}(z)| |dz|.
$$

Here all implied constants depend at most only on F, σ_1 , and ϵ . We find that

$$
\int_{\mathbb{C}} \widehat{\Phi}(w) \widetilde{M}_{\sigma}(-w;F) |dw| = \int_{\mathbb{C}} \widehat{\Phi}(w) \overline{\widetilde{M}_{\sigma}(w;F)} |dw| = \int_{\mathbb{C}} \Phi(z) M_{\sigma}(z;F) |dw|
$$

due to Parseval's identity, and therefore [\(2.3\)](#page-2-1) and [\(2.4\)](#page-2-2) follow. The proof of the nonnegativity of the function $M_{\sigma}(z; F)$ remains. For this, we assume $M_{\sigma}(z; F) < 0$ for some region U. If we take $\Phi(z)$ as a non-negative function with a support included in U, then we have the contradiction. Due to the continuity of $M_{\sigma}(z;F)$, we see that $M_{\sigma}(z; F)$ is everywhere non-negative.

4. Proof of Theorem [2.2](#page-3-1)

We find that Theorem [2.1](#page-2-3) imply Theorem [2.2](#page-3-1) by the following lemma.

Lemma 4.1. *Let*

$$
K(x) = \left(\frac{\sin \pi x}{\pi x}\right)^2.
$$

Then for any $a, b \in \mathbb{R}$ *with* $a < b$ *, there exists a continuous function* $F_{a,b} : \mathbb{R} \to \mathbb{R}$ *such that the following conditions hold: for any* $\omega > 0$,

(1) $F_{a,b}(x) - 1_{[a,b]}(x) \ll K(\omega(x - a)) + K(\omega(x - b))$ *for any* $x \in \mathbb{R}$ *;*

$$
(2) \int_{\mathbb{R}} (F_{a,b}(x) - 1_{[a,b]}(x)) dx \ll \omega^{-1};
$$

(3) if
$$
|x| \ge \omega
$$
, then $\widehat{F}_{a,b}(x) = 0$;

(4) $\hat{F}_{a,b}(x) \ll (b-a) + \omega^{-1}$.

Here,

$$
\widehat{F}_{a,b}(x)=\int_{\mathbb{R}}F_{a,b}(u)e^{ixu}\,|du|
$$

is the Fourier transformation of $F_{a,b}(x)$ *with* $|du| = (2\pi)^{-\frac{1}{2}}du$.

Proof. This is Lemma 4.1 of [\[18\]](#page-17-20) except for the difference of the definition of the Fourier transform, which does not affect the result.

Proof of Theorem [2.2.](#page-3-1) Again we consider only the case of $F \in \mathcal{S}_I$. Assume that the rectangle R is given as

 $R = \{z = x + iy \in \mathbb{C} \mid a \leq x \leq b, c \leq y \leq d\}.$

Then we define for $z = x + iy \in \mathbb{C}$

(4.1)
$$
\Phi(z) = F_{a,b}(x) F_{c,d}(y).
$$

We first find that the function $\Phi(z)$ belongs to the class Λ . The class Λ is also written as

$$
\Lambda = \{ f \in L^1 \mid f \text{ is continuous and } \widehat{f} \in L^1 \},
$$

and hence we must check that $\Phi \in L^1$, Φ is continuous, and $\widehat{\Phi} \in L^1$. Since

$$
\int_{\mathbb{C}} \Phi(z) |dz| = \int_{\mathbb{R}} F_{a,b}(x) |dx| \int_{\mathbb{R}} F_{c,d}(y) |dy|,
$$

we see that $\Phi \in L^1$ by condition (2) of Lemma [4.1.](#page-14-0) The function $\Phi(z)$ is continuous by its definition [\(4.1\)](#page-14-1), and furthermore, we have

$$
\widehat{\Phi}(z) = \widehat{F}_{a,b}(x)\widehat{F}_{c,d}(y) = 0
$$

if $|x|, |y| \ge \omega$ by condition (3). Thus also we have $\widehat{\Phi} \in L^1$. Therefore $\Phi(z)$ belongs to the class Λ , and we apply Theorem [2.1](#page-2-3) for this function. Note that

$$
(4.2) \quad \Phi(z) - 1_R(z) \ll K(\omega(x - a)) + K(\omega(x - b)) + K(\omega(y - c)) + K(\omega(y - d))
$$

by condition (1) of Lemma [4.1.](#page-14-0) Then, let $\sigma > 1 - b^{-1}$ be fixed, and let $\theta, \delta > 0$ with $\delta + 3\theta > 0$. We take $\omega = (\log T)^{\delta}$. Due to inequality [\(4.2\)](#page-15-0), Theorem [2.1](#page-2-3) gives

(4.3)
$$
\frac{1}{T}V_{\sigma}(T, R; F) = \int_{R} M_{\sigma}(z; F) |dz| + E_1 + E_2 + E_3
$$

for large T , where

(4.4)
$$
E_1 \ll \exp\left(-\frac{1}{4}(\log T)^{\frac{2}{3}\theta}\right) \int_{\Omega} |\widehat{\Phi}(z)| |dz| + \int_{\mathbb{C}\setminus\Omega} |\widehat{\Phi}(z)| |dz|,
$$

(4.5)
$$
E_2 \ll \frac{1}{T} \int_0^T K \left(\omega \left(\operatorname{Re} \frac{F'}{F} (\sigma + it) - a \right) \right) dt + \frac{1}{T} \int_0^T K \left(\omega \left(\operatorname{Re} \frac{F'}{F} (\sigma + it) - b \right) \right) dt + \frac{1}{T} \int_0^T K \left(\omega \left(\operatorname{Im} \frac{F'}{F} (\sigma + it) - c \right) \right) dt + \frac{1}{T} \int_0^T K \left(\omega \left(\operatorname{Im} \frac{F'}{F} (\sigma + it) - d \right) \right) dt,
$$

and

(4.6)
$$
E_3 \ll \int_{\mathbb{C}} K(\omega(x-a))M_{\sigma}(z;F) |dz| + \int_{\mathbb{C}} K(\omega(x-b))M_{\sigma}(z;F) |dz| + \int_{\mathbb{C}} K(\omega(y-b))M_{\sigma}(z;F) |dz| + \int_{\mathbb{C}} K(\omega(y-d))M_{\sigma}(z;F) |dz|.
$$

All implied constants depend on $F, \sigma, \theta, \delta, \epsilon$. We estimate three error terms E_1, E_2 , and E_3 . The first term of the right hand side of (4.4) is estimated as

$$
\exp\left(-\frac{1}{4}(\log T)^{\frac{2}{3}\theta}\right)\int_{\Omega}|\widehat{\Phi}(z)|\, |dz| \ll \exp\left(-\frac{1}{4}(\log T)^{\frac{2}{3}\theta}\right)(\log T)^{2\delta}(b-a)(d-c) \ll (\log T)^{-\delta}\nu_2(R)
$$

for sufficiently large T by condition (4) of Lemma [4.1.](#page-14-0) We have

$$
\int_{\mathbb{C}\setminus\Omega}|\widehat{\Phi}(z)|\, |dz| = 0
$$

since $\widehat{\Phi}(z) = 0$ if $|x|, |y| \geq \omega$. Therefore we obtain

$$
(4.7) \t\t\t E_1 \ll \nu_2(R)(\log T)^{-\delta}.
$$

Next we estimate E_2 . Since we have

$$
K(\omega x) = \frac{2}{\omega^2} \int_0^{\omega} (\omega - u) \cos(2\pi x u) du = \frac{2}{\omega^2} \text{Re} \int_0^{\omega} (\omega - u) e^{2\pi i x u} du,
$$

the first term of the right hand side of [\(4.5\)](#page-15-2) is estimated as

(4.8)
$$
\frac{1}{T} \int_0^T K \left(\omega \left(\operatorname{Re} \frac{F'}{F} (\sigma + it) - a \right) \right) dt
$$

$$
\ll \frac{1}{\omega^2} \int_0^{\omega} (\omega - u) \left| \frac{1}{T} \int_0^T \exp \left(2\pi i u \operatorname{Re} \frac{F'}{F} (\sigma + it) \right) dt \right| du.
$$

Proposition [3.1](#page-4-1) deduces

$$
\frac{1}{T} \int_0^T \exp\left(2\pi i u \operatorname{Re} \frac{F'}{F}(\sigma + it)\right) dt \ll \left|\widetilde{M}_{\sigma}(2\pi u; F)\right|
$$

as $T \to \infty$, hence [\(4.8\)](#page-16-0) is

$$
\ll \frac{1}{\omega^2} \int_0^{\omega} (\omega - u) \left| \widetilde{M}_{\sigma} (2\pi u; F) \right| du \ll \frac{1}{\omega} = (\log T)^{-\delta}.
$$

The last inequality follows from Proposition [3.9.](#page-10-0) Since the reminder terms of [\(4.5\)](#page-15-2) are estimated in a similar way, we have

$$
(4.9) \t\t\t E_2 \ll (\log T)^{-\delta}.
$$

The work of the estimate of E_3 remains. For this, we define

$$
m_{\sigma}(x;F) = \int_{\mathbb{R}} M_{\sigma}(x+iy;F) \, |dy|.
$$

Then the first term of the right hand side of [\(4.6\)](#page-15-3) is equal to

$$
\int_{\mathbb{R}} K(\omega(x-a)) m_{\sigma}(x;F) |dx|.
$$

The function $m_{\sigma}(x; F)$ is bounded on R. In fact, it is continuous, and we see that

$$
\int_{\mathbb{R}} m_{\sigma}(x;F) |dx| = \int_{\mathbb{C}} M_{\sigma}(x;F) |dz| = \widetilde{M}_{\sigma}(0;F) = 1.
$$

Therefore, we obtain

$$
\int_{\mathbb{C}} K(\omega(x-a)) \mathcal{M}_{\sigma}(z;F) |dz| \ll \int_{\mathbb{R}} K(\omega(x-a)) dx \ll \frac{1}{\omega} = (\log T)^{-\delta}.
$$

Estimating the remaining terms of [\(4.6\)](#page-15-3) similarly, we have

$$
(4.10) \t\t\t E_3 \ll (\log T)^{-\delta}.
$$

18 M. MINE

By estimates (4.7) , (4.9) , and (4.10) , formula (4.3) gives

$$
\frac{1}{T}V_{\sigma}(T,R;F) - \int_{R} M_{\sigma}(z;F) |dz| \ll (\nu_2(R) + 1)(\log T)^{-\delta}.
$$

Taking care of the assumption $\delta + 3\theta < 1/2$, we put $\theta = \epsilon/4$ and $\delta = 1/2 - \epsilon$ for arbitrarily small $\epsilon > 0$. Then we obtain

$$
(\nu_2(R) + 1)(\log T)^{-\delta} = (\nu_2(R) + 1)(\log T)^{-\frac{1}{2} + \epsilon}
$$

which gives the result. \Box

REFERENCES

- [1] H. Bohr and B. Jessen, Über die Werteverteilung der Riemannschen Zetafunktion, Acta Math. 54 (1930), no. 1, 1–35. MR 1555301
- [2] , Über die Werteverteilung der Riemannschen Zetafunktion, Acta Math. 58 (1932), no. 1, 1–55. MR 1555343
- [3] V. Borchsenius and B. Jessen, *Mean motions and values of the Riemann zeta function*, Acta Math. 80 (1948), 97–166. MR 27796
- [4] A. Fujii, On the zeros of Dirichlet L-functions. I, Trans. Amer. Math. Soc. 196 (1974), 225–235. MR 349603
- [5] C. R. Guo, The distribution of the logarithmic derivative of the Riemann zeta function, Proc. London Math. Soc. (3) 72 (1996), no. 1, 1–27. MR 1357087
- [6] , On the zeros of the derivative of the Riemann zeta function, Proc. London Math. Soc. (3) 72 (1996), no. 1, 28–62. MR 1357088
- [7] G. Harman and K. Matsumoto, Discrepancy estimates for the value-distribution of the Riemann zeta-function. IV, J. London Math. Soc. (2) 50 (1994), no. 1, 17–24. MR 1277751
- [8] D. R. Heath-Brown, On the density of the zeros of the Dedekind zeta-function, Acta Arith. 33 (1977), no. 2, 169–181. MR 434988
- [9] $__________\.\$ The distribution and moments of the error term in the Dirichlet divisor problem, Acta Arith. 60 (1992), no. 4, 389–415. MR 1159354
- [10] Y. Ihara, On "M-functions" closely related to the distribution of L'/L -values, Publ. Res. Inst. Math. Sci. 44 (2008), no. 3, 893–954. MR 2451613
- [11] Y. Ihara and K. Matsumoto, On certain mean values and the value-distribution of logarithms of Dirichlet L-functions, Q. J. Math. 62 (2011), no. 3, 637–677. MR 2825476
- [12] \ldots , On log L and L'/L for L-functions and the associated "M-functions": connections in optimal cases, Mosc. Math. J. 11 (2011), no. 1, 73–111. MR 2808212
- [13] $________\$. On the value-distribution of logarithmic derivatives of Dirichlet L-functions, Analytic number theory, approximation theory, and special functions, Springer, New York, 2014, pp. 79– 91. MR 3329233
- [14] B. Jessen and A. Wintner, Distribution functions and the Riemann zeta function, Trans. Amer. Math. Soc. 38 (1935), no. 1, 48–88. MR 1501802
- [15] J. Kaczorowski and A. Perelli, On the prime number theorem for the Selberg class, Arch. Math. (Basel) 80 (2003), no. 3, 255–263. MR 1981179
- [16] R. Kershner and A. Wintner, On the Asymptotic Distribution of $\zeta'/\zeta(s)$ in the Critical Strip, Amer. J. Math. 59 (1937), no. 3, 673–678. MR 1507271
- [17] A. Laurinčikas, Limit theorems for the Riemann zeta-function, Mathematics and its Applications, vol. 352, Kluwer Academic Publishers Group, Dordrecht, 1996. MR 1376140
- [18] S. J. Lester, The distribution of the logarithmic derivative of the Riemann zeta-function, Q. J. Math. 65 (2014), no. 4, 1319–1344. MR 3285773
- [19] W. Luo, Zeros of Hecke L-functions associated with cusp forms, Acta Arith. 71 (1995), no. 2, 139–158. MR 1339122
- [20] K. Matsumoto, Discrepancy estimates for the value-distribution of the Riemann zeta-function. I, Acta Arith. 48 (1987), no. 2, 167–190. MR 895438
- [21] $_____\$ A probabilistic study on the value-distribution of Dirichlet series attached to certain cusp forms, Nagoya Math. J. 116 (1989), 123–138. MR 1029974

,

- [22] , Value-distribution of zeta-functions, Analytic number theory (Tokyo, 1988), Lecture Notes in Math., vol. 1434, Springer, Berlin, 1990, pp. 178–187. MR 1071754
- [23] $____\$, Asymptotic probability measures of zeta-functions of algebraic number fields, J. Number Theory 40 (1992), no. 2, 187–210. MR 1149737
- [24] \ldots , On the speed of convergence to limit distributions for Dedekind zeta-functions of non-Galois number fields, Probability and number theory—Kanazawa 2005, Adv. Stud. Pure Math., vol. 49, Math. Soc. Japan, Tokyo, 2007, pp. 199–218. MR 2405605
- [25] K. Matsumoto and Y. Umegaki, On the density function for the value-distribution of automorphic L-functions, J. Number Theory 198 (2019), 176–199. MR 3912935
- [26] A. Perelli, General L-functions, Ann. Mat. Pura Appl. (4) 130 (1982), 287–306. MR 663975
- [27] A. Selberg, On the normal density of primes in small intervals, and the difference between consecutive primes, Arch. Math. Naturvid. 47 (1943), no. 6, 87–105. MR 12624
- [28] $_____\$ Contributions to the theory of the Riemann zeta-function, Arch. Math. Naturvid. 48 (1946), no. 5, 89–155. MR 20594
- [29] , Old and new conjectures and results about a class of Dirichlet series, Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), Univ. Salerno, Salerno, 1992, pp. 367–385. MR 1220477
- [30] J. Steuding, Value-distribution of L-functions, Lecture Notes in Mathematics, vol. 1877, Springer, Berlin, 2007. MR 2330696

Department of Mathematics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan

Email address: mine.m.aa@m.titech.ac.jp