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ON CERTAIN MEAN VALUES OF LOGARITHMIC
DERIVATIVES OF L-FUNCTIONS AND THE RELATED
DENSITY FUNCTIONS

MASAHIRO MINE

ABSTRACT. We study some “density function” related to the value-distribution
of L-functions. The first example of such a density function was given by Bohr
and Jessen in 1930s for the Riemann zeta-function. In this paper, we construct
the density function in a wide class of L-functions. We prove that certain mean
values of L-functions in the class are represented as integrals involving the related
density functions.

1. INTRODUCTION

We begin with recalling a classical result on the value-distribution of the Riemann
zeta-function ((s) obtained by Bohr and Jessen. For any o > 1/2, let

G={s=o+it|o>1/2}\ |J {s=0c+iv|1/2<0<8},
p=PB+iy
where p runs through all zeros of ((s) with 8 > 1/2. Then we define log ((s) for
s € G by analytic continuation along the horizontal line. Fix a rectangle R in

the complex plane whose edges are parallel to the coordinate axes, and denote by
Vo (T, R) the Lebesgue measure of the set

{te[-T.T]| o +it € G, log((o +it) € R}.

Bohr and Jessen [112] proved that there exists the limit value

. 1
(1.1) We(R) = Tlg%o ﬁVJ(T, R)

for any fixed o > 1/2. They also showed that there exists a non-negative real valued
continuous function M, (z) such that the formula

(12) 1%®:AMWM4

holds with |dz| = (27) 'dxdy. Their study was developed in various ways, for
example, Jessen-Wintner [14], Borchsenius—Jessen [3], Laurin¢ikas [17], and Mat-
sumoto [21].

Matsumoto [22] generalized limit formula (LI]) in a quite wide class of zeta-
functions, which is now called the Matsumoto zeta-functions. On the other hand,
an analogue of integral formula ([.2]) was obtained only in some restricted cases, for
example, the case of Dedekind zeta-functions of finite Galois extensions of Q [23],
and automorphic L-functions of normalized holomorphic Hecke-eigen cusp forms of
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level N [25]. Thus it is worth studying “density functions” such as M, (z) for more
general zeta- or L-functions.

Kershner and Wintner [16] proved analogues of formulas (LI and (L2]) for
(¢'/¢)(s). In this paper, we construct the density functions M, (z; F) for func-
tions F'(s) in a subclass of the Matsumoto zeta-functions and generalize Kershner—
Wintner’s result.

2. L-FUNCTIONS AND THE RELATED DENSITY FUNCTIONS

2.1. Class of L-functions. We introduce the class Sy as the set of all functions
F(s) represented as Dirichlet series

F(s) =3 @)

nS

n=1
in some half plane that satisfy the following axioms:
(1) Ramanujan hypothesis. Dirichlet coefficients ap(n) satisfy ap(n) < n¢ for
every € > 0.
(2) Analytic continuation. There exists a non-negative integer m such that (s —
1)™F(s) is an entire function of finite order.
(3) Functional equation. F(s) satisfies a functional equation of the form

Ap(s) =wAp(1 —73),

where

T
Ap(s) =F()Q° [ T(N\js + ),
j=1
with some |w| =1, @ > 0, A\; >0, Re(u;) > 0.
(4) Polynomial Euler product. For o > 1, F(s) is expressed as the infinite
product

g -1
a;(p)
ro=TII(- )
p j=1
where g is a positive constant and o;(p) € C.
(5) Prime mean square. There exists a positive constant x such that

1
lim ——= " |ar(p)’ = &,

200 W(m) =

where 7(x) stands for the number of prime numbers less than or equal to x.

The above axioms come from two classes of L-functions introduced by Selberg [29]
and Steuding [30]. We see that the class St is just equal to the intersection of these
classes, and it is also a subclass of the Matsumoto zeta-functions, see Section 2
of [30].

Let Ng(o,T) be the number of zeros p = f+ivy of F(s) with f > cand 0 <y < T.
Then for the function F'(s) satisfying axioms (1)—(4), there exists a positive constant
b such that for any € > 0,

(2.1) Np(T, o) <, TPI=0)+e
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as T'— oo, uniformly for o > 1/2 [I5, Lemma 3]. From the proof of [15], estimate
(210 generally holds with b = 4(dr + 3), where d is the degree of F' defined by

j=1

The constant b is taken smaller in some special cases, for example, Heath-Brown [§]
showed that the Dedekind zeta-functions attached to algebraic number fields of
degree d > 3 satisfy (Z.I)) with b = d, and Perelli [26] obtained it with b = dp in a
subclass of the Selberg class.

Next, we define the subclass Spp as the set of all F'(s) satisfying axioms (1)—(5)
and the following (6):

(6) Zero density estimate. There exist positive constants ¢ and A such that
(2.2) Np(T,0) < T'¢2) (log T)"

as T — oo, uniformly for o > 1/2.

There are many zeta- or L-functions that belong to the class St, for instance, the
Riemann zeta-functions ((s), Dirichlet L-functions L(s, x) of primitive characters y,
Dedekind zeta-functions (x(s), automorphic L-functions L(s, f) of normalized holo-
morphic Hecke-eigen cusp forms f with respect to SLy(Z). Furthermore, estimate
([22) is proved for ((s) by Selberg [28], for L(s,x) by Fujii [4], and for L(s, f) by
Luo [19], and hence they belong to the subclass Sir.

2.2. Statements of results. For an integrable function f(z), we denote its Fourier
transform and Fourier inverse transform by

flo) = £ / ) (w)|dw| and  1Y(2) / Fw)p—s (w) |du],

respectively, where 1,,(z) = exp(i Re(zw)) is an additive character of C and |dw| is
the measure (27)~'dudv for w = u +iv. According to [I1, Section 9] or [12] Section
5], we then define the class A as

A={feL'|f feL'nL> and (f")" = f holds}.

We see that any Schwartz function belongs to the class A, and especially, any com-
pactly supported C'°°-function does.
The first main result of this paper is related to the mean values of L-functions.

Theorem 2.1. Let F' € §1. Let o1 be a large fized positive real number. Let 6,0 > 0
be real numbers with 6+30 < 1/2. Let € > 0 be a small fized real number. Let ® € A.
Then there exists a constant Tt = T1(F, 01,0, 6,€) > 0 such that the following formula

(2.3) — / < (o0 + 2t)> dt = / O(2)My(2z; F)|dz| + E
C
holds for all T > Ty and for all o € [1—b~1+€,01], where M,(z; F) is a non-negative

real valued continuous function uniquely determined from F(s), and the constant b
is that in (2.1). The error term E is estimated as

(2.4) E < exp <__ log )3 >/\q> Hdz]—l—/ 1B(2)| |d2],
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where the implied constant depends only on F,o1,¢, and
Q={z=z+iyeC|—(logT)’ <z,y < (logT)°}.

Moreover, if F' € Sy, then there exists a constant Ty = T11(F, 01,0,0) > 0 such that
@3) and @24) hold together with T > Ty and o € [1/2 + (logT)~?, 01], where the
implied constant depends only on F and o1.

Then, let again R be a rectangle in the complex plane whose edges are parallel
to the axes, and define V, (T, R; F') as the Lebesgue measure of the set of all ¢ €
[0, T] for which (F'/F)(c + it) belongs to R. Denote by v the usual k-dimensional
Lebesgue measure. The second result is an analogue of Bohr—Jessen’s limit theorem
for (F'/F)(s).

Theorem 2.2. Let F € S;. Let o be fized with ¢ > 1 —b~', where the constant b is
that in (210). Let € > 0 be an arbitrarily small real number. Then we have

(2.5) %%GX&F%jAA@@JﬂMd+00Wua+ma%T)bﬁ

as T — oo, where the implied constant depends only on F,o, and €. Moreover, if

F € S, then 2.8) holds with any fized o > 1/2.

2.3. Remarks on the related works. The Riemann zeta-function {(s) is a typical
example of the member of the subclass Spr. In this case, Theorem 2.1 is essentially
Theorem 1.1.1 of [5], and the density function M, (z;¢) was used to study of the
distribution of zeros of ('(s) in [6].

Theorem[2.2lis related to the study on the discrepancy estimates for zeta-functions.
Let

'mmm:%mmm—mmy

We know that D, (T, R) = o(1) as T'— oo by (LI)). Matsumoto [20] gave a better
upper bound for D, (T, R), which was improved by Harman and Matsumoto [7].
They proved

D, (T, R) < (v2(R) + 1)(log T)_A(U)‘Fe

for an arbitrarily small € > 0, where

Alz) = (x—1)/(3 + 2x) ifx >1,
YT e —2)/@21 +82) if12<z<1.

Matsumoto [24] also generalized this result for Dedekind zeta-functions even in the
case of non-Galois extensions. We note that A(z) < 1/2 for any > 1/2. Though
the difference of logarithms and logarithmic derivatives exists, Theorem gives a
better estimate on the discrepancy for (F'/F)(s).

Recently, Thara and Matsumoto studied density functions such as M, (z) more
precisely, and named them “M-functions” for L-functions, see [10H13].

3. PrROOF OF THEOREM [2.1]

We begin with considering the case of ® = v, in Theorem 21l The following
proposition is a key for the proof of the theorem:
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Proposition 3.1. Let F(s) be a function satisfying axioms (1)—(4). Let o1 be a large
fized positive real number. Let 6,5 > 0 be real numbers with 6 +360 < 1/2. Let e > 0
be a small fixed real number. Then there exists a constant Ty = Ti(F, 01,0,9,€) > 0
such that we have

(3.1) —/ %( J+zt)> dt = My (2 F) + O <exp <__(10gT)2e>>

for all T > Ty, for all 0 € [1 — b~ + €,01], and for all z € Q, where MU(Z;F)
is a function uniquely determined from F(s). The implied constant depends only
on F,o1 and e. If F(s) further satisfies aziom (6), there exists a constant Ti; =
Ti(F,01,60,6) > 0 such that [B.J) holds together with T > Ty and o € [1/2 +
(log T)~%, o1], where the implied constant depends only on F and o7.

We first prove Proposition [3.1] in Section B.Jl We sometimes omit details of the
proofs there since they strongly follow Guo’s method in [5]. Towards the proof of
Theorem 2.1, we next consider in Section the growth of the function Mg(z; F)
of (3I)). We finally complete the proof of Theorem [Z]in Section 33

3.1. Proof of Proposition 3.3l Let F(s) be a function satisfying axiom (4). Then

we see that
n=1

where Ap(n) is given by Ap(n) = (a1(p)™ + -+ + ag(p)™)logp if n = p™ and
Ap(n) = 0 otherwise. In this section, we approximate (F'/F)(c + it) by some
Dirichlet polynomials. First, we define

o>1,

1 itl1<n<X,
wx(n) = § log(X?/n)
log X
for X > 1. We approximate (F'/F)(c + it) by the following function fx(¢,o; F):

fx(t,o;F)=— Z AF—(n)wX(n).

~, na-‘,—zt
ns

if X <n< X2

Lemma 3.2. Let F(s) be a function satisfying azioms (1)—(4). Let o1 be a large
fized positive real number. Let € > 0 be a small fixed real number. Then there exists
an absolute constant Ty > 0 such that we have

(3.2) —/ %( J+zt)> it = —/ 0. (Fx (t, 0 ) dt + By

for all T > Ty, for all o € [1 —b~' +¢€,01], and for all z € C. The error term E is
estimated as for any X,Y > 1

(3.3)

Ey <<% + y T 5{o—(1-b""+5)}

|z <XlongogT x—2{o-(-b7145 NlogT X

+X 7log?T
log X Y {fo—(1—-b"1+%)}? )
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where the implied constant depends only on F. If F(s) further satisfies axziom (6),
then B2) holds with o € [1/2 + (log T)~%, 1], and we have

1

1 .
(34)  Bi<+ YT~ 2"2) (log T)A

|z <X10ngogT X*%(U*%)logT X

= L X log?T
IOgX % (0__%)2 +T+ og )7

where the implied constant depends only on F'.

Proof. This lemma is an analogue of Lemma 2.1.4 of [5]. Let By (0,T; F) be the
set of all ¢ € [0,T] for which |y — ¢| <Y holds with some zeros p = § + iy of F(s)
satisfying 8 > %(0 +1—b"'+5). Then we see that By is

1 wn(PBy(o,T;F)) n M

(35) < =+
T T T Jn1n#y (o.1:F)c

since |t (w) — ¥, (w')| < |z|Jlw — w'|. By the definition of By (0, T; F'), we have

/

%(0—{-#) - fx(t,O';F)' dt,

1
v1(By (0, T; F)) < 2Y Np (5 (0 +1-b 1o %) ,T> .

Furthermore, estimate (2.I]) implies that the second term of (3.5) is
< YTl—%{a—(l—b’l—I—%)}

for 0 > 1 —b~! +¢/2. Then we estimate the third term. For this, Guo used the
formula of |27, Lemma 2], and we need a similar formula for general F'(s). We first
recall that the following estimate

/
(3.6) %(5) < log? (|t| + 2)
holds if s = o + it satisfies —1 < ¢ < 2 and has distance > log(|t| + 2)~! from
zeros and poles of F(s). This can be easily deduced from axioms (1)—(4). Let
¢ =max{2,1+ o} and choose T, € (m,m + 1] and 0 < § < 1 such that the edges
[c + T, =0 + iTy], [¢ — i1y, —0 — iTy,], and [—0 — iT,,,—0 + iT,,] have distance
> log(|t| +2)~! from zeros and poles of F(s). Then, we consider the integral

1 c+ilm xz—s _ x2(z—s)

By dz.
27 c—iThm F & (Z — 5)2 Z
We see that
1 c+iTm )l X7s _ XQ(Z_S)
5 7 dz = — fx(t,0; F)log X
Mmoo 27 /ciTm F (2) (z — 5)2 < fx(t,o;F)log

and change the contour by the edges [¢ + iT},, —0 + iT},], [¢ — Ty, —0 — iT,,], and
[—0 — i1}, —6 + iT,,]. The integrals on the horizontal edges tend to 0 as m — oo
due to estimate (3.6)), and we have also by (3.6]),

1 —0+iTm pot X5 _ x2(z—s)
2mi J s i, TV (z — 5)?

dz gy X 7 log*T
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for any 0 > 09 > 0 and ¢ € [1,T]. Calculating the residues, we obtain the following
formula:

E my X1l-s _ X2(1—s) mo X% — X —2s
e = t . F —
F (5) = fx(t.0: F) log X (1—s)2 + log X 52

1 XP—s — X2p=9) 1
oy | —=X"1og? T
+ng§; (p—s)? +O°<ng % >’

where my,mg > 0 are orders of the possible pole of F(s) at s = 1 and the possible
zero of F(s) at s = 0, respectively, and p runs through nontrivial zeros of F(s). In
order to complete the proof of Lemma [B.2] we must consider the contributions of
the second, third, and fourth terms of ([B.7)). They are estimated by an argument
similar to the proof of Lemma 2.1.4 of [5]. Thus we find the first part of Lemma [3.2]

All changes that we need for the proof of the second part are just replacing the
definition of By (o, T; F') with the set of all ¢ € [0,T] for which |y — ¢| < Y holds
with some zeros p = 8 + i of F(s) satisfying 8 > 1(c + 1). By the axiom (6), we
have

(3.7)

1 1
vi(By (0, T;F)) < 2Y Np <§ (O’ + 5) ) < Y172l )(log )4
The remaining estimates are given in a similar way:. g

Towards the next step, we define

Ar(n A
gX(tv g5 F) = Z ni—(kit) and hX t,o; F Z Z F0+zt

n<X? p<X2m= 1p

for X > 1. Then we have the following three lemmas:

Lemma 3.3. Let F(s) be a function satisfying axioms (1) and (4). Then there exists
an absolute constant Ty > 0 such that we have

—/ G fx(to F)) dt =—/ be(gx (t, 03 F)) dt + Fs

for all T > Ty, for all o > 1/2, and for all z € C. The error term FEy is estimated
as

1
.
(3.8) B, < 2108 X <1 n X_> ? io
(20 —1)2 T

for any X > 1. The implied constant is absolute.

Lemma 3.4. Let F(s) be a function satisfying axioms (1) and (4). Then there exists
an absolute constant Ty > 0 such that we have

—/ be(gx (t,03 F)) di / be(gx (r, 0 F)) dr + Es
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for all R > T > Ty, for all o > 1/2, and for all z € C. The error term Ej is

estimated as

gNX5N

N
2

(3.9) By < (1+ 2%

+ % (1 + XTN> {(g(%)% log X)N <g>' + g’(QU)N}

for any X > 1 and any large even integer N. The implied constant is absolute.

Lemma 3.5. Let F(s) be a function satisfying axioms (1) and (4). Then there exists
an absolute constant Ty > 0 such that we have

/%QXTUF)) Z—/ Vo (hx(r oy F))dr + E4

for all R > T > Ty, for all 0 > 1/2, and for all z € C. The error term Ey is
estimated as
g‘z’ log XX1—20'
20 — 1
for any X > 1. The implied constant is absolute.

(3.10) E, <

These lemmas are analogues of Lemmas 2.2.5, 2.1.6, and 2.1.10 in [5]. Note that
we have [Ap(n)| < gA(n) due to axioms (1) and (4), where A(n) = A¢(s) is the
usual von Mangolt function. In fact, by axiom (4) we have Ap(p™) = (a1(p)™ +

..+ ay4(p)™)logp, and by axiom (1) the absolute values of a;(p) are less than or
equal to 1; see Lemma 2.2 of [30]. Therefore we obtain these lemmas by replacing
A(n) with Ap(n) in the proofs of the corresponding lemmas in [5].

Let F(s) be a function satisfying axioms (1)—(4). Let o1 be a large fixed positive
real number. Let € > 0 be a small fixed real number. By the above lemmas, we have
forall R>T > Ty and for all 0 € [1 — b~ ! + ¢, 0],

(3.11)

1 R

_/ 1/}/:,( O'—i-Zt)) dtzﬁ/ Ibz(hx(T,O';F))dT—i-El+E2+E3+E4,
0
where the error terms E; are estimated as in (33]), (88), (39), and (BI0). Let
0,6 >0 with 6 + 30 < 1/2. We take X, Y, and N as the following functions in T"
X =exp((logT)"), Y =exp((logT)®), and N =2|(logT)%],

where 0; = (5/3)0, 0, = (01 +1—10)/2, 03 = ((20 + 60 +26,) + (1 —61))/2. Moreover,
let T} = T}(0,¢) > Ty with

(log T3) ™% < e/2.

Then we have o > 1—b"!+¢/2+ (log T)~? for T > T}. Hence, there exists a positive
real number T1 = T1(F, 0,9, €) > Tj) such that we have

(312) FEi1+4+ Es + Es+ By < exp —Z(log T)3

for all T' > 11 and for all z € Q) with the implied constant depending only on F' and
€.

Then, let F(s) further satisfy axiom (6). In this case, we obtain that the formula
(BI1) holds for all R > T > Ty and for all o € [1/2 + (log T)~%, 71], where the error
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terms E; are estimated as in (3.4), (3.8)), (3.9), and (B.I0). Therefore there exists a
positive real number Ty = T11(F, 6,6) > T such that we have the same estimate as
BI12) for all T'> T1; and for all z € Q.

Next, applying Lemma 2 of [9], we see that

(3.13) leéo_/ Yo(hx(r,o; F))dr = ] / ¢z< fna)e%z‘me) 40

p<X?2
logp
2

is linearly independent over Q. We define

(3.14) My (2 F) = /0 lwz <§: Ar(p™) m)e%im9> do.

mo
m=1 p

since the system

p is a prime number}

Then we obtain the following lemma on ]\704,(27; F'), which is proved in Section

Lemma 3.6. Let F(s) be a function satisfying axioms (1) and (4). Let o1 be a large
fized positive real number. Let 0,5 > 0 be real numbers with § + 30 < 1/2. Then
there exists a positive real number Ty = Ty (F, 01,0,9) such that we have

pg@ Myp(zF) =140 (exp <_i(1og T)?ﬁ))

for all T > Ty, for all ¢ € [1/2 4 (logT)~?,01], and for all z € Q. Here we denote
X = exp((log T)%G), and the implied constant depends only on F and o1.

We prove Proposition 3] with the above preliminary lemmas.

Proof of Proposition 31l By (B.11)), (312), and B.I3]), we have
~ 1
_/ ), < J—Ht)) dt = H M, (2 F)+ O <exp (—Z(logTﬁ@)) )
p<X?

We consider the replacement of the product [,y ]\7071,(,2; F) with [, ]\7071,(,2; F),
where the error is estimated as

HM,,, 5 F) = [[ Mop(zF)| < | [ Mop(z:F) -1
p<X?2 p>X?2
since |]\707p(z; F)| <1 by definition. Hence we have

[T Mopz: F) = [T Moy F) +0 (exp (——(bgT)% >>

p<X? P
by Lemma Therefore Proposition [B.1] follows if we define

]\70(2; F) = H]\/Zmp(Z; F).
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3.2. Estimates on ]\70(2; F). In this section, we examine some analytic properties

of the function Mo(z; F). By definition (3.14) and v,(w) = exp(i Re(zw)), we have
N 1
My (2 F) = / exp(izap(0,0; F) + iyb,(0,0; F)) db,
0

where z = x + iy and a,(0,0; F),b,(6,0; F) are functions such that

— 1
ay(0,0;F) = Z — (p™) cos(2mmb) — Im Ap(p™) sin(2wmb)},
p g
m=1
— 1
by(0,0;F) = Z ——{Re Ap(p™)sin(2rm0) + Im Ap(p™) cos(2mrm0)}.
p g
m=1
Then we define
N 1
(3.15) M,y(s,z1,20; F) = / exp(iz1ap(8, s; F) + i22b,(60, 55 F)) d
0

for Res > 0 and 21,29 € C. We have Mg,p(aﬂ +iy; F) = Mp(a,m,y;F) if 0 >0 and

x,y € R. For the study on the function Mp(s, 21, z9; F'), the following lemma is fun-
damental, which is easily deduced from the expansion of exp(z) and the calculations
of integrals.

Lemma 3.7. Let F(s) be a function that satisfies axiom (4). Then we have
(3.16) MP(S,Zl,ZQ;F) =1—p,+R,
forc =Res >0 and 21,25 € C, where

22 +z Ar(p
MP:MP(SathZ;F) == 2 Z ‘ QWS)‘ ’

1 k:
R, = Ry(s, 21,20, F / Z k'{zlap (0,5, F) 4 22b,(0, 53 F)}* df.

Therefore, if 1, and R, are Sufﬁ(uently small, we have
(3.17) log My(s, 21,22 F) = —ptp + By + Oy |* + | Ry ),

where log is the principal blanch of logarithm. Using Lemma B7, we study the
function

(318) M(S,ZI;Z2;F) = HMP(S,ZI,ZQ;F)’

Proposition 3.8. Let F(s) be a function satisfying axioms (1) and (4). Assume
that (s, z1,22) varies on {Res > 1/2} x C x C. If we fix two of the variables, the
function M (s, z1, z2; F') is holomorphic with respect to the reminder variable.

Proof. Let K be any compact subset on the half plane {Res > 1/2}, and let K3, Ko
be any compact subsets on C. Assume that (s, z1,22) € K x K1 x K, and let o¢ be
the smallest real part of s € K. As in Section Bl we have |A(p™)| < glogp, where
g is the constant in axiom (4). Then we obtain

9%(log p)?
p200

¢3(logp)?

Hp K and R, < P
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where the implied constants depend only on K, K, Ko. Thus, by (B17), we have
lOgMp(S,Zl,ZQ;F) < g*(logp)?p29° for all p > M, where M = M(K, Ky, K>s)
is a sufficiently large constant that depends only on K, K7, and K. The series
>, (log p)2p~290 converges since oo > 1/2; therefore infinite product (3I8]) uniformly

converges on K x K; x Ks. Every local parts Mp(s, 21, z2; F') are holomorphic, and
hence we have the result. O

We estimate the growth of M (8,21, 22; F') with z; and 29 near the real axis.

Proposition 3.9. Let F(s) be a function satisfying azioms (1), (4), and (5). Let
o > 1/2 be an arbitrarily fized real number. Then there exist positive constants
K = K(0;F) and ¢ = c¢(0; F) such that for all z,y € R with |z| + |y| > K, and for
all non-negative integers m and n, we have

ot — 1 1
i M (0,21, 20 F) < exp (—elfo] + y)) 7 og(Ja] + y]) 7 ")
202y

for any z1,z2 € C with |z1 — x| < 1/4, |22 —y| < 1/4. The implied constant depends
only on m and n.

Proof. Let K > 1 and ¢y < 1 be positive constants chosen later, and assume that
z,y € R with |z| + |y| > K. We define

Py = <g(!m\ 19D 1 921+ \yy)>o

€0 €o

for any fixed o > 1/2. Then for any p > Py, we see that

(Jz| + |y|)glog p < (|z| + |y])g log Po < coer
o Py

with an absolute constant ¢; > 0. Hence, we estimate p, and R, in Lemma 3.1
arbitrarily small if we let the constant ¢y suitably small. Thus formula (3.I7) holds.
We then replace p, in (3.I7) with the real number

2 2 mY |2
z’ +y [Ar(p™)]
m=1

The error of the replacement is estimated as

o
[Ar(p™)?

iy — 1] < (] + [y]) Z oy

m=1 p
if we assume that |z — x| < 1/2 and |22 — y| < 1/2. Moreover, we have
4 3
2 (2l +1y)glogp (= + lylglog Py ( (x| + ly)glog p
,U,p < o < Po pa

0

(lz] + lyl)*g* (log p)*

< p30

and

pma p30

m=1

00 m 3
R, < (Jz| + [y])® (Z M) < e+ \y!)g’g?’(logp)?”
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where all implied constants are absolute. Therefore by (817 we have for any p > P,

v 2+ 4% o [Ar(p™))?
log Mp(0, 21, 22; F') + 1 mZ:l e

=~ [Ar(p™)[? g*(log p)?
< (lz[ + ly|) Z s T B(|z| + ‘y’)ng
m=1

with some absolute constant B > 0. Thus for sufficiently large K, if |z| + |y| > K,
then we obtain

Relog Mp(a, 21,29, F)

> AR(@™)? ¢%(log p)?
< —A(|z| + |y|)? Z e+ Bl + )P

3
m=1 p 7
|Ar(p)|? g3(log p)?
< —A(|z| + |y|)27p20 + B(|z| + |y|)37p30

with some absolute constant A > 0. Note that

Ap(p) = (a1(p) + -+~ ay(p)) logp = —ar(p)logp
from axiom (4). Hence, we have

(3.19)

[T Mo(o. 21, 205 F)
p>Fo

2 2 3

ar(p)|*(logp logp

< exp | (el +1yl)? o PEPLLEIE | ey pygp 3 LED)
p=Fo

p>Fo

log p)? log p)?
<exp [~ Alal +190* 3 Y j0p ()2 + Beoerg®(lal + fyl)? 3 182

20
p=>Py p=>P

Then we estimate

Z (1(;%5)2|GF(]9)|2 and Z (10gp)2.

20
j 23 50) p>Fo p

We see that for any o > 1/2, there exists a constant Xo(o; F') > 0 such that for any
X > XO(U; F)’

(10gp)2 2 K 1—20
———larp(p)|" > —/——=X log X
1 2 2
Z ( Og2p) S X1720 10g X,
X p° 20—1

Indeed, the first inequality is deduced by summing by parts with axiom (5), and we
obtain the second inequality in a similar way. Then, we let ¢g = ¢o(F) smaller so
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that 2Bcoc19? < Ak/2. If we let K = K(0; F) suitably large, then we obtain for
ul +[v] = K,

og p)? og p)?
— A(lz]+ ) > WMF(MQ + Beoerg® (| + ly)* > %

p>Po p>Po

< —c(lz] + yl)7 (log (o] + ly]) !

with some positive constant ¢ = ¢(o; F'). Hence we obtain

(3.20) [T Mo(o, 21,20 F)| < exp (—e(lal + lyl)7 (og(lal + lyD)= ")
p=>Fo

The estimate on the contributions of Mp(a, 21, z2; F') for p < Py remains. By defini-
tion (B.15]), we see that

N 1
‘Mp(0,21,22;F)‘ S/o exp(—Im(z1)a,(0,0; F) — Im(22)by, (6,03 F)) df

1
< [ expllay (6,0 F)] + I (0,03 F))) do
0
1
< exp <0w>
pO'
with some absolute positive constant C' since |21 — x| < 1/2, |22 — y| < 1/2, and
x,y € R. Thus we have

. ] 1
H My(o,21,20; F)| <exp | C Z w < exp (CglogP0P02> .
p<FPo <Py

Then we see that for |z| + |y| > K,

(3.21) [T My(o.21,22: F)| < exp (C'(Jal + [y)¥ )

<P

where C" = C'(F) is some positive constant. Therefore we obtain
(322)  |M(o,21, 205 F)| < exp (—ellal + y) 7 (log(lal + [y]) )

by (320) and B21]), where ¢ = ¢(o; F) is some positive constant. We finally assume
that |21 — x| < 1/4 and |22 — y| < 1/4. Then, applying Cauchy’s integral formula,
we have

8m+n — mlnl (O’ 51 52 )
M e dé1dés.
8217182; (U; Zlaz2a 27_” /ﬂl le 1/4 §1 — Zl)m+1(§2 — )n+1 51 52
Therefore by estimate ([3.22)), the deswed result follows. O

Remark 3.10. We find that Mg(z; F) is a Schwartz function according to Propo-
sition Hence its Fourier inverse

My(z; F) = /M (w; F)tp—, (w) |dw|
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is also a Schwartz function, and belongs to the class A. Thus we have ]\70(2; F) =
(M,(z; F))". By a simple calculation, we see that M, (z; F') is real valued.

Finally, we prove Lemma in Section 3.1

Proof of Lemma[30. Assume p > X? with X = exp((log T)%o). Then we see that
tp = pplo,z,y; F) and R, = Rp(o,z,y; F) in Lemma B7 are small when T is
sufficiently large. In fact, we have for p > X?,

2 2
g (logp _
up<<(m2+y2)7(p20 ) < {(|z] + |y)gX 1727 log X}

By the setting for X,z = z + iy, and o, we have
1
X129 10 X < exp <—Z(logT)§9> -0

as T — o0o. The argument for R is similar. Hence by (B.17]), we obtain

—~ lo 2
log My, (2 F) < (2 + yz)(png),

where the implied constant depends only on F'. Therefore we have

H Ma,p(z;F) = exp Z log]’\\fmp(z;F)

p>X2 p>X2

1 2
=14+0 (mz—}—yQ) Z (0g2(179)
p>X2

Applying the prime number theorem, we estimate the above error term as

log p)? X2(-20) Jo0 X 1 2
(z® +9?) Z ( g%) < (2% + yz)—12g <exp [ —=(logT)s?
p2X2 (U - 5) 4

by the assumptions on X, z = x + iy, and 0. Here the implied constant depends
only on F' and o7;. O

3.3. Completion of the proof.

Proof of Theorem [Zl. We only consider the case of F' € Sy since the case F' € Syp
follows completely in an analogous way. By the definition of the class A, for any
® € A we have

B(w) = /C B(2)6 (w) du.

Hence, by Proposition 3.1l we see that for all T' > T7,

%/;@(%(a—i—it)) dt /Q !

)

T /
(z)f/o (o (%(U—Hf)) dt |dz| + Ey
(2) My (=2 F)|dz| + By + By

)

I
S— 55—
o

(2)M, (=2 F) |dz| + E1 + B + E3,
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where the error terms are estimated as

~ 1 (T F ~
FEy = d(2)= 2| = ‘ @
1 /m (z)T/O " Z<F(a+zt)> dt 2] < /m\ ()] ldz],

E, < exp <—— log T') % )/ 1D(2)| |dz|,
By [ 18(:)|[dal.
c\Q

Here all implied constants depend at most only on F', o1, and €. We find that
[ 8T, (~wi ) | = [ BV (wi ) il = [ @), (5 )l
C C C

due to Parseval’s identity, and therefore (Z3)) and (2.4)) follow. The proof of the non-
negativity of the function M, (z; F') remains. For this, we assume M, (z; F') < 0 for
some region U. If we take ®(z) as a non-negative function with a support included
in U, then we have the contradiction. Due to the continuity of M, (z; F'), we see
that M, (z; F') is everywhere non-negative. O

4. PROOF OF THEOREM
We find that Theorem 2.1] imply Theorem by the following lemma.

K(z) = (Sir;;xf

Then for any a,b € R with a < b, there exists a continuous function F,p : R — R
such that the following conditions hold: for any w > 0,

(1) Fop(z) — 1jgp(z) < K(w(r —a)) + K(w(z — b)) for any x € R;

(2) ( b(@) = L (2)) do <™

(3) if |3:| > w, thenFab( ) 0;
) F.

(4) Foplz) < (b—a) +w!
Here,

Lemma 4.1. Let

Fa,b(x) = /RFa,b(u)emu |du|

is the Fourier transformation of Fyy(x) with |du| = (27‘(‘)7%(1’[1.

Proof. This is Lemma 4.1 of [I8] except for the difference of the definition of the
Fourier transform, which does not affect the result. ]

Proof of Theorem [2.2. Again we consider only the case of F' € 8. Assume that the
rectangle R is given as

R={z=z+iyeCla<z<b c<y<d}
Then we define for z = x + iy € C
(4'1) (I)(Z) = Fa,b(x)Fc,d(y)'
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We first find that the function ®(z) belongs to the class A. The class A is also
written as

A= {feL"fis continuous and f € L'},

and hence we must check that ® € L', ® is continuous, and ® e L. Since

/C<I>(z)|dz| :/RFa,b(:v)Id:vl/RFc,d(y)ldyl,

we see that ® € L! by condition (2) of LemmaEJl The function ®(z) is continuous
by its definition (4.1]), and furthermore, we have

O(2) = Fyp(a)Fraly) =0

if |z, |y| > w by condition (3). Thus also we have ® € L*. Therefore ®(z) belongs
to the class A, and we apply Theorem 2.1] for this function. Note that

(4.2) @(2) —1r(2) K K(w(x —a)) + K(w(z — b)) + K(w(y — ¢)) + K(w(y — d))

by condition (1) of Lemma @Il Then, let ¢ > 1 —b~! be fixed, and let 6,5 > 0 with
5+ 360 > 0. We take w = (log T)°. Due to inequality (Z2]), Theorem 1] gives

1
T

for large T', where

(4.4) E, < exp <—— log T) % ) / 2)| |dz| +/ |D(2)||dz],
c\Q

(15) Bk (( Torin-a)) a
( <Re—a+zt)—b>> "
e
[l

(46) By <</K(w(a:—a))M (2 F) |dz] +/K (2 — b)) M, (= F) |d2|

(4.3) Vo(T,R; F) = / My (z; F)|dz| + E1 + E2 + E3
R

and

/K My(z; F) |dz|—|—/K w(y —d)) My (z; F)|dz|.

All implied constants depend on F,o,60,0,e. We estimate three error terms Fq, Fo,
and F3. The first term of the right hand side of (4] is estimated as

exp (——(logT )/ |®(2)| |dz| < exp (——(logT) )(bgT)%(b—a)(d—c)
< (log T)"°vy(R)
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for sufficiently large T by condition (4) of Lemma [Tl We have

[ Bz =0
C\Q

since ®(z) = 0 if |z|, |y| > w. Therefore we obtain
(4.7) E; < vy(R)(logT)™?

Next we estimate E5. Since we have

2 ¢ o |
il / (w—u)cos(2rzu) du = — Re/ (W — w)e2™ gy,
0 0

w? w?

K(wx) =

the first term of the right hand side of (4% is estimated as

(e (e-)

17 F’
T/o exp <2m’u Re F(O‘ + zt)) dt' du.

<<_ —
= w-w

Proposition B.1] deduces
I F' —
- / exp <2m'u Re —= (o + zt)) dt < ‘Mo(%’u; F)‘
T ), F
as T — oo, hence (L)) is
1 — 1 s
< (w—u)‘Mg(Qﬂu;F)‘ du < = = (logT)
0

The last inequality follows from Proposition B.9l Since the reminder terms of (4.35])
are estimated in a similar way, we have

(4.9) Ey < (logT)™°
The work of the estimate of F3 remains. For this, we define
me(z; F) = /RMo(x +iy; F) |dyl.
Then the first term of the right hand side of (6] is equal to
/ K(w(z — a))my(z; F) |dz|.
The function m,(z; F) is bounded on R. In fact, it is continuous, and we see that
/moxF|dx| /M (z; F)|dz| = ( F)=1.
Therefore, we obtain
/(CK(w(x —a))My(z; F)|dz] < /RK(w(x —a))dr < % = (logT)~°

Estimating the remaining terms of (4.6]) similarly, we have

(4.10) E3 < (logT)™
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By estimates (7)), (£9), and (£I0]), formula (@3] gives

%VJ(T, R;F) — /RMJ(Z; F)|dz| < (v2(R) +1)(log T)°.

Taking care of the assumption 6 + 30 < 1/2, we put § = ¢/4 and § = 1/2 — € for
arbitrarily small € > 0. Then we obtain

(v2(R) +1)(log T) ™ = (va(R) +1)(log T) "2+,
which gives the result. O
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