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Abstract: In arXiv:1706:09426 we conjectured and provided evidence for an identity

between Siegel Θ-constants for special Riemann surfaces of genus n and products of Jacobi

θ-functions. This arises by comparing two different ways of computing the nth Rényi

entropy of free fermions at finite temperature. Here we show that for n = 2 the identity is

a consequence of an old result due to Fay for doubly branched Riemann surfaces. For n > 2

we provide a detailed matching of certain zeros on both sides of the identity. This amounts

to an elementary proof of the identity for n = 2, while for n ≥ 3 it gives new evidence for

it. We explain why the existence of additional zeros renders the general proof difficult.
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1 Introduction

The computation of Rényi entanglement entropies for quantum field theories is commonly

performed using the replica trick in the path integral formalism. This requires us to

change the underlying space on which the field theory is defined to a “replica space” which

contains n copies of the original one glued together in a certain way. This approach has

been successfully applied to the computation of the Rényi entropy for a single interval in

arbitrary 2d conformal field theories as long as either the temperature is zero (non-compact

Euclidean time direction) or the space is infinite (non-compact spatial direction), or both.

The answer is a universal expression that does not depend on any details of the CFT

other than the central charge. The replica trick has also been applied to the computation

of multi-interval Rényi entropies [1–3], to entanglement negativity [4, 5], and to single-

interval Rényi entropy on a finite space at finite temperature [6–9]. In these cases, the

result is not universal and depends on details of the CFT beyond the central charge.

Typically the difference between the cases that give universal answers and those that do

not is the nature of the Riemann surface involved. For the simplest case of a single interval

on a plane, one can uniformise the replica surface back to the original one, whereupon
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the computation is relatively simple. The same is true for a single interval on a cylinder

(which can be mapped to a punctured plane and one proceeds from there). In these cases,

the computation boils down to a product of two-point functions of twist fields, which on

the plane are completely determined by their conformal dimensions. These dimensions in

turn are given by the uniformising map. However when we have finite temperature and

interval size, the space is a torus and the replica space is a genus-n surface. Similarly

when we have n > 1 cuts on a plane, the replica space has genus n− 1 > 0. These spaces

cannot be uniformised back to the original one. For free field theories, however, one can

still attempt to use twist fields. When the original space is a torus with one cut, one needs

their two-point functions on a torus. When the original space is a plane with multiple cuts,

one needs their higher-point correlation functions. These objects are generally computable

in free boson and fermion theories.

In particular, the Rényi entropy at finite size and temperature has been computed in

[6, 7, 9]. For bosons, the result in [9] is consistent and passes all reasonable tests including

the thermal entropy relation and modular invariance. However, as originally pointed out

in [10], the free fermion result of [6] does not simultaneously pass both these tests. If one

chooses to restrict to a single fermion spin structure then the answer obeys the thermal

entropy relation but is not modular invariant. On the other hand, if one chooses to sum over

spin structures then the answer is modular invariant but does not obey the thermal entropy

relation. This puzzle was addressed in [11] where it was first argued that the twist-field

computation of [6], for a fixed spin structure, is equivalent to computing the higher-genus

partition function of free fermions for a “diagonal” spin structure on a genus-n Riemann

surface. This is what one would expect, but it implies a very non-trivial identity between

genus-n Siegel Θ-constants on replica surfaces and genus-1 θ-functions, which we call the

Θ - θ relation. A precise statement of this identity and considerable evidence for it were

provided in [11]. The resolution of the puzzle is then as follows: the modular-invariant

higher-genus partition function for free fermions requires a sum over all 2n−1(2n + 1) even

spin structures on the genus-n surface, including the non-diagonal ones. However no twist-

field computation is known that reproduces the non-diagonal spin structures. Therefore,

though the twist-field computation is correct for diagonal spin structures, it is inadequate to

find the contribution of non-diagonal ones. As a result, the only correct way to compute free

fermion Rényi entropies at finite size and temperature is to use the higher-genus approach.

The above resolution left three interesting questions open. To explain these, let us first

set up the problem. We have a free fermion CFT on a spatial region of size L and at a finite

temperature T = β−1. By standard methods the corresponding path integral is defined on

a torus whose horizontal axis is unity and the ratio τ = β
L , after complexification, describes
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the other axis of the torus. The entanglement of interest is between the interior of a straight

line segment between the points z1 and z2 on this torus, whose separation is denoted

z12 = z2 − z1 and allowed to be complex. Computations of Rényi entropy depend only on

the two complex parameters τ, z12. Now, one of the open problems was whether a rigorous

proof can be found for the conjectured identity (Equation (2.24) of [11]) between a higher-

genus Siegel Θ-constant for a diagonal spin structure, evaluated on a special replica surface,

and a product of genus-1 θ-functions with the same spin structure. Another was whether

the twist field prescription can be modified in some way to compute the contribution of

non-diagonal spin structures. A third question, only briefly addressed in [11], concerns the

periodicity of the Rényi entropy contribution for a fixed diagonal spin structure. These

contributions to the Rényi entropy do not have periodicity in the interval length of the

original torus (z12 → z12 +1, z12 + τ) but rather, are invariant under n-fold shifts for odd n

and 2n-fold shifts for even n. A related point is that these contributions have zeros for

values of z12 that lie outside the original torus but inside the larger fundamental region for

the n-fold/2n-fold shifts.

In this note, we address all three points above. After a brief review of the results of [11],

we argue that the twist-field prescription cannot be used for non-diagonal spin structures,

for the simple reason that replica symmetry does not hold in this situation. Next we provide

a rigorous proof of the conjectured identity of [11] for the case n = 2 (corresponding to

the second Rényi). In fact this identity is equivalent to a mathematical result of Fay [12]

on doubly-branched covers, for which we also provide an elementary proof which relies

on information about the zeros of the θ-functions that appear in the identity. For n > 2

the corresponding identity does not seem to be known in the mathematics literature. We

analyse in some detail the pattern of zeros for the twist-field calculation at n > 2, which is

significantly different from that at n = 2, and use it to propose some directions in which a

rigorous proof for n > 2 might be found. We are able to match some of the zeros on the

two sides, but for other zeros of the right-hand side we are unable to compute the left-hand

side and verify whether it vanishes. Finally we discuss some interesting open questions to

which these techniques could be applied.

The plan of the paper is as follows. In Section 2 we start by reviewing the conjecture

of [11] for what we call “diagonal” spin structures, and then go on to argue that analogous

relations do not exist for non-diagonal spin structures. In Section 3 we give a proof of

the Θ - θ identity for n = 2 using a result of Fay. In Section 4 we discuss the periodicity

relations and zeros of the two sides of the identity, leading to additional evidence for it.

This includes an elementary proof of the conjecture for n = 2. We conclude in Section 5

with remarks on the geometric interpretation of our identity.
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2 Rényi entropy computations and the conjectured Θ− θ relation

Given a reduced density matrix ρA obtained by tracing out the degrees of freedom outside

the entangling interval, the nth Rényi entropy is defined as:

Sn(z12, τ) =
1

1− n
log tr ρnA (2.1)

It has been known for some time that this can be computed in terms of a “replica partition

function” on a genus-n Riemann surface:

Sn = logZ(n) (2.2)

For free fermions/bosons, the partition function on generic Riemann surfaces is known, so

in principle one just needs to specialise the answer to the replica surface.

In particular, the partition function of a modular-invariant free Majorana fermion

theory on a compact Riemann surface of genus n is [13, 14]:

Z
(n)
higher-genus

[
~α

~β

]
(Ω) =

1

2n
|C|
∑
~α,β

∣∣∣∣Θ[~α~β
]
(0|Ω)

∣∣∣∣ , (2.3)

where Θ is the genus-n Siegel theta-function with characteristics ~α, ~β:

Θ

[
~α

~β

]
(0|Ω) =

∑
mi∈Z+αi

exp
(
πi

2∑
i,j=1

mi Ωijmj + 2πi
2∑
i=1

mi βi

)
. (2.4)

In Equation (2.3), the quantity C is a factor related to the determinant of an anti-holomorphic

differential operator on the surface (see for example Eq.(5.13) of [13]).

If we wish to compute Equation (2.3) on a replica surface, we must insert the appropri-

ate period matrix Ω for this surface. This is defined in terms of a set of n cut differentials:

ωk(z, z12, τ) :=
θ1(z|τ)

θ1

(
z + k

nz12

∣∣∣τ)1− k
n
θ1

(
z − (1− k

n)z12

∣∣∣τ) kn , (2.5)

with k = 0, 1, · · · , n− 11. From these differentials we construct a set of n quantities:

Ck(z12, τ) :=

∫ τ
0 ωk(z, z12, τ) dz∫ 1
0 ωk(z, z12, τ) dz

, (2.6)

and the period matrix Ω is then given by:

Ωab(z12, τ) =
n−1∑
k=0

e
2πi(a−b)k

n Ck(z12, τ) . (2.7)

1For the odd Jacobi theta function we will often use the standard notation θ1(z|τ) = −θ

[
1
2

1
2

]
(z|τ) to

reduce clutter in our formulae.
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More details, including original references, can be found in [11].

The sum over characteristics in the above equation is a sum over fermion boundary

conditions over closed cycles, or spin structures. Thus we can write ~α = (α1, · · · , αn)

and ~β = (β1, · · · , βn) where each αi, βj independently takes values 0 or 1
2 . The value 0

indicates an anti-periodic fermion boundary condition around the A-cycle (for αi) or the

B-cycle (for βi), while the value 1
2 indicates a periodic boundary condition around the

same cycle. Diagonal spin structures are those of the form (α, · · · , α) and (β, · · · , β) and

will be denoted by ~αdiag and ~βdiag in what follows. It is only for diagonal spin structures

that the fermion has the same boundary condition around every A-cycle, and similarly for

the B-cycles. Notice that in the 3n− 3 complex-dimensional parameter space of compact

genus-n surfaces for n ≥ 2, this set of period matrices is a subfamily of dimension 2.

2.1 Twist fields and the conjecture

Restricting to replica surfaces, it is possible to write a more explicit form for the replica

partition function in which the spin-structure-independent prefactor C is made precise. The

result, as derived in [11], is:

Z
(n)
higher-genus =

∣∣∣∣ θ′1(0|τ)

θ1(z12|τ)

∣∣∣∣ 1
12

(n− 1
n

) 1

|η(τ)|n

∑
~α,~β

∣∣∣Θ[~α
~β

]
(0|Ω)

∣∣∣√∏n−1
k=1

∫ 1
0 ωk(z, z12, τ) dz

. (2.8)

The twist-field computation of a replica partition function attempts to reproduce the

same result by computing a correlation function on the original torus. As discussed in

[10, 11], this has been only partially successful for free fermions. Indeed, this method was

initially applied to compute the contribution to the replica partition function for a fixed

spin structure (α, β) on the original torus, and yielded the result [6]:

Z
(n)
twist-field =

∣∣∣∣ θ′1(0|τ)

θ1(z12|τ)

∣∣∣∣ 1
12

(n− 1
n

)
n−1
2∏

k=−n−1
2

∣∣∣∣∣θ
[
α

β

](
k
nz12

∣∣∣τ)∣∣∣∣∣
|η(τ)|

, (2.9)

This is supposed to represent an alternate approach to the computation of the free-fermion

Rényi entropy. But as it stands, this depends on a pair (α, β) specifying torus spin struc-

tures, and cannot be compared with Equation (2.8) where 22n spin structures have been

summed over. What we should do is to compare the twist-field result in Equation (2.9)

with the contribution to Equation (2.8) from a fixed, diagonal spin-structure (~αdiag, ~βdiag)

as defined above. A sufficient condition for these two to agree is the following non-trivial

mathematical identity between higher-genus Θ-constants (evaluated on the period matrix
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of the replica surface) and genus-1 θ-functions, which was conjectured in [11]:

χg(τ, z12;α, β) = χt(τ, z12;α, β) , (2.10)

with

χg(τ, z12;α, β) =

Θ

[
~αdiag

~βdiag

]
(0|Ω)√∏n−1

k=1

∫ 1
0 ωk(z, z12, τ) dz

, (2.11)

χt(τ, z12;α, β) =

n−1
2∏

k=−n−1
2

θ

[
α

β

](
k

n
z12

∣∣∣τ) . (2.12)

We will refer to Equation (2.10) as the Θ - θ identity. The above conjecture is slightly

stronger than what is required for the partition functions coming from Equation (2.8) and

Equation (2.9) to be equal, in that it equates holomorphic functions of (z12, τ). Several

pieces of evidence were provided for this identity in [11]. In particular it was shown that

both sides transform in the same way (as weak Jacobi forms) under modular transforma-

tions of the torus, and that they have the same periodicities in the variable z12. These

results will be useful in the following.

It is evident that restricting the sum in Equation (2.3) to diagonal spin structures

does not lead to an answer that is invariant under modular transformations. An easy

way to see this is that such a sum contains just four terms corresponding to (α, β) =

(0, 0), (0, 1
2 ), (1

2 , 0), (1
2 ,

1
2 ), but a generic global diffeomorphism of a genus-n Riemann

surface—such as cutting, twisting and re-joining a single handle—will change the bound-

ary conditions to correspond to a non-diagonal spin structure. We have seen that if our

conjecture is true then twist fields can reproduce the higher-genus result for diagonal spin

structures, but this motivates us to ask what is the situation for non-diagonal spin struc-

tures and whether there is a corresponding identity for them.

2.2 Non-diagonal spin structures

We have seen that the spin-structure-dependent part of the partition function of a higher-

genus Riemann surface is given (for Majorana fermions) by a sum:

∑
~α,~β

∣∣∣∣∣Θ
[
~α

~β

]
(0|Ω)

∣∣∣∣∣ (2.13)

where Ω is the period matrix of the Riemann surface, which is a complicated function

of (τ, z12). Our conjecture implies that twist fields can reproduce the above quantity in

the case where the higher-genus spin structure is diagonal, of the form ~αdiag, ~βdiag. One
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is therefore naturally led to ask whether some modification of these twist fields can be

employed to reproduce non-diagonal spin structures of the higher-genus surface.

Unfortunately, as we now argue, this is not possible. The replica method works due to

the Zn replica symmetry, but this symmetry is broken precisely by the boundary conditions

that correspond to non-diagonal spin structures. To be more precise, on the higher-genus

surface one can still define operators σ located at the end-points of the entangling interval

that take the physical fields from one replica to the next:

σ(z)ψj(w) ∼ ψj+1(w) (2.14)

where ψj , j = 1, · · · , n is the free fermion associated to the ith replica. However the replica

method really becomes useful when one takes linear combinations of the replicated physical

fields and reduces the genus-n problem to a problem in genus-1 with multiple fields, each

acquiring a different phase upon encircling the end-points of the cut:

ψ̃k =
n∑
j=1

e2πijk/nψj , σ(z)ψ̃k(w) ∼ e2πik/nψ̃k(w) (2.15)

It is evident that if all the ψi do not have the same boundary condition around the corre-

sponding cycle of the replica surface, then the ψ̃k do not simply pick up an overall phase

when acted on by the twist field. Instead they are mixed by the monodromies. In short,

the “diagonalising” process fails with non-diagonal spin structures, and one cannot convert

replica fermions on a genus-n surface into free fermions on a single torus. An inevitable

conclusion is that the Rényi entropy for modular-invariant free fermion systems cannot be

computed using the twist-field method.

3 Second Rényi entropy: a proof of the identity

In this section we focus on the second Rényi entropy, i.e. the case when the replica surface

has genus n = 2. This surface is a doubly branched cover of the torus. Such covers have

been studied quite intensively and we will see that useful formulae exist in the mathematical

literature which enable us to prove the Θ - θ identity in this case.

We start by specialising the notation of Section 2 to the case of genus 2. One easily

sees that the cut differentials in this case are

ω1(z, z12, τ) =
θ1(z|τ)√

θ1

(
z + 1

2 z12

∣∣∣τ)θ1

(
z − 1

2 z12

∣∣∣τ) , (3.1)
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and that the period matrix is

Ω =
1

2

(
τ + C1 τ − C1

τ − C1 τ + C1

)
,

C1(z12, τ) =

∫ τ
0 ω1(z, z12, τ) dz∫ 1
0 ω1(z, z12, τ) dz

.

(3.2)

Our conjectured identity Equation (2.10) becomes, in this case,

Θ

[
α α

β β

]
(0|Ω)√∫ 1

0 ω1(z, z12, τ) dz
= θ

[
α

β

](z12

4

∣∣∣τ) θ[α
β

](
−z12

4

∣∣∣τ) , (3.3)

In [11] we showed that both sides have the same periodicity under shifts z12 → z12 + 4,

and provided additional evidence by expanding both sides in powers of z12. In this section

we prove Equation (3.3) using an old result due to Fay [12]. To start with, let us review

some basic features of ramified double coverings. The idea is to describe the simplest

class of Riemann surfaces Ĉ with non-trivial automorphism group Aut(Ĉ) and a ramified

projection mapping:

Ĉ → Ĉ/Aut(Ĉ) (3.4)

This class consists of Riemann surfaces admitting a conformal involution with fixed points.

Although the theory applies to such Riemann surfaces of any genus, we will specialise

it to the case where the covering space has genus ĝ = 2 and the base has genus g = 1.

Thus, let π : Ĉ → C be a ramified double covering of genus 2 of a torus with 2 branch

points at Q1, Q2. Let φ : Ĉ → Ĉ be the conformal automorphism that exchanges the two

tori in the covering surface, with fixed points at Q1, Q2. A canonical homology basis is

then:

A1 , B1 , A
′
1 , B

′
1 , (3.5)

where A1, B1 is a canonical homology basis for the torus C, and

A′1 = −φ(A1) , B′1 = −φ(B1) (3.6)

Correspondingly there are normalised holomorphic differentials u1, u
′
1 where

u′1(x′) = −u1(x) , (3.7)

and x′ = φ(x) is the conjugate point of x ∈ Ĉ under the automorphism.

An alternate basis for the holomorphic differentials is given by

v1 = u1 − u′1 , w1 = u1 + u′1 . (3.8)
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Notice that

v1(x) = u1(x)− u′1(x) = u1(x) + u1(φ(x)) , (3.9)

where we have used φ−1 = φ, i.e. φ is of order 2. Clearly v1(φ(x)) = v1(x). Thus v1

is invariant under the automorphism, and is identified as the (normalised) holomorphic

differential on the torus C. On the other hand,

w1(x) = u1(x) + u′1(x) = u1(x)− u1(φ(x)) (3.10)

is odd under the automorphism.

The above construction has an interesting geometric interpretation. To every Riemann

surface C of genus g ≥ 1, one can associate the Jacobian variety J(C) := Cg/(ZΩg+Z1g).
The map is given as follows: one chooses an arbitrary point P0 ∈ C, and a point P ∈ C
is then mapped to the point

∫ P
P0
ζj , j = 1, · · · , g in J(C), where ζj are the g holomorphic

one-forms on the Riemann surface. (This map is well-defined because two paths between

the two points always differ by a linear combination of cycles on the surface, which map

to the identity in the quotient that defines J .) Now, the map π : Ĉ → C can be lifted in

a canonical manner to a map ψ : J(Ĉ)→ J(C). The map ψ is actually a homomorphism,

and its kernel itself is an abelian variety, known as the Prym variety.

In our problem above the Prym variety is a one (complex)-dimensional torus and

the holomorphic differential w1, called the Prym differential on Ĉ, is the (normalised)

holomorphic differential on this torus. In [12] the modular parameters for Ĉ, C and the

Prym variety are denoted τ̂ , τ , and Π respectively. In this notation one has the following

expressions for these parameters:

τ ≡
∫
B1

v1 , Π ≡
∫
B1

w1 , (3.11)

and

τ̂ =
1

2


∫
B1
u1

∫
B1
u′1∫

B′1
u1

∫
B′1
u′1

 . (3.12)

Notice that τ is odd and Π is even under the automorphism φ. This follows from:

φ(B1) = −B′1 , φ∗(v1) = v1 , φ∗(w1) = −w1 , (3.13)

where φ∗ is the induced map on the differentials. From the above definitions, it immediately

follows that

τ̂ =
1

2

(
τ + Π −τ + Π

−τ + Π τ + Π

)
. (3.14)
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Let us now relate parameters in the notations of Fay and of the present paper. In our

notation τ, τ̂ are denoted τ,Ω, respectively. Further, we have:

τ =

∫
B0
ω0∫

A0
ω0

=

∫
B0

ωnorm
0 , (3.15)

where

ωnorm
0 ≡ ω0∫

A0
ω0

. (3.16)

(These equations are trivial since in practice ωnorm0 = ω0 = 1, still they are useful in making

the correct geometric identification.) Thus we identify

(A0, B0)us → (A1, B1)Fay , (3.17)

and

(ωnorm0 )us = (v1)Fay . (3.18)

If we also identify

(ωnorm1 )us = (w1)Fay , (3.19)

then we have:

Π =

∫
B1

w1 =

∫
B0us

ωnorm
1 =

∫
B0
ω1∫

A0
ω1

= C1 . (3.20)

The minus sign in identifying the period matrices, noted above, appears because of a

difference in choice of φ between [12] and the present work. The former has u′1 = −φ∗(u1)

while we have implicitly chosen u′1 = φ∗(u1). Similarly B′1 = −φ(B1) in [12], while we took

it as φ(B1)2. This results in the observed sign difference for the off-diagonal elements.

In this context, Proposition (5.10) of [12] relates the theta function with modular

parameter 2τ to a theta function with modular parameter 2C1:

θ

[
α

β

]
(0|2C1) =

(
c
(1

2
(a+ b)

)
c(a)

) 1
2
e2πiαβ θ

[
α

β

](1

2
(b− a)|2τ

)
, (3.21)

where c(x) is a holomorphic section of a line bundle on the genus 2 surface, independent

of the spin structure and a, b are the end-points of the branch cut.

We can now return to our identity, (3.3), and manipulate the genus-2 theta-function

to bring it into a form where the above results can be employed. For a period matrix of

the form:

Ω =
1

2

(
x+ y x− y
x− y x+ y

)
, (3.22)

2This can be seen in [11] by the fact that B0, B1 represent the “same” cycle on the two copies of the

torus (i.e. they are mapped to each other by φ rather than −φ).
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the theta function can be written as:

Θ

[
~α

~β

]
(0|Ω) =

∑
n1=m1+m2
n2=m1−m2

e
(1

4

(
n2

1 x+ n2
2 y
)

+
1

2

(
n1(β1 + β2) + n2(β1 − β2)

))
. (3.23)

The constraints in the sum are solved by:

n1 = 2n′1 , n
′
1 ∈ Z +

1

2
(α1 + α2) , n2 = 2n′2 , n

′
2 ∈ Z +

1

2
(α1 − α2) , (3.24)

or n1 = 2n′1 , n
′
1 ∈ Z +

1

2
(α1 + α2 + 1) , n2 = 2n′2 , n

′
2 ∈ Z +

1

2
(α1 − α2 + 1) .(3.25)

Writing the theta function in terms of these new variables we obtain:

Θ

[
~α

~β

]
(0|Ω) =

∑
γ=0, 1

2

∑
n′1∈Z+γ+(α1+α2)/2

n′2∈Z+γ+(α1−α2)/2

e
(1

2

(
n′21 2x+ n′22 2y

)
+
(
n′1(β1 + β2) + n′2(β1 − β2)

))
,

=
∑
γ=0, 1

2

θ

[
γ + (α1 + α2)/2

β1 + β2

]
(0|2x) θ

[
γ + (α1 − α2)/2

β1 − β2

]
(0|2y) . (3.26)

For diagonal spin structures, we have α1 = α2 = α and β1 = β2 = β, so that

Θ

[
~αdiag

~βdiag

]
(0|Ω) =

∑
γ=0, 1

2

θ

[
γ + α

2β

]
(0|2x) θ

[
γ

0

]
(0|2y) , (3.27)

=
∑
γ=0, 1

2

e4πi(γ+α)β θ

[
γ + α

0

]
(0|2x) θ

[
γ

0

]
(0|2y) . (3.28)

Applying this identity to our period matrix (3.2) we obtain:

Θ

[
~αdiag

~βdiag

]
(0|Ω) =

∑
γ=0, 1

2

e4πi(γ+α)β θ

[
γ + α

0

]
(0|2τ) θ

[
γ

0

]
(0|2C1) . (3.29)

Applying Equation (3.21) to the second theta-function on the right-hand side, and defining

(b− a) = z12, we reach the following result:

Θ

[
~αdiag

~βdiag

]
(0|Ω) = (−1)4αβk(τ, z12)

∑
γ=0, 1

2

e4πiβγ θ

[
γ + α

0

]
(0|2τ) θ

[
γ

0

](z12

2

∣∣∣2τ) , (3.30)

where the prefactor k(τ, z12) =
(
c
(
z12
2

)
c(0)

) 1
2 depends only on the original torus and

the cut length. Using the doubling identity for theta functions ([12], Equation 4), our

result (3.30) becomes

Θ

[
~αdiag

~βdiag

]
(0|Ω) = (−1)4αβ k(τ, z12) θ

[
α

β

](z12

4

∣∣∣τ) θ[α
β

](z12

4

∣∣∣τ) ,
= k(τ, z12) θ

[
α

β

](z12

4

∣∣∣τ) θ[α
β

](
−z12

4

∣∣∣τ) . (3.31)
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Thus one reaches the non-trivial relation between the genus-2 Θ-constant and the

genus-1 θ-function. According to our conjecture, the prefactor k should be equal to the de-

nominator in the definition (2.11) of the higher-genus expression χg, which was interpreted

in [11] as the determinant of the anti-holomorphic operator ∂. A simple way to fix this is

to look at the modular transformation properties of both sides of our main equality and

notice that this determinant transforms exactly as the ratio Θ

[
~αdiag

~βdiag

]
(0|Ω)

/
θ

[
α

β

](
z12
4

∣∣∣τ)2
.

This was shown in [11] and it thus proves the equality of our main conjectured identity, up

to an overall constant, which was also fixed in [11] to be unity.

It is worth discussing the non-trivial relation (3.31) a bit more. The essential point

of the proof of this relation in Fay’s book is to show that the ratio of the higher-genus Θ-

constant and a certain product of genus-1 θ-functions (related to the right-hand side

of (3.31)) is holomorphic as a function of the location of the branch points. One can

interpret this as a statement about the vanishing of the genus-2 Θ-constant for the two-

dimensional sub-moduli-space of genus-2 surfaces described by our branched coverings in

the language of genus-1 θ-functions. In fact one can understand this vanishing for genus-2

in a very simple manner, this will become evident in the following section.

4 Zeros of the χt and χg, and their periodicity relations

In this section we study the zeros of χt and χg and periodicity relations as a function of the

variable z12. In order to present a uniform treatment of the proof for all n, it is convenient

to define a new variable

Z =


z12
2n n even ,

z12
n n odd .

(4.1)

In the first subsection below we review the periodicity properties of χg and χt under shifts

of the variable Z. We then argue that, given the periodicities, the knowledge of all the

zeros of these functions would be sufficient to prove the identity. We then examine a subset

of the zeros that are easy to identify. The details for even n and odd n turn out to be

different, and so we treat them separately. For n = 2 the zeros we are able to identify

are the only ones, which suffices to prove the identity in that case. In the following we

will suppress the arguments corresponding to the spin structure α, β whenever there is no

ambiguity, in order to avoid clutter.

4.1 Periodicity relations

We start by recalling from [11] the periodicity properties of the functions χg(τ, z12;α, β)

and χt(τ, z12;α, β) under translations of the argument z12. These are based on those of the
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θ-function with characteristics α, β ∈ (0, 1
2 ) [15]. For λ, µ ∈ Z, we have the following two

useful equations:

Integer shifts by lattice vectors:

θ

[
α

β

]
(z + µ+ λτ |τ) = e2πiαµ e−2πiβλe−iπλ

2τe−2πiλz θ

[
α

β

]
(z|τ) , (4.2)

Half-shifts:

θ

[
α

β

](
z + 1

2

∣∣τ) = e2πiα θ

[
α

β − 1
2

]
(z|τ) ,

θ

[
α

β

](
z + 1

2τ
∣∣τ) = e−iπ(z+β+ τ

4
) θ

[
α− 1

2

β

]
(z|τ) .

(4.3)

The periodicity relations of χt follow immediately, with some differences between the case

of even and odd n as we will now show.

Periodicity of χt for even n. The theta functions θ
(
k
nz12

∣∣τ) appearing in the defini-

tion (2.12) have k ∈ Z + 1
2 . In terms of Z = z12

2n , these theta functions are θ
(
2kZ

∣∣τ),
so that the arguments of all the theta functions in (2.12) shift by integer multiples of 1

and τ under shifts Z → Z + 1 and Z → Z + τ . Note that this is the smallest shift un-

der which χt(τ, z, α, β) is periodic, and it corresponds to a torus of sides (2n, 2nτ) in the

variable z12. Using (4.2) we obtain:

χt(z12 + 2n, τ ;α, β) = χt(z12, τ ;α, β) ,

χt(z12 + 2nτ, τ ;α, β) = e−iπ
n(n2−1)

3
τe−iπ

n2−1
3

z12χt(z12, τ ;α, β) .
(4.4)

There is also a periodicity relation obeyed by χt(τ, z, α, β) under half-integer shifts of the

argument Z, i.e. Z → Z + 1
2 and Z → Z + 1

2 τ . In this case the spin structures change

according to Equation (4.3). We find:

χt(z12 + n, τ ;α, β) = e2πi(α− 1
2

)χt(z12, τ ;α, β − 1
2) ,

χt(z12 + nτ, τ ;α, β) = e−
iπn
2

(τ+n(Z+ 1
4

))χt(z12, τ ;α− 1
2 , β) .

(4.5)

Periodicity of χt for odd n. The theta functions θ
(
k
nz12

∣∣τ) appearing in (2.12) now

have k ∈ Z, which implies that the periodicity relations in z12 change compared to the

even case. In terms of the variable Z = z12
n , they are θ

(
kZ
∣∣τ), so that indeed under the

shifts Z → Z + 1 and Z → Z + τ , the arguments of the theta functions again shift by

integer multiples of 1 and τ . Using (4.2) we have

χt(z12 + n, τ ;α, β) = χt(z12, τ ;α, β) ,

χt(z12 + nτ, τ ;α, β) = e−iπ
n(n2−1)

12
τe−iπ

n2−1
6

z12χt(z12, τ ;α, β) .
(4.6)
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Unlike the even case, there is no good periodicity property for χt under the half-integer

shifts Z → Z + 1
2 and Z → Z + 1

2 τ , as the arguments of the theta functions with odd k

appearing in the definition (2.12) change spin structure, while those with even k do not.

Periodicity of χg. The periodicity relations for χg do not follow immediately from their

definition, as the variable z12 enters the Θ-function through the cut-differential ωk and

consequently through the period matrix Ω (instead of as an elliptic variable). In fact there

are two effects which need to be kept track of. First, the definition of the A- and B-

cycles changes under the shifts of Z of the above type. Second, the period matrix itself

changes by a corresponding shift. These effects were studied in Appendix A.1 of [11] and

the conclusion was that the higher-genus partition function χg obeys the same periodicity

relations as those of χt for even n under both integer and half-integer shifts of Z (with the

same change of spin structure in the latter case), and for odd n under integer shifts. This

means equations (4.4), (4.5), and (4.6) all hold if we replace χt by χg and α, β by ~αdiag,

~βdiag, respectively.

4.2 Zeros of χg and χt for even n

The significance of the zeros of χg and χt as functions of Z is the following. Since both

functions have the same periodicity properties under shifts of Z by integer multiples of 1

and τ , the ratio χg/χt is a well-defined function on the torus C/(Zτ + Z). If we can show

that χg and χt have the same zeros and poles in Z, then the ratio χg/χt is a holomorphic

function on the torus, and therefore a constant (by Liouville’s theorem). In fact neither χg

nor χt has poles in Z, because theta functions are holomorphic in all their variables and the

periods in the denominator of (2.11) do not vanish. In order to use the above argument, it

is therefore enough to show that any zero of χt is a zero of χg of at least the same order,

so that the ratio χg/χt would be a holomorphic function and hence constant. Once this is

done, it is straightforward to evaluate the constant.

Equation (4.5) shows that for even n the four different spin structures that we consider

are related to each other by half-integer shifts of Z. This means it is enough to study the

zeros for any one of the spin-structures. We will see that (1
2 ,

1
2 ) is the most convenient

choice.

We begin by recalling the zeros of χt(z12, τ). Rewriting the definition (2.12) in the

variable Z, we have:

χt

(
τ, z12 = 2nZ; 1

2 ,
1
2

)
=

n−1
2∏

k=−n−1
2

θ1(2kZ|τ) . (4.7)
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This function has a zero whenever any of its factors does. In the fundamental domain

of Z, θ1(2kZ) has simple zeros at Z = 0 and Z = j
2k , j

2kτ , and j
2k (τ + 1) with j =

1, · · · , 2k − 1. The corresponding factor θ1(−2kZ) has zeros at the same values. Thus the

pattern of zeros of the entire expression χt is rather complicated, since zeros from different

factors can occur at the same point. There are however two simple observations one can

make: (i) for n = 2, since k = ±1
2 , there are no additional zeros beyond the double zero at

the origin, (ii) for all other even n there is an nth order zero at the origin, in addition to

various other zeros in the fundamental domain of Z.

It is easy to calculate the coefficient of the nth-order zero at Z = 0, around which the

expansion is:

χt

(
z12 = 2nZ, τ ;

1

2
,
1

2

)
=

n−1
2∏

k=−n−1
2

k2
(
θ′1(0|τ)

)n
(2Z)n +O(Zn+1) ,

= (−1)
n
2
(
(n− 1)!!

)2 (
θ′1(0|τ)

)n
Zn +O(Zn+1) .

(4.8)

Now we turn to the higher genus expression χg. The Θ - θ identity requires (and is

implied by) the fact that all the zeros discussed above are also zeros of χg. Unfortunately

it seems difficult to show that most of these are zeros of χg, but we can show it for the nth-

order zero at Z = 0. For this, recall the cut differential and express it in terms of Z:

ωk(u, Z) =
θ1(u)

θ1(u+ 2kZ)(1− k
n

) θ1(u− 2(n− k)Z)
k
n

, k = 0, 1, · · · , n− 1 , (4.9)

where the τ -dependence has been suppressed to simplify the notation. Notice that this is

invariant under the simultaneous transformation k → n− k and Z → −Z. We expand this

to second order in Z and find:

ωk(u, Z) = 1 + 2 k(k − n)
(
log θ1(u)

)′′
Z2 +O(Z3) . (4.10)

The term of order Z vanishes. The next step is to compute the integrals:

A0k(Z, τ) :=

∫ 1

0
ωk du = 1 + 2 k(k − n)Z2

∫ 1

0

(
log θ1(u)

)′′
du+O(Z3) ,

= 1 +O(Z3) ,

B0k(Z, τ) :=

∫ τ

0
ωk du = τ + 2 k(k − n)Z2

∫ τ

0

(
log θ1(u)

)′′
du+O(Z3) ,

= τ − i4πk(k − n)Z2 +O(Z3) .

(4.11)

Here we used the identities:(
log θ1

)′
(u+ 1) =

(
log θ1

)′
(u) ,(

log θ1

)′
(u+ τ) =

(
log θ1

)′
(u)− 2πi .

(4.12)
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Defining Ĉk(Z, τ) through

B0k(Z, τ)

A0k(Z, τ)
= τ − iπ Ĉk(Z, τ) , (4.13)

it follows from (4.11) that:

Ĉk(Z, τ) = 4 k(k − n)Z2 +O(Z3) . (4.14)

This enables us to rewrite the matrix Ω as follows:

Ωab(Z, τ) =
1

n

n−1∑
k=0

cos

(
2π(a− b)k

n

)
B0k(Z, τ)

A0k(Z, τ)
,

= τδab −
iπ

n

n−1∑
k=0

Ĉk(Z, τ) cos

(
2π(a− b)k

n

)
.

(4.15)

We define the matrix:

gab(Z, τ) =
1

2n

n−1∑
k=0

Ĉk(Z, τ) cos

(
2π(a− b)k

n

)
, a, b = 1, · · · , n . (4.16)

It is clear from this definition that gab depends only on the difference a− b. Such a matrix

is called a Toeplitz matrix. Now we can write:

Ωab(Z, τ) = τδab − 2πi gab(Z, τ) . (4.17)

The leading contribution to gab is at order Z2:

gab(Z, τ) = Z2fab +O(Z3) . (4.18)

where we have defined:

fab =
2

n

n−1∑
k=0

k(k − n) cos

(
2π(a− b)k

n

)
=

1

sin2 π(a−b)
n

.

(4.19)

Like gab, fab is also a Toeplitz matrix, and this point of view will become useful in a

moment.
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Now rewrite the function Θ

[~1
2 diag
~1
2 diag

](
0
∣∣Ω(z12, τ)

)
using Equation (4.17):

Θ

[~1
2 diag
~1
2 diag

](
0
∣∣Ω(z12, τ)

)
=

∑
ma∈Z+ 1

2

exp
(
−2πi

n∑
a,b=1

iπgab(Z, τ)mamb

)
exp

n∑
c=1

(
iπτm2

c + πimc

)
,

=
∑

ma∈Z+ 1
2

exp
(
−1

2

n∑
a,b=1

gab(Z, τ) ∂a ∂b

)
exp

n∑
c=1

(
iπτm2

c + 2πimc(zc + 1
2)
) ∣∣∣∣∣
zc=0

,

= exp
(
−1

2

n∑
a,b=1

gab(Z, τ) ∂a ∂b

) n∏
c=1

θ1(zc|τ)

∣∣∣∣∣
zc=0

.

(4.20)

What we have done is to introduce fictitious variables za and replace the integers mamb

multiplying gab by derivatives with respect to these variables, which are set to zero at the

end. This allows us to re-express the higher-genus Θ as an infinite series of derivatives of

Jacobi θ-functions, as in the last line.

We can now expand the right-hand side as a power series in Z by expanding the

exponential in the last line of (4.20). Since θ1(z|τ) is an odd function of z, this expression

is zero unless an odd number of derivatives hits each θ1(z|τ). This means that the first

non-zero term in the expansion of the exponential is the (n2 )th order term, when there are n
2

pairs of (a, b) with a 6= b from the derivatives and they are all different. Each such term

occurs n
2 ! times, cancelling the factor 1/n2 ! from expanding the exponential to this order.

Recalling that gab(Z, τ) = O(Z2) for all a, b, this also means that the smallest non-zero

power (=n) of Z is given by this term. Thus we obtain, using (4.18):

Θ

[~1
2 diag
~1
2 diag

](
0
∣∣Ω(z12, τ)

)
= (−1)

n
2Zn Hf

(
fab
)(
θ′1(0|τ)

)n
+O(Zn+1) , (4.21)

where Hf indicates the “Hafnian” [16] of an even-dimensional matrix, defined by:

Hf(Mab) =
∑
σ∈Cn

n
2∏
i=1

Mσ(2i−1)σ(2i) . (4.22)

where the sum is over the set Cn of canonical permutations in Sn, namely those that

satisfy σ(2i − 1) < σ(2i) for every i and also σ(2i − 1) < σ(2j − 1) for every i < j. For

example, for a 4× 4 matrix we have:

Hf(Mab) = M12M34 +M13M24 +M14M23 . (4.23)
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Note that this definition implies that the Hafnian only depends on the upper triangular

part of the matrix (excluding the diagonal).

Comparing with Equation (4.8), we see that the behaviour near Z = 0 is precisely the

same for both χt(z12, τ ;α, β) and χg(z12, τ ;α, β) in the case of the spin structure (α, β) =

(1
2 ,

1
2 ), as long as the Hafnian of the Toeplitz matrix fab obeys the combinatoric identity:

Hf

(
1

sin2 π(a−b)
n

)
=
(
(n− 1)!!

)2
, (4.24)

which we have verified numerically to several orders.

4.3 Elementary proof of the conjecture for n = 2

Using the result of the previous subsection, we can give an elementary proof of the Θ -

θ relation χg = χt of Equation (2.10) in the case n = 2, for each of the four diagonal

spin-structures α, β = 0, 1
2 .

As we have seen, for the (1
2 ,

1
2 ) spin structure χt has a double zero at Z = 0 and

no other zeros in the fundamental domain. We have also seen that χg has a double zero

at Z = 0 with the same coefficient, thus proving equality according to the argument above!

We do not actually need to establish the absence of additional zeros for χg: since it has the

same periodicity as χt and no poles, it necessarily must have the same number of zeros.

Finally we use the fact that for even n, one can use half-shifts to go to the other spin

structures. Thus the Θ - θ relation is proved at n = 2.

A crucial feature of this proof was that at n = 2 and for the spin structure (1
2 ,

1
2 ), χt

has no additional zeros away from the origin (and likewise for the other spin structures, χt

has zeros only at a single point on the Z-torus). For n > 2 there are additional zeros on

the Z-torus and this is the key reason why a complete proof is lacking in those cases.

4.4 Zeros of χg and χt for odd n

For odd n, the four different spin structures are not related to each other by half-integer

shifts of Z, in contrast to the case of even n. The above methods can nevertheless be used

to study the zeros of the (1
2 ,

1
2 ) spin-structure. This problem, unfortunately, is a little

degenerate because both sides vanish identically in this case. The higher-genus expression

vanishes because the (~12 diag
, ~12 diag

) spin structure is an odd spin structure for odd n, and

so the corresponding Θ-constant vanishes. The twist-field expression vanishes because the

product over k in (2.12) now runs over integers (in contrast to half-integers in the even n

case) and includes k = 0, so that one of the factors is the odd Jacobi theta constant which

is identically zero.
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If we can divide both sides of the expression by this vanishing Jacobi theta constant,

then we can hope to make sense of the identity even for the odd spin structure. In order to

do so, we deform the spin structure by a small amount (we recall that the characteristics

of a theta function are actually real-valued).3 The twist-field expression now becomes

χt

(
τ, z12 = nZ; 1

2 + ε, 1
2 + ε

)
=

n−1
2∏

k=−n−1
2

θ

[ 1
2 + ε
1
2 + ε

]
(kZ|τ) . (4.25)

The term we have to be careful about is the one with k = 0 which identically vanishes

at ε = 0. In the other θ-functions we can safely take the limit ε → 0, and in that limit

their zeros in the fundamental domain of Z are at Z = 0 and Z = j
k , j

kτ , and j
k (τ + 1),

with j = 1, · · · , (k − 1).

We can thus write the expansion near Z = 0:

lim
ε→0

χt

(
τ, z12 = nZ; 1

2 + ε, 1
2 + ε

)/
θ

[ 1
2 + ε
1
2 + ε

]
(Z|τ)

=

n−1
2∏

k=−n−1
2

k
(
θ′1(0|τ)

)n
Zn +O(Zn+1) ,

= (−1)
n−1
2
(
n−1

2

)
! 2
(
θ′1(0|τ)

)n
Zn +O(Zn+1) .

(4.26)

Now we turn to the higher genus expression. The analysis for even n from Equa-

tion (4.9) to Equation (4.19) go through with the only change Z → Z/2 (because of the

different definitions (4.1)). Thus we reach:

Θ

[
(~12 + ~ε)diag

(~12 + ~ε)diag

](
0
∣∣Ω(z12, τ)

)
=

∑
ma∈Z+ 1

2
+ε

exp
(
−2πi

n∑
a,b=1

iπgab(Z, τ)mamb

)
exp

n∑
c=1

(
iπτm2

c + 2πimc

(1

2
+ ε
))
,

=
∑

ma∈Z+ 1
2

+ε

exp
(
−1

2

n∑
a,b=1

gab(Z, τ) ∂a ∂b

)
exp

n∑
c=1

(
iπτm2

c + 2πimc

(
zc + 1

2 + ε
))∣∣∣∣∣

zc=0

,

= exp
(
−1

2

n∑
a,b=1

gab(Z, τ) ∂a ∂b

) n∏
c=1

θ

[ 1
2 + ε
1
2 + ε

]
(zc|τ)

∣∣∣∣∣
zc=0

.

(4.27)

When we expand the right-hand side as a power series in Z as before, we see that this

expression identically vanishes as ε→ 0, as at any order of the expansion there are an even

3Our original conjecture was proposed for characteristics of order 2. However, the present result suggests

that it could extend to real characteristics. This may be worth pursuing in the future.
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number of derivatives hitting an odd number of θ-functions so that there is always at least

one odd Jacobi theta function that is evaluated at z = 0. This also makes it clear that the

limit

lim
ε→0

(
Θ

[
(~12 + ~ε)diag

(~12 + ~ε)diag

](
0
∣∣Ω(z12, τ)

)/
θ

[ 1
2 + ε
1
2 + ε

]
(Z|τ)

)
(4.28)

exists and is non-zero. The same type of combinatorics as in the even case now shows

that the smallest non-vanishing order of Z appears from the term of order (n− 1)/2 which

has n− 1 derivatives acting on n− 1 Jacobi θ-functions. There are now n ways to choose

the n − 1 derivatives (because one could omit any one of the zc). From the same type of

calculation as before, we now obtain:

lim
ε→0

(
Θ

[
(~12 + ~ε)diag

(~12 + ~ε)diag

](
0
∣∣Ω(z12, τ)

)/
θ

[ 1
2 + ε
1
2 + ε

]
(Z|τ)

)
= (−1)

n−1
2 Zn−1 Hf

(
fab
)(
θ′1(0|τ)

)n−1
+O(Zn) ,

(4.29)

where this time the matrix elements f are:

fab =
1

4 sin2 π(a−b)
n

, (4.30)

It is important to note that, although f looks the same as in the even case, here the matrix

itself is an (n−1)× (n−1) matrix. Thus it is distinct from the f matrix that appeared for

the even case discussed in the previous section. The corresponding combinatoric identity

now is:

Hf

(
1

4 sin2 π(a−b)
n

)
=
(
n−1

2

)
! 2 , a, b = 1, · · · , n− 1 , (4.31)

which we have also verified to several orders.

5 Concluding remarks

The primary motivation of this investigation was to understand the nature of the Rényi

entropy in a theory of free 1 + 1-dimensional fermions on a periodic space at finite temper-

ature. This investigation led us to conjecture a non-trivial mathematical relation between

higher-genus Θ-constants and genus one theta functions that follows from the fact that

there are two methods (higher-genus and twist-field) of the same calculation which are

mutually consistent. One could even regard these considerations as a physics proof of the

relation using path-integral based methods for free fields and orbifolds.

In this paper we presented two completely mathematical proofs of this relation for

genus n = 2 and evidence (i.e. checks of interesting consequences of the conjecture) for

genus n > 2. From the mathematical point of view, we stumble upon the Schottky problem,

– 20 –



that is to characterize the space of Jacobian varieties inside the space of abelian varieties,

within the reduced context of cyclic n-sheeted coverings of a genus-1 surface ramified at

two points.

For the n = 2 case, the ideas of Fay gave a nice geometric characterization of this

problem, which we used to solve it. The picture is that the Jacobian of the genus-2 surface

splits into an image of the original torus and the Prym variety. The two pieces have

eigenvalues ±1 under the automorphism of the genus-2 surface induced by the covering

map. The left-hand side of our identity (2.10) naturally comes from the Jacobian of the

2-sheeted cover (evaluated at the origin), while the right-hand side is naturally associated

with the two pieces of this split.

While we don’t have a rigorous mathematical proof for n > 2, it seems to us that a

generalization of the same idea should apply for any n, although we are not aware of the

analog of the theory of Prym varieties for higher covers. In this case, the Jacobian of the

cyclic n-sheeted cover splits into n pieces, each of whose eigenvalues are the nth roots of

unity under an automorphism. The two sides of the conjecture (2.10) are now associated

with these two geometric pictures, respectively.
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