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SIEVE METHODS IN RANDOM GRAPH THEORY

YU-RU LIU AND J.C. SAUNDERS

Abstract. In this paper, we apply the Turán sieve and the simple sieve de-
veloped by R. Murty and the first author to study problems in random graph
theory. In particular, we obtain upper and lower bounds on the probability
of a graph on n vertices having diameter d for some d ≥ 2 with edge prob-
ability p where the edges are chosen independently. An interesting feature
revealed in these results is that the Turán sieve and the simple sieve “almost
completely” complement each other. As a corollary to our result, we note that
the probability of a random graph having diameter 2 approaches 1 as n → ∞

for constant edge probability p = 1/2. This is an appendix of a shorter version
of this paper.

1. Introduction

For the purpose of analyzing the random graphs in this paper, we first introduce
two sieves known as the simple sieve and the Turan sieve, which were introduced
in [4]. These sieves can be described in terms of a bipartite graph. Let X be a
bipartite graph with finite partite sets A and B. For a ∈ A and b ∈ B, we denote
by a ∼ b if there is an edge that joins a and b. Define

deg b = #{a ∈ A : a ∼ b} and ω(a) = #{b ∈ B : a ∼ b}.
For b1, b2 ∈ B, we define

n(b1, b2) = #{a ∈ A : a ∼ b1, a ∼ b2}.
In [4], R. Murty and the first author derived an elementary sieve method, called
the simple sieve, which states that

#{a ∈ A : ω(a) = 0} ≥ |A| −
∑

b∈B

deg b.

In the same paper, they also adopted Turán’s proof about the normal order of
distinct prime factors of a natural number [6] to prove that

#{a ∈ A : ω(a) = 0} ≤ |A|2 ·
∑

b1,b2∈B n(b1, b2)

(
∑

b∈B deg b)2
− |A|.

The above result is called the Turán sieve.
In this paper, we apply both the simple sieve and the Turán sieve to study

problems about random graph theory. First, we need the following definition.

Definition 1.1. The diameter of a graph G is defined as the maximum number of
edges in G that are needed to traverse from one vertex to another in G where we
exclude paths that backtrack, detour, and loop.

Key words and phrases. random graph theory, probabilistic calculations, sieve theory, proba-
bilistic combinatorics.
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Let G(n, p) denote the set of all simple graphs on n vertices where each edge
is chosen independently with probability p. In 1981, Bollobás [1] obtained sharp
asymptotic results for the probability of a random graph from G(n, p) vertices
having diameter d for any fixed d ≥ 2 with n → ∞. Here we extend his results
and obtain concrete upper and lower bounds on the probability of a random graph
from G(n, p) having diameter at most d where n, p, and d are fixed. The results of
Bollobás’s follow if we let n → ∞. We also study analogous questions for random
k-partite graphs having diameter d with k ≥ 2. Although our approaches work
for general diameter d, to better illustrate the methods, Sections 2, 3, and 4 will
be dedicated to stating and proving our results for diameter 2 or diameter 3 in
the case of random bipartite graphs. The rest of the sections will then be devoted
to proving generalised results for any d ≥ 2. In those later sections, for the three
types of graphs we consider (graphs in general, k-partite graphs for any fixed k ≥ 3,
bipartite graphs) we first impose some restrictions on the values of n and p and
then for clarity impose further restrictions on the values of n and p to make our
results more meaningful. Here is one of the main theorems of the paper.

Theorem 1.2. Let G(n, p) denote the set of all simple graphs on n vertices where
each edge is chosen independently with probability p. Also, let P (G(n, p)) be the
probability of a graph from G(n, p) having diameter 2. Then

P (G(n, p)) ≥ 1− n2(1− p2)n−2(1− p)

2

and

P (G(n, p)) ≤ 2

(n− 1)2(1− p2)n(1 − p)
+

8

n

(

1 +
p3

(1− p)2

)n

.

Corollary 1.3. Let P (G(n, p)) be defined as in Theorem 1.2. If p = 1
2 , then we

have

P (G(n, 1/2)) ≥ 1− 4n2(3/4)n

9
.

In the case p = 1
2 , Gilbert [3] showed that ‘almost all’ graphs are connected.

Since a graph with diameter 2 is connected, the above result provides an explicit
bound for Gilbert’s result.

In the situation where the edge probability p → 0 as n → ∞, we will show the
following corollary.

Corollary 1.4. Let P (G(n, p)) be defined as in Theorem 1.2. Let limn→∞ p = 0.
We have

(1) P (G(n, p)) ≥ 1− (1 + o(1))
n2

2
e−np2

and

(2) P (G(n, p)) ≤ (1 + o(1))

(

2

n2
enp

2

)

(

1 + 4nenp
2(p2−1)

)

.

Suppose further that

lim
n→∞

(2 logn− np2 − log 2) = c

for some c ∈ R\{0}.
1) If c > 0, we have

P (G(n, p)) ≤ (1 + o(1))e−c.
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2) If c < 0, we have

P (G(n, p)) ≥ (1 + o(1))(1 − ec).

We will also study analogous problems for random directed graphs in the ap-
propriate sections of this paper. As we noted in Corollary 1.4, the upper bound
we obtained through the Tuán sieve works effectively for c > 0, while the lower
bound we obtained through the simple sieve gives a non-trivial result for c < 0. It
is interesting to see that the Turán sieve and the simple sieve “almost completely”
complement each other in this way.

2. Graphs with Diameter 2 with the Sieves

In this section, we use the Turán sieve and the simple sieve to prove Theorem
1.2.

Proof. For a fixed n ∈ N, let G(n, p) denote the set of all graphs on n vertices
with edge probability p, and let P (G(n, p)) be the probability of a graph from
G(n, p) having diameter 2. Consider the function gn : [0, 1] → [0, 1] defined as

gn(x) := P (G(n, p), x). There are 2
n(n−1)

2 graphs in total in G(n, p). Let us say M
of these have diameter 2 and label these as G1, G2,. . . ,GM . For 1 ≤ i ≤ M , let ki
denote the number of edges in Gi. Then the probability of selecting the graph Gi

from G(n, p) according to the edge probability x is xki(1− x)
n(n−1)

2 −ki . Therefore,

gn(x) = xk1(1 − x)
n(n−1)

2 −k1 + xk2(1− x)
n(n−1)

2 −k2 + · · ·+ xkM (1− x)
n(n−1)

2 −kM .

Thus, for each n ∈ N the function gn is continuous. Therefore, we may assume that
p ∈ Q ∩ (0, 1) since Q ∩ (0, 1) is dense in [0, 1].

Let p = r
s where r = r(n), s = s(n) ∈ N. We let A be the set of all graphs in

G(n, p), allowing for a number of duplicates of each possible graph to accommodate

the edge probability p. We accomplish this by letting there be r(
n
2) copies of the

complete graph, r(
n
2)
(

s
r − 1

)

copies of each graph with
(

n
2

)

− 1 edges, r(
n
2)
(

s
r − 1

)2

copies of each graph with
(

n
2

)

− 2 edges, and so on. By the binomial theorem we
have

|A| =
(n2)
∑

k=0

(
(

n
2

)

k

)

rk(s− r)(
n
2)−k = s(

n
2).

We let B be all pairs of vertices so |B| =
(

n
2

)

. For a graph a ∈ A and a pair
of vertices b ∈ B, we say a ∼ b if the pair of vertices b in a do not share a
common neighbouring vertex and are not neighbours themselves. Thus, we will
have ω(a) = 0 if and only if a is connected with diameter at most 2.

Pick a pair of vertices b ∈ B and call them v1 and v2. To calculate deg b, we need
to calculate the number of graphs in A such that the pair of vertices do not have a
common neighbouring vertex and are not neighbours themselves. For each of the
potential (n−2) neighbouring vertices, we need to consider two edges, making sure
at least one of them is not in the graph. Since each potential edge contributes a
factor of r or (s− r) depending on whether it is in a specified graph, we have

D(r, s, n) := deg b = ((s− r)2 + 2r(s− r))n−2(s− r)(s(
n
2)−2(n−2)−1)

= (s2 − r2)n−2(s− r)s(
n
2)−2(n−2)−1.
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It follows that

∑

b∈B

deg b =
s(

n
2)n(n− 1)(1− p2)n−2(1− p)

2
.

By the simple sieve, we obtain

P (G(n, p)) ≥ 1− n(n− 1)(1 − p2)n−2(1− p)

2

> 1− n2(1− p2)n−2(1− p)

2
.(3)

We now try to get an upper bound for P (G(n, p)), in which we need to estimate
∑

b1,b2∈B n(b1, b2). In the following, we calculate n(b1, b2), depending on how many
vertices b1 and b2 have in common.

Case 1. Suppose that b1 and b2 are two pairs of vertices that have no vertices in
common, i.e., b1 and b2 consist of 4 distinct vertices. For each of b1 and b2, the
probability that the pair of vertices in question are not connected by an edge nor
have any common neighbouring vertices is

D(r, s, n)

s(
n
2)

.

As is the case for calculating deg b, for each of the pair of vertices b1 and b2, we need
to consider pairs of edges for each potential neighbouring vertex. If the potential
neighbouring vertex is among the remaining n−4 vertices, then the pair of edges to
consider with respect to b1 will be disjoint from the pair of edges to consider with
respect to b2. The only real problem to consider is when the potential neighbouring
vertex is among the pair of vertices b1 and b2 where we have four possible edges to
consider. These observations give rise to

n(b1, b2) =
D(r, s, n)2

s(
n
2)

· s
4((s− r)4 + 4r(s− r)3 + 2r2(s− r)2)

(s2 − r2)4
,

and thus

∑

b1,b2∈B, 4 vertices

n(b1, b2)

<

(

n

2

)2
D(r, s, n)2

s(
n
2)

· p
−4((p−1 − 1)4 + 4(p−1 − 1)3 + 2(p−1 − 1)2)

(p−2 − 1)4

<

(

n

2

)2
D(r, s, n)2

s(
n
2)

·
(

1 +
4p3

(1 − p)2

)

.

Case 2. Take two pairs of vertices b1 and b2 that have exactly one vertex in
common, i.e., b1 and b2 consist of 3 distinct vertices. We can do a similar kind of
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analysis of edge selection as in Case 1 to calculate
∑

b1,b2∈B, 3 vertices

n(b1, b2)

=
D(r, s, n)2n(n− 1)(n− 2)

s(
n
2)

(

1 +
1

p−3 + p−2 − p−1 − 1

)n−3

≤ D(r, s, n)2n(n− 1)(n− 2)

s(
n
2)

(

1 +
p3

(1− p)

)n−3

.

Case 3. Suppose b1 and b2 have two vertices in common. Then the two pairs are
identical, and we have

n(b1, b2) = deg b.

It follows that

∑

b1,b2∈B, 2 vertices

n(b1, b2) =
∑

b∈B

deg b =
s(

n
2)n(n− 1)(1− p2)n−2(1 − p)

2
.

Combining Cases 1− 3, we get

∑

b1,b2∈B

n(b1, b2) <

(

n

2

)2
D(r, s, n)2

s(
n
2)

·
(

1 +
4p3

(1− p)2

)

+
D(r, s, n)2n(n− 1)(n− 2)

s(
n
2)

(

1 +
p3

(1− p)

)n−3

+
sn1n2n(n− 1)(1− p2)n−2(1− p)

2
.

By the Turán sieve, we deduce

P (G(n, p))

≤ 2

n(n− 1)(1− p2)n−2(1− p)
+

4

n

(

1 +
p3

(1− p)

)n−3

+
4p3

(1− p)2
.

Notice that

p3

(1− p)2
<

1

n

(

1 + n
p3

(1 − p)2

)

<
1

n

(

1 +
p3

(1 − p)2

)n

.

It follows that

P (G(n, p)) ≤ 2

(n− 1)2(1− p2)n(1 − p)
+

8

n

(

1 +
p3

(1− p)2

)n

.(4)

By (3) and (4) Theorem 1.2 follows. �

We now prove Corollary 1.4.

Proof. By Theorem 1.2 we have

P (G(n, p)) > 1− n2
(

1− p2
)p−2·np2

(

1− p2
)−2

(1− p)

2
.
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Since p−2 ≥ 1, we have

(5) e−np2 (

1− p2
)np2

<
(

1− p2
)p−2np2

< e−np2

.

Since limn→∞ p = 0, we have that

lim
n→∞

(

1− p2
)−2

= 1 and lim
n→∞

(1− p) = 1,

from which we get

(6) P (G(n, p)) ≥ 1− n2

2
e−np2

(1 + o(1)).

For the upper bound, first note that

8

n

(

1 +
p3

(1− p)2

)n

<
2enp

2

n2
· 4ne

(

np3

(1−p)2
−np2

)

.

Combining this with Equations (4) and (5), we get

P (G(n, p)) <
2enp

2

(n− 1)2 (1− p2)np
2

(1− p)

+
2enp

2

n2
· 4ne

(

np3

(1−p)2
−np2

)

.

Note that for n ∈ N with 2
n2 e

np2 ≥ 1, we have

(7)

(

2

n2
enp

2

)

(

1 + 4nenp
2(p−1)

)

> 1.

In particular for those n, the bound in Theorem 1.2 is trivial. Thus, it suffices to
consider n ∈ N such that

2

n2
enp

2

< 1.

Label all such n ∈ N as n1, n2, . . . , nj, . . . such that n1 < n2 < · · · If there are only
finitely many, then for sufficiently large n, we will have Equation (7) and so the
bound in Theorem 1.2 is trivial. Thus, we may assume that n1, n2, ..., nj , ... is an
infinite list. Since p depends on n, at least in this proof, we will sometimes denote
p by p(n) in the rest of this proof. Then for all j ∈ N, we have

njp(nj)
2 < 2 lognj − log 2,

and so

lim
j→∞

njp(nj)
3 = lim

j→∞
(njp(nj)

2)3/2n
−1/2
j = 0.

We also have

(8) lim
j→∞

njp(nj)
4 = 0 and lim

j→∞
p(nj)

2 = 0.

Note that if 0 ≤ x ≤ 1 and y ≥ 1, then (1 − x)y ≥ 1 − xy. Thus, if njp(nj)
2 ≥ 1,

then
(

1− p(nj)
2
)njp(nj)

2

≥ 1− njp(nj)
4.

Suppose that njp(nj)
2 < 1. Then we have

(

1− p(nj)
2
)njp(nj)

2

≥ 1− p(nj)
2.
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Thus, by Equation (8), we have

lim
j→∞

(

1− p(nj)
2
)njp(nj)

2

= 1

and

lim
j→∞

njp(nj)
3

(

1− 1

(1− p(nj))
2

)

= 0.

Also, notice that

njp(nj)
3

(

1− 1

(1− p(nj))
2

)

= njp(nj)
2 (p(nj)− 1)−

(

njp(nj)
3

(1− p(nj))2
− njp(nj)

2

)

.

We thus obtain

(9) P (G(n, p)) ≤ (1 + o(1))

(

2

n2
enp

2

)

(

1 + 4nenp
2(p−1)

)

.

Now we suppose further that

(10) lim
n→∞

(2 logn− np2 − log 2) = c

for some c ∈ R\{0}. Then we have

lim
n→∞

(

logn− np2

2

)

= c̃

for some c̃ ∈ R. Since limn→∞ p = 0, it follows that

lim
n→∞

(

logn+ np3 − np2
)

= lim
n→∞

((

logn− np2

2

)

+

(

np2 − np2

2

))

= −∞.

Thus, we have

(11) nenp
2(p2−1) = o(1).

Also, by Equation (10), we have

(12)
2

n2
enp

2

= e−c(1 + o(1))

and

(13)
n2

2
e−np2

= ec(1 + o(1)).

By Equations (6) and (13), we obtain

P (G(n, p)) ≥ 1− (1 + o(1))ec.

Also, by Equations (9), (11), and (12), we obtain

P (G(n, p)) ≤ (1 + o(1))e−c.

This finishes the proof of Corollary 1.4. �

Remark 2.1. Assume that n ≥ 200 and p ≤ 1/2. The o(1) in (1) can be made ex-

plicit as 4p2 and the o(1) in (2) can be made explicit as 4(log n)2+2
n +p+ 3e8(2 logn)3/2

n1/2 .
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Remark 2.2. Using the above methods, we can obtain similar results about the
probability of a random directed graph on n vertices having diameter 2 where each
directed edge is chosen independently with probability p. Furthermore, for any two
vertices, say v1 and v2, the existence of the edge from v1 to v2 has probability p,
while the existence of the edge from v2 to v1 also occurs with probability p, and
these two edges occur independently. More precisely, in Theorem 1.2, Corollary
1.3, and Corollary 1.4, we multiply the second term of the lower bound by 2, divide
the upper bound by 2, and we add log 2 to our expressions for c. Everything else
is left unchanged.

3. Analysis of k-partite graphs for Diameter 2

Here we apply our analysis to k-partite graph sets for k ≥ 3. First, we present
a definition.

Definition 3.1. Let k ≥ 2. A simple k-partite graph is an undirected graph whose
vertices can be divided into k sets, such that there are no edges between two vertices
in the same set.

We exclude the bipartite case (k = 2) because the only bipartite graph that has
diameter 2 is the complete bipartite graph; we analyze that case by itself in the
next section.

Convention 3.2. For each k-partite graph, we label the k partite sets of the graph
in a non-decreasing order in terms of the number of vertices each set contains. Thus,
the ith set is a set containing ni vertices.

Theorem 3.3. Fix k ≥ 3 and for each n ∈ N, n ≥ k + 2, pick n1, n2, ..., nk ∈ N

such that n1 ≤ n2 ≤ . . . ≤ nk, nk−1 ≥ 2, and n1 + n2 + · · · + nk = n. Let
n(k) = (n1, n2, . . . , nk) and let G(n(k), p) denote the set of all k-partite graphs with
the partite sets having n1, n2, . . . , nk vertices respectively where each edge is chosen
independently with probability p. Also, let P (G(n(k), p)) be the probability of a
graph from G(n(k), p) having diameter 2. Then

P (G(n(k), p))

≥ 1− n2
k(1− p2)n−nk

2

·
(

1 +
2nk−1(1− p2)−nk−1

nk
+

7k2n2
k−1(1− p2)nk−nk−1−nk−2

3n2
k

)

and

P (G(n(k), p))

≤ 2

nk(nk − 1)(1− p2)n−nk

(

1 +
2nk−1(1 − p2)−nk−1(1− p)

(nk − 1)

)−1

+
3k3

(

1 + p3

(1−p)

)n−nk

(1− p2)−2

(nk−1 − 1)
.

Proof. As in the proof of Theorem 1.2, we may assume that p ∈ Q ∩ (0, 1) for all
n ∈ N.

Let p = r
s where r, s ∈ N. As in the proof of Theorem 1.2, we let A be the set of

all graphs in G(n(k), p), allowing for a number of duplicates of each possible graph
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to accommodate the edge probability p. Since the complete k-partite graph has
t :=

∑

1≤i<j≤k ninj edges, we have rt copies of the complete bipartite graph and

|A| = st.

We let B be all pairs of vertices. Thus, |B| = n(n−1)
2 . For a graph a ∈ A and

a pair of vertices b ∈ B, we say a ∼ b if the pair of vertices b in a do not share a
common neighbouring vertex and are not connected by a single edge. Thus, we will
have ω(a) = 0 if and only if a is connected with diameter at most 2. For each pair
of vertices b ∈ B that are in the ith partite set for some 1 ≤ i ≤ k, we will have

D(r, s, n, ni) := deg b

= ((s− r)2 + 2r(s− r))n−ni((s− r) + r)t−2n+2ni

= (1− p2)n−nist.

For each pair of vertices b ∈ B with one vertex being in the ith partite set and the
other in the jth partite set where i < j, we have

D(r, s, n, ni, nj)

:= deg b

= ((s− r)2 + 2r(s− r))n−ni−nj ((s− r) + r)t−2n+2ni+2nj (1− p)

= (1− p2)n−ni−nj (1− p)st.

It follows that

∑

b∈B

deg b

= st
k
∑

i=1

(

ni

2

)

(1− p2)n−ni + st
∑

1≤i<j≤k

ninj(1− p2)n−ni−nj (1− p).

By the simple sieve, we obtain

P (G(n(k), p))

≥ 1− n2
k(1 − p2)n−nk

2

·
(

1 +
2nk−1(1− p2)−nk−1

nk
+

7k2n2
k−1(1− p2)nk−nk−1−nk−2

3n2
k

)

.

To get an upper bound for P (G(n(k), p)), we need to estimate
∑

b1,b2∈B n(b1, b2).

Similar to the proof of Theorem 1.2, by calculating n(b1, b2) based on the number
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of vertices b1 and b2 have in common, we can get

∑

b1,b2∈B

n(b1, b2)

≤
(
∑

b∈B deg b
)2

sn1n2

(

1 +
4p3

(1− p)2)2

)

+
n3D(r, s, n, nk, nk−1)D(r, s, n, nk, nk−2)

st(1− p2)2

(

1 +
p3

(1 − p)

)n−nk−nk−1−nk−2

+

(

k

2

)

n2
knk−1D(r, s, n, nk, nk−1)

2

st

(

1 +
p3

(1 − p)

)n−nk−nk−1

+
k2
(

nk

2

)

nk−1D(r, s, n, nk)D(r, s, n, nk, nk−1)

st(1− p2)

(

1 +
p3

(1− p)

)n−nk−nk−1

+
kn3

kD(r, s, n, nk)
2

st

(

1 +
p3

(1− p)

)n−nk

.

Then, by the Turán sieve, we get

P (G(n(k), p)) <
2

nk(nk − 1)(1− p2)n−nk

·
(

1 +
2nk−1(1− p2)−nk−1(1− p)

(nk − 1)

)−1

+
3k3

(

1 + p3

(1−p)

)n−nk

(1− p2)−2

(nk−1 − 1)
.

This completes the proof of Theorem 3.3. �

By substituting p = 1
2 , we deduce from Theorem 3.3 the following.

Corollary 3.4. Let P (G(n(k), p)) be defined as in Theorem 3.3. If p = 1
2 , then we

have

P (G(n(k), p), 1/2)

≥ 1− n2
k(3/4)

n−nk

2

(

1 +
2nk−1(3/4)

−nk−1

nk
+

7k2n2
k−1(3/4)

nk−nk−1−nk−2

3n2
k

)

.

In the case when p → 0 as n → ∞, we have the following.

Corollary 3.5. Let P (G(n(k), p)) be defined as in Theorem 3.3. Let limn→∞ p4(n−
nk) = 0. We have

P (G(n(k), p)) ≥ 1− n2
ke

−p2(n−nk)

2

·
(

1 +
2nk−1

nk
ep

2nk−1

(

1 +
7k2nk−1e

−p2(nk−nk−2)

6nk

))
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and

P (G(n(k), p))(14)

≤ (1 + o(1))
2ep

2(n−nk)

n2
k

(

1 +
2nk−1

nk
ep

2nk−1

)−1

·
(

1 +
3k3n2

ke
(p3−p2)(n−nk)

2(nk−1 − 1)
+

3k3nknk−1e
(p3−p2)(n−nk)+p2nk−1

(nk−1 − 1)

)

.

Suppose further that

(15) lim
n→∞

(

lognk−1 − log n− p2nk−1

)

= −∞,

(16) lim
n→∞

(

2 logn+ (p3 − p2)(n− nk)− lognk−1

)

= −∞,

(17) lim
n→∞

((

p3 − p2
)

(n− nk) + p2nk−1 + logn
)

= −∞,

and that

lim
n→∞

(

2 lognk − p2(n− nk)− log 2 + log

(

1 +
2nk−1

nk
ep

2nk−1

))

= c

for some c ∈ R.
1) If c < 0, we have

P (G(n(k), p)) ≥ 1− (1 + o(1))ec.

2) If c > 0, we have

P (G(n(k), p)) ≤ (1 + o(1))e−c.

Proof. Since limn→∞ p4(n−nk) = 0 and p−2 ≥ 1, for n → ∞, by similar reasoning
as in the proof of Theorem 1.2, we have

e−p2(n−nk) >
(

1− p2
)p−2·p2(n−nk)

> e−p2(n−nk)
(

1− p2
)p2(n−nk)

= e−p2(n−nk)(1 + o(1))

and

ep
2nk−1 <

(

1− p2
)−p−2·p2nk−1

< ep
2nk−1

(

1− p2
)−p2nk−1

= ep
2nk−1(1 + o(1)).

Thus the first term in the upper bound of P (G(n(k), p)) in Theorem 3.3 becomes

2

nk(nk − 1) (1− p2)
p−2·p2(n−nk)

(18)

·



1 +
2nk−1

(

1− p2
)

−n

np2
·p2nk−1 (1− p)

(nk − 1)





−1

= (1 + o(1))
2ep

2(n−nk)

n2
k

(

1 +
2nk−1

nk
ep

2nk−1

)−1

.(19)

For the second term, first note that since limn→∞ p4(n− nk) = 0, we have

lim
n→∞

(n− nk)p
2

(

p

(1− p)
− 1

)

− (n− nk)p
2 (p− 1) = 0.
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Thus the second term in the upper bound of P (G(n(k), p)) in Theorem 3.3 becomes

(20)
3k3e

p3(n−nk)

1−p (1− p2)−2

nk−1 − 1
=

3k3ep
3(n−nk)

nk−1 − 1
(1 + o(1)).

Combining Equations (19) and (20), the upper bound of Corollary 3.5 follows. Also,
by Equations (15), (16), and (17), Statements (1) and (2) follow as in the proof of
Corollary 1.4. �

Remark 3.6. Similar to Remark 2.1, all o(1) terms in Corollary 3.5 can be made
explicit.

We consider one more application of the sieves to random k-partite graphs.

Definition 3.7. The k-partite Turán graph (named after the same Pál Turán) on
n vertices is defined as the k-paritite graph on n vertices such that the partitioned
sets are as equal as possible. In other words, for each 1 ≤ i ≤ k, we have ni = ⌊n

k ⌋
or ni = ⌈n

k ⌉.

In the case of k-partite Turán graphs, we can calculate
∑

b∈B deg b a lot more
precisely, using the above methods. Then we can prove the following.

Theorem 3.8. Let G′(n, k, p) denote the set of all Turán k-partite graphs where
each edge is chosen independently with probability p. Also, let P (G′(n, k, p)) be
the probability of a graph from G′(n, k, p) having diameter 2. For n > 2k, we have

P (G′(n, k, p))

≥ 1− n2(1− p2)n(1−1/k)−1

2k
(1 + (k − 1)(1− p2)−n/k−1)

(

1 +
k

n

)

and

P (G′(n, k, p))

≤ 2k

n2(1 − p2)n(1−1/k)+1

(

1 + (k − 1)(1− p2)1−n/k(1− p)
)−1

(

1− 2k

n

)−1

+
4k3

(

1 + p3

(1−p)

)n(1−1/k)+1

(1 − p2)−2

n(k − 1)

(

1− 2k

n

)−4

.

Corollary 3.9. Let G′(n, k, p) be defined as in Theorem 3.8. If p = 1
2 , we have

P (G′(n, k, p), 1/2) ≥ 1− 4n2(3/4)n(1−1/k)

6k

(

1 + (k − 1)(4/3)n/k+1
)

(

1 +
k

n

)

.

In the case when p → 0 as n → ∞, we can prove the following.

Corollary 3.10. Let G′(n, k, p) be as in Theorem 3.8. Let limn→∞ p4n = 0. As
n → ∞, we have

P (G′(n, k, p)) ≥ 1− (1 + o(1))
n2e−np2(1− 1

k )

2k

(

1 + (k − 1)e
np2

k

)
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and

P (G′(n, k, p))(21)

≤ (1 + o(1))
2kenp

2(1− 1
k )

n2

(

1 + (k − 1)e
np2

k

)−1

·
(

1 +
2k2ne(np

3−np2)(1−1/k)

(k − 1)
+ 2k2ne(np

3−np2)(1−1/k)+ np2

k

)

as n → ∞. Suppose further that

lim
n→∞

(

2 logn− log k − np2
(

1− 1

k

)

− log 2 + log

(

1 + (k − 1)e
np2

k

))

= c

for some c ∈ R\{0}.
1) If c < 0, we have

P (G′(n, k, p)) ≥ 1− (1 + o(1))ec.

2) If c > 0, we have

P (G′(n, k, p)) ≤ (1 + o(1))e−c.

Remark 3.11. Similar to Remark 2.1, all o(1) terms in Corollary 3.10 can be made
explicit.

Remark 3.12. We can similarly derive all of the above results for directed k-
partite graphs on n vertices where each directed edge is chosen independently with
probability p. Furthermore, for any two vertices, say v1 and v2, occuring in different
partite sets, the existence of the edge from v1 to v2 has probability p, while the
existence of the edge from v2 to v1 also occurs with probability p, and these two
edges occur independently. In the appropriate theorems, corollaries, and Corollarys,
we multiply the second term of the rebound by 2, divide the upperbound by 2, and
we add log 2 to our expressions for c.. Everything else is left unchanged.

4. Bipartite Graphs with Diameter 3

Here we analyze bipartite graphs in a similar way to k-partite graphs, but instead
of considering diameter 2, we consider diameter 3 since, except for the complete
bipartite graph, all bipartite graphs have diameter at least 3.

Theorem 4.1. For each n ∈ N, n ≥ 4, pick n1, n2 ∈ N such that 2 ≤ n1 ≤ n2 and
n1+n2 = n. Let G′′(n1, n2, p) denote the set of all bipartite graphs with the partite
sets having n1 and n2 vertices respectively where each edge is chosen independently
with probability p. Also, let P (G′′(n1, n2, p)) be the probability of a graph from
G′′(n1, n2, p) having diameter 3. Then

P (G′′(n1, n2, p)) ≥ 1− n2
2(1− p2)n1

2

(

1 +
n2
1(1 − p2)n2−n1

n2
2

)
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and

P (G′′(n1, n2, p))

≤





2

n2(n2 − 1)(1− p2)n1
+

(

1 + p3

(1−p)

)n1

n2

(

8 +
8

(1− p)

)





·
(

1 +
n1(n1 − 1)(1− p2)n2−n1

n2(n2 − 1)

)−1

.

Proof. As in the proof of Theorem 1.2, we may assume that p ∈ Q ∩ (0, 1) for all
n ∈ N.

Let p = r
s where r, s ∈ N. As in the proof of Theorem 1.2, we let A be the set of all

graphs in G′′(n1, n2, p), allowing for a number of duplicates of each possible graph
to accommodate the edge probability p. Since the complete bipartite graph has
n1n2 edges, we have rn1n2 copies of the complete bipartite graph and |A| = sn1n2 .

We let B be the set of all pairs of vertices such that both vertices of a pair occur
in the same partite set. Thus, |B| =

(

n1

2

)(

n2

2

)

. For a ∈ A and b ∈ B, we write a ∼ b
if the pair of vertices b in the graph a do not share a common neighbouring vertex.
Thus, we will have ω(a) = 0 if and only if a is connected with diameter at most 3.
For each pair of vertices b ∈ B in the set containing n1 vertices, we have

D(r, s, n, n1) := deg b = ((s− r)2 + 2r(s− r))n2 ((s− r) + r)n1n2−2n2 .

For each pair of vertices b ∈ B in the set containing n2 vertices, the n1 and n2 are
switched in the above equality. It follows that

∑

b∈B

deg b =
sn1n2n1(n1 − 1)(1− p2)n2

2
+

sn1n2n2(n2 − 1)(1− p2)n1

2
.

By the simple sieve, we obtain

P (G′′(n1, n2, p)) > 1− n2
1(1− p2)n2

2
− n2

2(1− p2)n1

2

= 1− n2
2(1− p2)n1

2

(

1 +
n2
1(1 − p2)n2−n1

n2
2

)

To get an upper bound for P (G′′(n1, n2, p)), we need to estimate
∑

b1,b2∈B n(b1, b2).
Using the same argument as in the proof of Theorem 1.2, we can get

∑

b1,b2∈B

n(b1, b2)

=

(

n1

2

)(

n1 − 2

2

)

D(r, s, n, n2)
2

sn1n2
+

(

n2

2

)(

n2 − 2

2

)

D(r, s, n, n1)
2

sn1n2

+ 2

(

n1

2

)(

n2

2

)

D(r, s, n, n1)D(r, s, n, n2)

sn1n2
·
(

1 +
4p3

(1− p)2

)

+
D(r, s, n, n2)

2n2(n2 − 1)(n2 − 2)

sn1n2

(

1 +
p3

(1− p)

)n1

+
sn1n2n2(n2 − 1)(1− p2)n1

2

(

1 +
n1(n1 − 1)(1− p2)n2−n1

n2(n2 − 1)

)

.
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Then, by the Turán sieve, we can get

P (G′′(n1, n2, p)) ·
(

1 +
n1(n1 − 1)(1− p2)n2−n1

n2(n2 − 1)

)2

.

<
2

n2(n2 − 1)(1− p2)n1

(

1 +
n1(n1 − 1)(1− p2)n2−n1

n2(n2 − 1)

)

+
4n3

1

(

1 + p3

(1−p)

)n2

(1− p2)2n2−2n1

n4
2

+
4
(

1 + p3

(1−p)

)n1

n2

+
8n2

1

(

p3

(1−p)2

)

(1− p2)n2−n1

n2
2

.

Notice that

p3

(1− p)
<

1

n1

(

1 + n1
p3

(1− p)

)

<
1

n1

(

1 +
p3

(1− p)

)n1

and
(

1 +
p3

(1 − p)

)

(1− p2)2 < 1.

It follows that

P (G′′(n1, n2, p))

(

1 +
n1(n1 − 1)(1− p2)n2−n1

n2(n2 − 1)

)

<
2

n2(n2 − 1)(1− p2)n1
+

4n3
1

(

1 + p3

(1−p)

)n2

(1− p2)2n2−2n1

n4
2

+

(

1 + p3

(1−p)

)n1

n2

(

4 +
8n1(1 − p2)n2−n1

n2(1− p)

)

≤ 2

n2(n2 − 1)(1− p2)n1
+

(

1 + p3

(1−p)

)n1

n2

(

8 +
8

(1− p)

)

from which we obtain our upper bound. This completes the proof of Theorem
4.1. �

By substituting in p = 1
2 , we deduce from Theorem 4.1 the following.

Corollary 4.2. Let P (G′′(n1, n2, p)) be defined as in Theorem 4.1. If p = 1
2 , then

we have

P (G′′(n1, n2, p), 1/2) ≥ 1− n2
2(3/4)

n1

2

(

1 +
n2
1(3/4)

n2−n1

n2
2

)

and

P (G′′(n1, n2, p), 1/2) ≤
(

2(4/3)n1

n2(n2 − 1)
+

24(5/4)n1

n2

)(

1 +
n1(n1 − 1)(3/4)n2−n1

n2(n2 − 1)

)−1

.

Remark 4.3. The upper bound given for P (G′′(n1, n2, p), 1/2) in Corollary 4.2
will in general only be non-trivial when n2 much larger than n1. For instance, if
n1 < min{ 2 logn2−log 8

log(4/3) , log n2−log 48
log(5/4) }, then the upper bound will be less than 1.
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In the situation where the edge probability p → 0 as n → ∞, we will show the
following.

Corollary 4.4. Let P (G′′(n1, n2, p)) be as in Theorem 4.1. Let limn→∞ np4 = 0.
We have

P (G(n, p)) ≥ 1− n2
2e

−n1p
2

2

(

1 + e2 logn1−2 logn2−(n2−n1)p
2
)

and

P (G(n, p)) ≤ (1 + o(1))

(

2

n2
2

en1p
2

)

(

1 + e2 logn1−2 logn2−(n2−n1)p
2
)−1

(22)

·
(

1 + 8n2e
n1p

2(p−1)
)

.

Suppose further that

lim
n→∞

(

2 logn1 − 2 logn2 − (n2 − n1)p
2
)

= −∞,

and
lim

n→∞

(

2 logn2 − n1p
2 − log 2

)

= c

for some c ∈ R.
1) If c < 0, we have

P (G′′(n1, n2, p)) ≥ 1− (1 + o(1))ec.

2) If c > 0, we have
P (G′′(n1, n2, p)) ≤ (1 + o(1))e−c.

Proof. By the upper bound of P (G(n),b, p) in Theorem 4.1, we can get

P (G′′(n1, n2, p))

(

1 +
n1(n1 − 1)

(

1− p2
)n2−n1

n2(n2 − 1)

)

<
2

n2(n2 − 1) (1− p2)
n1

+

(

8 +
8

1− p

)

(

1 + p3

1−p

)n1

n2
.

Since limn→∞ np4 = 0, we have limn→∞ n1p
4 = 0 and so

lim
n→∞

n1p
2

(

p

1− p
− 1

)

− n1p
2 (p− 1) = 0.

Also, since p−2 ≥ 1, we have
(

1− p2
)n1

> e−n1p
2 (

1− p2
)n1p

2

= e−n1p
2

(1 − o(1))

and
(

1 + p3

1−p

)n1

n2
<

e
n1p3

1−p

n2
=

en1p
2

n2
2

· n2e
n1p

2( p
1−p−1).

Also,

n2
1

(

1− p2
)n2−n1

n2
2 (1− p2)

= e2 logn1−2 logn2
(

1− p2
)p−2·(n2−n1)p

2
(

1− p2
)−1

> e2 logn1−2 logn2−(n2−n1)p
2 (

1− p2
)(n2−n1)p

2
(

1− p2
)−1

.
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Since limn→∞ np4 = 0, we have

lim
n→∞

(

1− p2
)(n2−n1)p

2

= 1.

We thus obtain our bounds. Statements (1) and (2) follow as in the proof of
Corollary 1.4. �

Remark 4.5. Similar to Remark 2.1, all o(1) terms in Corollary 4.4 can be made
explicit.

Substituting in n1 = n2 = n
2 or n1 = n−1

2 and n2 = n+1
2 can lead to similar

asymptotics for Turán bipartite graphs.

Theorem 4.6. Let G′′′(n, p) denote the set of all Turán bipartite graphs where
each edge is chosen independently with probability p. Also, let P (G′′′(n, p)) be the
probability of a graph from G′′′(n, p) having diameter 3. For n ≥ 4, we have

P (G′′′(n, p)) ≥ 1− (n+ 1)2(1− p2)(n−1)/2

8
and

P (G′′′(n, p))

≤







8

n(n− 2)(1 − p2)n/2
+

2
(

1 + p3

(1−p)

)n/2

n

(

8 +
8

(1− p)

)







·
(

1 +
(n− 3)(1− p2)

(n+ 1)

)−1

.

Substituting p = 1
2 gives the following.

Corollary 4.7. Let G′′′(n, p) be defined as in Corollary 4.6. If p = 1
2 , then we

have

P (G′′(n1, n2, p), 1/2) ≥ 1− (n+ 1)2(3/4)(n−1)/2

4
.

In the situation where the edge probability p → 0 as n → ∞, we have the
following.

Corollary 4.8. Let G′′′(n, p) be defined as in Corollary 4.6. Let limn→∞ np4 = 0.
We have

P (G′′′(n, p)) ≥ 1− (1 + o(1))
n2e−

np2

2

4
and

P (G′′′(n, p)) ≤ (1 + o(1))

(

4

n2
e

np2

2

)(

1 + 8ne
np2

2 (p2−1)
)

.

Suppose further that

lim
n→∞

(

2 logn− log 4− np2

2

)

= c

for some c ∈ R.
1) If c < 0, we have

P (G′′′(n, p)) ≥ 1− (1 + o(1))ec.

2) If c > 0, we have
P (G′′′(n, p)) ≤ (1 + o(1))e−c.
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Remark 4.9. Similar to Remark 2.1, all o(1) terms in Corollary 4.8 can be made
explicit.

Remark 4.10. Again, we can give analogous results for directed bipartite graphs
on n vertices where each directed edge is chosen independently with probability
p. Furthermore, for any two vertices, say v1 and v2, occuring in different partite
sets, the existence of the edge from v1 to v2 has probability p, while the existence
of the edge from v2 to v1 also occurs with probability p, and these two edges
occur independently. In the appropriate theorems, corollaries, and Corollarys, we
multiply the second term of the lowerbound by 2, divide the upperbound by 2, and
we add log 2 to our expressions for c. Everything else is left unchanged.

5. Initial Results for Graphs with Diameter d ≥ 2

We now generalise the above results for any given diameter d ≥ 2. In this section,
we give such a result for a graph from G(n, p) having diameter at most d for some
d ≥ 2 with some restrictions in place for n and p. Then in the next section, we refine
this result to make it more clear and meaningful by imposing further restrictions
on n and p. First, a note.

Note 5.1. Throughout this note let

f(n, p, d, i0) := p

d−2
∏

i=0

(

1− (1− p)(4np)
ii0

(4np)ii0

)

d−2
∏

j=1

(

1− (1− pj+1)n
j

njpj+1

)

,

h(n, p, d, i0) :=

(

1− 4

5

(e

3

)4p(n−i0−4npi0−...−(4np)d−4i0)
)2−d

.

with the conventions that h(n, p, 2, i0) = 1 and

h(n, p, 3, i0) =

(

1− 4

5

(e

3

)4np
)−1

,

and

g(n, p, d, d′, i0) :=







































n− 1 d = 2

1 +
∑d′

l=0

∏l
m=0

(

n− 1−∑m
q=0(4np)

qi0

)

d ≥ 3, d′ < d− 3

1 +
∑d−4

l=0

∏l
m=0

(

n− 1−
∑m

q=0(4np)
qi0

)

+
(

n− 1−∑d−3
q=0(4np)

qi0

)

·∏d−3
m=0

(

n− 1−∑m
q=0(4np)

qi0

)

d ≥ 3, d′ ≥ d− 3.

We will prove the following theorem.

Theorem 5.2. Fix d ≥ 2, d ∈ N. Let G(n, p) denote the set of all simple graphs
on n vertices where each edge is chosen independently with probability p. Also, let
P (G(n, p), d) be the probability of a graph from G(n, p) having diameter at most
d. Suppose that

2 + 8np+ 2(4np)2 + . . .+ 2(4np)d
′ ≤ n− 2

where d′ ≥ 0. We have

P (G(n, p), d) > 1−
(

n

2

)

h(n, p, d, 1) (1− f(n, p, d, 1))
g(n,p,d,d′,1)
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and

P (G(n, p), d) < (1− pd)
−2
(

nd−1+nd−2

p +nd−3

p2
+...+ 1

pd−1

)

h(n− 1, p, d, 2)

· (1− f(n, p, d, 2))
2·g(n−1,p,d,d′,2)

− 1 +
1

(

n
2

)

(1− pd)

(

nd−1+nd−2

p +nd−3

p2
+...+ 1

pd−1

) .

To prove Theorem 5.2, we first need the following two lemmas.

Lemma 5.3. For all n,m ∈ N with m < n, we have

(

n

m

)

<
( n

m

)m

· e1+1/(12n)

√

2πm
(

1− m
n

)

.

Proof. Robbins shows in [5] that for all m ∈ N, we have

√
2πmm+1/2e−m · e1/(12m+1). < m! <

√
2πmm+1/2e−m · e1/(12m).

Thus we have

(

n

m

)

≤ nn

mm(n−m)n−m
·

√
2πn√

2πm ·
√

2π(n−m)
e

1
12n

<

(

n

n−m

)n(
n−m

m

)m

· e1/(12n)
√

2πm
(

1− m
n

)

=

(

n

n−m

)n−m
( n

m

)m

· e1/(12n)
√

2πm
(

1− m
n

)

<
( n

m

)m

· e1+1/(12n)

√

2πm
(

1− m
n

)

.

�

Lemma 5.4. Suppose f : N × N satisfies f(n, i+ 1) ≤ f(n, i) for all i, n ∈ N. Let
r ∈ R, r > 0 satisfy 4r

r+1 < 1. Then for all n ∈ N and for all 4nr
r+1 ≤ t ≤ n we have

n
∑

i=0

(

n

i

)

rif(n, i) <

(

1− 4

5

(e

3

)t
)−1 ⌊t⌋

∑

i=0

(

n

i

)

rif(n, i).

Proof. First assume that n ≥ 2 and t < n − 1. For all i ≥ 4nr
r+1 , we have the

following:

(

n
i+1

)

ri+1

(

n
i

)

ri
<

(n− i)r

i+ 1
<
(n

i
− 1
)

r ≤
(

1

4
+

1

4r
− 1

)

r <
1

4
.
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Thus we have
∑n

i=⌊t⌋+1

(

n
i

)

rif(n, i)
∑n

i=0

(

n
i

)

rif(n, i)
=

(

1 +

∑i=⌊t⌋
i=0

(

n
i

)

rif(n, i)
∑n

i=⌊t⌋+1

(

n
i

)

rif(n, i)

)−1

≤
(

1 +

∑i=⌊t⌋
i=0

(

n
i

)

rif (n, ⌊t⌋)
∑n

i=⌊t⌋+1

(

n
i

)

rif(n, ⌊t⌋+ 1)

)−1

≤
∑n

i=⌊t⌋+1

(

n
i

)

ri
∑n

i=0

(

n
i

)

ri

<

(

n
⌊t⌋+1

)

r⌊t⌋+1

(1 + r)n

∞
∑

i=0

1

4i

≤
4
(

n
⌊t⌋+1

)

r⌊t⌋+1

3(1 + r)n
.

By Lemma 5.3, we have
(

n

⌊t⌋+ 1

)

r⌊t⌋+1 <

(

en

⌊t⌋+ 1

)⌊t⌋+1

· e1/(12n)r⌊t⌋+1

√

2π (⌊t⌋+ 1)
(

1− (⌊t⌋+1)
n

)

<

(

enr

⌊t⌋+ 1

)⌊t⌋+1

· e1/(12n)
√

2π(1 − 1/n)

<

(

e(r + 1)

4

)t

· e1/(12n)
√

2π(1− 1/n)

with the second inequality following from t < n−1 and the third inequality following

from e(r+1)
4 < e

3 < 1. Thus we have

∑n
i=⌊t⌋+1

(

n
i

)

rif(n, i)
∑n

i=0

(

n
i

)

rif(n, i)
≤

4e1/(12n)
(

e(r+1)
4

)t

3(1 + r)n
√

2π(1− 1/n)

<
4e1/(12n)

(

e
3

)t

3
√
π

<
4

5

(e

3

)t

.

Thus
n
∑

i=0

(

n

i

)

rif(n, i) <

(

1− 4

5

(e

3

)t
)−1 ⌊t⌋

∑

i=0

(

n

i

)

rif(n, i).

Now assume that n ≥ 1 and n− 1 ≤ t < n. Then we have
∑n

i=⌊t⌋+1

(

n
i

)

rif(n, i)
∑n

i=0

(

n
i

)

rif(n, i)
≤ rn

(1 + r)n
<

(

1

4

)n

=

(

3

4e

)n
(e

3

)n

<
4

5

(e

3

)t

.

Finally, if t = n or n = 0, then the desired result holds trivially. �

We will now prove Theorem 1.

For each n ∈ N, let G(n, p) denote the set of all graphs on n vertices with edge
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probability p, and let P ′(G(n, p)) be the probability of a graph from G(n, p) having
diameter at most d. Let p = r

s where r = r(n), s = s(n) ∈ N. We let A be the set
of all graphs in G(n, p), allowing for a number of duplicates of each possible graph
to accommodate the edge probability p, so that

|A| =
(n2)
∑

k=0

(
(

n
2

)

k

)

rk(s− r)(
n
2)−k = s(

n
2).

We let B be all pairs of vertices so |B| =
(

n
2

)

. For a graph a ∈ A and a pair of
vertices b ∈ B, we say a ∼ b if there is no path between the pair of vertices b that
consists of at most d edges. Thus, we will have ω(a) = 0 if and only if a is connected
with diameter at most d.

Pick a pair of vertices b ∈ B and call them v1 and v2. To calculate deg b, we
need to calculate the number of graphs in A such that there is no path from v1 to
v2 that consists of at most d edges. To help with this calculation, we will calculate
a generalised notion of deg b as follows. Let 0 ≤ i0 ≤ n− 1. Pick a specific set of i0
vertices out of the n labeled vertices, as well as another vertex, say v, out of the n
labeled vertices. We will let C(n, r, s, d, i0) denote the number of graphs in A such
that there is no path from any of the i0 vertices to vertex v that consists of at most
d edges. We can derive the recursive formula

C(n, r, s, d+ 1, i0) = (s− r)i0(n−i0)s(
n
2)−i0(n−i0)

+

n−1−i0
∑

i1=1

(

n− 1− i0
i1

)

(

si0 − (s− r)i0
)i1

(s− r)i0(n−i0−i1)s(
i0
2 )

· C(n− i0, r, s, d, i1)(23)

valid for all 0 ≤ i0 ≤ n− 1 and d ≥ 1, which can be simplified to

C(n, r, s, d+ 1, i0) =

n−1−i0
∑

i1=0

(

n− 1− i0
i1

)

(

si0 − (s− r)i0
)i1

(s− r)i0(n−i0−i1)s(
i0
2 )

· C(n− i0, r, s, d, i1)(24)

if we assume that i0 > 0. As well,

C(n, r, s, 1, i0) = (s− r)i0s(
n
2)−i0

for all 1 ≤ i0 ≤ n − 1, completing the formula. Then we can deduce that
C(n, r, s, d, 1) = deg b if we are working with diameter d. Let D(n, p, d, i0) =
C(n,r,s,1,i0)

s(
n
2)

so that D(n, p, d, i0) is the probability that the edge distance between v

and any of the i0 vertices is greater than d. We will prove that for all 0 ≤ i0 ≤ n−1,
0 < p < 1, d ≥ 1 that

(25) D(n, p, d, i0) ≥ (1− pd)
i0
(

nd−1+nd−2

p +nd−3

p2
+...+ 1

pd−1

)

.

If we also have the additional constraint 1 ≤ i0 ≤ n−1
1+4np+(4np)2+...+(4np)d′

where

d′ ≥ 0, then we also have

(26) D(n, p, d, i0) < h(n, p, d, i0) (1− f(n, p, d, i0))
i0g(n,p,d,d,i0) .

We prove by induction on d. First, we need a few lemmas.
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Lemma 5.5. Fix 0 < r < 1 and let g(x) := 1−(1−r)x

rx . Then g(x) is a decreasing

function on R. Also, Fix y ≥ 1 and let h(x) = 1−(1−x)y

yx . Then h(x) is a non-

increasing function on [0, 1].

Proof. Fix 0 < r < 1 and let g(x) := 1−(1−r)x

rx . Let g′(x) be the derivative of g
with respect to x. Then

g′(x) =
xr ((1− r)x log(1 − r))− (1− (1− r)x) r

x2r2

=
x ((1 − r)x log(1− r)) − (1− (1− r)x)

rx2

<
(1− r)x − 1

rx2

< 0.

Therefore g(x) is decreasing. Let h(x) := 1−(1−x)y

yx . Let h′(x) be the derivative of

h with respect to x. Then

h′(x) =
yx(1− x)y−1 − y (1− (1− x)y)

y2x2

=
(1− x)y−1 − 1

yx2

≤ 0.

Thus h(x) is a non-increasing function on [0, 1]. �

Lemma 5.6. Let 0 ≤ q, r ≤ 1 and y ≥ 1. We have

(1− qr)y ≤ 1− q + q(1− r)y .

Also, if C < 1−(1−r)M

Mr where y < M , then we also have

1− q + q(1 − r)y ≤ (1 − Cqr)y .

Proof. We observe that the lemma holds for r = 0. Fix 0 ≤ q ≤ 1 and y ≥ 1 and
let f(r) = 1− q+ q(1− r)y − (1− qr)y . Let f ′(r) be the derivative of f with respect
to r. Then

f ′(r) = −qy(1− r)y−1 + qy(1− qr)y−1 = qy((1− qr)y−1 − (1 − r)y−1) ≥ 0.

It follows that f(r) ≥ 0 for all 0 ≤ r ≤ 1 and so the first result follows. Let

C < 1−(1−r)M

Mr where y ≤ M . From Lemma 5.5, we therefore have

C <
1− (1− r)y

yr

=
1−

(

1− q
y + q

y (1− r)y
)

qr

≤ 1− (1− q + q(1− r)y)
1/y

qr

Thus

1− Cqr > (1− q + q(1 − r)y)1/y

from which the result follows. �
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Lemma 5.7. Let i, j ∈ N ∪ {0}, 0 < p < 1, and t ≥ 1. Then we have

(1− pj+1)it ≤ (1 − p)i +
(

1− (1− p)i
)

(1− pj)t.

Also, let 0 < C1 < 1, C2 < 1−(1−pj)M

Mpj and C3 < 1−(1−p)N

Np where M ≥ t and N ≥ i.

Then we also have

(1 − p)i +
(

1− (1− p)i
)

(1− C1p
j)t ≤ (1− C1C2C3p

j+1)it.

Proof. Let i, j ∈ N∪{0}, 0 < p < 1, and t ≥ 1. Applying Lemma 5.6 twice we have

(1− p)i +
(

1− (1− p)i
)

(1− pj)t =
(

1−
(

1− (1 − pi)
))

+
(

1− (1− p)i
)

(1− pj)t

≥
(

1− pj
(

1− (1− p)i
))t

=
(

1− pj + pj(1 − p)i
)t

≥ (1 − pj+1)it.

By Lemma 5.5 we have

C2 <
1− (1− pj)M

Mpj
<

1− (1− C1p
j)M

MC1pj
.

Thus, applying Lemma 5.6 twice, we have

(1− p)i +
(

1− (1− p)i
)

(1− C1p
j)t =

(

1−
(

1− (1− pi)
))

+
(

1− (1 − p)i
)

(1− C1p
j)t

≤
(

1− C2C1p
j
(

1− (1− p)i
))t

=
(

1− C2C1p
j + C2C1p

j(1− p)i
)t

≤ (1− C3C2C1p
j+1)it.

�

For d = 1, we have D(n, p, 1, i0) = (1− p)i0 . Suppose for some d ≥ 1 (25) holds
for all 0 ≤ i0 ≤ n − 1, and 0 < p < 1. We will prove it holds for d + 1. First, we
can verify that (25) holds if i0 = 0 (in which case both sides of (25) are just equal
to 1), so assume that i0 > 0. From (24) we have

D(n, p, d+ 1, i0) = (1− p)i0(n−i0)
n−1−i0
∑

i1=0

(

n− 1− i0
i1

)

((1 − p)−i0 − 1)i1D(n− i0, p, d, i1)

> (1− p)i0(n−i0)
n−1−i0
∑

i1=0

(

n− 1− i0
i1

)

((1 − p)−i0 − 1)i1(1− pd)
i1
(

nd−1+nd−2

p +nd−3

p2
+...+ 1

pd−1

)

= (1− p)i0(n−i0)

(

1 +
(

(1 − p)−i0 − 1
)

(1 − pd)
nd−1+nd−2

p +nd−3

p2
+...+ 1

pd−1

)n−1−i0

= (1− p)i0
(

(1− p)i0 +
(

1− (1 − p)i0
)

(1− pd)
nd−1+nd−2

p +nd−3

p2
+...+ 1

pd−1

)n−1−i0
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Using Lemma 5.7 we thus have

D(n, p, d+ 1, i0) > (1− p)i0(1− pd+1)
i0(n−1−i0)

(

nd−1+nd−2

p +nd−3

p2
+...+ 1

pd−1

)

=
(1− pd+1)i0

(1 + p+ p2 + . . .+ pd)i0
· (1 − pd+1)

i0(n−1−i0)
(

nd−1+nd−2

p +nd−3

p2
+...+ 1

pd−1

)

> (1− pd+1)i0e(−p−p2−...−pd)i0(1− pd+1)
i0(n−1−i0)

(

nd−1+nd−2

p +nd−3

p2
+...+ 1

pd−1

)

> (1− pd+1)(1+p−1+p−2+p−3+...+p−d)i0(1− pd+1)
i0(n−1)

(

nd−1+nd−2

p +nd−3

p2
+...+ 1

pd−1

)

> (1− pd+1)
i0
(

nd+nd−1

p +nd−2

p2
+...+ 1

pd

)

.

Thus (25) is proved. Next we prove (26) again by induction on d. First, applying
Lemma 5.7 we have

D(n, p, 2, i0) = (1 − p)i0(1− p+ p(1− p)i0)n−1−i0

< (1 − p+ p(1− p)i0)n−1

<

(

1− p
(

1− (1− p)i0
)

i0

)i0(n−1)

.

Suppose for some d ≥ 2 with any d′ ≥ 0 (26) holds for all 1 + 4np+ (4np)2 + . . .+

(4np)d
′ ≤ n− 2, and 0 < p < 1. We will prove it holds for d+ 1. We have

D(n, p, d+1, i0) = (1−p)i0(n−i0)
n−1−i0
∑

i1=0

(

n− 1− i0
i1

)

((1−p)−i0−1)i1D(n−i0, p, d, i1).

We divide into three cases.

Case 4. n−1
1+4np < i0 ≤ n− 1.

We have the following:

D(n, p, d+ 1, i0) = (1− p)i0(n−i0)
n−1−i0
∑

i1=0

(

n− 1− i0
i1

)

((1 − p)−i0 − 1)i1D(n− i0, p, d, i1)

≤ (1− p)i0(n−i0)

(

1 +

n−1−i0
∑

i1=1

(

n− 1− i0
i1

)

((1− p)−i0 − 1)i1

(1− f(n− i0, p, d, i1))
i1g(n−i0,p,d,0,i1) h(n− i0, p, d, i1)

)

.

We can deduce that h(n− i0, p, d, i1) ≤ h(n− i0, p, d, 4npi0) ≤ h(n, p, d+1, i0) and
from Lemma 5.5, we can deduce that f(n, p, d, 4npi0) < f(n− i0, p, d, i1). As well,
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g(n− i0, p, d, n− 1− i0) ≤ g(n− i0, p, d, i1). Thus we have

D(n, p, d+ 1, i0) < h(n, p, d+ 1, i0)(1− p)i0(n−i0)

(

1 +

n−1−i0
∑

i1=1

(

n− 1− i0
i1

)

((1− p)−i0 − 1)i1

(1− f(n, p, d, 4npi0))
i1g(n−i0,p,d,0,n−1−i0)

)

= h(n, p, d+ 1, i0)(1− p)i0(n−i0)

·
(

1 + ((1 − p)−i0 − 1) (1− f(n, p, d, 4npi0))
g(n−i0,p,d,0,n−1−i0)

)n−1−i0

< (1− p)i0h(n, p, d+ 1, i0)

·
(

(1− p)i0 + (1− (1− p)i0 ) (1− f(n, p, d, 4npi0))
g(n−i0,p,d,0,n−1−i0)

)n−1−i0
.

We note that g(n− i0, p, d, 0, n− 1− i0) < nd−1 and so, using Lemma 5.7, we thus
have

D(n, p, d+ 1, i0)

< h(n, p, d+ 1, i0)

·
(

1− p

(

1− (1− p)i0

pi0

)

(

1− (1− pd)n
d−1

nd−1pd

)

f(n, p, d, 4npi0)

)i0(n−i0−1)g(n−i0,p,d,0,n−1−i0)+i0

= h(n, p, d+ 1, i0) (1− f(n, p, d+ 1, i0))
i0(n−i0−1)g(n−i0,p,d,0,n−1−i0)+i0 .

We can deduce that (n− i0 − 1)g(n− i0, p, d, 0, n− 1− i0) + 1 ≥ g(n, p, d+1, 0, i0)
and so we have (26).

Case 5. i0 ≤ n−1
1+4np

Given a set of i1 vertices and one additional vertex, say v, in a graph from G(n −
i0, p), we know that D(n− i0, p, d, i1) is the probability that the edge distance be-
tween v and any of the i1 vertices is greater than d. By adding one more vertex to
our set of i1 vertices, it therefore follows thatD(n−i0, p, d, i1+1) ≤ D(n−i0, p, d, i1).
Thus, by Lemma 5.4, we have

D(n, p, d+ 1, i0) <

(

1− 4

5

(e

3

)4npi0
)−1

(1− p)i0(n−i0)

4npi0
∑

i1=0

(

n− 1− i0
i1

)

((1 − p)−i0 − 1)i1D(n− i0, p, d, i1)

<

(

1− 4

5

(e

3

)4npi0
)−1

(1− p)i0(n−i0)

·
(

1 +

4npi0
∑

i1=1

(

n− 1− i0
i1

)

((1− p)−i0 − 1)i1

· (1− f(n− i0, p, d, i1))
i1g(n−i0,p,d,0,i1) h(n− i0, p, d, i1)

)

.

We can deduce that h(n− i0, p, d, i1) ≤ h(n− i0, p, d, 4npi0) and from Lemma 5.5,
we can deduce that f(n, p, d, 4npi0) < f(n− i0, p, d, i1). As well, g(n− i0, p, d, 0, n−
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1− i0) ≤ g(n− i0, p, d, 0, i1). Thus we have

D(n, p, d+ 1, i0) <

(

1− 4

5

(e

3

)4npi0
)−1

(1− p)i0(n−i0)

·
(

1 +

4npi0
∑

i1=1

(

n− 1− i0
i1

)

((1− p)−i0 − 1)i1

· (1− f(n, p, d, 4npi0))
i1g(n−i0,p,d,0,n−1−i0) h(n− i0, p, d, 4npi0)

)

<

(

1− 4

5

(e

3

)4npi0
)−1

h(n− i0, p, d, 4npi0)(1− p)i0(n−i0)

·
(

1 +

n−1−i0
∑

i1=1

(

n− 1− i0
i1

)

((1 − p)−i0 − 1)i1 (1− f(n, p, d, 4npi0))
i1g(n−i0,p,d,0,n−1−i0)

)

= h(n, p, d+ 1, i0)(1− p)i0(n−i0)

·
(

1 +
(

(1− p)−i0 − 1
)

(1− f(n, p, d, 4npi0))
g(n−i0,p,d,0,n−1−i0)

)n−1−i0

< h(n, p, d+ 1, i0)(1− p)i0

·
(

(1− p)i0 +
(

1− (1− p)i0
)

(1− f(n, p, d, 4npi0))
g(n−i0,p,d,0,n−1−i0)

)n−1−i0
.

We note that g(n− i0, p, d, 0, n− 1− i0) < nd−1 and so, using Lemma 5.7, we thus
have

D(n, p, d+ 1, i0)

< h(n, p, d+ 1, i0)

·
(

1− p

(

1− (1− p)i0

pi0

)

(

1− (1− pd)n
d−1

nd−1pd

)

f(n, p, d, 4npi0)

)i0(n−i0−1)g(n−i0,p,d,0,n−1−i0)+i0

= h(n, p, d+ 1, i0) (1− f(n, p, d+ 1, i0))
i0(n−i0−1)g(n−i0,p,d,0,n−1−i0)+i0 .

We can deduce that (n− i0 − 1)g(n− i0, p, d, 0, n− 1− i0) + 1 ≥ g(n, p, d+1, 0, i0)
and so we have (26).

Case 6. i0 ≤ n−1
1+4np+...+(4np)d′+1 , d

′ ≥ 0

Given a set of i1 vertices and one additional vertex, say v, in a graph from G(n −
i0, p), we know that D(n− i0, p, d, i1) is the probability that the edge distance be-
tween v and any of the i1 vertices is greater than d. By adding one more vertex to
our set of i1 vertices, it therefore follows thatD(n−i0, p, d, i1+1) ≤ D(n−i0, p, d, i1).
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Thus, by Lemma 5.4, we have

D(n, p, d+ 1, i0) <

(

1− 4

5

(e

3

)4npi0
)−1

(1− p)i0(n−i0)

4npi0
∑

i1=0

(

n− 1− i0
i1

)

((1 − p)−i0 − 1)i1D(n− i0, p, d, i1)

<

(

1− 4

5

(e

3

)4npi0
)−1

(1− p)i0(n−i0)

·
(

1 +

4npi0
∑

i1=1

(

n− 1− i0
i1

)

((1− p)−i0 − 1)i1

· (1− f(n− i0, p, d, i1))
i1g(n−i0,p,d,d

′,i1) h(n− i0, p, d, i1)
)

.

We can deduce that h(n−i0, p, d, i1) ≤ h(n−i0, p, d, 4npi0) and from Lemma 5.5, we
can deduce that f(n, p, d, 4npi0) < f(n− i0, p, d, i1). As well, g(n− i0, p, d, 4npi0) ≤
g(n− i0, p, d, i1). Thus we have

D(n, p, d+ 1, i0)

<

(

1− 4

5

(e

3

)4npi0
)−1

(1− p)i0(n−i0)

·
(

1 +

4npi0
∑

i1=1

(

n− 1− i0
i1

)

((1− p)−i0 − 1)i1

· (1− f(n, p, d, 4npi0))
i1g(n−i0,p,d,d

′,4npi0) h(n− i0, p, d, 4npi0)
)

<

(

1− 4

5

(e

3

)4npi0
)−1

h(n− i0, p, d, 4npi0)(1− p)i0(n−i0)

·
(

1 +

n−1−i0
∑

i1=1

(

n− 1− i0
i1

)

((1 − p)−i0 − 1)i1 (1− f(n, p, d, 4npi0))
i1g(n−i0,p,d,d

′,4npi0)

)

= h(n, p, d+ 1, i0)(1− p)i0(n−i0)
(

1 +
(

(1− p)−i0 − 1
)

(1− f(n, p, d, 4npi0))
g(n−i0,p,d,d

′,4npi0)
)n−1−i0

< h(n, p, d+ 1, i0)(1− p)i0
(

(1− p)i0 +
(

1− (1− p)i0
)

(1− f(n, p, d, 4npi0))
g(n−i0,p,d,d

′,4npi0)
)n−i0−1

.

We note that g(n − i0, p, d, d
′, 4npi0) < nd−1 and so, using Lemma 5.7, we thus

have

D(n, p, d+ 1, i0) < h(n, p, d+ 1, i0)

·
(

1− p

(

1− (1− p)i0

pi0

)

(

1− (1− pd)n
d−1

nd−1pd

)

f(n, p, d, 4npi0)

)i0(n−i0)g(n−i0,p,d,d
′,4npi0)+i0

= h(n, p, d+ 1, i0) (1− f(n, p, d+ 1, i0))
i0(n−i0)g(n−i0,p,d,d

′,4npi0)+i0 .

We can deduce that (n− i0 − 1)g(n− i0, p, d, d
′, 4npi0)+ 1 > g(n, p, d+1, d′+1, i0)

and so we have (26).

By (26), we have

∑

b∈B

deg b < s(
n
2)
(

n

2

)

h(n, p, d, 1) (1− f(n, p, d, 1))
g(n,p,d,d′,1)

.
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Hence, by the simple sieve, we have

P (G(n, p), d) > 1−
(

n

2

)

h(n, p, d, 1) (1− f(n, p, d, 1))g(n,p,d,d
′,1) .

We now calculate n(b1, b2) to get an upperbound for
∑d

i=1 P (G(n, p), i) using the
Turán sieve. If the two pairs of vertices b1 and b2 are the same, then we just have
n(b1, b2) = deg b. If b1 and b2 have exactly one vertex in common, then we can see
that n(b1, b2) = C(n, r, s, d, 2) and use (26). Hence the only question is when the
two pairs of vertices are disjoint.

As in our calculations for deg b, to help calculate n(b1, b2) in this case, we will
calculate a generalised notion of n(b1, b2) as follows. Let 0 ≤ i0 ≤ n − 2 and
0 ≤ i′0 ≤ n − 2 where i0 + i′0 ≤ n − 2. Pick two disjoint sets of vertices having
i0 and i′0 vertices out of the n labeled vertices, as well as two other vertices, say
v and v′, out of the n labeled vertices. We will let C′(n, r, s, d, i0, i

′
0) denote the

number of graphs in A such that there is no path from any of the i0 vertices to
vertex v that consists of at most d edges, as well as the requirement that there is
no path from any of the i′0 vertices to the vertex v′ that consists of at most d edges.
If i0 = 0, then we have C′(n, r, s, d, i0, i

′
0) = C(n, r, s, 1, i′0) and if i′0 = 0, then we

have C′(n, r, s, d, i0, i
′
0) = C(n, r, s, 1, i0). So suppose that i0, i

′
0 > 0. Then we have

C′(n, r, s, d+ 1, i0, i
′
0) <

n−2−i0−i′0
∑

i1=0

(

n− 2− i0 − i′0
i1

)

(

si0 − (s− r)i0
)i1

(s− r)i0(n−i0−i′0−i1−1)

·
n−2−i0−i′0−i1

∑

i′1=0

(

n− 2− i0 − i′0 − i1
i′1

)

(

si
′
0 − (s− r)i

′
0

)i′1
(s− r)i

′
0(n−i0−i′0−i1−i′1−1)

· s(
i0
2 )+i0i

′
0+(

i′0
2 )+i0+i1i

′
0+i′0C′(n− i0 − i′0, r, s, d, i1, i

′
1).

(27)

valid for all 1 ≤ i0, i
′
0 ≤ n− 3 with i0 + i0 ≤ n− 2, and d ≥ 1. As well,

C′(n, r, s, 1, i0, i
′
0) = (s− r)i0+i′0s(

n
2)−i0−i′0

for all 0 ≤ i0, i
′
0 ≤ n − 2 with i0 + i′0 ≤ n − 2, completing the formula. Then we

can deduce that C(n, r, s, d, 1, 1) = n(b1, b2) if we are working with diameter d. Let

D′(n, p, d, i0, i
′
0) =

C′(n,r,s,1,i0,i
′
0)

s(
n
2)

so that D′(n, p, d, i0, i
′
0) is the probability that the

edge distance between v and any of the i0 vertices is greater than d and that the
edge distance between v′ and any of the i′0 vertices is greater than d. We will prove
that for all 0 ≤ i0, i

′
0 ≤ n− 2, i0 + i′0 ≤ n− 2, 0 < p < 1, d ≥ 1 that

(28) D′(n, p, d, i0, i
′
0) ≤ D(n− 1, p, d, i0 + i′0).

For d = 1, we have

D′(n, p, 1, i0, i
′
0) = (1− p)i0+i′0 = D(n− 1, p, 1, i0 + i′0)

so (28) holds for d = 1. Suppose for some d ≥ 1 (28) holds for all n ∈ N, 0 ≤
i0, i

′
0 ≤ n − 2, i0 + i′0 ≤ n − 2, 0 < p < 1. We can see that (28) holds if i0 = 0 or
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i′0 = 0. So assume that 0 < i0, i
′
0 ≤ n− 3 with i0 + i′0 ≤ n− 2. First we have

D′(n, p, d+ 1, i0, i
′
0) <

n−2−i0−i′0
∑

i1=0

(

n− 2− i0 − i′0
i1

)

(

1− (1 − p)i0
)i1

(1− p)i0(n−i0−i′0−i1−1)

·
n−2−i0−i′0−i1

∑

i′1=0

(

n− 2− i0 − i′0 − i1
i′1

)

(

1− (1− p)i
′
0

)i′1
(1− p)i

′
0(n−i0−i′0−i1−i′1−1)

·D′(n− i0 − i′0, p, d, i1, i
′
1)

< (1 − p)i0(n−i0−i′0−1)

n−2−i0−i′0
∑

i1=0

(

n− 2− i0 − i′0
i1

)

(

(1− p)−i0 − 1
)i1

· (1− p)i
′
0(n−i0−i′0−i1−1)

n−2−i0−i′0−i1
∑

i′1=0

(

n− 2− i0 − i′0 − i1
i′1

)

(

(1− p)−i′0 − 1
)i′1

·D(n− 1− i0 − i′0, p, d, i1 + i′1).

Writing k = i1 + i′1, we have

D′(n, p, d+ 1, i0, i
′
0) < (1 − p)(i0+i′0)(n−i0−i′0−1)

n−2−i0−i′0
∑

k=0

(

n− 2− i0 − i′0
k

)

D(n− 1− i0 − i′0, p, d, k)

·
(

(1− p)−i′0 − 1
)k k
∑

i1=0

(

k

i1

)

(

(1 − p)−i0 − 1
)i1

(1− p)−i1i
′
0

(

(1− p)−i′0 − 1
)−i1

= (1 − p)(i0+i′0)(n−i0−i′0−1)

n−2−i0−i′0
∑

k=0

(

n− 2− i0 − i′0
k

)

D(n− 1− i0 − i′0, p, d, k)

·
(

(1− p)−i′0 − 1
)k k
∑

i1=0

(

k

i1

)

(

(1− p)−i0−i′0 − (1− p)−i′0

(1− p)−i′0 − 1

)i1

= (1 − p)(i0+i′0)(n−i0−i′0−1)

n−2−i0−i′0
∑

k=0

(

n− 2− i0 − i′0
k

)

D(n− 1− i0 − i′0, p, d, k)

·
(

(1− p)−i′0 − 1
)k
(

1 +
(1 − p)−i0−i′0 − (1− p)−i′0

(1− p)−i′0 − 1

)k

= (1 − p)(i0+i′0)(n−i0−i′0−1)

n−2−i0−i′0
∑

k=0

(

n− 2− i0 − i′0
k

)

D(n− 1− i0 − i′0, p, d, k)

·
(

(1− p)−i0−i′0 − 1
)k

< D(n− 1, p, d+ 1, i0 + i′0).

Suppose we have n − 1 labeled vertices. Pick i0 of these vertices where 0 ≤ i0 ≤
n− 2 and another vertex v among the n− 1 vertices. The number of graphs from
G(n − 1, p) on these n − 1 vertices such that there is no path from any of the i0
vertices to vertex v that consists of at most d edges is C(n− 1, r, s, d, i0) where

r
s is

the edge probability. Adding one more vertex to these n labeled vertices, we can see
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that sn−1C(n − 1, r, s, d, i0) ≥ C(n, r, s, d, i0). We deduce that D(n − 1, p, d, i0) ≥
D(n, p, d, i0). Thus we have n(b1, b2) ≤ s(

n
2)D(n− 1, p, d, 2) whenever b1 and b2 are

not the same pair of vertices and hence we can use (26) to get an upper bound.
Thus, by the Turán sieve, we have

P (G(n, p), d) <

(

n
2

)2
D(n− 1, p, d, 2) +

(

n
2

)

D(n, p, d, 1)
(

n
2

)2
D(n, p, d, 1)2

− 1

=
D(n− 1, p, d, 2)

D(n, p, d, 1)2
− 1 +

1
(

n
2

)

D(n, p, d, 1)

< (1− pd)
−2
(

nd−1+nd−2

p +nd−3

p2
+...+ 1

pd−1

)

h(n− 1, p, d, 2) (1− f(n− 1, p, d, 2))
2·g(n−1,p,d,d′,2)

− 1 +
1

(

n
2

)

(1− pd)

(

nd−1+nd−2

p
+nd−3

p2
+...+ 1

pd−1

) .

6. Restricted Results for Diameter d ≥ 3

Here we impose further restrictions on n and p in Theorem 5.2 to make our
result more clear and meaningful. Since the case d = 2 was treated in Section 2,
we assume d ≥ 3.The result is Corollary 6.1.

Corollary 6.1. Let d ≥ 3 be fixed. Suppose that

(29) n
1
d−1 ≤ p ≤ n

1
d+

1
2d2

−1.

Also suppose that

(30) (4dd)2d
2

< n.

Then we have

P (G(n, p), d) > 1−
(

n

2

)

(1− pd)n
d−1
(

1 + 4d+1dn
−1

2d2

)

and

P (G(n, p), d) <
2(1− pd)−nd−1

(

1 + 2n
−1

2d2

)

n(n− 1)
+ 4d+2dn

−1

2d2 .

We prove Corollary 6.1. Suppose that (29) and (30) hold. From (29) and (30),

we have 2 < n1/d ≤ np. From (30), we can derive that 4d
(

e
3

)3n1/d

< 4ddn
−1

2d2 < 1.
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Also, from (29) and (30), we can deduce that 1
n + 16(4np)d−4

7n < 1
4 . Thus

h(n, p, d, 1), h(n− 1, p, d, 2) <



1− 4

5

(e

3

)4

(

n−1− 16(4np)d−4

7

)

p





2−d

<

(

1− 4

5

(e

3

)4n1/d(1− 1
4 )
)−d

=

(

1− 4

5

(e

3

)3n1/d)−d

< 1 + 4d
(e

3

)3n1/d

< 1 + 4ddn
−1

2d2 .(31)

with the last two inequalities following from (30). Also, from (29), we have

pd−1nd−2 ≤
(

n
1
d+

1
2d2

−1
)d−1

nd−2 = n
−1
2d − 1

2d2 .

Also, from (30), we have

4d−1dn
−1
2d − 1

2d2 < 4d−1d(4dd)−1 =
1

4
.

Thus, from (29), we have that both 1−f(n, p, d, 1) and 1−f(n, p, d, 2) are bounded
above by

1− p

d−2
∏

i=0

(

1− (1− p)2(4np)
i

2(4np)i

)

d−2
∏

j=1

(

1− (1 − pj+1)n
j

njpj+1

)

< 1− p
d−2
∏

i=0

(

2p(4np)i − 4p2(4np)2i

2(4np)i

) d−2
∏

j=1

(

njpj+1 − n2jp2j+2

njpj+1

)

= 1− pd
d−2
∏

i=0

(

1− 2p(4np)i
)

d−2
∏

j=1

(

1− njpj+1
)

< 1− pd
(

1− 2p(4np)d−2
)2d−3

< 1− pd
(

1− 4d−1(d− 1)pd−1nd−2
)

≤ 1− pd
(

1− 4d−1(d− 1)n
−1
2d − 1

2d2

)

< (1− pd)

(

1−4d−1(d−1)n
−1
2d

− 1
2d2

)

(

1−pd

4

)

< (1− pd)

(

1−4d−1(d−1)n
−1
2d

− 1
2d2

)

(

1−n

−1
2d

− 1
2d2

4

)

< (1− pd)

(

1−4d−1dn
−1
2d

− 1
2d2

)

.(32)

From (29) and (30), we can derive

2(4np)d−1

1− 1
4np

≤ n− 2.
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Thus we have

g(n, p, d, d− 1, 1) >

(

n− 1− (4np)d−3

1− 1
4np

)d−1

>

(

n− 1− 8(4np)d−3

7

)d−1

>

(

n− 1− 4dn1− 1
2d−

1
2d2

56

)d−1

> nd−1

(

1− 1

n
− 4dn

−1
2d − 1

2d2

56

)d−1

> nd−1
(

1− 4d−2dn
−1
2d

− 1
2d2

)

(33)

and

g(n− 1, p, d, d− 1, 2) >

(

n− 2− 2(4np)d−3

1− 1
4np

)d−1

>

(

n− 2− 16(4np)d−3

7

)d−1

>

(

n− 2− 4dn1− 1
2d−

1
2d2

28

)d−1

> nd−1

(

1− 2

n
− 4dn

−1
2d − 1

2d2

28

)d−1

> nd−1
(

1− 4d−2dn
−1
2d − 1

2d2

)

.(34)

Substituting in (31), (32), and (33) into the lower bound in Theorem 5.2, we obtain

P (G(n, p), d) > 1−
(

n

2

)

(

1 + 4ddn
−1

2d2

)

(1− pd)
nd−1

(

1−2·4d−2dn
−1
2d

− 1
2d2

)(

1−4d−1dn
−1
2d

− 1
2d2

)

> 1−
(

n

2

)

(

1 + 4ddn
−1

2d2

)

(1− pd)
nd−1

(

1−2·4d−1dn
−1
2d

− 1
2d2

)

.

(35)

From (29) and (30), we have

pdnd−1
(

2 · 4d−1dn
−1
2d − 1

2d2

)

≤ 2 · 4d−1dn
−1

2d2 <
1

2
.

Thus, from (30), we obtain

(1− pd)
−nd−1

(

2·4d−1dn
−1
2d

− 1
2d2

)

< 1 + 4ddn
−1

2d2 .(36)
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Thus we deduce

P (G(n, p), d) > 1−
(

n

2

)

(1− pd)n
d−1
(

1 + 3 · 4ddn
−1

2d2

)

> 1−
(

n

2

)

(1− pd)n
d−1
(

1 + 4d+1dn
−1

2d2

)

Also, from (29) and (30), we have

(1− pd)
−2
(

nd−1+nd−2

p +nd−3

p2
+...+ 1

pd−1

)

< (1− pd)−2(nd−1)(1+3/(2np)).

and

3pd−1nd−2 ≤ 3n
−1
2d − 1

2d2 < 3n
−1

2d2 <
3

4dd
≤ 1

64
.

Thus we can deduce

(1− pd)−2(nd−1)(3/(2np)) ≤ 1 +
64n

−1

2d2

21
< 1 + 4ddn

−1

2d2 .

Thus

(37) (1− pd)−2(nd−1)(1+3/(2np)) < (1− pd)−2nd−1
(

1 + 4ddn
−1

2d2

)

.

Similarly, we can obtain

(38) (1− pd)−(nd−1)(1+3/(2np)) < (1− pd)−nd−1

(

1 +
192

127
n

−1

2d2

)

.

Substituting in (31), (32), (34), (36), (37), and (38) into the upper bound in The-
orem 5.2, we obtain

P (G(n, p), d) <
(

1 + 4ddn
−1

2d2

)2

(1− pd)
−nd−1

(

4ddn
−1
2d

− 1
2d2

)

− 1 +
2(1− pd)−nd−1

(

1 + 192
127n

−1

2d2

)

n(n− 1)

<
(

1 + 4ddn
−1

2d2

)4

− 1 +
2(1− pd)−nd−1

(

1 + 192
127n

−1

2d2

)

n(n− 1)

<
2(1− pd)−nd−1

(

1 + 192
127n

−1

2d2

)

n(n− 1)
+ 4d+2dn

−1

2d2

with the second inequality following from (36) and the third inequality following
from (30).

7. Directed Graphs for diameter d ≥ 2

Using the above methods, we can obtain similar results about the probability
of a random directed graph on n vertices having diameter d where each directed
edge is chosen independently with probability p. Furthermore, for any two vertices,
say v1 and v2, the existence of the edge from v1 to v2 has probability p, while the
existence of the edge from v2 to v1 also occurs with probability p, and these two
edges occur independently. We proceed exactly as above the only changes being

as follows. We replace the factor of s(
i0
2 ) in (23) and (24) with si0(n−1), replace

the factor of s(
i0
2 )+i0i

′
0+(

i′0
2 )+i0+i1i

′
0+i′0 with s(i0+i′0)n+i1i

′
0 in (27), and replace

(

n
2

)

wherever it occurs with n(n− 1). Consequently, in Theorem 5.2 and Corollary 6.1,
we multiply the second term of the lower bound by 2, divide the last term in the
upper bound in Theorem 5.2 by 2, and divide the first term in the upper bound in
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Corollary 6.1 to get the analogous results for random directed graphs. Everything
else is left unchanged.

8. Analysis of k-partite Graphs for diameter d ≥ 2

Here we analyze the diameters of k-partite graphs for some fixed k ≥ 3. Let
G(n1, n2, . . . , nk, p) denote the set of all simple k-partite graphs with partite sets of
size n(k) vertices respectively where each edge is chosen independently with prob-
ability p. Here we obtain upper and lower bounds on the probability of a random
simple k-partite graph with partite sets of sizes n(k) vertices with independent edge
selection having diameter at most d for any specific d ≥ 2, d ∈ N. Again, anal-
ogous to our treatment of the random graphs G(n, p), we impose restrictions on
n1, n2, . . . , nk, and p. Then in the next section, we refine this result to make it
more clear and meaningful by imposing further restrictions on n1, n2, . . . , nk, and
p. We use the following notation:

Notation 8.1. Let

[nj , l]1≤j≤k := {(i1, i2, . . . , ik) : 0 ≤ il ≤ nl − 1, ∀1 ≤ j ≤ k, j 6= l 0 ≤ ij ≤ nj},

i(0) := (i0,1, i0,2, . . . , i0,k),

i(1) := (i1,1, i1,2, . . . , i1,k),

n(k) := (n1, n2, . . . , nk)

Note 8.2. Throughout this note let

u
(

n(k),m, q, l
)

:=
∑

(i1,i2,...,im)∈[k]m,q,l 6=

ni1ni2 · · ·nim ,

v1

(

n(k), i(0), p,m, q, l
)

:=
∑

(i1,i2,...,im)∈[k]m,q,l 6=

(ni1 − 1l(i1)− i0,i1)(ni2 − 1l(i2)− i0,i2 − 4ni2pi0)(ni3 − i0,i3 − 4ni3pi0 − 4ni3p(4npi0))

· (ni4 − 1l(i4)− i0,i4 − 4ni4pi0 − 4ni4p(4np)i0 − 4ni4p(4np)
2i0)

· · · (nim − 1l(im)− i0,im − 4nimpi0 − 4nimp(4np)i0 − . . .− 4nimp(4np)m−2i0),

and

v2

(

n(k), i(0), p,m, q, l
)

:=
∑

(i1,i2,...,im)∈[k]m,q,l 6=

(ni1 − 1l(i1)− i0,i1)(ni2 − 1l(i2)− i0,i2 − 4ni2pi0)

· (ni3 − 1l(i3)− i0,i3 − 4ni3pi0 − 4ni3p(4npi0))

· (ni4 − 1l(i4)− i0,i4 − 4ni4pi0 − 4ni4p(4np)i0 − 4ni4p(4np)
2i0)

· · · (nim−1 − 1l(im−1)− i0,im−1 − 4nim−1pi0 − 4nim−1p(4np)i0 − . . .− 4nim−1p(4np)
m−3i0)

· (nim − 1l(im)− i0,im − 4nimpi0 − 4nimp(4np)i0 − . . .− 4nimp(4np)m−3i0),

where

[k]m,q,l, 6= := {(i1, i2, . . . , im) : i1 6= q, im 6= l, ∀1 ≤ j ≤ m− 1 ij 6= ij+1}
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and

1l(x) :=

{

1 x = l

0 x 6= l

with the conventions that

v1

(

n(k), i(0), p, 1, q, l
)

= v2

(

n(k), i(0), p, 1, q, l
)

=
∑

(i1)∈[k]1,q,l,6=

(ni1 − 1l(i1)− i0,i1)

and

v2

(

n(k), i(0), p, 2, q, l
)

=
∑

(i1,i2)∈[k]1,q,l,6=

(ni1−1l(i1)−i0,i1)(ni2−1l(i2)−i0,i2−4ni2pi0).

Also, let

hk

(

n(k), p, d, i(0)
)

:=

k
∏

j=1

(

1− 4

5

(e

3

)4p(nj−i0,j−4njpi0−(4np)4njpi0−(4np)24njpi0−...−(4np)d−54njpi0)
)2−d

with the conventions that hk

(

n(k), p, 2, i(0)
)

= 1,

hk

(

n(k), p, 3, i(0)
)

=

k
∏

j=1

(

1− 4

5

(e

3

)4njp
)−1

,

and

hk

(

n(k), p, 4, i(0)
)

=
k
∏

j=1

(

1− 4

5

(e

3

)4p(nj−i0,j)
)−2

.

Also, let

gk

(

n(k), j, l, p, d, d′, i(0)
)

:=



























































n− nl d = 2, j = l

n− nj − nl d = 2, j 6= l

1 +
∑d′+1

m=1 v1
(

n(k), i(0), p,m, j, l
)

j 6= l, d ≥ 3, d′ < d− 3
∑d′+1

m=1 v1
(

n(k), i(0), p,m, l, l
)

j = l, d ≥ 3, d′ < d− 3

1 +
∑d−3

m=1 v1
(

n(k), i(0), p,m, j, l
)

+v2
(

n(k), i(0), p, d− 1, j, l
)

j 6= l, d ≥ 3, d′ ≥ d− 3
∑d−3

m=1 v1
(

n(k), i(0), p,m, l, l
)

+v2
(

n(k), i(0), p, d− 1, l, l
)

j = l, d ≥ 3, d′ ≥ d− 3

and

g′k

(

n(k), j, l, p, d, d′, i(0)
)

:=

{

gk
(

n(k), j, l, p, d+ 2, d′, i(0)
)

d ≥ 2, d′ ≤ d− 2

gk
(

n(k), j, l, p, d+ 2, d− 2, i(0)
)

d ≥ 2, d′ > d− 2.

We will prove the following theorem.

Theorem 8.3. Fix d ≥ 2, d ∈ N. Let G
(

n(k), p
)

denote the set of all simple
k-partite graphs with partite vertex sets of sizes n1, n2, . . . , nk and where each
edge is chosen independently with probability p. Also, let P

(

G
(

n(k), p
)

, d
)

be the

probability of a graph from G
(

n(k), p
)

having diameter at most d. Suppose that

8njp
(

1 + 4np+ (4np)2 + . . .+ (4np)d
′−1
)

≤ nj − 4
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for all 1 ≤ j ≤ k where d′ ≥ 0. We have

P (G(n(k), p), d) > 1−
k
∑

l=1

(

nl

2

)

hk

(

n(k), p, d,1(l)
)

(1− f(n, p, d, 1))
gk(n(k),l,l,p,d,d′,1(j))

−
∑

1≤j<l≤k

njnlhk

(

n(k), p, d,1(j)
)

(1− f(n, p, d, 1))
gk(n(k),j,l,p,d,d′,1(j))
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and

P
(

G
(

n(k), p
)

, d
)





k
∑

l=1

(

nl

2

)

(1− pd)
∑d−1

m=0 u(n(k),m,l,l)pm−d+1

+
∑

1≤j<l≤k

njnl(1− pd)
∑d−1

m=0 u(n(k),m,j,l)pm−d+1





2

<
∑

1≤l≤k

(

nl (nl − 1) (nl − 2) +

(

nl

2

)(

nl − 2

2

))

hk

(

n(k) − 1(l), p, d, 2 · 1(l)
)

· (1− f(n, p, d, 2))
2gk(n(k)−1(l),l,l,p,d,d′,2·1(l))

+
∑

1≤j 6=l≤k

(

nl (nl − 1)nj + 2

(

nl

2

)

(nl − 2)nj

)

hk

(

n(k) − 1(l), p, d,1(l) + 1(j)
)

· (1− f(n, p, d, 2))
gk(n(k)−1(l),l,l,p,d,d′,1(l)+1(j))+gk(n(k)−1(l),j,l,p,d,d′,1(l)+1(j))

+
∑

1≤j 6=l≤k

(nlnj (nj − 1) + nlnj (nl − 1) (nj − 1))hk

(

n(k) − 1(l), p, d, 2 · 1(j)
)

· (1− f(n, p, d, 2))
2gk(n(k)−1(l),j,l,p,d,d′,2·1(j))

+
∑

1≤l1 6=l2≤k

(

nl1

2

)(

nl2

2

)

hk

(

n(k), p, d,1(l1) + 1(l2)
)

(1− f (n, p, d, 2))
g′
k(n

(k)−1(l2),l1,l1,p,d,d
′,1(l1)+1(l2))

· (1− f (n, p, d, 2))g
′
k(n(k)−1(l1),l2,l2,p,d,d

′,1(l1)+1(l2))

+
∑

1≤j1,j2,l≤k
l,j1,j2 all distinct

n2
l nj1nj2hk

(

n(k) − 1(l), p, d,1(j1) + 1(j2)
)

· (1− f(n, p, d, 2))
gk(n(k)−1(l),j1,l,p,d,d

′,1(j1)+1(j2))+gk(n(k)−1(l),j2,l,p,d,d
′,1(j1)+1(j2))

+
∑

1≤j,l1,l2≤k
j,l1,l2 all distinct

(

nl1

2

)

nl2njhk

(

n(k), p, d,1(l1) + 1(j)
)

(1− f (n, p, d, 2))
g′
k(n(k)−1(l2),l1,l1,p,d,d

′,1(l1)+1(j))

· (1− f (n, p, d, 2))g
′
k(n

(k)−1(l1),j,l2,p,d,d
′,1(l1)+1(j))

+
∑

1≤l1,l2,j1,j2≤k
l1,l2,j1,j2 all distinct

l1l2j1j2
4

hk

(

n(k), p, d,1(j1) + 1(j2)
)

(1− f (n, p, d, 2))g
′
k(n(k)−1(l2),j1,l1,p,d,d

′,1(j1)+1(j2))

· (1− f (n, p, d, 2))
g′
k(n

(k)−1(l1),j2,l2,p,d,d
′,1(j1)+1(j2))

−





k
∑

l=1

(

nl

2

)

(1− pd)
∑d−1

m=0 u(n(k),m,l,l)pm−d+1

+
∑

1≤j<l≤k

njnl(1− pd)
∑d−1

m=0 u(n(k),m,j,l)pm−d+1





2

+

k
∑

l=1

(

nl

2

)

(1 − pd)
∑d−1

m=0 u(n(k),m,l,l)pm−d+1

+
∑

1≤j<l≤k

njnl(1 − pd)
∑d−1

m=0 u(n(k),m,j,l)pm−d+1

.

We will now prove Theorem 8.3.

For each n ∈ N, let G(n(k), p) denote the set of all k-partite graphs with par-
tite sets of sizes n(k) vertices with edge probability p, and let P (G(n(k), p)) be the
probability of a graph from G(n1, n2, p) having diameter at most d. Let p = r

s
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where r = r(n), s = s(n) ∈ N. We let A be the set of all graphs in G(n(k), p),
allowing for a number of duplicates of each possible graph to accommodate the
edge probability p, so that

|A| =
t
∑

k=0

(

t

k

)

rk(s− r)t−k = st

where t is the number of edges in the respective complete k-partite graph. We let
B be all pairs of vertices that occur in the graph so |B| =

(

n
2

)

where n is the total
number of vertices. For a graph a ∈ A and a pair of vertices b ∈ B, we say a ∼ b if
there is no path between the pair of vertices b that consists of at most d− 1 edges.
Thus, we will have ω(a) = 0 if and only if a is connected with diameter at most d.

Pick a pair of vertices b ∈ B and call them v1 and v2. To calculate deg b, we
need to calculate the number of graphs in A such that there is no path from v1 to
v2 that consists of at most d edges. To help with this calculation, we will calculate
a generalised notion of deg b as follows. Let 1 ≤ l ≤ k and 0 ≤ i0,j ≤ nj for all
j 6= l and 0 ≤ i0,l ≤ nl − 1 . Pick a specific set of i0,j vertices out of the labeled
vertices in the partite set consisting of nj vertices, as well as another vertex, say v,

in the partite set consisting of nl vertices. We will let Ck(n
(k), l, r, s, d, i(0)) denote

the number of graphs in A such that there is no path from any of the i0 vertices
to vertex v that consists of at most d edges where the i0 vertices come from the
partite set that consists of vj vertices. Let i0 = i0,1+ i0,2+ . . .+ i0,k. We can derive
the recursive formula

Ck(n
(k), l, r, s, d+ 1, i(0))

=
∑

i(1)∈[nj−i0,j ,l]1≤j≤k

k
∏

j=1

(

nj − i0,j − 1l(j)

i1,j

)

(

si0−i0,j − (s− r)i0−i0,j
)i1,j

(s− r)(i0−i0,j)(nj−i0,j−i1,j)s
(i0−i0,j )i0,j

2

· Ck(n
(k) − i(0), l, r, s, d, i(1))

(39)

valid so long as at least two of the i0,j values are nonzero. If, however, only one

of them is nonzero, say i0,j, then the factor
(

si0−i0,j − (s− r)i0−i0,j
)i1,j

is replaced
by 1 for the respective j value. Everything else is left unchanged. Also,

Ck(n
(k), l, r, s, 1, i(0)) = (s− r)i0−i0,lst−i0+i0,l .

Then we can deduce that Ck(n
(k), l, r, s, d, i(0)) = deg b if all of the i0,j values

are 0, except for one of them having the value 1 if we are working with diameter

d. Let Dk

(

n(k), l, p, d, i(0)
)

= Ck(n
(k),l,r,s,d,i(0))

st so that Dk

(

n(k), l, p, d, i(0)
)

is the
probability that the edge distance between v and any of the i0 vertices is greater
than d. We will prove that for all (i(0)) ∈ [nj , l]1≤j≤k we have

(40) Dk

(

n(k), l, p, d, i(0)
)

≥ (1− pd)
∑k

j=1 i0,j
∑d−1

m=0 u(n(k),m,j,l)pm−d+1

.

If we also have the additional constraints 1 <
nj

i0,j+4njpi0+4njp(4np)i0+(4njp)(4np)2i0+...+(4njp)(4np)d
′−1i0

for all 1 ≤ j ≤ k with j 6= l, and 1 < nl−1
i0,l+4nlpi0+4nlp(4np)i0+(4nlp)(4np)2i0+...+(4nlp)(4np)d

′−1i0
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where d′ ≥ 0, then we also have
(41)

Dk

(

n(k), l, p, d, i(0)
)

≤ hk

(

n(k), p, d+ 1, i(0)
)

(1− f(n, p, d+ 1, i0))
∑k

j=1 i0,jgk(n(k),j,l,p,d,d′,i(0)) .

For d = 1, we have Dk

(

n(k), l, p, i(0)
)

= (1− p)i0−i0,l . Suppose for some d ≥ 1 (40)

holds for all (i(0)) ∈ [nj , l]1≤j≤k, and 0 < p < 1. We will prove it holds for d + 1.
From (39) we have

Dk

(

n(k), l, p, d+ 1, i(0)
)

=
∑

i(1)∈[nj−i0,j ,l]1≤j≤k

k
∏

j=1

(

nj − i0,j − 1l(j)

i1,j

)

(1 − p)(i0−i0,j)(nj−i0,j)
(

(1− p)i0,j−i0 − 1
)i1,j

·Dk

(

n(k) − i(0), l, p, d, i(1)
)

>
∑

i(1)∈[nj−i0,j ,l]1≤j≤k

k
∏

j=1

(

nj − i0,j − 1l(j)

i1,j

)

(1 − p)(i0−i0,j)(nj−i0,j)
(

(1− p)i0,j−i0 − 1
)i1,j

· (1− pd)i1,j
∑d−1

m=0 u(n(k),m,j,l)pm−d+1

=

k
∏

j=1

(1− p)(i0−i0,j)(nj−i0,j)
(

1 +
(

(1− p)i0,j−i0 − 1
)

(1− pd)
∑d−1

m=0 u(n(k),m,j,l)pm−d+1
)nj−i0,j−1l(j)

= (1 − p)(i0−i0,l)
k
∏

j=1

(

(1 − p)i0−i0,j +
(

1− (1− p)i0−i0,j
)

(1− pd)
∑d−1

m=0 u(n(k),m,j,l)pm−d+1
)nj−i0,j−1l(j)

.

Using Lemma 5.7 and doing a change in variables we thus have

Dk

(

n(k), l, p, d+ 1, i(0)
)

> (1 − p)i0−i0,l

k
∏

j=1

(1− pd+1)(i0−i0,j)(nj−1l(j))
∑d−1

m=0 u(n(k),m,j,l)pm−d+1

> (1 − pd+1)(1+p−1+p−2+...+p−d)(i0−i0,l)
k
∏

j=1

(1− pd+1)(i0−i0,j)(nj−1l(j))
∑d−1

m=0 u(n(k),m,j,l)pm−d+1

> (1 − pd+1)p
−d(i0−i0,l)

k
∏

j=1

(1− pd+1)(i0−i0,j)nj
∑d−1

m=0 u(n(k),m,j,l)pm−d+1

= (1 − pd+1)p
−d(i0−i0,l)

k
∏

q=1

(1− pd+1)

i0,q
∑k

j=1
j 6=q

nj

∑d−1
m=0 u(n(k),m,j,l)pm−d+1

=

k
∏

q=1

(1− pd+1)i0,q
∑d

m=0 u(n(k),m,q,l)pm−d

.
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Thus (40) is proved. Next we prove (41) again by induction on d. For d = 2,
applying Lemma 5.7 we have

Dk

(

n(k), l, p, 2, i(0)
)

=

k
∏

j=1

(1− p)(i0−i0,j)(nj−i0,j)

nj−i0,j−1l(j)
∑

i1,j=0

(

nj − i0,j − 1l(j)

i1,j

)

(

(1− p)i0,j−i0 − 1
)i1,j

(1− p)i1,j

= (1 − p)i0−i0,l

k
∏

j=1
j 6=l

(

1− p+ p(1− p)i0−i0,j
)nj−i0,j

≤
k
∏

j=1
j 6=l

(1− f(n, p, 2, i0))
(i0−i0,j)nj

=

k
∏

m=1

k
∏

j=1
j 6=l,m

(1− f(n, p, 2, i0))
i0,mnj

= (1 − f(n, p, 2, i0))
i0,l(n−nl)

k
∏

m=1
m 6=l

(1 − f(n, p, 2, i0))
i0,m(n−nm−nl).

Suppose for some d ≥ 2 (41) holds for all i(0) in the stated ranges, and 0 < p < 1.
We will prove (41) holds for d+ 1. We divide into three cases.

Case 1.
nj

i0,j+4njpi0
≤ 1 for all 1 ≤ j ≤ k with j 6= l, and nl−1

i0,l+4nlpi0
≤ 1

We have the following:

Dk

(

n(k), l, p, d+ 1, i(0)
)

<
∑

i(1)∈[nj−i0,j ,l]1≤j≤k

hk

(

n(k) − i(0), p, d, i(1)
)

·
k
∏

j=1

(

nj − i0,j − 1l(j)

i1,j

)

(1 − p)(i0−i0,j)(nj−i0,j)
(

(1− p)i0,j−i0 − 1
)i1,j

· (1 − f(n− i0, p, d, i1))
i1,jgk(n(k)−i(0),j,l,p,d,0,i(1)).

We can deduce that hk

(

n(k) − i(0), p, d, i(1)
)

≤ hk

(

n(k) − i(0), p, d, 4npi(0)
)

< hk

(

n(k), p, d+ 1, i(0)
)

for all 1 ≤ j ≤ k and from Lemma 5.5, we can deduce that f(n, p, d, 4npi0) < f(n−
i0, p, d, i1). As well, gk

(

n(k) − i(0), j, l, p, d, 0,n(k) − i(0) − 1(l)
)

≤ gk
(

n(k) − i(0), j, l, p, d, 0, i(1)
)

.
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Thus we have

Dk

(

n(k), l, p, d+ 1, i(0)
)

< hk

(

n(k), p, d+ 1, i(0)
)

k
∏

j=1

(1 − p)(i0−i0,j)(nj−i0,j)

·
nj−i0,j−1l(j)

∑

i1,j=0

(

nj − i0,j − 1l(j)

i1,j

)

(

(1 − p)i0,j−i0 − 1
)i1,j

· (1− f(n, p, d, 4npi0))
i1,jgk(n(k)−i(0),j,l,p,d,0,n(k)−i(0)−1(l))

= hk

(

n(k), p, d+ 1, i(0)
)

k
∏

j=1

(1 − p)(i0−i0,j)(nj−i0,j)

·
(

1 +
(

(1 − p)i0,j−i0 − 1
)

(1− f(n, p, d, 4npi0))
gk(n(k)−i(0),j,l,p,d,0,n(k)−i(0)−1(l))

)nj−i0,j−1l(j)

= (1 − p)i0−i0,lhk

(

n(k), p, d, 4npi(0)
)

·
k
∏

j=1

(

(1− p)i0−i0,j +
(

1− (1 − p)i0−i0,j
)

(1 − f(n, p, d, 4npi0))
gk(n(k)−i(0),j,l,p,d,0,n(k)−i(0)−1(l))

)nj−i0,j−1l(j)

.

We note that gk
(

n(k) − i(0), j, l, p, d, 0,n(k) − i(0) − 1(l)
)

< nd−1 and so, using
Lemma 5.7, we thus have

Dk

(

n(k), l, p, d+ 1, i(0)
)

< hk

(

n(k), p, d+ 1, i(0)
)

k
∏

j=1

(1− f(n, p, d+ 1, i0))
(i0−i0,j)gk(n(k)−i(0),j,l,p,d,0,n(k)−i(0)−1(l))(nj−i0,j−1l(j))

= hk

(

n(k), p, d+ 1, i(0)
)

(1− f(n, p, d+ 1, i0))

i0,l
∑k

j=1
j 6=l

(nj−i0,j)gk(n(k)−i(0),j,l,p,d,0,n(k)−i(0)−1(l))

·
k
∏

q=1
q 6=l

(1− f(n, p, d+ 1, i0))

i0,q



1+
∑k

j=1
j 6=q

(nj−i0,j−1l(j))gk(n(k)−i(0),j,l,p,d,0,n(k)−i(0)−1(l))





.

We can deduce that
k
∑

j=1
j 6=l

(nj−i0,j)gk

(

n(k) − i(0), j, l, p, d, 0,n(k) − i(0) − 1(l)
)

≥ gk

(

n(k), l, l, p, d, 0, i(0)
)

and

1+
k
∑

j=1
j 6=q

(nj−i0,j−1l(j))gk

(

n(k) − i(0), j, l, p, d, 0,n(k) − i(0) − 1(l)
)

≥ gk

(

n(k), q, l, p, d, 0, i(0)
)

for all 1 ≤ q ≤ k with q 6= l and so we have (41).

Case 2. 1 <
nj

i0,j+4njpi0
for some 1 ≤ j ≤ k with j 6= l, and/or 1 < nl−1

i0,l+4njpi0
.
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We proceed exactly as in Case 1, except that for every j 6= l with 1 <
nj

i0,j+4njpi0
,

we replace the summation
∑nj−i0,j

i1,j
with

∑4nji0
i1,j

and multiply all the expres-

sions following Dk

(

n(k), l, p, d+ 1, i(0)
)

< by
(

1− 4
5

(

e
3

)4njpi0
)−1

. As well, if it’s

the case that 1 < nl−1
i0,l+4nlpi0

, then we replace the summation
∑nl−i0,l−1

i1,l
with

∑4nli0
i1,l

and multiply all the expressions following Dk

(

n(k), l, p, d+ 1, i(0)
)

< by
(

1− 4
5

(

e
3

)4nlpi0
)−1

.

Case 3. 1 <
nj

i0,j+4njpi0+4njp(4np)i0+(4njp)(4np)2i0+...+(4njp)(4np)d
′ i0

for all 1 ≤ j ≤ k

with j 6= l, and 1 < nl−1
i0,l+4nlpi0+4nlp(4np)i0+(4nlp)(4np)2i0+...+(4nlp)(4np)d

′ i0
.

We proceed exactly as in Case 1, except that for every j 6= l, we replace the summa-

tion
∑nj−i0,j

i1,j
with

∑4nji0
i1,j

and multiply all the expressions followingDk

(

n(k), l, p, d+ 1, i(0)
)

<

by
(

1− 4
5

(

e
3

)4njpi0
)−1

. As well, we replace the summation
∑nl−i0,l−1

i1,l
with

∑4nli0
i1,l

and multiply all the expressions followingDk

(

n(k), l, p, d+ 1, i(0)
)

< by
(

1− 4
5

(

e
3

)4nlpi0
)−1

.

As well, we replace gk
(

n(k) − i(0), j, l, p, d, 0,n(k) − i(0) − 1(l)
)

with gk
(

n(k) − i(0), j, l, p, d, d′, 4pi0 · n(k)
)

and use
k
∑

j=1
j 6=l

(nj−i0,j)gk

(

n(k) − i(0), j, l, p, d, d′, 4pi0 · n(k)
)

≥ gk

(

n(k), l, l, p, d+ 1, d′ + 1, i(0)
)

and

1 +

k
∑

j=1
j 6=q

(nj − i0,j − 1l(j))gk

(

n(k) − i(0), j, l, p, d, d′, 4pi0 · n(k)
)

≥ gk

(

n(k), q, l, p, d+ 1, d′ + 1, i(0)
)

for all 1 ≤ q ≤ k with q 6= l.

By (41), we have
∑

b∈B deg b

st
<

k
∑

l=1

(

nl

2

)

hk

(

n(k), p, d,1(l)
)

(1− f(n, p, d, 1))
gk(n(k),l,l,p,d,d′,1(j))

+
∑

1≤j<l≤k

njnlhk

(

n(k), p, d,1(j)
)

(1− f(n, p, d, 1))
gk(n(k),j,l,p,d,d′,1(j)) .

Hence, by the simple sieve, we have

P (G(n(k), p), d) > 1−
k
∑

l=1

(

nl

2

)

hk

(

n(k), p, d,1(l)
)

(1− f(n, p, d, 1))
gk(n(k),l,l,p,d,d′,1(j))

−
∑

1≤j<l≤k

njnlhk

(

n(k), p, d,1(j)
)

(1− f(n, p, d, 1))
gk(n(k),j,l,p,d,d′,1(j)) .

We now calculate n(b1, b2) to get an upper bound for P
(

G
(

n(k), p
)

, d
)

using the
Turán sieve. If the two pairs of vertices b1 and b2 are the same, then we just have
n(b1, b2) = deg b. If b1 and b2 have exactly one vertex in common, then we can see
that n(b1, b2) = Ck

(

n(k), l, r, s, d+ 1, i(0)
)

where i0 = 2, and use (26). Hence the
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only question is when the two pairs of vertices are disjoint.

As in our calculations for deg b, to help calculate n(b1, b2) in this case, we will
calculate a generalised notion of n(b1, b2) as follows. Let 1 ≤ l1 ≤ k and 1 ≤ l2 ≤ k.
Also, let 0 ≤ i0,j , i

′
0,j ≤ nj with i0,j+ i′0,j ≤ nj for all j 6= l1, l2. Also, if l1 6= l2, pick

0 ≤ i0,l1 , i
′
0,l1

≤ nl1 − 1 with i0,l1 + i′0,l1 ≤ nl1 − 1 and 0 ≤ i0,l2 , i
′
0,l2

≤ nl2 − 1 with

i0,l2+i′0,l2 ≤ nl2−1. Otherwise, pick 0 ≤ i0,l1 , i
′
0,l1

≤ nl1−2 with i0,l1+i′0,l1 ≤ nl1−2.

Let i0 = i0,1 + i0,2 + . . .+ i0,k and i′0 = i′0,1 + i′0,2 + . . .+ i′0,k.

First, let l1 = l2 = l. Pick two disjoint specific sets of i0,j and i′0,j vertices out
of the labeled vertices in the partite set consisting of nj vertices, as well as two
other vertices, say v1 and v2, in the partite set consisting of nl vertices. We will let

C′
k

(

n(k), l, r, s, d, i(0), i(0)
′
)

denote the number of graphs in A such that there is no

path from any of the i0 vertices to vertex v1 that consists of at most d edges and
no path from any of the i′0 vertices to vertex v2 that consists of at most d edges.
We can derive the recursive formula

C′
k

(

n(k), l, r, s, d+ 1, i(0), i(0)
′
)

<
∑

i(1)∈[nj−i0,j−i′0,j ,l,l]1≤j≤k

∑

i(1)
′∈[nj−i0,j−i′0,j−i1,j ,l,l]1≤j≤k

(s− r)i0,l+i′0,l−i0−i′0

·
k
∏

j=1

(

nj − i0,j − i′0,j − 2 · 1l(j)

i1,j

)

(

si0−i0,j − (s− r)i0−i0,j
)i1,j

(s− r)(i0−i0,j)(nj−i0,j−i′0,j−i1,j)

·
(

nj − i0,j − i′0,j − i1,j − 2 · 1l(j)

i′1,j

)

(

si
′
0−i′0,j − (s− r)i

′
0−i′0,j

)i1,j
(s− r)(i

′
0−i′0,j)(nj−i0,j−i′0,j−i1,j−i′1,j)

· st′+i0+i′0−i0,l−i′0,lC′
k

(

n(k) − i(0) − i(0)
′
, l, r, s, d, i(1), i(1)

′
)

(42)

valid so long as at least two of the i0,j values are nonzero and at least two of the i′0,j
values are nonzero where t′ is the sum of the number of potential edges among the
i0 and i′0 vertices and the number of potential edges with one vertex among the i′0
vertices and the other vertex among the i1,j vertices for all 1 ≤ j ≤ k. If, however,

only one of the i0,j is nonzero, say i0,j, then the factor
(

si0−i0,j − (s− r)i0−i0,j
)i1,j

is replaced by 1 for the respective j value. The same holds if only of the i′0,j is
nonzero. Everything else is left unchanged. As well,

C′
k

(

n(k), l, r, s, d, i(0), i(0)
′
)

= (s− r)i0+i′0−i0,l−i′0,lst−i0−i′0+i0,l+i′0,l .

LetD′
k

(

n(k), l, p, d, i(0), i(0)
′
)

:=
C′

k(n(k),l,r,s,d,i(0),i(0)
′
)

st so thatD′
k

(

n(k), l, r, s, d, i(0), i(0)
′
)

is the probability that the edge distance between v and any of the i0 vertices is
greater than d and that the edge distance between v′ and any of the i′0 vertices is
greater than d. We will prove that for all (i(0)) ∈ [nj, l]1≤j≤k we have

(43) D′
k

(

n(k), l, p, d, i(0), i(0)
′
)

≤ Dk

(

n(k) − 1(l), l, p, d, i(0) + i(0)
′
)

.

For d = 1, we have

D′
k

(

n(k), l, p, d, i(0), i(0)
′
)

= (1−p)i0+i′0−i0,l−i′0,l = D′
k

(

n(k) − 1(l), l, p, 1, i(0) + i(0)
′
)
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so (43) holds for d = 1. Suppose for some d ≥ 1 (43) holds for all (i(0)) ∈ [nj, l]1≤j≤k

and 0 < p < 1. Assume that two of the i0,j are nonzero and two of the i′0,j are
nonzero (if the case is otherwise, then we can proceed similarly). First we have

D′
k

(

n(k), l, p, d+ 1, i(0), i(0)
′
)

≤ (1 − p)i0,l+i′0,l−i0−i′0

·
∑

i(1)∈[nj−i0,j−i′0,j ,l,l]1≤j≤k

∑

i(1)
′∈[nj−i0,j−i′0,j−i1,j ,l,l]1≤j≤k

·
k
∏

j=1

(

nj − i0,j − i′0,j − 2 · 1l(j)

i1,j

)

(

(1− p)i0,j−i0 − 1
)i1,j

(1− p)(i0−i0,j)(nj−i0,j−i′0,j)

·
(

nj − i0,j − i′0,j − i1,j − 2 · 1l(j)

i′1,j

)

(

(1− p)i
′
0,j−i′0 − 1

)i′1,j
(1− p)(i

′
0−i′0,j)(nj−i0,j−i′0,j−i1,j)

·Dk

(

n(k) − i(0) − i(0)
′ − 1(l), l, p, d, i(1) + i(1)

′
)

.

Writing v = i(1) + i(1)
′
= (v1, v2, . . . , vk), we have

D′
k

(

n(k), l, p, d+ 1, i(0), i(0)
′
)

≤
∑

v∈[nj−i0,j−i′0,j ,l,l]1≤j≤k

Dk

(

n(k) − i(0) − i(0)
′ − 1(l), l, p, d,v

)

(1− p)i0,l+i′0,l−i0−i′0

·
k
∏

j=1

(1 − p)(i0+i′0−i0,j−i′0,j)(nj−i0,j−i′0,j)

(

nj − i0,j − i′0,j − 2 · 1l(j)

vj

)

(

(1 − p)i
′
0,j−i′0 − 1

)vj

·
vj
∑

i1,j=0

vj i1,j
(

(1− p)i0,j−i0 − 1
)i1,j

(1− p)−i1,j(i
′
0−i′0,j)

(

(1− p)i
′
0,j−i′0 − 1

)−i1,j
.

Thus

D′
k

(

n(k), l, p, d+ 1, i(0), i(0)
′
)

≤
∑

v∈[nj−i0,j−i′0,j ,l,l]1≤j≤k

Dk

(

n(k) − i(0) − i(0)
′ − 1(l), l, p, d,v

)

(1− p)i0,l+i′0,l−i0−i′0

·
k
∏

j=1

(1 − p)(i0+i′0−i0,j−i′0,j)(nj−i0,j−i′0,j)

(

nj − i0,j − i′0,j − 2 · 1l(j)

vj

)

(

(1 − p)i
′
0,j−i′0 − 1

)vj

·
(

1 +
(1 − p)i0,j−i0 − 1

1− (1 − p)i
′
0−i′0,j

)vj

.
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Thus

D′
k

(

n(k), l, p, d+ 1, i(0), i(0)
′
)

≤
∑

v∈[nj−i0,j−i′0,j ,l,l]1≤j≤k

Dk

(

n(k) − i(0) − i(0)
′ − 1(l), l, p, d,v

)

·
k
∏

j=1

(1 − p)(i0+i′0−i0,j−i′0,j)(nj−i0,j−i′0,j−1l(j))

(

nj − i0,j − i′0,j − 2 · 1l(j)

vj

)

(

(1− p)i0,j+i′0,j−i0−i′0 − 1
)vj

= Dk

(

n(k) − 1(l), l, p, d+ 1, i(0) + i(0)
′
)

.

Thus we have (43). Now assume that l1 6= l2. Pick two disjoint specific sets of
i0,j and i′0,j vertices out of the labeled vertices in the partite set consisting of nj

vertices, as well as two other vertices, say v1 and v2, the first being in the partite
set consisting of nl1 vertices and the second being in the partite set consisting of

nl2 vertices. We will let C′′
k

(

n(k), l1, l2, r, s, d, i
(0), i(0)

′
, i(0)

′′
)

denote the number

of graphs in A such that there is no path from any of the i0 vertices to vertex v1
that avoids vertex v2 and consists of at most d edges, no path from any of the i′0
vertices to vertex v2 that avoids vertex (v1) and consists of at most d edges, and no
paths from any of the i′′0 vertices to either vertex v1 or v2 that consists of at most
d edges. We can derive the recursive formula

C′′
k

(

n(k), l1, l2, r, s, d+ 1, i(0), i(0)
′
, i(0)

′′
)

< (s− r)i
′
0,l1

−i′0+i0,l2−i0si
′
0−i′0,l1+i0−i0,l2

·
k
∏

j=1

∑

0≤i1,j+i′1,j+i′′1,j≤nj−i′′′0,j−1l1
(j)−1l2

(j)

(

nj − i′′′0,j − 1l1(j)− 1l2(j)

i1,j, i′1,j, i
′′
1,j , nj − i′′′0,j − 1l1(j)− 1l2(j)− i′′′1,j

)

· (s− r)(i
′′′
0 −i′′′0,j)(nj−i′′′0,j−i′′′1,j)

· (s− r)(i
′
0+i′′0 −i′0,j−i′′0,j)i1,j+(i0+i′′0 −i0,j−i′′0,j)i′1,j

·
(

si0−i0,j − (s− r)i0−i0,j
)i1,j

(

si
′
0−i′0,j − (s− r)i

′
0−i′0,j

)i′1,j

·
(

si
′′
0 −i′′0,j − (s− r)i

′′
0 −i′′0,j + (s− r)i

′′
0 −i′′0,j

(

si0−i0,j − (s− r)i0−i0,j
)

(

si
′
0−i′0,j − (s− r)i

′
0−i′0,j

))i′′1,j

· s
i′′′0,j(i′′′0 −i′′′0,j)

2 C′′
k

(

n(k) − i(0)
′′′
, l1, l2, p, d, i

(1), i(1)
′
, i(1)

′′
)

(44)

valid so long as no expressions in (44) do not evaluate to 00. If, however, an
expression does evaluate to 00, it is replaced by 1. Everything else is left unchanged.
As well,

C′′
k

(

n(k), l1, l2, r, s, 1, i
(0), i(0)

′
, i(0)

′′
)

= (s−r)i0−i0,l1+i′0−i′0,l2+2i′′0 −i′′0,l1−i′′0,l2 st−i0+i0,l1−i′0+i′0,l2−2i′′0 +i′′0,l1+i′′0,l2 .

Let D′′
k

(

n(k), l1, l2, p, d, i
(0), i(0)

′
, i(0)

′′
)

:=
C′′

k (n
(k),l1,l2,r,s,d,i

(0),i(0)
′
,i(0)

′′)
st so that

D′′
k

(

n(k), l1, l2, p, d, i
(0), i(0)

′
, i(0)

′′
)

is the probability that the edge distance be-

tween v1 and any of the i0 vertices is greater than d, that the edge distance between
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v′, any of the i′0 vertices is greater than d, that the edge distance between v1 and
any of the i′′0 vertices is greater than d, and that the edge distance between v′, any
of the i′′0 vertices is greater than d. We prove that

D′′
k

(

n(k), l1, l2, p, d, i
(0), i(0)

′
, i(0)

′′
)

≤ hk

(

n(k), p, d, i(0)
′′′
)

(1− f (n, p, d, i′′′0 ))
∑k

j=1(i0,j+i′′0,j)gk(n(k)−1(l2),j,l1,p,d,d
′,i(0)

′′′
)

· (1− f (n, p, d, i′′′0 ))
∑k

j=1(i
′
0,j+i′′0,j)gk(n

(k)−1(l1),j,l2,p,d,d
′,i(0)

′′′)

(45)

assuming 1 <
nj−1l1

(j)−1l2
(j)

i0,j+i′0,j+i′′0,j+(4njp+4njp(4np)+(4njp)(4np)2+...+(4njp)(4np)d
′−1)(i0+i′0+i′′0 )

for all 1 ≤ j ≤ k where d′ ≥ 0 by induction on d. First, two lemmas.

Lemma 8.4. Let 0 < p < 1 and 0 < C1 < 1. Also, let y1, y2, y3, t1, t2 ≥ 1,
M ≥ t1 + t2, and N ≥ y1 + y2 + y3. Suppose that

0 < C2 ≤ 1− (1− x)M

Mx

and

0 < C3 ≤ 1− (1− p)N

Np
.

Then

(1− p)y1+y2+y3 +
(

(1− p)y2+y3 − (1− p)y1+y2+y3
)

(1 − C1x)
t1

+
(

(1− p)y1+y3 − (1− p)y1+y2+y3
)

(1− C1x)
t2

+
(

1− (1− p)y2+y3 − (1− p)y1+y3 + (1− p)y1+y2+y3
)

(1− C1x)
t1+t2

< (1− C1C2C3xp)
(y1+y3)t1+(y2+y3)t2 .

Proof. From Lemma 5.5 we have

(46) C2 ≤ 1− (1− x)M

Mx
≤ 1− (1− x)t1+t2

x(t1 + t2)
<

1− (1− x)t1

xt1
,
1− (1 − x)t2

xt2

and

(47) C3 ≤ 1− (1− p)N

Np
<

1− (1− p)y1+y3

p(y1 + y3)
,
1− (1 − p)y2+y3

p(y2 + y3)
.
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We have the following:

(1− p)y1+y2+y3 +
(

(1− p)y2+y3 − (1− p)y1+y2+y3
)

(1 − C1x)
t1

+
(

(1− p)y1+y3 − (1− p)y1+y2+y3
)

(1− C1x)
t2

+
(

1− (1− p)y2+y3 − (1− p)y1+y3 + (1− p)y1+y2+y3
)

(1− C1x)
t1+t2

= 1−
(

(1 − p)y2+y3 − (1 − p)y1+y2+y3
) (

1− (1− C1x)
t1
)

−
(

(1− p)y1+y3 − (1− p)y1+y2+y3
) (

1− (1− C1x)
t2
)

−
(

1− (1− p)y2+y3 − (1− p)y1+y3 + (1− p)y1+y2+y3
) (

1− (1− C1x)
t1+t2

)

< 1− C1

(

(1− p)y2+y3 − (1− p)y1+y2+y3
) (

1− (1 − x)t1
)

− C1

(

(1− p)y1+y3 − (1− p)y1+y2+y3
) (

1− (1− x)t2
)

− C1

(

1− (1− p)y2+y3 − (1− p)y1+y3 + (1− p)y1+y2+y3
) (

1− (1− x)t1+t2
)

< 1− C1C2xt1
(

(1− p)y2+y3 − (1− p)y1+y2+y3
)

− C1C2xt2
(

(1− p)y1+y3 − (1− p)y1+y2+y3
)

− C1C2x(t1 + t2)
(

1− (1− p)y2+y3 − (1− p)y1+y3 + (1− p)y1+y2+y3
) (

1− (1− x)t1+t2
)

= 1− C1C2xt1
(

1− (1− p)y1+y3
)

− C1C2xt2
(

1− (1− p)y2+y3
)

< 1− C1C2C3pxt1(y1 + y3)− C1C2C3pxt2(y2 + y3)

< (1− C1C2C3xp)
(y1+y3)t1+(y2+y3)t2

with the first inequality following from Lemma 5.5, the second inequality following
from (46), and the third inequality following from (47). �

Lemma 8.5. Suppose f1, f2, f3, f4 : N×N all satisfy fq(n, i+1) ≤ fq(n, i) ≤ 1 for

all i, n ∈ N and 1 ≤ q ≤ 4. Let r1, r2, r3 ∈ R, r1, r2, r3 > 0 satisfy 4(r1+r2+r3)
r1+r2+r3+1 < 1.

Then for all n ∈ N and for all 4n(r1+r2+r3)
r1+r2+r3+1 ≤ t ≤ n we have

∑

0≤i1+i2+i3≤n

(

n

i1, i2, i3, n− i1 − i2 − i3

)

ri11 ri22 ri33 f4 (n, i1 + i2 + i3)

· f1(n, i1 + i2 + i3)
i1f2(n, i1 + i2 + i3)

i2f3(n, i1 + i2 + i3)
i3

<

(

1− 4

5

(e

3

)t
)−1

∑

0≤i1+i2+i3≤⌊t⌋

(

n

i1, i2, i3, n− i1 − i2 − i3

)

ri11 ri22 ri33 f4 (n, i1 + i2 + i3)

· f1(n, i1 + i2 + i3)
i1f2(n, i1 + i2 + i3)

i2f3(n, i1 + i2 + i3)
i3 .

Proof. For all 0 ≤ i ≤ n we have

∑

i1+i2+i3=i

(

n

i1, i2, i3, i

)

ri11 ri22 ri33 f4(n, i)f1 (n, i)
i1 f2 (n, i)

i2 f3 (n, i)
i3

=

(

n

i

)

(r1f1(n, i) + r2f2(n, i) + r3f3(n, i))
i
f4(n, i).

Noting that

4n(r1f1(n, i) + r2f2(n, i) + r3f3(n, i))

r1f1(n, i) + r2f2(n, i) + r3f3(n, i) + 1
≤ 4n(r1 + r2 + r3)

r1 + r2 + r3 + 1

the result follows from Lemma 5.4. �
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We prove (45) by induction on d.

Note 8.6. For simplicity of notation, we define the following:

i(0)
′′′

:= i(0) + i(0)
′
+ i(0)

′′

i′′′0 := i0 + i′0 + i′′0

i′′′0,j := i0,j + i′0,j + i′′0,j

i
(4)
0 := i0 + i′′0

i
(4)
0,j := i0,j + i′′0,j

i
(5)
0 := i′0 + i′′0

i
(5)
0,j := i′0,j + i′′0,j

i(1)
′′′

:= i(1) + i(1)
′
+ i(1)

′′
i′′′1 := i1 + i′1 + i′′1

i′′′1,j := i1,j + i′1,j + i′′1,j .

For d ≥ 2, we have the following by (44) with the second inequality following
from Lemma 8.4:

D′′
k

(

n(k), l1, l2, p, 2, i
(0), i(0)

′
, i(0)

′′
)

<

k
∏

j=1

∑

0≤i1,j+i′1,j+i′′1,j≤nj−i′′′0,j−1l1
(j)−1l2

(j)

(

1− (1− p)i0−i0,j
)i1,j

(1− p)(i
′
0+i′′0 −i′0,j−i′′0,j)i1,j

·
(

1− (1− p)i
′
0−i′0,j

)i′1,j
(1− p)(i0+i′′0 −i0,j−i′′0,j)i′1,j

·
(

1− (1− p)i
′′
0 −i′′0,j + (1− p)i

′′
0 −i′′0,j

(

1− (1 − p)i0−i0,j
)

(

1− (1− p)i
′
0−i′0,j

))i′′1,j

·
(

(1− p)i
′′′
0 −i′′′0,j

)nj−i′′′0,j−i′′′1,j−1l1
(j)−1l2

(j)

· (1− p)i0−i0,l1+i′′0 −i′′0,l1+i′0−i′0,l2+i′′0 −i′′0,l2

· (1− p)i1−i1,l1+i′′1 −i′′1,l1+i′1−i′1,l2+i′′1 −i′′1,l2

=

k
∏

j=1
j 6=l1,l2

(

(1− p)2 + p(1− p)i
′
0+i′′0 −i′0,j−i′′0,j+1 + p(1− p)i0+i′′0 −i0,j−i′′0,j+1 + p2(1− p)i

′′′
0 −i′′′0,j

)nj−i′′′0,j

· (1− p)i0−i0,l1+i′′0 −i′′0,l1

(

1− p+ p(1− p)i
′
0+i′′0 −i′0,l1−i′′0,l1

)nl1
−i′′′0,l1

−1

· (1− p)i
′
0−i′0,l2+i′′0 −i′′0,l2

(

1− p+ p(1− p)i0+i′′0 −i0,l2−i′′0,l2

)nl2
−i′′′0,l2

−1
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Thus

D′′
k

(

n(k), l1, l2, p, 2, i
(0), i(0)

′
, i(0)

′′
)

<

k
∏

j=1
j 6=l1,l2

(1− f (n, p, 2, i′′′0 ))(
i0+i′0+2i′′0 −i0,j−i′0,j−2i′′0,j)(nj−i′′′0,j)

· (1− f (n, p, 2, i′′′0 ))(
i′0+i′′0 −i′0,l1−i′′0,l1)(nl1

−i′′′0,l1
−1)

· (1− f (n, p, 2, i′′′0 ))(
i0+i′′0 −i0,l2−i′′0,l2)(nl2

−i′′′0,l2
−1)

so that

D′′
k

(

n(k), l1, l2, p, 2, i
(0), i(0)

′
, i(0)

′′
)

<

k
∏

m=1
m 6=l1

(1− f (n, p, 2, i′′′0 ))(
i0,m+i′′0.m)(n−nl1

−nm−i′′′0 +i′′′0,l1
+i′′′0,m−1+1l2

(m))

· (1− f(n, p, 2, i′′′0 ))(
i0,l1+i′′0.l1)(n−nl1

−i′′′0 +i′′′0,l1
−1)

·
k
∏

m=1
m 6=l2

(1− f (n, p, 2, i′′′0 ))(
i′0,m+i′′0.m)(n−nl2

−nm−i′′′0 +i′′′0,l2
+i′′′0,m−1+1l1

(m))

· (1− f (n, p, 2, i′′′0 ))(
i′0,l2+i′′0.l2)(n−nl2

−i′′′0 +i′′′0,l2
−1) .

Suppose for some d ≥ 2 (45) holds for all i(0), i(0)
′
, and i(0)

′′
in the stated ranges,

and 0 < p < 1. We will prove (45) holds for d+ 1. We have

D′′
k

(

n(k), l1, l2, p, 2, i
(0), i(0)

′
, i(0)

′′
)

<

k
∏

j=1

∑

0≤i1,j+i′1,j+i′′1,j≤nj−i′′′0,j−1l1
(j)−1l2

(j)

(

nj − i′′′0,j − 1l1(j)− 1l2(j)

i1,j , i′1,j, i
′′
1,j, nj − i′′′0,j − 1l1(j)− 1l2(j)− i′′′1,j

)

· (1− p)(i
′′′
0 −i′′′0,j)(nj−i′′′0,j−1l1

(j)−1l2
(j))

· (1− p)i0−i0,l1+i′0−i′0,l2+2i′′0 −i′′0,l1−i′′0,l2
(

(1− p)i0,j−i0 − 1
)i1,j

(

(1− p)i
′
0,j−i′0 − 1

)i′1,j

·
(

(1− p)i
′′′
0,j−i′′′0 − (1 − p)i0,j−i0 − (1− p)i

′
0,j−i′0 + 1

)i′′1,j

·D′′
k

(

n(k) − i(0)
′′′
, l1, l2, p, d, i

(1), i(1)
′
, i(1)

′′
)

.

We divide into three cases.

Case 1.
nj−1j(l1)−1j(l2)

i′′′0,j+4njpi′′′0
≤ 1 for all 1 ≤ j ≤ k.
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We have the following:

D′′
k

(

n(k), l1, l2, p, d+ 1, i(0), i(0)
′
, i(0)

′′
)

<

k
∏

j=1

∑

0≤i1,j+i′1,j+i′′1,j≤nj−i′′′0,j−1l1
(j)−1l2

(j)

hk

(

n(k) − i(0)
′′′
, p, d, i(1)

′′′
)

·
(

nj − i′′′0,j − 1l1(j)− 1l2(j)

i1,j, i′1,j, i
′′
1,j , nj − i′′′0,j − 1l1(j)− 1l2(j)− i′′′1,j

)

· (1− p)(i
′′′
0 −i′′′0,j)(nj−i0,j−i′0,j−i′′0,j−1l1

(j)−1l2
(j))

· (1− p)i0−i0,l1+i′0−i′0,l2+2i′′0 −i′′0,l1−i′′0,l2
(

(1− p)i0,j−i0 − 1
)i1,j

(

(1− p)i
′
0,j−i′0 − 1

)i′1,j

·
(

(1− p)i
′′′
0,j−i′′′0 − (1 − p)i0,j−i0 − (1− p)i

′
0,j−i′0 + 1

)i′′1,j

· (1− f (n− i′′′0 , p, d, i′′′1 ))(
i1,j+i′′1,j)gk(n

(k)−i(0)
′′′

−1(l2),j,l1,p,d,0,i
(1)′′′)

· (1− f (n− i′′′0 , p, d, i′′′1 ))(
i′1,j+i′′1,j)gk(n

(k)−i(0)
′′′

−1(l1),j,l2,p,d,0,i
(1)′′′) .

We can deduce that

hk

(

n(k) − i(0)
′′′
, p, d, i(1)

′′′
)

≤ hk

(

n(k) − i(0)
′′′
, p, d, 4npi(0)

′′′
)

< hk

(

n(k), p, d+ 1, i(0)
′′′
)

for all 1 ≤ j ≤ k and from Lemma 5.5, we can deduce that

f (n, p, d, 4npi′′′0 ) < f (n− i′′′0 , p, d, i′′′1 ) .

As well

gk

(

n(k) − i(0)
′′′ − 1(l2), j, l1, p, d, 0,n

(k) − i(0)
′′′ − 1(l1) − 1(l2)

)

≤ gk

(

n(k) − i(0)
′′′ − 1(l2), j, l1, p, d, 0, i

(1)′′′
)

and

gk

(

n(k) − i(0)
′′′ − 1(l1), j, l2, p, d, 0,n

(k) − i(0)
′′′ − 1(l1) − 1(l2)

)

≤ gk

(

n(k) − i(0)
′′′ − 1(l1), j, l2, p, d, 0, i

(1)′′′
)
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Thus we have

D′′
k

(

n(k), l1, l2, p, d+ 1, i(0), i(0)
′
, i(0)

′′
)

< hk

(

n(k), p, d+ 1, i(0)
′′′
)

(1− p)i0−i0,l1+i′0−i′0,l2+2i′′0 −i′′0,l1−i′′0,l2

·
k
∏

j=1

(1 − p)(i
′′′
0 −i′′′0,j)(nj−i′′′0,j−1l1

(j)−1l2
(j))

·
∑

0≤i1,j+i′1,j+i′′1,j≤nj−i′′′0,j−1l1
(j)−1l2

(j)

(

nj − i′′′0,j − 1l1(j)− 1l2(j)

i1,j, i′1,j, i
′′
1,j , nj − i′′′0,j − 1l1(j)− 1l2(j)− i′′′1,j

)

·
(

(1− p)i0,j−i0 − 1
)i1,j

(

(1− p)i
′
0,j−i′0 − 1

)i′1,j

·
(

(1− p)i
′′′
0,j−i′′′0 − (1 − p)i0,j−i0 − (1− p)i

′
0,j−i′0 + 1

)i′′1,j

· (1− f (n, p, d, 4npi′′′0 ))
(i1,j+i′′1,j)gk(n

(k)−i(0)
′′′

−1(l2),j,l1,p,d,0,n
(k)−i(0)

′′′
−1(l1)−1(l2))

· (1− f (n, p, d, 4np (i′′′0 )))(
i′1,j+i′′1,j)gk(n

(k)−i(0)
′′′

−1(l1),j,l2,,p,d,0,n
(k)−i(0)

′′′
−1(l1)−1(l2))

so that

D′′
k

(

n(k), l1, l2, p, d+ 1, i(0), i(0)
′
, i(0)

′′
)

< hk

(

n(k), p, d+ 1, i(0)
′′′
)

(1− p)i0−i0,l1+i′0−i′0,l2+2i′′0 −i′′0,l1−i′′0,l2

·
k
∏

j=1

(1 − p)(i
′′′
0 −i′′′0,j)(nj−i′′′0,j−1l1

(j)−1l2
(j))

·
(

1 +
(

(1− p)i0,j−i0 − 1
)

· (1− f (n, p, d, 4npi′′′0 ))
gk(n(k)−i(0)

′′′
−1(l2),j,l1,p,d,0,n

(k)−i(0)
′′′

−1(l1)−1(l2))

+
(

(1 − p)i
′
0,j−i′0 − 1

)

· (1− f (n, p, d, 4npi′′′0 ))
gk(n(k)−i(0)

′′′
−1(l1),j,l2,p,d,0,n

(k)−i(0)
′′′

−1(l1)−1(l2))

+
(

(1 − p)i
′′′
0,j−i′′′0 − (1− p)i0,j−i0 − (1− p)i

′
0,j−i′0 + 1

)

· (1− f (n, p, d, 4npi′′′0 ))
gk(n(k)−i(0)

′′′
−1(l2),j,l1,p,d,0,n

(k)−i(0)
′′′

−1(l1)−1(l2))

· (1− f (n, p, d, 4npi′′′0 ))
gk(n(k)−i(0)

′′′
−1(l1),j,l2,p,d,0,n

(k)−i(0)
′′′

−1(l1)−1(l2))
)nj−i′′′0,j−1l1

(j)−1l2
(j)

.
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Thus

D′′
k

(

n(k), l1, l2, p, d+ 1, i(0), i(0)
′
, i(0)

′′
)

< hk

(

n(k), p, d+ 1, i(0)
′′′
)

(1− p)i0−i0,l1+i′0−i′0,l2+2i′′0 −i′′0,l1−i′′0,l2

·
k
∏

j=1

(

(1− p)i
′′′
0 −i′′′0,j

+
(

(1 − p)i
′
0−i′0,j+i′′0 −i′′0,j − (1− p)i

′′′
0 −i′′′0,j

)

· (1− f (n, p, d, 4npi′′′0 ))
gk(n(k)−i(0)

′′′
−1(l2),j,l1,p,d,0,n

(k)−i(0)
′′′

−1(l1)−1(l2))

+
(

(1 − p)i0−i0,j+i′′0 −i′′0,j − (1− p)i
′′′
0 −i′′′0,j

)

· (1− f (n, p, d, 4npi′′′0 ))
gk(n(k)−i(0)

′′′
−1(l1),j,l2,p,d,0,n

(k)−i(0)
′′′

−1(l1)−1(l2))

+
(

(1 − p)i
′′′
0,j−i′′′0 − (1− p)i0,j−i0 − (1− p)i

′
0,j−i′0 + 1

)

· (1− f (n, p, d, 4npi′′′0 ))
gk(n(k)−i(0)

′′′
−1(l2),j,l1,p,d,0,n

(k)−i(0)
′′′

−1(l1)−1(l2))

· (1− f (n, p, d, 4npi′′′0 ))
gk(n(k)−i(0)

′′′
−1(l1),j,l2,p,d,0,n

(k)−i(0)
′′′

−1(l1)−1(l2))
)nj−i′′′0,j−1l1

(j)−1l2
(j)

.

We note that gk

(

n(k) − i(0)
′′′ − 1(l1), j, j′, p, d, 0,n(k) − i(0)

′′′ − 1(l1) − 1(l2)
)

< nd−1

for all 1 ≤ j ≤ k and j′ = l1, l2 and so, using Lemma 8.4, we have

D′′
k

(

n(k), l1, l2, p, d+ 1, i(0), i(0)
′
, i(0)

′′
)

< hk

(

n(k), p, d+ 1, i(0)
′′′
)

(1− p)i0−i0,l1+i′0−i′0,l2+2i′′0 −i′′0,l1−i′′0,l2

·
k
∏

j=1

(1− f (n, p, d+ 1, i′′′0 ))

(

i
(4)
0 −i

(4)
0,j

)

gk(n(k)−i(0)
′′′

−1(l2),j,l1,p,d,0,n
(k)−i(0)

′′′
−1(l1)−1(l2))(nj−i′′′0,j−1l1

(j)−1l2
(j))

· (1− f (n, p, d+ 1, i′′′0 ))

(

i
(5)
0 −i

(5)
0,j

)

gk(n(k)−i(0)
′′′

−1(l1),j,l2,p,d,0,n
(k)−i(0)

′′′
−1(l1)−1(l2))(nj−i′′′0,j−1l1

(j)−1l2
(j))

< hk

(

n(k), p, d+ 1, i(0)
′′′
)

· (1− f (n, p, d+ 1, i′′′0 ))

i
(4)
0,l1

∑k
j=1
j 6=l1

gk(n(k)−i(0)
′′′

−1(l2),j,l1,p,d,0,n
(k)−i(0)

′′′
−1(l1)−1(l2))(nj−i′′′0,j−1l2

(j))

·
k
∏

q=1
q 6=l1

(1− f (n, p, d+ 1, i′′′0 ))

i
(4)
0,q



1+
∑k

j=1
j 6=q

gk(n(k)−i(0)
′′′

−1(l2),j,l1,p,d,0,n
(k)−i(0)

′′′
−1(l1)−1(l2))(nj−i′′′0,j−1l1

(j)−1l2
(j))





· (1− f (n, p, d+ 1, i′′′0 ))

i
(5)
0,l2

∑k
j=1
j 6=l2

gk(n(k)−i(0)
′′′

−1(l1),j,l2,p,d,0,n
(k)−i(0)

′′′
−1(l1)−1(l2))(nj−i′′′0,j−1l1

(j))

·
k
∏

q=1
q 6=l1

(1− f (n, p, d+ 1, i′′′0 ))

i
(5)
0,q



1+
∑k

j=1
j 6=q

gk(n(k)−i(0)
′′′

−1(l1),j,l2,p,d,0,n
(k)−i(0)

′′′
−1(l1)−1(l2))(nj−i′′′0,j−1l1

(j)−1l2
(j))





.
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We can deduce that
k
∑

j=1
j 6=l1

(

nj − i′′′0,j − 1l2(j)
)

gk

(

n(k) − i(0)
′′′ − 1(l2), j, l1, p, d, 0,n

(k) − i(0)
′′′ − 1(l1) − 1(l2)

)

≥ gk

(

n(k) − 1(l2), l1, l1, p, d, 0, i
(0)′′′

)

(48)

and
k
∑

j=1
j 6=l2

(

nj − i′′′0,j − 1l1(j)
)

gk

(

n(k) − i(0)
′′′ − 1(l1), j, l2, p, d, 0,n

(k) − i(0)
′′′ − 1(l1) − 1(l2)

)

≥ gk

(

n(k) − 1(l1), l2, l2, p, d, 0, i
(0)′′′

)

.

(49)

Also,

1 +

k
∑

j=1
j 6=q

(

nj − i′′′0,j − 1l1(j)− 1l2(j)
)

gk

(

n(k) − i(0)
′′′ − 1(l2), j, l1, p, d, 0,n

(k) − i(0)
′′′ − 1(l1) − 1(l2)

)

≥ gk

(

n(k) − 1(l2), q, l1, p, d, 0, i
(0)′′′

)

(50)

for all ≤ q ≤ k with q 6= l1, and

1 +

k
∑

j=1
j 6=q

(

nj − i′′′0,j − 1l1(j)− 1l2(j)
)

gk

(

n(k) − i(0)
′′′ − 1(l1), j, l2, p, d, 0,n

(k) − i(0)
′′′ − 1(l1) − 1(l2)

)

≥ gk

(

n(k) − 1(l1), q, l2, p, d, 0, i
(0)′′′

)

(51)

for all ≤ q ≤ k with q 6= l2. Thus we have (45).

Case 2. 1 <
nj−1l1

(j)−1l2
(j)

i′′′0,j+4njpi′′′0
for some 1 ≤ j ≤ k.

We proceed exactly as in Case 1, except that for every j with 1 <
nj−1l1

(j)−1l2
(j)

i′′′0,j+4njpi′′′0
,

we add in the condition i′′′1,j ≤ 4njpi
′′′
0 over the summations of i1,j , i

′
1,j, i

′′
1,j and

multiply all the expressions following D′′
k

(

n(k), l1, l2, p, d+ 1, i(0), i(0)
′
, i(0)

′′
)

< by
(

1− 4
5

(

e
3

)4njpi
′′′
0

)−1

, which can be justified by Lemma 8.5.

Case 3. 1 <
nj−1l1

(j)−1l2
(j)

i0,j+i′0,j+i′′0,j+(4njp+4njp(4np)+(4njp)(4np)2+...+(4njp)(4np)d
′)(i0+i′0+i′′0 )

for

all 1 ≤ j ≤ k.

We proceed exactly as in Case 1, except that for every j with 1 <
nj−1l1

(j)−1l2
(j)

i0,j+i′0,j+i′′0,j+4njpi′′′0
,

we add in the condition i′′′1,j ≤ 4njpi
′′′
0 over the summations of i1,j , i

′
1,j, i

′′
1,j and

multiply all the expressions following D′′
k

(

n(k), l1, l2, p, d+ 1, i(0), i(0)
′
, i(0)

′′
)

<
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by
(

1− 4
5

(

e
3

)4njpi
′′′
0

)−1

, which can be justified by Lemma 8.5. As well, in all

the functions g′k, we replace 0 with d′ (except where we replace it with d′ + 1
in the right-hand side of the inequalities (48), (49), (50), and (51)) and replace

n(k) − i(0)
′′′ − 1(l1) − 1(l2) with 4npi(0)

′′′
.

We can deduce that Dk

(

n(k), l, p, d, i(0)
)

< Dk

(

n(k) − 1(l), l, p, d, i(0)
)

. Thus we

have n(b1, b2) < stDk

(

n(k) − 1(l), l, p, d,1(j1) + 1(j2)
)

whenever b1 and b2 are not
the same pair of vertices with one pair having its vertices in the partite set consisting
of nl and nj1 vertices, and the other pair having its vertices in the partite set consist-

ing of nl and nj2 vertices. Also, we have n(b1, b2) ≤ D′′
k

(

n(k), l1, l2, p, d,1
(j1),1(j2),0

)

whenever b1 and b2 are not the same pair of vertices with one pair having its ver-
tices in the partite set consisting of nl1 and nj1 vertices, and the other pair having
its vertices in the partite set consisting of nl2 and nj2 vertices with l1 6= l2. Thus,
by the Turán sieve, we have

P
(

G
(

n(k), p
)

, d
)

<

∑

1≤l≤k

(

nl (nl − 1) (nl − 2) +
(

nl

2

)(

nl−2
2

))

Dk

(

n(k) − 1(l), l, p, d, 2 · 1(l)
)

(

∑k
l=1

(

nl

2

)

D
(

n(k), l, p, d,1(l)
)

+
∑

1≤j<l≤k njnlD
(

n(k), l, p, d,1(j)
)

)2

+

∑

1≤j 6=l≤k

(

nl (nl − 1)nj + 2
(

nl

2

)

(nl − 2)nj

)

Dk

(

n(k) − 1(l), l, p, d,1(l) + 1(j)
)

(

∑k
l=1

(

nl

2

)

D
(

n(k), l, p, d,1(l)
)

+
∑

1≤j<l≤k njnlD
(

n(k), l, p, d,1(j)
)

)2

+

∑

1≤j 6=l≤k (nlnj (nj − 1) + nlnj (nl − 1) (nj − 1))Dk

(

n(k) − 1(l), l, p, d, 2 · 1(j)
)

(

∑k
l=1

(

nl

2

)

D
(

n(k), l, p, d,1(l)
)

+
∑

1≤j<l≤k njnlD
(

n(k), l, p, d,1(j)
)

)2

+

∑

1≤j 6=l≤k

(

nl

2

)(

nj

2

)

D′′
k

(

n(k), l1, l2, p, d,1
(j1),1(j2),0

)

(

∑k
l=1

(

nl

2

)

D
(

n(k), l, p, d,1(l)
)

+
∑

1≤j<l≤k njnlD
(

n(k), l, p, d,1(j)
)

)2

+

∑

1≤j1,j2,l≤k
l,j1,j2 all distinct

n2
l nj1nj2Dk

(

n(k) − 1(l), l, p, d,1(j1) + 1(j2)
)

(

∑k
l=1

(

nl

2

)

D
(

n(k), l, p, d,1(l)
)

+
∑

1≤j<l≤k njnlD
(

n(k), l, p, d,1(j)
)

)2

+

∑

1≤j,l1,l2≤k
j,l1,l2 all distinct

(nl1
2

)

nl2njD
′′
k

(

n(k), l1, l2, p, d,1
(l1),1(j),0

)

(

∑k
l=1

(

nl

2

)

D
(

n(k), l, p, d,1(l)
)

+
∑

1≤j<l≤k njnlD
(

n(k), l, p, d,1(j)
)

)2

+

∑

1≤l1,l2,j1,j2≤k
l1,l2,j1,j2 all distinct

l1l2j1j2
4 D′′

k

(

n(k), l1, l2, p, d,1
(j1),1(j2),0

)

(

∑k
l=1

(

nl

2

)

D
(

n(k), l, p, d,1(l)
)

+
∑

1≤j<l≤k njnlD
(

n(k), l, p, d,1(j)
)

)2

− 1 +
1

∑k
l=1

(

nl

2

)

D
(

n(k), l, p, d,1(l)
)

+
∑

1≤j<l≤k njnlD
(

n(k), l, p, d,1(j)
)
.

Theorem 8.3 follows.
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9. Restricted Results for k-partite Graphs with diameter d ≥ 3

We impose further restrictions on n1, n2, . . . , nk, and p in Theorem 8.3 to make
our result more clear and meaningful. Since the case d = 2 was treated in Section
3, we assume d ≥ 3. The result is Corollary 9.1.

Corollary 9.1. Let d ≥ 3 be fixed. Suppose that (29) and (30) hold. Also suppose
that n1 ≤ n2 ≤ . . . ≤ nk and

(52) n1− 1
2d+

1
2d2 ≤ n1.

Then we have

(53) P (G(n(k), p), d) > 1−
(

1 + 2k+14ddn
−1

2d2

)

∑

1≤j,l≤k

njnl

2

(

1− pd
)u(n(k),d−1,j,l)

.

and
(54)

P (G(n(k), p), d) < 4dd2k+3n
−1

2d2 +





∑

1≤j,l≤k

njnl

2

(

1− pd
)u(n(k),d−1,j,l)





−1
(

1 + 5n
−1

2d2

)

.

If we have n
k − 1 < nj <

n
k + 1 for all 1 ≤ j ≤ k, i.e. we are dealing with k-partite

Turán graphs, then we have
(55)

P (G(n(k), p), d) > 1−n2
(

1− pd
)(n−n

k −1)d−1

2k

(

1 + (k − 1)
(

1− pd
)−(n−n

k −1)d−2(1+ k
n)
)(

1 +
k

n

)2

and
(56)

P (G(n(k), p), d) <
2k

n2 (1− pd)(
n−n

k +1)d−1

(

1 + (k − 1)
(

1− pd
)−(n−n

k +1)
d−2

(n
k −1)

)−1(

1− 2k

n

)−1

.

We prove Corollary 9.1. Suppose (29), (30), and (52) all hold. As in the proof
of Corollary 6.1 we can derive (32). From (29), (30), and (52), we can deduce that
3
nk

+ 64p(4np)d−5

7 < 1
4 . Thus all of the hk functions in Theorem 8.3 are bounded

above by

k
∏

j=1

(

1− 4

5

(e

3

)4p(nj−3−8njp(1+4np+...+(4np)d−5))
)2−d

<

(

1− 4

5

(e

3

)4pnj(1− 1
4 )
)−dk

<

(

1− 4

5

(e

3

)3n1/(2d))−dk

<

(

1 + 4d
(e

3

)3n1/(2d))k

<
(

1 + 4ddn−1/(2d2)
)k

(57)
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with the last two inequalities following from (30). From (29), (30), and (52), we
can derive

8njp(4np)
d−2

1− 1
4np

≤ nj − 4

for all 1 ≤ j ≤ k and so we can apply Theorem 8.3 with d′ = d − 1. All of the gk
and g′k functions in Theorem 8.3 wiht d′ = d− 1 are bounded below by

v1

(

n(k) −
k
∑

r=1

1(r), 2 ·
k
∑

r=1

(1)(r), p, d− 1, j, l

)

>
∑

(i1,i2,...,id−1)∈[k]d−1,q,l 6=

d−1
∏

m=1

nim

(

1− 4

nim

− 8p(4np)d−3

1− 1
4np

)

>
∑

(i1,i2,...,id−1)∈[k]d−1,q,l 6=

d−1
∏

m=1

nim

(

1− 4

nim

− 64p(4np)d−3

7

)

>
(

1− 4d−1n−3/(2d)
)d−1

u
(

n(k), d− 1, j, l
)

>
(

1− 4d−1dn−3/(2d)
)

u
(

n(k), d− 1, j, l
)

>
(

1− 4d−1dn
−1
2d − 1

2d2

)

u
(

n(k), d− 1, j, l
)

(58)

with the last three inequalities being derived from (29), (30), and (52). Making use
of (32), (57), and (58), we obtain

P (G(n(k), p), d) > 1−
k
∑

l=1

(

nl

2

)

(

1 + 4ddn
−1

2d2

)k
(

1− pd
)

(

1−4d−1dn
−1
2d

− 1
2d2

)2

u(n(k),d−1,l,l)

−
∑

1≤j<l≤k

njnl

(

1 + 4ddn
−1

2d2

)k
(

1− pd
)

(

1−4d−1dn
−1
2d

− 1
2d2

)2

u(n(k),d−1,j,l)
.

As in the proof of Corollary 6.1, we deduce

P (G(n(k), p), d) > 1−
(

1 + 2k+14ddn
−1

2d2

)

∑

1≤j,l≤k

njnl

2

(

1− pd
)u(n(k),d−1,j,l)

.

By (30) and (52), we have

njp ≥ n
1
2d+

1
2d2 > 4dd ≥ 192

for all 1 ≤ j ≤ k. So we have

d−1
∑

m=0

u
(

n(k),m, j, l
)

pm−d+1 < u
(

n(k), d− 1, j, l
)(

1− n
−1
2d − 1

2d2

)−1

< u
(

n(k), d− 1, j, l
)

(

1 +
192

191
n

−1
2d − 1

2d2

)

.

We can derive

2 · 192
191

pdnd−1− 1
2d−

1
2d2 ≤ 2 · 192

191
n

−1

2d2 <
1

32
.
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Thus we have

(1−pd)−2u(n(k),d−1,j,l) 192
191n

−1
2d

− 1
2d2

<
(

1− pd
)− 384

191n
d−1− 1

2d
− 1

2d2

<

(

1 +
384 · 32n

−1

2d2

191 · 31

)

< 1+3n
−1

2d2 .

Thus





k
∑

l=1

(

nl

2

)

(1 − pd)
∑d−1

m=0 u(n(k),m,l,l)pm−d+1

+
∑

1≤j<l≤k

njnl(1 − pd)
∑d−1

m=0 u(n(k),m,j,l)pm−d+1





−1

<





k
∑

l=1

(

nl

2

)

(1− pd)u(n
(k),d−1,l,l) +

∑

1≤j<l≤k

njnl(1− pd)u(n
(k),d−1,j,l)





−1
(

1 + 3n
−1

2d2

)

(59)

and





k
∑

l=1

(

nl

2

)

(1 − pd)
∑d−1

m=0 u(n(k),m,l,l)pm−d+1

+
∑

1≤j<l≤k

njnl(1 − pd)
∑d−1

m=0 u(n(k),m,j,l)pm−d+1





−2

<





k
∑

l=1

(

nl

2

)

(1− pd)u(n
(k),d−1,l,l) +

∑

1≤j<l≤k

njnl(1− pd)u(n
(k),d−1,j,l)





−2
(

1 + 3n
−1

2d2

)

(60)

If we let hk(), gk,j,l, and g′k,j,l stand for any of the hk, gk, and g′k functions re-
spectively where j and l are in the second and third arguments respectively in the
functions in Theorem 8.3, then for any 1 ≤ j1, j2, l1, l2 ≤ k we have

hk() (1− f(n, p, d, 2))gk,j1 ,l1
+gk,j2,l2

<
(

1 + 4ddn
−1

2d2

)k
(

1− pd
)

(

1−4d−1dn
−1
2d

− 1
2d2

)2

(u(n(k),d−1,j1,l1)+u(n(k),d−1,j2,l2))

<
(

1 + 4ddn
−1

2d2

)k+2
(

1− pd
)u(n(k),d−1,j1,l1)+u(n(k),d−1,j2,l2)

(61)

where we also have the above if we replace gk,j1,l1 with g′k,j1,l1 or if we replace

gk,j2,l2 with g′k,j2,l2 making use of (32), (57), and (58). Substituting (59), (60), and

(61) into the upper bound in Theorem 8.3 and noting that

nl (nl − 1) (nl − 2) +

(

nl

2

)(

nl − 2

2

)

<

(

nl

2

)2

,

nl (nl − 1)nj + 2

(

nl

2

)

(nl − 2)nj < 2

(

nl

2

)

nlnj ,

and

nlnj (nj − 1)nlnj (nl − 1) (nj − 1) < n2
l n

2
j
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for all 1 ≤ l 6= j ≤ k we obtain

P (G(n(k), p), d) <
(

1 + 4ddn
−1

2d2

)k+3

− 1

+





k
∑

l=1

(

nl

2

)

(1− pd)u(n
(k),d−1,l,l) +

∑

1≤j<l≤k

njnl(1 − pd)u(n
(k),d−1,j,l)





−1
(

1 + 3n
−1

2d2

)

< 4dd2k+3n
−1

2d2

+





∑

1≤j,l≤k

njnl

2

(

1− pd
)u(n(k),d−1,j,l)





−1
(

1− 1

n1

)−1
(

1 + 3n
−1

2d2

)

< 4dd2k+3n
−1

2d2

+





∑

1≤j,l≤k

njnl

2

(

1− pd
)u(n(k),d−1,j,l)





−1
(

1− n
1
2d+

1
2d2

−1
)−1 (

1 + 3n
−1

2d2

)

< 4dd2k+3n
−1

2d2 +





∑

1≤j,l≤k

njnl

2

(

1− pd
)u(n(k),d−1,j,l)





−1
(

1 + 5n
−1

2d2

)

.

To get the results for the k-partite Turán graphs, we proceed as follows. In this
case we know that n

k − 1 < nj <
n
k +1 for all 1 ≤ j ≤ k and so we can deduce that

(62)
(

n− n

k
− 1
)d−2

(

n− 2n

k
− 2

)

< u
(

n(k), d− 1, j, l
)

<
(

n− n

k
+ 1
)d−2

(

n− 2n

k
+ 2

)

if j 6= l and

(63)
(

n− n

k
− 1
)d−1

< u
(

n(k), d− 1, l, l
)

<
(

n− n

k
+ 1
)d−1

.

Using (53), (54), (62), and (63) we obtain (55) and (56).

10. Directed k-partite Graphs for diameter d ≥ 2

Using the above methods, we can obtain similar results about the probability of a
random directed k-partite graph with the partite sets containing n1 ≤ n2 ≤ . . . ≤ nk

vertices respectively having diameter d where each directed edge is chosen indepen-
dently with probability p. Furthermore, for any two vertices, say v1 and v2, the
existence of the edge from v1 to v2 has probability p, while the existence of the edge
from v2 to v1 also occurs with probability p, and these two edges occur indepen-
dently. We proceed exactly as above the only changes being replacing the factor of

s
i0,j(i0−i0,j)

2 with si0,j(n−nj) in (39), replacing t′ with
(

i0,j + i′0,j
)

(n− nj) in (42),

and replacing the factor of s
i′′′0,j(i′′′0 −i′′′0,j)

2 with si
′′′
0,j(n−nj) in (44), and replacing

(

nj

2

)

and njnl whenever they occur with nj (nj − 1) and 2njnl respectively. The only
other extra consideration is in our calculation for n(b1, b2) where one pair of vertices
has its vertices in the partite sets consisting of nj1 and nl vertices and the other
pair of vertices has its vertices in the partite sets consisting of nj2 and nl vertices
(here j1 and j2 may or may not be the same) where the paths concerned ends at
one of the vertices in the nl set and begins at the other vertex in the nl set. To
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deal with this case, we would define C′′′
k

(

n(k), l, p, d, i(0), i0
′
)

, which we define the

same way as C′
k

(

n(k), l, p, d, i(0), i0
′
)

, except we consider directed paths from the

i0 vertices to vertex v, and directed paths from the vertex v′ to the i′0 vertices and

this case can be dealt with in exactly the same way as C′
k

(

n(k), l, p, d, i(0), i0
′
)

.

Consequently, in Theorem 8.3 and Corollary 9.1, we multiply the second and third
terms of the lower bound by 2, divide the last term in the upper bound in The-
orem 8.3 by 2, and divide the first term in the upper bound in Corollary 9.1 by
2 to get the analogous results for random directed graphs. Everything else is left
unchanged.

11. Bipartite Graphs for diameter d ≥ 3

Here we analyze the diameters of bipartite graphs. Let G(n1, n2, p) denote the
set of all simple bipartite graphs with partite sets of size n1 vertices and n2 vertices
where each edge is chosen independently with probability p. Here we obtain upper
and lower bounds on the probability of a random simple bipartite graph with partite
sets of size n1 vertices and n2 vertices with independent edge selection having
diameter at most d for any specific d ≥ 2, d ∈ N. Again, we impose restrictions on
n1, n2, and p. Then in the next section, we refine this result to make it more clear
and meaningful by imposing further restrictions on n1, n2, and p. First, a note.

Note 11.1. Throughout this note let

gb(n, nj, p, d, d
′, i0)

:=








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






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
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
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
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
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
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
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
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
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








































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


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
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



























n− nj d = 2

n− nj

+(n− nj)
∑

d′

2

l=1

∏l
m=1

(

n− nj −
∑m

q=1(4np)
2q−1i0

)

·
(

nj − 1−
∑m−1

q=0 (4np)2qi0

)

d, d′ both even, d′ < d− 3

n− nj

+(n− nj)
∑

d′+1
2

l=1

∏l
m=1

(

n− nj −
∑m

q=1(4np)
2q−1i0

)

·
(

nj − 1−
∑m−1

q=0 (4np)2qi0

)

d even, d′ odd, d′ < d− 3

1 +
∑

d′

2

l=0

∏l
m=0

(

nj − 1−∑m
q=1(4np)

2q−1i0

)

·
(

n− nj −
∑m

q=0(4np)
2qi0

)

d odd , d′ even, d′ < d− 3

1 +
∑

d′−1
2

l=0

∏l
m=0

(

nj − 1−∑m
q=1(4np)

2q−1i0

)

·
(

n− nj −
∑m

q=0(4np)
2qi0

)

d, d′ both odd, d′ < d− 3

n− nj

+(n− nj)
∑

d−2
2

l=1

∏l
m=1

(

n− nj −
∑m

q=1(4np)
2q−1i0

)

·
(

nj − 1−∑m−1
q=0 (4np)2qi0

)

d even, d− 3 ≤ d′

1 +
∑

d−3
2

l=0

∏l
m=0

(

nj − 1−∑m
q=1(4np)

2q−1i0

)

·
(

n− nj −
∑m

q=0(4np)
2qi0

)

d odd, d− 3 ≤ d′.
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and

g′b(n1, n2, p, d, d
′, i0, i

′
0)

:=




















































































































































































































































































































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

n2 − i′0 d = 2

n2 − i′0

+
∑

d′

2 −1

l=0

(

n2 − 1−∑l
q=0(4np)

2q+1i0 −
∑l+1

q=0(4np)
2qi′0

)

·
∏l

m=0

(

n1 − 1−
∑m

q=0(4np)
2qi0 −

∑m
q=0(4np)

2q+1i′0

)

d ≥ 3

·
(

n2 − 1−∑m
q=0(4np)

2qi′0 −
∑m−1

q=0 (4np)2q+1i0

)

d′ ≤ d− 3, d′ even,

+
∑

d′

2 −1

l=0

∏l
m=0

(

n1 − 1−
∑m

q=0(4np)
2qi0 −

∑m
q=0(4np)

2q+1i′0

)

·
(

n2 − 1−∑m
q=0(4np)

2qi′0 −
∑m−1

q=0 (4np)2q+1i0

)

n2 − i′0

+
∑

d′−1
2

l=0

(

n2 − 1−∑l
q=0(4np)

2q+1i0 −
∑l+1

q=0(4np)
2qi′0

)

·
∏l

m=0

(

n1 − 1−
∑m

q=0(4np)
2qi0 −

∑m
q=0(4np)

2q+1i′0

)

d ≥ 4

·
(

n2 − 1−∑m
q=0(4np)

2qi′0 −
∑m−1

q=0 (4np)2q+1i0

)

d′ ≤ d− 3, d′ odd,

+
∑

d′−1
2

l=0

∏l
m=0

(

n1 − 1−∑m
q=0(4np)

2qi0 −
∑m

q=0(4np)
2q+1i′0

)

·
(

n2 − 1−
∑m

q=0(4np)
2qi′0 −

∑m−1
q=0 (4np)2q+1i0

)

n2 − i′0

+
∑

d
2−2

l=0

(

n2 − 1−∑l
q=0(4np)

2q+1i0 −
∑l+1

q=0(4np)
2qi′0

)

·∏l
m=0

(

n1 − 1−∑m
q=0(4np)

2qi0 −
∑m

q=0(4np)
2q+1i′0

)

d ≥ 4

·
(

n2 − 1−∑m
q=0(4np)

2qi′0 −
∑m−1

q=0 (4np)2q+1i0

)

d′ > d− 3, d even,

+
∑

d
2−2

l=0

∏l
m=0

(

n1 − 1−∑m
q=0(4np)

2qi0 −
∑m

q=0(4np)
2q+1i′0

)

·
(

n2 − 1−∑m
q=0(4np)

2qi′0 −
∑m−1

q=0 (4np)2q+1i0

)

n2 − i′0

+
∑

d−3
2

l=0

(

n2 − 1−
∑l

q=0(4np)
2q+1i0 −

∑l+1
q=0(4np)

2qi′0

)

·∏l
m=0

(

n1 − 1−∑m
q=0(4np)

2qi0 −
∑m

q=0(4np)
2q+1i′0

)

d ≥ 3

·
(

n2 − 1−
∑m

q=0(4np)
2qi′0 −

∑m−1
q=0 (4np)2q+1i0

)

d′ > d− 3, d odd,

+
∑

d−3
2

l=0

∏l
m=0

(

n1 − 1−
∑m

q=0(4np)
2qi0 −

∑m
q=0(4np)

2q+1i′0

)

·
(

n2 − 1−∑m
q=0(4np)

2qi′0 −
∑m−1

q=0 (4np)2q+1i0

)

.

We will prove the following theorem.

Theorem 11.2. Fix d ≥ 2, d ∈ N. Let G(n1, n2, p) denote the set of all simple
bipartite graphs with partite vertex sets of size n1 and n2 vertices and where each
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edge is chosen independently with probability p. Also, let P (G(n1, n2, p), d) be the
probability of a graph from G(n1, n2, p) having diameter at most d. Suppose that
d is odd. Let d′ ≥ 0. Suppose that

2 + 8np+ 2(4np)2 + . . .+ 2(4np)d
′ ≤ nj − 1

for j = 1, 2 where d′ ≥ 0. If d is odd, we have

P (G(n1, n2, p), d) > 1− n1n2h(n, p, d, 1) (1− f(n, p, d, 1))
gb(n,n1,p,d,d

′,1)

and

P (G(n1, n2, p), d) < (1 − pd)
−2

(

(n1n2)
d−1
2 +

∑

d−1
2

j=1 (n1n2)
d−1
2

−j(p1−2j+p−2j)
)

h(n− 1, p, d, 2)

· (1− f(n, p, d, 2))2·gb(n−1,nj−1,p,d,d′,2)

− 1 +
1

n1n2(1 − pd)

(

(n1n2)
d−1
2 +

∑

d−1
2

l=1 (n1n2)
d−1
2

−l(p1−2l+p−2l)

) .

If d is even, we have

P (G(n1, n2, p), d) > 1−
2
∑

j=1

(

nj

2

)

h(n, p, d, 1) (1− f(n, p, d, 1))
gb(n,nj ,p,d,d

′,1)

and

P (G(n1, n2, p), d) <





2
∑

j=1

(

nj

2

)

(1− pd)
(n−nj)

(

(n1n2)
d−2
2 +

∑

d−2
2

l=1 (n1n2)
d−2
2

−l(p1−2l+p−2l)
)





−2

·









2
∑

j=1

(

nj

2

)2

h(n− 1, p, d, 2) (1− f(n, p, d, 2))2·gb(n−1,nj−1,p,d,d′,2)





+2

(

n1

2

)(

n2

2

)

h(n, p, d, 1)2 (1− f(n, p, d, 1))
g′
b(n2,n1,p,d,d

′,1,1)+g′
b(n1,n2,p,d,d

′,1,1)

)

− 1

+
1

∑2
j=1

(

nj

2

)

(1− pd)
(n−nj)

(

(n1n2)
d−2
2 +

∑

d−2
2

l=1 (n1n2)
d−2
2

−l(p1−2j+p−2j)

) .

We will now prove Theorem 11.2.

For each n ∈ N, let G(n1, n2, p) denote the set of all bipartite graphs with partite
sets of size n1 vertices and n2 vertices with edge probability p, and let P (G(n1, n2, p))
be the probability of a graph fromG(n1, n2, p) having diameter at most d. Let p = r

s
where r = r(n), s = s(n) ∈ N. We let A be the set of all graphs in G(n1, n2, p),
allowing for a number of duplicates of each possible graph to accommodate the
edge probability p, so that

|A| =
n1n2
∑

k=0

(

n1n2

k

)

rk(s− r)n1n2−k = sn1n2 .

If d is odd, we let B be all pairs of vertices that occur in the same partite set so
|B| =

(

n1

2

)

+
(

n2

2

)

. If d is even, we let B be all pairs of vertices where the vertices
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in the pair occur in different partite sets so that |B| = n1n2. For a graph a ∈ A
and a pair of vertices b ∈ B, we say a ∼ b if there is no path between the pair of
vertices b that consists of at most d− 1 edges. Thus, we will have ω(a) = 0 if and
only if a is connected with diameter at most d.

Pick a pair of vertices b ∈ B and call them v1 and v2. To calculate deg b, we
need to calculate the number of graphs in A such that there is no path from v1
to v2 that consists of at most d − 1 edges. To help with this calculation, we will
calculate a generalised notion of deg b as follows. First suppose that d is odd. Let
0 ≤ i0 ≤ max{n1, n2}−1. Pick a specific set of i0 vertices out of the labeled vertices
in one of the partite sets, as well as another vertex, say v, in the same partite set.
We will let Cb(n, nj , r, s, d−1, i0) denote the number of graphs in A such that there
is no path from any of the i0 vertices to vertex v that consists of at most d − 1
edges where the i0 vertices come from the partite set that consists of vj vertices.
Now suppose that d is even. Let 0 ≤ i0 ≤ max{n1, n2} − 1. Pick a specific set of
i0 vertices out of the labeled vertices in one of the partite sets, as well as another
vertex, say v, in the opposite partite set. We will let Cb(n, nj , r, s, d− 1, i0) denote
the number of graphs in A such that there is no path from any of the i0 vertices to
vertex v that consists of at most d− 1 edges where vertex v comes from the partite
set that consists of vj vertices. If d is even, we can derive the recursive formula

Cb(n, nj , r, s, d+ 1, i0) = (s− r)i0njsn1n2−i0nj

+

nj−1
∑

i1=1

(

nj − 1

i1

)

(

si0 − (s− r)i0
)i1

(s− r)i0(nj−i1)Cb(n− i0, nj , r, s, d, i1)(64)

valid for all 0 ≤ i0 ≤ n− nj and even d ≥ 2, which can be simplified to
(65)

Cb(n, nj , r, s, d+1, i0) =

nj−1
∑

i1=0

(

nj − 1

i1

)

(

si0 − (s− r)i0
)i1

(s−r)i0(nj−i1)Cb(n−i0, nj, r, s, d, i1)

if we assume that i0 > 0. On the other hand, if d is odd, we can derive the recursive
formula

Cb(n, nj , r, s, d+ 1, i0) = (s− r)i0(n−nj)sn1n2−i0(n−nj)

+

n−nj
∑

i1=1

(

n− nj

i1

)

(

si0 − (s− r)i0
)i1

(s− r)i0(n−nj−i1)Cb(n− i0, nj − i0, r, s, d, i1)

(66)

valid for all 0 ≤ i0 ≤ nj − 1 and d ≥ 1, which can be simplified to
(67)

Cb(n, nj , r, s, d+1, i0) =

n−nj
∑

i1=0

(

n− nj

i1

)

(

si0 − (s− r)i0
)i1

(s−r)i0(n−nj−i1)Cb(n−i0, nj−i0, r, s, d, i1).

As well,

Cb(n, nj , r, s, 1, i0) = (s− r)i0sn1n2−i0

for all 0 ≤ i0 ≤ n − nj , completing the formula. Then we can deduce that
Cb(n, nj , r, s, d−1, 1) = deg b if we are working with diameter d. Let Db(n, nj , p, d−
1, i0) =

Cb(n,nj ,r,s,d−1,i0)
sn1n2

so that Db(n, nj , p, d − 1, i0) is the probability that the
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edge distance between v and any of the i0 vertices is greater than d − 1. We will
prove that if 0 ≤ i0 ≤ n− nj, 0 < p < 1, d ≥ 1 is odd, then
(68)

Db(n, nj , p, d, i0) ≥ (1−pd)
i0

(

(n1n2)
d−1
2 +(n1n2)

d−3
2 (p−1+p−2)+(n1n2)

d−5
2 (p−3+p−4)+...+(p−(d−2)+p−(d−1))

)

and that under the additional constraints i0 ≤ nj−1

4np+(4np)3+...+(4np)d′
and i0 ≤

n−nj

1+(4np)2+...+(4np)d′−1 if d′ is odd, i0 ≤ nj−1

4np+(4np)3+...+(4np)d′−1 , i0 ≤ n−nj

1+(4np)2+...+(4np)d′

if d′ is even and is at least 2, or i0 ≤ n− nj if d′ = 0, then we also have

(69) Db(n, nj , p, d, i0) < h(n, p, d, i0) (1− f(n, p, d, i0))
i0gb(n,nj ,p,d,d

′,i0) .

Also, we will prove that if 0 ≤ i0 ≤ nj − 1, 0 < p < 1, d ≥ 2 is even, then
(70)

Db(n, nj , p, d, i0) ≥ (1−pd)
i0(n−nj)

(

(n1n2)
d−2
2 +(n1n2)

d−4
2 (p−1+p−2)+(n1n2)

d−6
2 (p−3+p−4)+...+(p−(d−3)+p−(d−2))

)

and that under the additional constraints i0 ≤ n−nj

4np+(4np)3+...+(4np)d′
and i0 ≤

nj−1

1+(4np)2+...+(4np)d′−1 if d′ is odd, i0 ≤ n−nj

4np+(4np)3+...+(4np)d′−1 , i0 ≤ nj−1

1+(4np)2+...+(4np)d′

if d′ is even and is at least 2, or i0 ≤ nj − 1 if d′ = 0, then we also have (69).
For d = 1, we can see that (68) holds. Suppose d is odd and (68) holds for all
0 ≤ i0 ≤ n− nj and 0 < p < 1 . We will prove that (70) holds for d+ 1. First, we
can verify that (70) holds if i0 = 0. For what follows let

Cb(n1, n2, p, d) := (n1n2)
d−1
2 +(n1n2)

d−3
2 (p−1+p−2)+(n1n2)

d−5
2 (p−3+p−4)+. . .+(p−(d−2)+p−(d−1)).

By (67), we have

Db(n, nj, p, d+ 1, i0)

= (1− p)i0(n−nj)

n−nj
∑

i1=0

(

n− nj

i1

)

((1 − p)−i0 − 1)i1Db(n− i0, nj − i0, p, d, i1)

> (1− p)i0(n−nj)

·
n−nj
∑

i1=0

(

n− nj

i1

)

((1− p)−i0 − 1)i1(1 − pd)i1Cb(n1,n2,p,d)

= (1− p)i0(n−nj)
(

1 +
(

(1− p)−i0 − 1
)

(1− pd)Cb(n1,n2,p,d)
)n−nj

=
(

(1− p)i0 +
(

1− (1− p)i0
)

(1− pd)Cb(n1,n2,p,d)
)n−nj

.

Using Lemma 5.7 we thus have

Db(n, nj , p, d+ 1, i0) > (1 − pd+1)i0(n−nj)Cb(n1,n2,p,d).

Suppose d is even and (70) holds for all 0 ≤ i0 ≤ nj − 1 and 0 < p < 1 . We will
prove that (68) holds for d + 1. First, we can verify that (68) holds if i0 = 0. By
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(65), we have

Db(n, nj , p, d+ 1, i0)

= (1 − p)i0nj

nj−1
∑

i1=0

(

nj − 1

i1

)

((1− p)−i0 − 1)i1Db(n− i0, nj , p, d, i1)

> (1 − p)i0nj

nj−1
∑

i1=0

(

nj − 1

i1

)

((1− p)−i0 − 1)i1(1 − pd)i1(n−nj)Cb(n1,n2,p,d−1)

= (1 − p)i0nj

(

1 +
(

(1 − p)−i0 − 1
)

(1 − pd)(n−nj)Cb(n1,n2,p,d−1)
)nj−1

= (1 − p)i0
(

(1 − p)i0 +
(

1− (1− p)i0
)

(1 − pd)(n−nj)Cb(n1,n2,p,d−1)
)nj−1

.

Using Lemma 5.7 we thus have

Db(n, nj , p, d+ 1, i0) > (1− p)i0(1 − pd+1)i0(n−nj)Cb(n1n2,p,d−1)(nj−1)

=
(1− pd+1)i0

(1 + p+ p2 + . . .+ pd)i0
· (1− pd+1)i0(n−nj)Cb(n1n2,p,d−1)(nj−1)

> (1− pd+1)i0e(−p−p2−...−pd)i0(1 − pd+1)i0(n−nj)Cb(n1n2,p,d−1)(nj−1)

> (1− pd+1)(1+pd−1+p−2+−3+...+p−d)i0(1 − pd+1)i0(n−nj)Cb(n1n2,p,d−1)(nj−1)

> (1− pd+1)i0Cb(n1,n2,p,d+1).

Thus (68) and (70) are proved. Next we prove (69) again by induction on d. For
d = 2, applying Lemma 5.7 we have

Db(n, nj , p, 2, i0) = (1− p)i0(n−nj)

n−nj
∑

i1=0

(

n− nj

i1

)

((1− p)−i0 − 1)i1(1− p)i1

= (1− p)i0(n−nj)(p+ (1 − p)1−i0)n−nj

= (1− p+ p(1− p)i0)n−nj

<

(

1− p(1− (1− p)i0)

i0

)i0(n−nj)

.

Suppose for some odd d ≥ 3 (69) holds for all i0 in the stated ranges, and 0 < p < 1.
We will prove (69) holds for d+ 1. We have

Db(n, nj , p, d+1, i0) = (1−p)i0(n−nj)

n−nj
∑

i1=0

(

n− nj

i1

)

((1−p)−i0−1)i1Db(n−i0, nj−i0, p, d, i1).

We divide into three cases.

Case 1.
n−nj

4np < i0 ≤ nj − 1.



SIEVE METHODS IN RANDOM GRAPH THEORY 65

We have the following:

Db(n, nj , p, d+ 1, i0)

= (1 − p)i0(n−nj)

n−nj
∑

i1=0

(

n− nj

i1

)

((1− p)−i0 − 1)i1Db(n− i0, nj − i0, p, d, i1)

= (1 − p)i0(n−nj)

(

1 +

n−nj
∑

i1=1

(

n− nj

i1

)

((1 − p)−i0 − 1)i1

(1− f(n− i0, p, d, i1))
i1gb(n−i0,nj−i0,p,d,0,i1) h(n− i0, p, d, i1)

)

.

We can deduce that h(n− i0, p, d, i1) ≤ h(n− i0, p, d, 4npi0) ≤ h(n, p, d+1, i0) and
from Lemma 5.5, we can deduce that f(n, p, d, 4npi0) < f(n− i0, p, d, i1). As well,
gb(n− i0, nj − i0, p, d, n− nj − 1) ≤ gb(n− i0, nj − i0, p, d, i1). Thus we have

Db(n, nj , p, d+ 1, i0)

< h(n, p, d+ 1, i0)(1− p)i0(n−nj)

(

1 +

n−nj
∑

i1=1

(

n− nj

i1

)

((1 − p)−i0 − 1)i1

(1− f(n, p, d, 4npi0))
i1gb(n−i0,nj−i0,p,d,0,n−nj)

)

= h(n, p, d+ 1, i0)(1− p)i0(n−nj)

·
(

1 + ((1 − p)−i0 − 1) (1− f(n, p, d, 4npi0))
gb(n−i0,nj−i0,p,d,0,n−nj)

)n−nj

< h(n, p, d+ 1, i0)
(

(1 − p)i0 + (1 − (1− p)i0) (1− f(n, p, d, 4npi0))
gb(n−i0,nj−i0,p,d,0,n−nj)

)n−nj

.

We note that gb(n − i0, nj , i0, p, d, 0, n− nj) < nd−1 and so, using Lemma 5.7, we
thus have

Db(n, nj , p, d+ 1, i0)

< h(n, p, d+ 1, i0)

·
(

1− p

(

1− (1− p)i0

pi0

)

(

1− (1− pd)n
d−1

nd−1pd

)

f(n, p, d, 4npi0)

)i0(n−nj)gb(n−i0,nj−i0,p,d,0,n−nj)

= h(n, p, d+ 1, i0) (1− f(n, p, d+ 1, i0))
i0(n−nj)gb(n−i0,nj−i0,p,d,0,n−nj) .

We can deduce that (n−nj)gb(n−i0, nj−i0, p, d, 0, n−nj) > gb(n, nj , p, d+1, 0, i0)
and so we have (26).

Case 2. i0 ≤ n−nj

4np

Given a subset of i1 vertices from a set of n1 vertices and vertex, say v, from
a set of n2 vertices in a graph from G(n1, n2, p), we know that Db(n, n2, p, d, i1)
is the probability that the edge distance between v and any of the i1 vertices is
greater than d where n = n1 + n2. By adding one more vertex to our set of i1
vertices, it therefore follows that Db(n, n2, p, d, i1 + 1) ≤ Db(n, n2, p, d, i1). Thus,
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by Lemma 5.4, we have

Db(n, nj , p, d+ 1, i0)

<

(

1− 4

5

(e

3

)4npi0
)−1

(1− p)i0(n−nj)

4npi0
∑

i1=0

(

n− nj

i1

)

((1 − p)−i0 − 1)i1Db(n− i0, nj − i0, p, d, i1)

<

(

1− 4

5

(e

3

)4npi0
)−1

(1− p)i0(n−nj)

·
(

1 +

4npi0
∑

i1=1

(

n− nj

i1

)

((1− p)−i0 − 1)i1

· (1− f(n− i0, p, d, i1))
i1gb(n−i0,nj−i0,p,d,0,i1) h(n− i0, p, d, i1)

)

.

We can deduce that h(n− i0, p, d, i1) ≤ h(n− i0, p, d, 4npi0) and from Lemma 5.5,
we can deduce that f(n, p, d, 4npi0) < f(n − i0, p, d, i1). As well, gb(n − i0, nj −
i0, p, d, 0, n− nj) ≤ gb(n− i0, nj − i0, p, d, 0, i1). Thus we have

Db(n, nj , p, d+ 1, i0)

<

(

1− 4

5

(e

3

)4npi0
)−1

(1− p)i0(n−nj)

·
(

1 +

4npi0
∑

i1=1

(

n− nj

i1

)

((1− p)−i0 − 1)i1

· (1− f(n, p, d, 4npi0))
i1gb(n−i0,nj−i0,p,d,0,n−nj) h(n, p, d, 4npi0)

)

<

(

1− 4

5

(e

3

)4npi0
)−1

h(n− i0, p, d, 4npi0)(1− p)i0(n−nj)

·
(

1 +

n−nj
∑

i1=1

(

n− nj

i1

)

((1 − p)−i0 − 1)i1 (1− f(n, p, d, 4npi0))
i1gb(n−i0,nj−i0,p,d,0,n−nj)

)

< h(n, p, d+ 1, i0)(1− p)i0(n−nj)

·
(

1 +
(

(1− p)−i0 − 1
)

(1− f(n, p, d, 4npi0))
gb(n−i0,nj−i0,p,d,0,n−nj)

)n−nj

< h(n, p, d+ 1, i0)
(

(1 − p)i0 +
(

1− (1 − p)i0
)

(1− f(n, p, d, 4npi0))
gb(n−i0,nj−i0,p,d,0,n−nj)

)n−nj

.

We note that gb(n− i0, nj − i0, p, d, 0, n− nj) < nd−1 and so, using Lemma 5.7, we
thus have

Db(n, nj , p, d+ 1, i0)

< h(n, p, d+ 1, i0)

·
(

1− p

(

1− (1− p)i0

pi0

)

(

1− (1− pd)n
d−1

nd−1pd

)

f(n, p, d, 4npi0)

)i0(n−nj)gb(n−i0,nj−i0,p,d,0,n−nj)

= h(n, p, d+ 1, i0) (1− f(n, p, d+ 1, i0))
i0(n−nj)gb(n−i0,nj−i0,p,d,0,n−nj) .

We can deduce that (n−nj)gb(n−i0, nj−i0, p, d, 0, n−nj) > gb(n, nj , p, d+1, 0, i0)
and so we have (26).
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Case 3. i0 ≤ n−nj

4np+(4np)3+...+(4np)d′
, i0 ≤ nj−1

1+(4np)2+...+(4np)d′−1 OR i0 ≤ n−nj

4np+(4np)3+...+(4np)d′−1 ,

i0 ≤ nj−1

1+(4np)2+...+(4np)d′

Given a subset of i1 vertices from a set of n1 vertices and vertex, say v, from
a set of n2 vertices in a graph from G(n1, n2, p), we know that Db(n, n2, p, d, i1)
is the probability that the edge distance between v and any of the i1 vertices is
greater than d where n = n1 + n2. By adding one more vertex to our set of i1
vertices, it therefore follows that Db(n, n2, p, d, i1 + 1) ≤ Db(n, n2, p, d, i1). Thus,
by Lemma 5.4, we have

Db(n, nj , p, d+ 1, i0)

<

(

1− 4

5

(e

3

)4npi0
)−1

(1− p)i0(n−nj)

4npi0
∑

i1=0

(

n− nj

i1

)

((1 − p)−i0 − 1)i1Db(n− i0, nj − i0, p, d, i1)

<

(

1− 4

5

(e

3

)4npi0
)−1

(1− p)i0(n−nj)

·
(

1 +

4npi0
∑

i1=1

(

n− nj

i1

)

((1− p)−i0 − 1)i1

· (1− f(n− i0, p, d, i1))
i1gb(n−i0,nj−i0,p,d,d

′,i1) h(n− i0, p, d, i1)
)

.

We can deduce that h(n− i0, p, d, i1) ≤ h(n− i0, p, d, 4npi0) and from Lemma 5.5,
we can deduce that f(n, p, d, 4npi0) < f(n − i0, p, d, i1). As well, gb(n − i0, nj −
i0, p, d, d

′, 4npi0) ≤ gb(n− i0, nj − i0, p, d
′, d′, i1). Thus we have

Db(n, nj , p, d+ 1, i0)

<

(

1− 4

5

(e

3

)4npi0
)−1

(1− p)i0(n−nj)

·
(

1 +

4npi0
∑

i1=1

(

n− nj

i1

)

((1− p)−i0 − 1)i1

· (1− f(n, p, d, 4npi0))
i1gb(n−i0,nj−i0,p,d,d

′,4npi0) h(n, p, d, 4npi0)
)

<

(

1− 4

5

(e

3

)4npi0
)−1

h(n− i0, p, d, 4npi0)(1− p)i0(n−nj)

·
(

1 +

n−nj
∑

i1=1

(

n− nj

i1

)

((1 − p)−i0 − 1)i1 (1− f(n, p, d, 4npi0))
i1gb(n−i0,nj−i0,p,d,d

′,4npi0)

)

< h(n, p, d+ 1, i0)(1− p)i0(n−nj)

·
(

1 +
(

(1− p)−i0 − 1
)

(1− f(n, p, d, 4npi0))
gb(n−i0,nj−i0,p,d,d

′,4npi0)
)n−nj

< h(n, p, d+ 1, i0)
(

(1 − p)i0 +
(

1− (1 − p)i0
)

(1− f(n, p, d, 4npi0))
gb(n−i0,nj−i0,p,d,d

′,4npi0)
)n−nj

.
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We note that gb(n− i0, nj − i0, p, d, 0, n− nj) < nd−1 and so, using Lemma 5.7, we
thus have

Db(n, nj , p, d+ 1, i0)

< h(n, p, d+ 1, i0)

·
(

1− p

(

1− (1− p)i0

pi0

)

(

1− (1− pd)n
d−1

nd−1pd

)

f(n, p, d, 4npi0)

)i0(n−nj)gb(n−i0,nj−i0,p,d,d
′,4npi0)

= h(n, p, d+ 1, i0) (1− f(n, p, d+ 1, i0))
i0(n−nj)gb(n−i0,nj−i0,p,d,d

′,4npi0) .

We can deduce that (n−nj)gb(n− i0, nj − i0, p, d, d
′, 4npi0) > gb(n, nj , p, d+1, d′+

1, i0) and so we have (26).

Suppose for some even d ≥ 2 (69) holds for all i0 in the stated ranges, and
0 < p < 1. We will prove (69) holds for d+ 1. We have

Db(n, nj , p, d+1, i0) = (1−p)i0nj

nj−1
∑

i1=0

(

nj − 1

i1

)

((1−p)−i0−1)i1Db(n−i0, nj , p, d, i1).

We divide into three cases.

Case 1.
nj−1
4np < i0 ≤ n− nj .

We have the following:

Db(n, nj , p, d+ 1, i0)

= (1 − p)i0nj

nj−1
∑

i1=0

(

nj − 1

i1

)

((1 − p)−i0 − 1)i1Db(n− i0, nj , p, d, i1)

= (1 − p)i0nj

(

1 +

nj−1
∑

i1=1

(

nj − 1

i1

)

((1 − p)−i0 − 1)i1

(1− f(n− i0, p, d, i1))
i1gb(n−i0,nj,p,d,0,i1) h(n− i0, p, d, i1)

)

.

We can deduce that h(n− i0, p, d, i1) ≤ h(n− i0, p, d, 4npi0) < h(n− i0, p, d+1, i0)
and from Lemma 5.5, we can deduce that f(n, p, d, 4npi0) < f(n − i0, p, d, i1). As
well, gb(n− i0, nj , p, d, nj − 1) ≤ gb(n− i0, nj , p, d, i1). Thus we have

Db(n, nj , p, d+ 1, i0)

< h(n, p, d+ 1, i0)(1− p)i0nj

(

1 +

nj−1
∑

i1=1

(

n− nj

i1

)

((1 − p)−i0 − 1)i1

(1− f(n, p, d, 4npi0))
i1gb(n−i0,nj,p,d,0,nj−1)

)

= h(n, p, d+ 1, i0)(1− p)i0nj

·
(

1 + ((1 − p)−i0 − 1) (1− f(n, p, d, 4npi0))
gb(n−i0,nj,p,d,0,nj−1)

)nj−1

< h(n, p, d+ 1, i0)(1− p)i0

·
(

(1− p)i0 + (1− (1 − p)i0) (1− f(n, p, d, 4npi0))
gb(n−i0,nj,p,d,0,nj−1)

)nj−1

.
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We note that gb(n − i0, nj, i0, p, d, 0, nj − 1) < nd−1 and so, using Lemma 5.7, we
thus have

Db(n, nj , p, d+ 1, i0)

< h(n, p, d+ 1, i0)

·
(

1− p

(

1− (1− p)i0

pi0

)

(

1− (1− pd)n
d−1

nd−1pd

)

f(n, p, d, 4npi0)

)i0(nj−1)gb(n−i0,nj,p,d,0,nj−1)+i0

= h(n, p, d+ 1, i0) (1− f(n, p, d+ 1, i0))
i0(nj−1)gb(n−i0,nj ,p,d,0,nj−1)+i0 .

We can deduce that (nj − 1)gb(n− i0, nj, p, d, 0, nj − 1)+1 > gb(n, nj, p, d+1, 0, i0)
and so we have (26).

Case 2. i0 ≤ nj−1
4np

Given a set of i1 vertices and one additional vertex, say v, in a graph from G(n −
i0, p), we know that Db(n − i0, p, d, i1) is the probability that the edge distance
between v and any of the i1 vertices is greater than d. By adding one more ver-
tex to our set of i1 vertices, it therefore follows that Db(n − i0, p, d, i1 + 1) ≤
Db(n− i0, p, d, i1). Thus, by Lemma 5.4, we have

Db(n, nj , p, d+ 1, i0)

<

(

1− 4

5

(e

3

)4npi0
)−1

(1− p)i0nj

4npi0
∑

i1=0

(

nj − 1

i1

)

((1 − p)−i0 − 1)i1Db(n− i0, nj − i0, p, d, i1)

<

(

1− 4

5

(e

3

)4npi0
)−1

(1− p)i0nj

·
(

1 +

4npi0
∑

i1=1

(

nj − 1

i1

)

((1 − p)−i0 − 1)i1

· (1− f(n− i0, p, d, i1))
i1gb(n−i0,nj,p,d,0,i1) h(n− i0, p, d, i1)

)

.

We can deduce that h(n− i0, p, d, i1) ≤ h(n− i0, p, d, 4npi0) and from Lemma 5.5,
we can deduce that f(n, p, d, 4npi0) < f(n − i0, p, d, i1). As well, gb(n − i0, nj −
i0, p, d, 0, n− nj) ≤ gb(n− i0, nj − i0, p, d, 0, i1). Thus we have

Db(n, nj , p, d+ 1, i0)

<

(

1− 4

5

(e

3

)4npi0
)−1

h(n− i0, p, d, 4npi0)(1− p)i0nj

·
(

1 +

nj−1
∑

i1=1

(

nj − 1

i1

)

((1 − p)−i0 − 1)i1 (1− f(n, p, d, 4npi0))
i1gb(n−i0,nj,p,d,0,nj−1)

)

< h(n, p, d+ 1, i0)(1− p)i0nj

·
(

1 +
(

(1− p)−i0 − 1
)

(1− f(n, p, d, 4npi0))
gb(n−i0,nj ,p,d,0,nj−1)

)nj−1

< h(n, p, d+ 1, i0)(1− p)i0

·
(

(1− p)i0 +
(

1− (1− p)i0
)

(1− f(n, p, d, 4npi0))
gb(n−i0,nj ,p,d,0,nj−1)

)nj−1

.
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We note that gb(n− i0, nj , p, d, 0, nj − 1) < nd−1 and so, using Lemma 5.7, we thus
have

Db(n, nj , p, d+ 1, i0)

< h(n, p, d+ 1, i0)

·
(

1− p

(

1− (1− p)i0

pi0

)

(

1− (1− pd)n
d−1

nd−1pd

)

f(n, p, d, 4npi0)

)i0njgb(n−i0,nj,p,d,0,nj−1)+i0

= h(n, p, d+ 1, i0) (1− f(n, p, d+ 1, i0))
i0njgb(n−i0,nj ,p,d,0,nj−1)

.

We can deduce that (nj − 1)gb(n− i0, nj, p, d, 0, nj − 1)+1 > gb(n, nj, p, d+1, 0, i0)
and so we have (26).

Case 3. i0 ≤ nj−1

4np+(4np)3+...+(4np)d′
, i0 ≤ n−nj

1+(4np)2+...+(4np)d′−1 OR i0 ≤ nj−1

4np+(4np)3+...+(4np)d′−1 ,

i0 ≤ n−nj

1+(4np)2+...+(4np)d′

Given a set of i1 vertices and one additional vertex, say v, in a graph from G(n −
i0, p), we know that Db(n − i0, p, d, i1) is the probability that the edge distance
between v and any of the i1 vertices is greater than d. By adding one more ver-
tex to our set of i1 vertices, it therefore follows that Db(n − i0, p, d, i1 + 1) ≤
Db(n− i0, p, d, i1). Thus, by Lemma 5.4, we have

Db(n, nj , p, d+ 1, i0)

<

(

1− 4

5

(e

3

)4npi0
)−1

(1− p)i0nj

4npi0
∑

i1=0

(

nj − 1

i1

)

((1 − p)−i0 − 1)i1Db(n− i0, nj − i0, p, d, i1)

<

(

1− 4

5

(e

3

)4npi0
)−1

(1− p)i0nj

·
(

1 +

4npi0
∑

i1=1

(

nj − 1

i1

)

((1 − p)−i0 − 1)i1

· (1− f(n− i0, p, d, i1))
i1gb(n−i0,nj,p,d,d

′,i1) h(n− i0, p, d, i1)
)

.

We can deduce that h(n− i0, p, d, i1) ≤ h(n− i0, p, d, 4npi0) and from Lemma 5.5,
we can deduce that f(n, p, d, 4npi0) < f(n − i0, p, d, i1). As well, gb(n − i0, nj −
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i0, p, d, d
′, 4npi0) ≤ gb(n− i0, nj − i0, p, d, d

′, i1). Thus we have

Db(n, nj , p, d+ 1, i0)

<

(

1− 4

5

(e

3

)4npi0
)−1

h(n− i0, p, d, 4npi0)(1− p)i0nj

·
(

1 +

nj−1
∑

i1=1

(

nj − 1

i1

)

((1 − p)−i0 − 1)i1 (1− f(n, p, d, 4npi0))
i1gb(n−i0,nj,p,d,d

′,4npi0)

)

< h(n, p, d+ 1, i0)(1− p)i0nj

·
(

1 +
(

(1− p)−i0 − 1
)

(1− f(n, p, d, 4npi0))
gb(n−i0,nj ,p,d,d

′,4npi0)
)nj−1

< h(n, p, d+ 1, i0)(1− p)i0

·
(

(1− p)i0 +
(

1− (1− p)i0
)

(1− f(n, p, d, 4npi0))
gb(n−i0,nj ,p,d,d

′,4npi0)
)nj−1

.

We note that gb(n− i0, nj , p, d, 0, nj − 1) < nd−1 and so, using Lemma 5.7, we thus
have

Db(n, nj , p, d+ 1, i0)

< h(n, p, d+ 1, i0)

·
(

1− p

(

1− (1− p)i0

pi0

)

(

1− (1− pd)n
d−1

nd−1pd

)

f(n, p, d, 4npi0)

)i0njgb(n−i0,nj,p,d,d
′,4npi0)

= h(n, p, d+ 1, i0) (1− f(n, p, d+ 1, i0))
i0njgb(n−i0,nj ,p,d,d

′,4npi0)+i0 .

We can deduce that (nj − 1)gb(n− i0, nj, p, d, d
′, 4npi0) + 1 > gb(n, nj, p, d+1, d′ +

1, i0) and so we have (26).

By (26), we have

∑

b∈B

deg b < sn1n2

2
∑

j=1

(

nj

2

)

h(n, p, d, 1) (1− f(n, p, d, 1))
gb(n,nj,p,d,d

′,1)

if d is even, and
∑

b∈B

deg b < sn1n2n1n2h(n, p, d, 1) (1− f(n, p, d, 1))
gb(n,n1,p,d,d

′,1)

if d is odd. Hence, by the simple sieve, we have

P (G(n1, n2, p), d) > 1−
2
∑

j=1

(

nj

2

)

h(n, p, d, 1) (1− f(n, p, d, 1))
gb(n,nj ,p,d,d

′,1)

if d is even, and

P (G(n1, n2, p), d) > 1− n1n2h(n, p, d, 1) (1− f(n, p, d, 1))
gb(n,n1,p,d,d

′,1)

if d is odd.

We now calculate n(b1, b2) to get an upperbound for
∑d

i=1 P (G(n1, n2, p), i) us-
ing the Turán sieve. If the two pairs of vertices b1 and b2 are the same, then we just
have n(b1, b2) = deg b. If b1 and b2 have exactly one vertex in common, then we
can see that n(b1, b2) = Cb(n, nj , r, s, d, 2) and use (69). Hence the only question is
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when the two pairs of vertices are disjoint.

As in our calculations for deg b, to help calculate n(b1, b2) in this case, we will
calculate a generalised notion of n(b1, b2) as follows. Suppose that d is even. Let
0 ≤ i0 ≤ nj − 2 and 0 ≤ i′0 ≤ nj − 2 where i0+ i′0 ≤ nj − 2. Pick two disjoint sets of
vertices having i0 and i′0 vertices out of the nj labeled vertices in one of the partite
sets, as well as two other vertices, say v and v′, out of the same set. Suppose that
d is odd. Let 0 ≤ i0 ≤ n−nj and 0 ≤ i′0 ≤ n−nj where i0 + i′0 ≤ n−nj. Pick two
disjoint sets of vertices having i0 and i′0 vertices out of the n−nj labeled vertices in
one of the partite sets, as well as two other vertices, say v and v′, out of the opposite
partite set consisting of nj vertices. In both cases, we will let C′

b(n, nj , r, s, d, i0, i
′
0)

denote the number of graphs in A such that there is no path from any of the i0
vertices to vertex v that consists of at most d edges, as well as the requirement that
there is no path from any of the i′0 vertices to the vertex v′ that consists of at most
d edges (note that this does not generalise the construction where d is even and b1
is a pair of vertices from the set of n1 (or n2) vertices and b2 is a pair of vertices
from the set of n2 (or n1 respectively) vertices, we will return to this case later). If
i0 = 0, then we have C′

b(n, nj , r, s, d, i0, i
′
0) = Cb(n, nj , r, s, d, i

′
0) and if i′0 = 0, then

we have C′
b(n, nj , r, s, d, i0, i

′
0) = Cb(n, nj , r, s, d, i0). So suppose that i0, i

′
0 > 0. If

d is odd, then we have

C′
b(n, nj , r, s, d+ 1, i0, i

′
0) <

n−nj
∑

i1=0

(

n− nj

i1

)

(

si0 − (s− r)i0
)i1

(s− r)i0(n−nj−i1)

·
n−nj−i1
∑

i′1=0

(

n− nj − i1
i′1

)

(

si
′
0 − (s− r)i

′
0

)i′1
(s− r)i

′
0(n−nj−i1−i′1)si1i

′
0

· C′
b(n− i0 − i′0, nj − i0 − i′0, r, s, d, i1, i

′
1)(71)

valid for all 1 ≤ i0, i
′
0 ≤ nj − 3 with i0 + i′0 ≤ nj − 2. If d is even, then we have

C′
b(n, nj , r, s, d+ 1, i0, i

′
0) <

nj−2
∑

i1=0

(

nj − 2

i1

)

(

si0 − (s− r)i0
)i1

(s− r)i0(nj−i1−1)si0

·
nj−2−i1
∑

i′1=0

(

nj − 2− i1
i′1

)

(

si
′
0 − (s− r)i

′
0

)i′1
(s− r)i

′
0(nj−i1−i′1−1)si1i

′
0+i′0

· C′
b(n− i0 − i′0, nj , r, s, d, i1, i

′
1)(72)

valid for all 1 ≤ i0, i
′
0 ≤ n− nj − 1 with i0 + i′0 ≤ n− nj . As well,

C′
b(n, nj , r, s, 1, i0, i

′
0) = (s− r)i0+i′0sn1n2−i0−i′0

for all 0 ≤ i0, i
′
0 ≤ n− nj with i0 + i′0 ≤ n− nj , completing the formula. Then we

can deduce that Cb(n, nj , r, s, d, 1, 1) = n(b1, b2) if we are working with diameter d.

Let D′
b(n, p, d, i0, i

′
0) =

C′
b(n,r,s,1,i0,i

′
0)

sn1n2
so that D′

b(n, nj , p, d, i0, i
′
0) is the probability

that the edge distance between v and any of the i0 vertices is greater than d and
that the edge distance between v′ and any of the i′0 vertices is greater than d. We
will prove that

(73) D′
b(n, nj , p, d, i0, i

′
0) ≤ Db(n− 1, nj − 1, p, d, i0 + i′0)
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for 0 < p < 1, 0 ≤ i0, i
′
0 ≤ nj − 2, i0 + i′0 ≤ nj − 2 if we assume that d ≥ 2 is even,

and for 0 < p < 1, 0 ≤ i0, i
′
0 ≤ n− nj , i0 + i′0 ≤ n− nj if we assume that d ≥ 1 is

odd. For d = 1, we have

D′
b(n, nj , p, 1, i0, i

′
0) = (1− p)i0+i′0 = Db(n− 1, nj − 1, p, 1, i0 + i′0)

so (73) holds for d = 1. Suppose for some odd d ≥ 1 (73) holds for all n ∈ N,
0 ≤ i0, i

′
0 ≤ n−nj , i0+ i′0 ≤ n−nj , 0 < p < 1. We can see that (73) holds if i0 = 0

or i′0 = 0. So assume that 0 < i0, i
′
0 ≤ nj − 3 with i0 + i′0 ≤ nj − 2. First we have

D′
b(n, nj , p, d+ 1, i0, i

′
0) <

n−nj
∑

i1=0

(

n− nj

i1

)

(

1− (1− p)i0
)i1

(1− p)i0(n−nj−i1)

·
n−nj−i1
∑

i′1=0

(

n− nj − i1
i′1

)

(

1− (1− p)i
′
0

)i′1
(1− p)i

′
0(n−nj−i1−i′1)

·D′
b(n− i0 − i′0, nj − i0 − i′0, p, d, i1, i

′
1)

< (1− p)i0(n−nj)

n−nj
∑

i1=0

(

n− nj

i1

)

(

(1− p)−i0 − 1
)i1

· (1− p)i
′
0(n−nj−i1)

n−nj−i1
∑

i′1=0

(

n− nj − i1
i′1

)

(

(1− p)−i′0 − 1
)i′1

·Db(n− 1− i0 − i′0, nj − 1− i0 − i′0, p, d, i1 + i′1).
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Writing k = i1 + i′1, we have

D′
b(n, p, d+ 1, i0, i

′
0) < (1− p)(i0+i′0)(n−nj)

n−nj
∑

k=0

(

n− nj

k

)

Db(n− 1− i0 − i′0, nj − 1− i0 − i′0, p, d, k)

·
(

(1− p)−i′0 − 1
)k k
∑

i1=0

(

k

i1

)

(

(1− p)−i0 − 1
)i1

(1 − p)−i1i
′
0

(

(1− p)−i′0 − 1
)−i1

= (1− p)(i0+i′0)(n−nj)

n−nj
∑

k=0

(

n− nj

k

)

Db(n− 1− i0 − i′0, nj − 1− i0 − i′0, p, d, k)

·
(

(1− p)−i′0 − 1
)k k
∑

i1=0

(

k

i1

)

(

(1− p)−i0−i′0 − (1 − p)−i′0

(1− p)−i′0 − 1

)i1

= (1− p)(i0+i′0)(n−nj)

n−nj
∑

k=0

(

n− nj

k

)

Db(n− 1− i0 − i′0, nj − 1− i0 − i′0, p, d, k)

·
(

(1− p)−i′0 − 1
)k
(

1 +
(1− p)−i0−i′0 − (1− p)−i′0

(1− p)−i′0 − 1

)k

= (1− p)(i0+i′0)(n−nj)

n−nj
∑

k=0

(

n− nj

k

)

Db(n− 1− i0 − i′0, nj − 1− i0 − i′0, p, d, k)

·
(

(1− p)−i0−i′0 − 1
)k

= Db(n− 1, nj − 1, p, d+ 1, i0 + i′0).

Thus (73) holds for d + 1. Suppose for some even d ≥ 2 (73) holds for all n ∈ N,
0 ≤ i0, i

′
0 ≤ nj−2, i0+i′0 ≤ n−nj−1, 0 < p < 1. Assume that 0 < i0, i

′
0 ≤ n−nj−1

with i0 + i′0 ≤ n− nj . First we have

D′
b(n, nj , p, d+ 1, i0, i

′
0) <

nj−2
∑

i1=0

(

nj − 2

i1

)

(

1− (1− p)i0
)i1

(1− p)i0(nj−i1−1)

·
nj−2−i1
∑

i′1=0

(

nj − 2− i1
i′1

)

(

1− (1 − p)i
′
0

)i′1
(1 − p)i

′
0(nj−i1−i′1−1)

·D′
b(n− i0 − i′0, nj , p, d, i1, i

′
1)

< (1− p)i0(nj−1)

nj−2
∑

i1=0

(

nj − 2

i1

)

(

(1− p)−i0 − 1
)i1

· (1− p)i
′
0(nj−i1−1)

nj−2−i1
∑

i′1=0

(

nj − 2− i1
i′1

)

(

(1 − p)−i′0 − 1
)i′1

·Db(n− 1− i0 − i′0, nj − 1, p, d, i1 + i′1).
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Writing k = i1 + i′1, we have

D′
b(n, nj , p, d+ 1, i0, i

′
0) < (1− p)(i0+i′0)(nj−1)

nj−2
∑

k=0

(

nj − 2

k

)

Db(n− 1− i0 − i′0, nj − 1, p, d, k)

·
(

(1− p)−i′0 − 1
)k k
∑

i1=0

(

k

i1

)

(

(1− p)−i0 − 1
)i1

(1− p)−i1i
′
0

(

(1− p)−i′0 − 1
)−i1

= (1− p)(i0+i′0)(nj−1)

nj−2
∑

k=0

(

nj − 2

k

)

Db(n− 1− i0 − i′0, nj − 1, p, d, k)

·
(

(1− p)−i′0 − 1
)k k
∑

i1=0

(

k

i1

)

(

(1− p)−i0−i′0 − (1− p)−i′0

(1 − p)−i′0 − 1

)i1

= (1− p)(i0+i′0)(nj−1)

nj−2
∑

k=0

(

nj − 2

k

)

Db(n− 1− i0 − i′0, nj − 1, p, d, k)

·
(

(1− p)−i′0 − 1
)k
(

1 +
(1− p)−i0−i′0 − (1 − p)−i′0

(1− p)−i′0 − 1

)k

= (1− p)(i0+i′0)(nj−1)

nj−2
∑

k=0

(

nj − 2

k

)

Db(n− 1− i0 − i′0, nj − 1, p, d, k)

·
(

(1− p)−i0−i′0 − 1
)k

< Db(n− 1, nj − 1, p, d+ 1, i0 + i′0).

Thus (73) holds for d+ 1.

We now generalise the construction for n(b1, b2) where d is even and b1 is a pair of
vertices from the set of n1 (or n2) vertices and b2 is a pair of vertices from the set
of n2 (or n1 respectively). Pick i0 vertices out of the set of n1 vertices if d is even
or out of the set of n2 vertices if d is odd. Also, pick i′0 out of the set of n2 vertices
if d is even or out of the set of n1 of vertices if d is odd. Also, pick another vertex
v out of the set of n1 vertices and another vertex ′ out of the set of n2 vertices.
Let C′′

b (n1, n2, r, s, d, i0, i
′
0) denote the number of graphs in A such that there is no

path from any of the i0 vertices to vertex v that consists of at most d dges, as well
as fulfilling the requirement that there is no path from any of the i′0 vertices to the
vertex v′ that consists of at most d edges. Suppose i0, i

′
0 > 0. If d is odd, then we
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have

C′′
b (n1, n2, r, s, d+ 1, i0, i

′
0) <

n2−i′0−1
∑

i1=0

(

n2 − i′0 − 1

i1

)

(

si0 − (s− r)i0
)i1

(s− r)i0(n2−i′0−i1−1)

·
n1−i0−1
∑

i′1=0

(

n1 − i0 − 1

i′1

)

(

si
′
0 − (s− r)i

′
0

)i′1
(s− r)i

′
0(n1−i0−i′1−1)

·
i0
∑

l1=0

i′0
∑

l2=0

(

i0
l1

)(

i′0
l2

)

rl1+l2(s− r)i0−l1+i′0−l2+l1i
′
0+l2i0−l1l2si0i

′
0−l1i

′
0−l2i0+l1l2

· C′′
b (n1 − i0, n2 − i′0, r, s, d, i1, i

′
1)

(74)

valid for all 1 ≤ i0 ≤ n1 − 1, 1 ≤ i′0 ≤ n2 − 1. If d is even, then we have

C′′
b (n1, n2, r, s, d+ 1, i0, i

′
0) <

n1−i′0−1
∑

i1=0

(

n1 − i′0 − 1

i1

)

(

si0 − (s− r)i0
)i1

(s− r)i0(n1−i′0−i1)si0i
′
0

·
n2−i0−1
∑

i′1=0

(

n2 − i0 − 1

i′1

)

(

si
′
0 − (s− r)i

′
0

)i′1
(s− r)i

′
0(n2−i0−i′1)

· C′′
b (n1 − i′0, n2 − i0, r, s, d, i1, i

′
1)(75)

valid for all 1 ≤ i0 ≤ n2 − 1, 1 ≤ i′0 ≤ n1 − 1. As well,

C′′
b (n1, n2, r, s, 1, i0, i

′
0) = (s− r)i0+i′0sn1n2−i0−i′0

for all 0 ≤ i0 ≤ n2 − 1, 0 ≤ i′0 ≤ n1 − 1, completing the formula. Then we can
deduce that Cb(n1, n2, r, s, d, 1, 1) = n(b1, b2) if we are working with diameter d.

Let D′
b(n1, n2, p, d, i0, i

′
0) =

C′′
b (n1n2,r,s,d,i0,i

′
0)

sn1n2
so that D′

b(n1, n2, r, s, d, i0, i
′
0) is the

probability that the edge distance between v and any of the i0 vertices is greater
than d and that the edge distance between v′ and any of the i′0 vertices is greater
than d. We claim that

D′′
b (n1, n2, p, d, i0, i

′
0) < h(n, p, d, i0 + i′0)

2

· (1− f(n, p, d, i0 + i′0))
i0g(n1,n2,p,d,d

′,i0,i
′
0)+i′0g(n2,n1,p,d,d

′,i′0,i0)(76)

if d ≥ 3 is odd, 1 ≤ n1−1
i′0+4npi0+(4np)2i′0+(4np)3i0+...+(4np)d′ i′′0

, and 1 ≤ n2−1
i0+4npi′0+(4np)2i0+(4np)3i′0+...+(4np)d′ i′′0

where i′′0 = i0 or i
′′
0 = i′0 depending on the parity of d′ and the inequality in question.

Also,

D′′
b (n1, n2, p, d, i0, i

′
0) < h(n, p, d, i0 + i′0)

2

· (1− f(n, p, d, i0 + i′0))
i0g(n1,n2p,d,d

′,i0,i
′
0)+i′0g(n2,n1,p,d,d

′,i′0,i0)(77)

if d ≥ 2 is even, 1 ≤ n1−1
i0+4npi′0+(4np)2i0+(4np)3i′0+...+(4np)d′ i′′0

, and 1 ≤ n2−1
i′0+4npi0+(4np)2i′0+(4np)3i0+...+(4np)d′ i′′0

where i′′0 = i0 or i
′′
0 = i′0 depending on the parity of d′ and the inequality in question.

We prove by induction on d in the same way that we proved (26) and (69). For
illustration purposes, we prove the base case d = 2 and one of the cases for the
induction step. First, two lemmas:
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Lemma 11.3. Let x1, x2 ≥ 0. Then we have

(1− p+ p(1− p)x1) (1− p+ p(1− p)x2) ≤ 1− p+ p(1− p)x1+x2 .

Proof. Note that

0 < (1− (1 − p)x1) (1− (1− p)x2) = 1− (1− p)x1 − (1− p)x2 + (1− p)x1+x2

so that

(1− p+ p(1− p)x1) (1− p+ p(1− p)x2) = (1 − p)2 + p(1− p)x1+1 + p(1− p)x2+1 + p2(1− p)x1+x2

≤ (1 − p)2 + p(1− p)
(

(1 − p)x1+x2 + 1
)

+ p2(1 − p)x1+x2

= 1− p+ p(1− p)x1+x2 .

�

Lemma 11.4. Let r1, r2 ∈ N. Then

r1
∑

m1=0

r2
∑

m2=0

(

r1
m1

)(

r2
m2

)

pm1+m2(1−p)r1−m1+r2−m2+m1r2+m2r1−m1m2 < 1−p+p(1−p)r1+r2 .

Proof. Wlog we may assume that r1 ≤ r2. We have

r1
∑

m1=0

r2
∑

m2=0

(

r1
m1

)(

r2
m2

)

pm1+m2(1 − p)r1−m1+r2−m2+m1r2+m2r1−m1m2

=

r1
∑

m1=0

(

r1
m1

)

pm1(1 − p)r1−m1+r2+m1r2
(

1 + p(1− p)r1−m1−1
)r2

.

If r1 = 1, then we have

1
∑

m1=0

(

1

m1

)

pm1(1− p)1−m1+r2+m1r2
(

1 + p(1− p)1−m1−1
)r2

= (1− p)1+r2(1 + p) + p(1− p)2r2

< 1− p+ p(1− p)r2+1.

If r1 ≥ 2, then we have the following:

r1
∑

m1=0

(

r1
m1

)

pm1(1− p)r1−m1+r2+m1r2
(

1 + p(1− p)r1−m1−1
)r2

≤ (1− p)r1+r2

r1
∑

m1=0

(

r1
m1

)

pm1(1− p)(r2−1)m1

= (1− p)r2 (1− p+ p(1− p)r2)
r1

< (1− p+ p(1− p)r2)
2

≤ 1− p+ p(1− p)2r2

≤ 1− p+ p(1− p)r1+r2

with the second last inequality following from Lemma 11.3. �
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For d = 2, we have

D′′
b (n1, n2, p, 2, i0, i

′
0) < (1− p)i0(n2−i′0−1)

n2−i′0−1
∑

i1=0

(

n2 − i′0 − 1

i1

)

(

(1− p)−i0 − 1
)i1

· (1 − p)i0(n1−i0−1)
n1−i0−1
∑

i′1=0

(

n1 − i0 − 1

i1

)

(

(1− p)−i′0 − 1
)i′1

(1 − p)i1+i′1

·
i0
∑

l1=0

i′0
∑

l2=0

(

i0
l1

)(

i′0
l2

)

pl1+l2(1− p)i0−l1+i′0−l2+l1i
′
0+l2i0−l1l2

<
(

1− p+ p(1− p)i0
)n2−i′0−1

(

1− p+ p(1− p)i
′
0

)n1−i0−1

·
(

1− p+ p(1− p)i0+i′0

)

<
(

1− f(n, p, 2, i0)
i0(n2−i′0−1)f(n, p, 2, i′0)

)i′0(n1−i0−1) (

1− f(n, p, 2, i0 + i′0)
i0+i′0

)

< (1− f(n, p, 2, i0 + i′0))
i0(n2−i′0)+i′0(n1−i0)

with the second inequality following from Lemma 11.4. Suppose for some odd d ≥ 3,
(76) holds for all i0, i

′
0 in the stated ranges, and 0 < p < 1. We will prove (77)

holds for d+ 1. We have

D′′
b (n1, n2, p, d+ 1, i0, i

′
0) < (1− p)i0(n2−i′0−1)+i′0(n1−i0−1)

(

1− p+ p(1− p)i0+i′0

)

·
n2−i′0−1
∑

i1=0

(

n2 − i′0 − 1

i1

)

(

(1− p)−i0 − 1
)i1

·
n1−i0−1
∑

i′1=0

(

n1 − i0 − 1

i′1

)

(

(1− p)−i′0 − 1
)i′1

·D′′
b (n1 − i0, n2 − i′0, r, s, d, i1, i

′
1).

The case that we will prove follows.

Case 1. n−1
1+4np < i0 ≤ n− 1.

We have the following:

D′′
b (n1, n2, p, d+ 1, i0, i

′
0) < (1− p)i0(n2−i′0−1)+i′0(n1−i0−1)

(

1− p+ p(1− p)i0+i′0

)

·



1 +

n2−i′0−1
∑

i1=1

(

n2 − i′0 − 1

i1

)

(

(1− p)−i0 − 1
)i1

·



1 +

n1−i0−1
∑

i′1=1

(

n1 − i0 − 1

i′1

)

(

(1− p)−i′0 − 1
)i′1

· h(n− i0 − i′0, p, d, i1 + i′1)h(n− i0 − i′0, p, d, i1 + i′1)

· (1− f(n− i0 − i′0, p, d, i1 + i′1))
i1g(n2−i′0,n1−i0,p,d,0,i1,i

′
1)

· (1− f(n− i0 − i′0, p, d, i1 + i′1))
i′1g(n1−i0,n2−i′0,p,d,0,i

′
1,i1) .
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We can deduce that h(n − i0 − i′0, p, d, i1 + i′1) ≤ h(n − i0 − i′0, p, d, 4np(i0 + i′0)).
Also, from Lemma 5.5, we can deduce that f(n, p, d, 4np(i0 + i′0)) < f(n − i0 −
i′0, p, d, i1 + i′1). As well, g(n2 − i′0, n1 − i0, p, d, 0, n1 − i0 − 1, n2 − i′0 − 1) ≤ g(n2 −
i′0, n1 − i0, p, d, d

′, i′1, i1) and g(n1 − i0, n2 − i′0, p, d, 0, n2 − i′0 − 1, n1 − i0 − 1) ≤
g(n1 − i0, n2 − i′0, p, d, d

′, i1, i
′
1). Thus we have

D′′
b (n1, n2, p, d+ 1, i0, i

′
0)

< h(n− i0 − i′0, p, d, 4np(i0 + i′0))
2

· (1− p)i0(n2−i′0−1)+i′0(n1−i0−1)
(

1− p+ p(1− p)i0+i′0

)

·



1 +

n2−i′0−1
∑

i1=1

(

n2 − i′0 − 1

i1

)

(

(1− p)−i0 − 1
)i1

· (1− f(n, p, d, i1 + i′1))
i1g(n2−i′0,n1−i0,p,d,0,n2−i′0−1,n1−i0−1)

)

·



1 +

n1−i0−1
∑

i′1=1

(

n1 − i0 − 1

i′1

)

(

(1 − p)−i′0 − 1
)i′1

· (1− f(n, p, d, i1 + i′1))
i′1g(n1−i0,n2−i′0,p,d,0,n1−i0−1,n2−i′0−1)

)

< h(n, p, d+ 1, i0 + i′0)
2

· (1− p)i0(n2−i′0−1)+i′0(n1−i0−1)
(

1− p+ p(1− p)i0+i′0

)

·
(

1 +
(

(1− p)−i0 − 1
)

(1− f(n, p, d, 4np(i0 + i′0)))
g(n2−i′0,n1−i0,p,d,0,n2−i′0−1,n1−i0−1)

)n2−i′0−1

·
(

1 +
(

(1− p)−i′0 − 1
)

(1− f(n, p, d, 4np(i0 + i′0)))
g(n1−i0,n2−i′0,p,d,0,n1−i0−1,n2−i′0−1)

)n1−i0−1

< h(n, p, d+ 1, i0 + i′0)
2
(

1− p+ p(1− p)i0+i′0

)

·
(

(1− p)i0 +
(

1− (1− p)i0
)

(1− f(n, p, d, 4np(i0 + i′0)))
g(n2−i′0,n1−i0,p,d,0,n2−i′0−1,n1−i0−1)

)n2−i′0−1

·
(

(1− p)i
′
0 +

(

1− (1− p)i
′
0

)

(1− f(n, p, d, 4np(i0 + i′0)))
g(n1−i0,n2−i′0,p,d,0,n1−i0−1,n2−i′0−1)

)n1−i0−1

.

We note that g(n2 − i′0, n1 − i0, p, d, 0, n1 − i0 − 1, n2 − i′0 − 1), g(n1 − i0, n2 −
i′0, p, d, 0, n2 − i′0 − 1, n1 − i0 − 1) < nd−1 and so, using Lemma 5.7, we thus have

D′′
b (n1, n2, p, d+ 1, i0, i

′
0) < h(n, p, d+ 1, i0 + i′0)

2

· (1− f(n, p, d+ 1, i0 + i′0))
i0(n2−i′0−1)g(n2−i′0,n1−i0,p,d,0,n2−i′0−1,n1−i0−1)+i0

· (1− f(n, p, d+ 1, i0 + i′0))
i′0(n1−i0−1)g(n1−i0,n2−i′0,p,d,0,n1−i0−1,n2−i′0−1)+i′0 .

We can deduce that (n2−i′0−1)g(n2−i′0, n1−i0, p, d, 0, n2−i′0−1, n1−i0−1)+1 ≥
g(n1, n2, p, d+1, 0, i0, i

′
0) and (n1 − i0 − 1)g(n1 − i0, n2 − i′0, p, d, 0, n1 − i0 − 1, n2 −

i′0 − 1) + 1 ≥ g(n2, n1, p, d+ 1, 0, i′0, i0) and so we have (77).

The rest of the cases can be proved similarly.

We can deduce that Db(n, nj , p, d, i0) ≤ Db(n − 1, nj − 1, p, d, i0). Thus we have
n(b1, b2) ≤ sn1n2Db(n− 1, nj − 1, p, d, 2) whenever b1 and b2 are not the same pair
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of vertices with each pair having at least one vertex in the partite set consisting
of nj vertices. Also, when d is even, and b1 and b2 are two pairs of vertices with
one pair having its vertices in the partite set consisting of n1 vertices and the
other pairs having its vertices in the partite set consisting of n2 vertices we have
n(b1, b2) ≤ sn1n2D′′

b (n1n2, p, d, 1, 1). Hence we can use (69) and (77) to get an
upper bound. Thus, by the Turán sieve, for even d ≥ 2, we have

P (G(n1, n2, p), d)

<

∑2
j=1

(

(

nj

2

)2
Db(n− 1, nj − 1, p, d, 2) +

(

nj

2

)

Db(n, nj , p, d, 1)
)

+ 2
(

n1

2

)(

n2

2

)

D′′(n1, n2, p, d, 1, 1)
(

∑2
j=1

(

nj

2

)

Db(n, nj , p, d, 1)
)2 − 1

=

∑2
j=1

(

nj

2

)2
Db(n− 1, nj − 1, p, d, 2) + 2

(

n1

2

)(

n2

2

)

D′′(n1, n2, p, d, 1, 1)
(

∑2
j=1

(

nj

2

)

Db(n, nj , p, d, 1)
)2

− 1 +
1

∑2
j=1

(

nj

2

)

Db(n, nj , p, d, 1)

<





2
∑

j=1

(

nj

2

)

(1− pd)
(n−nj)

(

(n1n2)
d−2
2 +

∑

d−2
2

l=1 (n1n2)
d−2
2

−l(p1−2l+p−2l)
)





−2

·









2
∑

j=1

(

nj

2

)2

h(n− 1, p, d, 2) (1− f(n− 1, p, d, 2))
2·gb(n−1,nj−1,p,d,d′,2)





+2

(

n1

2

)(

n2

2

)

h(n, p, d, 2)2 (1− f(n, p, d, 2))
g′
b(n2,n1,p,d,d

′,1,1)+g′
b(n1,n2,p,d,d

′,1,1)

)

− 1

+
1

∑2
i=1

(

ni

2

)

(1− pd)
(n−nj)

(

(n1n2)
d−2
2 +

∑

d−2
2

j=1 (n1n2)
d−2
2

−j(p1−2j+p−2j)

)

and for odd d ≥ 3, we have

P (G(n1, n2, p), d) <
n2
1n

2
2Db(n− 1, n1 − 1, p, d, 2) + n1n2Db(n, n1, p, d, 1)

n2
1n

2
2Db(n, n1, p, d, 1)2

− 1

=
Db(n− 1, n1 − 1, p, d, 2)

Db(n, n1, p, d, 1)2
− 1 +

1

n1n2Db(n, n1, p, d, 1)

< (1 − pd)
−2

(

(n1n2)
d−1
2 +

∑

d−1
2

j=1 (n1n2)
d−1
2

−j(p1−2j+p−2j)
)

h(n− 1, p, d, 2)

· f(n− 1, p, d, 2)2·gb(n−1,nj−1,p,d,d′,2)

− 1 +
1

n1n2(1 − pd)

(

(n1n2)
d−1
2 +

∑

d−1
2

j=1 (n1n2)
d−1
2

−j(p1−2j+p−2j)

) .

12. Restricted Results for Bipartite Graphs for diameter d ≥ 3

We impose further restrictions on n1, n2, and p in Theorem 11.2 to make our
result more clear and meaningful. The result is Corollary 12.1.
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Corollary 12.1. Let d ≥ 3 be fixed. Suppose that (29) and (30) hold. Also
suppose that n1 ≤ n2 and

(78) n1− 2
d−

1
d2 ≤ n1.

Suppose d is even. Then we have

P (G(n, p), d) > 1−
(

n2

2

)

(

1 + 4d+1dn
−1

2d2

)

(1−pd)n
d/2
1 n

d/2−1
2

(

1 +
n1(n1 − 1)(1 − pd)(n1n2)

d/2−1(n2−n1)

n2(n2 − 1)

)

.

and

P (G(n, p), d) <
2(1− pd)−n

d/2
1 n

d/2−1
2

(

1 + 2n
−1

2d2

)

n2(n2 − 1)

(

1 +
n1(n1 − 1)(1 − pd)(n1n2)

d/2−1(n2−n1)

n2(n2 − 1)

)−1

+ 4d+3dn
−1

2d2 .

Suppose d is odd. Then we have

P (G(n1, n2, p), d) > 1− n1n2

(

1 + 4d+1dn
−1

2d2

)

(1− pd)(n1n2)
d−1
2 .

and

P (G(n1, n2, p), d) <
(1− pd)−(n1n2)

d−1
2

(

1 + 2n
−1

2d2

)

n1n2
+ 2 · 4d+2dn

−1

2d2 .

We prove Corollary 12.1. Suppose (29), (30), and (30) all hold. As in the proof
of Corollary 6.1, we derive (31) and (32). As well, we can derive that

16(4np)d−3

7
≤ n1 − 1.

Thus we can apply Theorem 11.2 for d′ = d − 3. Suppose d is even. Then d ≥ 4.
From (29), (30), and (78), we can derive

gb(n, nj, p, d, d− 3, 1) >

(

n− nj −
(4np)d−3

1− 1
16n2p2

)d/2(

nj − 1− (4np)d−4

1− 1
16n2p2

)(d−2)/2

> (n− nj)
d/2n

d/2−1
j

(

1− 4d(np)d−3

63(n− nj)
− 1

nj
− 4d(np)d−4

252nj

)d/2

> (n− nj)
d/2n

d/2−1
j

(

1− 4d(np)d−3

63(n− nj)
− 4d(np)d−3

252nj

)d/2

> (n− nj)
d/2n

d/2−1
j

(

1− 4dn
−1
2d − 1

2d2

63
− 4dn

−1
2d − 1

2d2

252

)d/2

> (n− nj)
d/2n

d/2−1
j

(

1− 4d−3dn
−1
2d − 1

2d2

)

,(79)

gb(n− 1, nj − 1, p, d, d− 3, 2) >

(

n− nj −
2(4np)d−3

1− 1
16n2p2

)d/2(

nj − 2− 2(4np)d−4

1− 1
16n2p2

)(d−2)/2

> (n− nj)
d/2n

d/2−1
j

(

1− 2 · 4d−3dn
−1
2d − 1

2d2

)

,(80)
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g′b(n2, n1, p, d, d− 3, 1, 1) >

(

n1 − 1− (4np)d−3

1− 1
4np

)d/2(

n2 − 1− (4np)d−3

1− 1
4np

)d/2−1

> n
d/2
1 n

d/2−1
2

(

1− 1

n1
− 8(4np)d−3

7n1
− 1

n2
− 8(4np)d−3

7n2

)d/2

> n
d/2
1 n

d/2−1
2

(

1− 9(4np)d−3

7n1
− 9(4np)d−3

7n2

)d/2

> n
d/2
1 n

d/2−1
2

(

1− 9 · 4d−3n
−1
2d − 1

2d2

7
− 18n

−5
2d − 3

2d2

7

)d/2

> n
d/2
1 n

d/2−1
2

(

1− 9 · 4d−3n
−1
2d − 1

2d2

7
− 18n

−1
2d − 1

2d2

7 · 216

)d/2

> n
d/2
1 n

d/2−1
2

(

1− 4d−3dn
−1
2d − 1

2d2

)

,(81)

and

(82) g′b(n1, n2, p, d, d− 3, 1, 1) > n
d/2−1
1 n

d/2
2

(

1− 4d−3dn
−1
2d − 1

2d2

)

.

Substituting in (31), (32), and (79) into the lower bound in Theorem 11.2, we obtain

P (G(n1, n2, p), d) > 1−
2
∑

j=1

(

nj

2

)

(

1 + 4ddn
−1

2d2

)

(1− pd)
(n−nj)

d/2n
d/2−1
j

(

1−4d−1dn
−1
2d

− 1
2d2

)(

1−4d−2dn
−1
2d

− 1
2d2

)

> 1−
2
∑

j=1

(

nj

2

)

(

1 + 4ddn
−1

2d2

)

(1− pd)
(n−nj)

d/2n
d/2−1
j

(

1−2·4d−1dn
−1
2d

− 1
2d2

)

.

(83)

As in the proof of Corollary 6.1, we deduce

P (G(n1, n2, p), d) > 1−
2
∑

j=1

(

nj

2

)

(

1 + 4d+1dn
−1

2d2

)

(1− pd)(n−nj)
d/2n

d/2−1
j

= 1−
(

n2

2

)

(

1 + 4d+1dn
−1

2d2

)

(1 − pd)n
d/2
1 n

d/2−1
2

(

1 +
n1(n1 − 1)(1 − pd)(n1n2)

d/2−1(n2−n1)

n2(n2 − 1)

)

.

Also, from (30), we have

(1− pd)
−2n

(

∑

d−2
2

l=1 (n1n2)
d−2
2

−l(p1−2l+p−2l)
)

< (1− pd)−2n(
∑∞

l=1 nd−2−2l(p1−2l+p−2l))

< (1− pd)
−16nd−3p−2

3 .

Also, from (29) and (30), we have

16pd−2nd−3

3
≤ 16n

−3
2d − 1

d2

3
<

16n
−1

2d2

3
<

1

3 · 4d−2d
≤ 1

192
.

Thus we can deduce

(1− pd)
−16nd−3p−2

3 < 1 +
192n

−1

2d2

191
.
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Thus




2
∑

j=1

(

nj

2

)

(1 − pd)
(n−nj)

(

(n1n2)
d−2
2 +

∑

d−2
2

l=1 (n1n2)
d−2
2

−l(p1−2l+p−2l)
)





−2

<





2
∑

j=1

(

nj

2

)

(1− pd)(n−nj)(n1n2)
d−2
2





−2
(

1 +
192n

−1

2d2

191

)

.(84)

Similarly, we obtain




2
∑

j=1

(

nj

2

)

(1 − pd)
(n−nj)

(

(n1n2)
d−2
2 +

∑

d−2
2

l=1 (n1n2)
d−2
2

−l(p1−2l+p−2l)
)





−1

<





2
∑

j=1

(

nj

2

)

(1− pd)(n−nj)(n1n2)
d−2
2





−1
(

1 +
384n

−1

2d2

383

)

.(85)

Note that by (31), (32), (36), (80), (81), and (82) we have

h(n− 1, p, d, 2) (1− f(n− 1, p, d, 2))
2·gb(n−1,nj−1,p,d,d−3,2)

<
(

1 + 4ddn
−1

2d2

)

(1− pd)
2

(

1−4d−1dn
−1
2d

− 1
2d2

)

(n−nj)
d/2n

d/2−1
j

(

1−2·4d−3dn
−1
2d

− 1
2d2

)

<
(

1 + 4ddn
−1

2d2

)

(1− pd)
2

(

1−2·4d−1dn
−1
2d

− 1
2d2

)

(n−nj)
d/2n

d/2−1
j

<
(

1 + 4ddn
−1

2d2

)3

(1− pd)2(n−nj)
d/2n

d/2−1
j

(86)

and

h(n, p, d, 2)2 (1− f(n, p, d, 1))
g′
b(n2,n1,p,d,d−3,1,1)+g′

b(n1,n2,p,d,d−3,1,1)

<
(

1 + 4ddn
−1

2d2

)2

(1− pd)
2

(

1−4d−1dn
−1
2d

− 1
2d2

)

(

n
d/2
1 n

d/2−1
2 +n

d/2−1
1 n

d/2
2

)

(

1−4d−3dn
−1
2d

− 1
2d2

)

<
(

1 + 4ddn
−1

2d2

)4

(1− pd)n
d/2
1 n

d/2−1
2 +n

d/2−1
1 n

d/2
2 .

(87)

Substituting (84), (85), (86), and (87) into the upper bound in Theorem 11.2, we
obtain

P (G(n1, n2, p), d) <
(

1 + 4ddn
−1

2d2

)5

− 1

+

2(1− pd)−n
d/2
1 n

d/2−1
2

(

1 + 384n
−1

2d2

383

)

n2(n2 − 1)

(

1 +
n1(n1 − 1)(1 − pd)(n1n2)

d/2−1(n2−n1)

n2(n2 − 1)

)−1

<

2(1− pd)−n
d/2
1 n

d/2−1
2

(

1 + 384n
−1

2d2

383

)

n2(n2 − 1)

(

1 +
n1(n1 − 1)(1− pd)(n1n2)

d/2−1(n2−n1)

n2(n2 − 1)

)−1

+ 4d+3dn
−1

2d2 .
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Suppose d is odd. Similarly to how we derived (79), we derive

gb(n, nj , p, d, d− 3, 1) >

(

n2 −
(4np)d−3

1− 1
16n2p2

)
d−1
2
(

n1 − 1− (4np)d−4

1− 1
16n2p2

)(d−1)/2

> (n1n2)
d−1
2

(

1− 4d−3dn
−1
2d − 1

2d2

)

(88)

and

gb(n− 1, n1 − 1, p, d, d− 3, 2) >

(

n2 −
2(4np)d−3

1− 1
16n2p2

)
d−1
2
(

n1 − 2− 2(4np)d−4

1− 1
16n2p2

)
d−1
2

> (n1n2)
d−1
2

(

1− 2 · 4d−3dn
−1
2d − 1

2d2

)

.(89)

Substituting in (31), (32), and (88) into the lower bound in Theorem 11.2, we obtain

P (G(n1, n2, p), d) > 1− n1n2

(

1 + 4ddn
−1

2d2

)

(1− pd)
(n1n2)

d−1
2

(

1−4d−1dn
−1
2d

− 1
2d2

)(

1−4d−3dn
−1
2d

− 1
2d2

)

> 1− n1n2

(

1 + 4d+1dn
−1

2d2

)

(1− pd)(n1n2)
d−1
2 .

Similarly to how we derived (84), (85), and (86) we also have

(1− pd)
−2

(

(n1n2)
d−1
2 +

∑

d−1
2

l=1 (n1n2)
d−1
2

−l(p1−2l+p−2l)
)

< (1 − pd)−2(n1n2)
d−1
2

(

1 +
192n

−1

2d2

191

)

,(90)

(1− pd)
−

(

(n1n2)
d−1
2 +

∑

d−1
2

l=1 (n1n2)
d−1
2

−l(p1−2l+p−2l)
)

< (1− pd)−(n1n2)
d−1
2

(

1 +
384n

−1

2d2

383

)

,(91)

and

h(n− 1, p, d, 2) (1− f(n− 1, p, d, 2))
2·gb(n−1,nj−1,p,d,d−3,2)

<
(

1 + 4ddn
−1

2d2

)3

(1− pd)2(n1n2)
d−1
2 .(92)

Substituting (90), (91), and (92) into the upper bound in Theorem 11.2, we obtain

P (G(n1, n2, p), d) <
(

1 + 4ddn
−1

2d2

)4

− 1 +

(1 − pd)−(n1n2)
d−1
2

(

1 + 384n
−1

2d2

383

)

n1n2

<
(1− pd)−(n1n2)

d−1
2

(

1 + 2n
−1

2d2

)

n1n2
+ 4d+2dn

−1

2d2 .

13. Directed Bipartite Graphs for diameter d ≥ 3

Using the above methods, we can obtain similar results about the probability
of a random directed bipartite graph with n1 and n2 vertices in the partite sets
having diameter d where each directed edge is chosen independently with probabil-
ity p. Furthermore, for any two vertices, say v1 and v2, the existence of the edge
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from v1 to v2 has probability p, while the existence of the edge from v2 to v1 also
occurs with probability p, and these two edges occur independently. We proceed
exactly as above the only changes being as follows. We multiply the second term
in (64) by si0nj , multiply the right-hand side of (65) by si0nj , multiply the sec-
ond term in (66) by si0(n−nj), multiply the right-hand side of (67) by si0(n−nj),

replace the factor of si1i
′
0 with si1i

′
0+(i0+i′0)(n−nj) in (71), replace the factor of

si1i
′
0+i′0 with si1i

′
0+i′0+(i0+i′0)nj in (72), replace (s − r)i0−l1+i′0−l2+l1i

′
0+l2i0−l1l2 and

si0i
′
0−l1i

′
0−l2i0+l1l2 with (s − r)i0−l1+i′0−l2+l1i

′
0+l2i0 and si0(n2−l2)+i′0(n1−l1) respec-

tively in (74), replace si0i
′
0 with si

′
0n2+i0n1 in (75), and replace n1n2,

(

n1

2

)

,
(

n2

2

)

, and
(

nj

2

)

wherever they occur with 2n1n2, n1(n1−1), n2(n2−1), and nj(nj−1) respec-
tively. The only other extra consideration is in our calculation for n(b1, b2) where
d is odd and we may have both pairs of vertices each consisting of a vertex from
each of the partite sets, but where the paths concerned start at vertices in opposite
partite sets. To deal with this case, we would define C′′′

b (n, nj , r, s, d+ 1, i0, i
′
0),

which we define the same way as the function C′
b (n, nj , r, s, d+ 1, i0, i

′
0), except we

consider directed paths from the i0 vertices to vertex v, and directed paths from
the vertex v′ to the i′0 vertices and this case can be dealt with in exactly the same
way as C′

b (n, nj , r, s, d+ 1, i0, i
′
0). Consequently, in Theorem 11.2 and Corollary

12.1, we multiply the second term of the lower bounds by 2, divide the last term of
the upper bounds in Theorem 11.2 by 2, divide the first upper bound in Corollary
12.1 by 2 and divide the the first term in the second upper bound in Corollary 12.1
by 2 to get the analogous results for random directed bipartite graphs. Everything
else is left unchanged.
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