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SIEVE METHODS IN RANDOM GRAPH THEORY

YU-RU LIU AND J.C. SAUNDERS

ABSTRACT. In this paper, we apply the Turdn sieve and the simple sieve de-
veloped by R. Murty and the first author to study problems in random graph
theory. In particular, we obtain upper and lower bounds on the probability
of a graph on n vertices having diameter d for some d > 2 with edge prob-
ability p where the edges are chosen independently. An interesting feature
revealed in these results is that the Turan sieve and the simple sieve “almost
completely” complement each other. As a corollary to our result, we note that
the probability of a random graph having diameter 2 approaches 1 as n — co
for constant edge probability p = 1/2. This is an appendix of a shorter version
of this paper.

1. INTRODUCTION

For the purpose of analyzing the random graphs in this paper, we first introduce
two sieves known as the simple sieve and the Turan sieve, which were introduced
in [4]. These sieves can be described in terms of a bipartite graph. Let X be a
bipartite graph with finite partite sets A and B. For a € A and b € B, we denote
by a ~ b if there is an edge that joins a and b. Define

degb=#{a€A:a~b} and w(a)=#{be B:a~b}.
For b1,bs € B, we define
n(bl,bQ) = #{a cA:a~ bl,a ~ bz}

In [4], R. Murty and the first author derived an elementary sieve method, called
the simple sieve, which states that

#{a€ A:w(a) =0} > A=) degh.
beB

In the same paper, they also adopted Turan’s proof about the normal order of
distinct prime factors of a natural number [6] to prove that

Zbl,bgeB n(b1, b2)
(>pep degbd)?

#{a€ A:w(a) =0} <|A]?- —|A].
The above result is called the Turdn sieve.

In this paper, we apply both the simple sieve and the Turén sieve to study
problems about random graph theory. First, we need the following definition.

Definition 1.1. The diameter of a graph G is defined as the maximum number of
edges in G that are needed to traverse from one vertex to another in G where we
exclude paths that backtrack, detour, and loop.
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Let G(n,p) denote the set of all simple graphs on n vertices where each edge
is chosen independently with probability p. In 1981, Bollobés [I] obtained sharp
asymptotic results for the probability of a random graph from G(n,p) vertices
having diameter d for any fixed d > 2 with n — oco. Here we extend his results
and obtain concrete upper and lower bounds on the probability of a random graph
from G(n, p) having diameter at most d where n, p, and d are fixed. The results of
Bollobés’s follow if we let n — co. We also study analogous questions for random
k-partite graphs having diameter d with & > 2. Although our approaches work
for general diameter d, to better illustrate the methods, Sections 2, 3, and 4 will
be dedicated to stating and proving our results for diameter 2 or diameter 3 in
the case of random bipartite graphs. The rest of the sections will then be devoted
to proving generalised results for any d > 2. In those later sections, for the three
types of graphs we consider (graphs in general, k-partite graphs for any fixed k > 3,
bipartite graphs) we first impose some restrictions on the values of n and p and
then for clarity impose further restrictions on the values of n and p to make our
results more meaningful. Here is one of the main theorems of the paper.

Theorem 1.2. Let G(n,p) denote the set of all simple graphs on n vertices where
each edge is chosen independently with probability p. Also, let P(G(n,p)) be the
probability of a graph from G(n,p) having diameter 2. Then
n?(1—p*)"*(1-p)

2

P(G(n,p)) 21—

and X
2 8 P )n
+—-(14+—— .
(n=121-p>)*(1-p) n < (1-p)?
Corollary 1.3. Let P(G(n,p)) be defined as in Theorem [[.2] If p = %, then we
have

P(G(n,p)) <

4n2(3/4)"
9 .

In the case p = %, Gilbert [3] showed that ‘almost all’ graphs are connected.
Since a graph with diameter 2 is connected, the above result provides an explicit
bound for Gilbert’s result.

In the situation where the edge probability p — 0 as n — oo, we will show the
following corollary.

Corollary 1.4. Let P(G(n,p)) be defined as in Theorem [[.2] Let lim,_,ocp = 0.
We have

P(G(n,1/2)) > 1 -

2

(1) P(G(n,p) 2 1= (1+ o(1)) e ™™
and
(2) P(G(n,p)) < (1 +o(1)) <%enp2> (1+ tne” 6.

Suppose further that
lim (2logn — np? —log2) = ¢

n—r oo

for some ¢ € R\{0}.
1) If ¢ > 0, we have
P(G(n,p)) < (1 +o(1))e".
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2) If ¢ < 0, we have
P(G(n,p)) = (14 0(1))(1 —€).

We will also study analogous problems for random directed graphs in the ap-
propriate sections of this paper. As we noted in Corollary [[L4] the upper bound
we obtained through the Tuédn sieve works effectively for ¢ > 0, while the lower
bound we obtained through the simple sieve gives a non-trivial result for ¢ < 0. It
is interesting to see that the Turan sieve and the simple sieve “almost completely”
complement each other in this way.

2. GRAPHS WITH DIAMETER 2 WITH THE SIEVES

In this section, we use the Turdn sieve and the simple sieve to prove Theorem
.2

Proof. For a fixed n € N, let G(n,p) denote the set of all graphs on n vertices
with edge probability p, and let P(G(n,p)) be the probability of a graph from
G(n,p) having diameter 2. Consider the function g, : [0,1] — [0,1] defined as
gn(x) := P(G(n,p),z). There are 9™ graphs in total in G(n,p). Let us say M
of these have diameter 2 and label these as G1, Ga,...,Gp. For 1 <i < M, let k;
denote the number of edges in GG;. Then the probability of selecting the graph G;
from G(n,p) according to the edge probability z is x*i (1 — x)w’k Therefore,

n(n—1) n(n—1)

gn(x) = (1 —z) 2 Rk —a)T 2 R pakv(—g)

n(nzfl) _kM '
Thus, for each n € N the function g, is continuous. Therefore, we may assume that
p€ QN (0,1) since QN (0,1) is dense in [0, 1].

Let p = £ where r = 7(n),s = s(n) € N. We let A be the set of all graphs in
G(n,p), allowing for a number of duplicates of each possible graph to accommodate

the edge probability p. We accomplish this by letting there be r(5) copies of the
complete graph, r(3) (f — 1) copies of each graph with (Z) — 1 edges, r(3) (f — 1)2
copies of each graph with (g) — 2 edges, and so on. By the binomial theorem we
have

(3)

_ (3)) K ()=t _ (2)
Al = r(s —r)\2 = s\2/,
=3 (1)
We let B be all pairs of vertices so |B| = (g) For a graph a € A and a pair
of vertices b € B, we say a ~ b if the pair of vertices b in a do not share a
common neighbouring vertex and are not neighbours themselves. Thus, we will
have w(a) = 0 if and only if a is connected with diameter at most 2.

Pick a pair of vertices b € B and call them v; and v5. To calculate deg b, we need
to calculate the number of graphs in A such that the pair of vertices do not have a
common neighbouring vertex and are not neighbours themselves. For each of the
potential (n — 2) neighbouring vertices, we need to consider two edges, making sure
at least one of them is not in the graph. Since each potential edge contributes a
factor of r or (s — r) depending on whether it is in a specified graph, we have

D(r,s,n) :=degb=((5s— )2 +2r(s —7))" (s — T)(S(g)*Q("*Q)*l)

_ (52 _ T2)n_2(8 _ T)S(g)72(n72)71'
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It follows that
(n) —1)(1 = 2\n—2 1—
Zdegb:“"(" )( 2p) 1-p)

beB

By the simple sieve, we obtain

n(n—1)(1 —p*)" (1 —p)
2
n*(1—p*)" (1 -p)
> .

P(G(n,p)) 21—

(3) >1-

We now try to get an upper bound for P(G(n,p)), in which we need to estimate
> by .boen M(b1,02). In the following, we calculate n(b1, b2), depending on how many
vertices by and by have in common.

Case 1. Suppose that by and bs are two pairs of vertices that have no vertices in
common, i.e., by and by consist of 4 distinct vertices. For each of by and by, the
probability that the pair of vertices in question are not connected by an edge nor
have any common neighbouring vertices is

D(r,s,n)
s(3)

As is the case for calculating deg b, for each of the pair of vertices by and by, we need
to consider pairs of edges for each potential neighbouring vertex. If the potential
neighbouring vertex is among the remaining n — 4 vertices, then the pair of edges to
consider with respect to b; will be disjoint from the pair of edges to consider with
respect to by. The only real problem to consider is when the potential neighbouring
vertex is among the pair of vertices b; and by where we have four possible edges to
consider. These observations give rise to

D(r,s,n)? s*((s —r)t+4r(s —7)% + 2r2(s — 1)?)

n(by, bz) = S(g) ) (s2 —r2)4 ’

and thus

Z n(bl, b2)

b1,bo€B, 4 vertices
<n>2D(T,s,n)2
< —
2 s(2)
T =) AT 1) 4207 - 1))
(p=2—1)*

Case 2. Take two pairs of vertices b; and b, that have exactly one vertex in
common, i.e., by and by consist of 3 distinct vertices. We can do a similar kind of
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analysis of edge selection as in Case 1 to calculate

Z n(bl,bg)

bi,b2€B, 3 vertices
D(r,s,n)?n(n —1)(n —2) 1 nd
n 1+ ——= —2 -1
s(3) pA+p2-p -1
< D(r,s,n)2n(nn— 1)(”—2) (1+ pS >n3'
s(3) (1-p)

Case 3. Suppose by and bs have two vertices in common. Then the two pairs are
identical, and we have

n(bl, bg) = deg b.
It follows that

s(g)n(n -1 —-p*)" %1 —-p)
Z n(by,by) = Z degb = 5 .

b1,b2€B, 2 vertices beB
Combining Cases 1 — 3, we get

S by, by) < <Z>2D(z(7s)n)2 ' <1 * %>

2

b1,b2€B
D(T, s, n)Qn(n — 1)(n _ 2) p3 n—3
: 0 =)
] 1)(12— P)"*(1-p)

By the Turéan sieve, we deduce

P(G(n,p))
< 2 + 2 (1 - >n_3
“am-1)QA-p)"2(1l-p) n (1-p)
4 3
+ L 3
(1-p)
Notice that
3 3 3 n
P 1 D 1 p
— (1 — (1
1—p? <n< - >2> <n< +<1—p>2>
It follows that
2 8 p? "
4 P(G(n,p)) < +— <1 + ) ,
@ (Gl = =g T U T
By @) and @) Theorem [[2 follows. O

We now prove Corollary [[.41

Proof. By Theorem we have

w2 (1-p)" " (1-p?) (1 p)
. .

P(G(n,p)) >1-—
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Since p~2 > 1, we have

-2 .2 2

n 2 n
(5) e’ (1-p?) P« (1 —p2)p e,
Since lim,_,~, p = 0, we have that

lim (1—-p?) =1 and lim (1—p) =1,

n—r oo n—r oo

from which we get

n2 2
(©) P(G(n.p)) = 1= e (1+o(1)).

For the upper bound, first note that
3 n np2 np3
8 1+ P < 2e . 4ne((1*p>2 _"p2) .
n (1-p)? n?
Combining this with Equations (@) and (&), we get

2P’
P(G(n.p)) < —
(n—=12(1-p*)™ (1-p)
np? np3
+ 26—2 . 4ne((1fp)2 7np2) .
n
Note that for n € N with %e"pz > 1, we have
2
(7) (—26"”2> (1 +4ne"p2(p_l)) > 1.
n

In particular for those n, the bound in Theorem is trivial. Thus, it suffices to
consider n € N such that

2 2
—e"P < 1.
n2
Label all such n € N as n1,ng,...,n;,... such that n; < ng < --- If there are only

finitely many, then for sufficiently large n, we will have Equation () and so the
bound in Theorem is trivial. Thus, we may assume that ni,ng,...,n;,... is an
infinite list. Since p depends on n, at least in this proof, we will sometimes denote
p by p(n) in the rest of this proof. Then for all j € N, we have

n;p(n;)? < 2logn; — log2,

and so
. . —1/2
i np(n;)* = jlggo(njp(nj)?)?’ﬂ”j =0
We also have
(8) lim n;p(n;)* =0 and lim p(n;)? = 0.
j‘)OO J*}OO

Note that if 0 <z <1 and y > 1, then (1 —z)¥ > 1 — zy. Thus, if n;p(n;)* > 1,
then

2
ng)

(1= p(n)))"™"
Suppose that njp(n;)? < 1. Then we have

>1-— njp(nj)4.

n; "j2
(1= p(ny)?)""") > 1= p(ny)2.
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Thus, by Equation (8], we have

lim (1 —p(nj)2)njp(nj)2 =1

Jj—o0

1
lim n;p(n;)?|1- —— | =0.
i) ( a —p(nj>>2>
Also, notice that

1
nj nj 3 1—7
plns) ( (1—p<nj>>2>

()3
= n;p(n;)* (p(n;) —1) — (M - njp(nj)2> :

and

(1 —p(ny))?
We thus obtain
2
9) P(G(n,p)) < (14 0(1)) (ﬁenpz) (1+ aneo0)
Now we suppose further that
(10) lim (2 logn — np2 — log 2) —=c
n—oo

for some ¢ € R\{0}. Then we have

. np? .
lim (logn — — | =¢
n—oo 2

for some ¢ € R. Since lim,, ,o, p = 0, it follows that

lim (log n+np® — np2)
n—oo

2 2
= lim logn — - + (np? — L
n— o0 2 2

= —00.
Thus, we have
(11) nem” (P =1) — o(1).
Also, by Equation ([I0), we have
2
(12) —em’ = et (1+0(1))
and
n2 2
(13) —e " =ef(14 0(1)).

2
By Equations (@) and (I3]), we obtain

P(G(n,p)) >1—(1+o0(1))e".
Also, by Equations (@), (), and ([I2]), we obtain
P(G(n,p)) < (1+o0(1))e™".
This finishes the proof of Corollary [L4 O

Remark 2.1. Assume that n > 200 and p < 1/2. The o(1) in [ can be made ex-
.. 2 . .. 4(logn)?42 3e®(21logn)®/?
plicit as 4p* and the o(1) in (2] can be made explicit as - +p+ )

nl/2
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Remark 2.2. Using the above methods, we can obtain similar results about the
probability of a random directed graph on n vertices having diameter 2 where each
directed edge is chosen independently with probability p. Furthermore, for any two
vertices, say v; and va, the existence of the edge from v; to vy has probability p,
while the existence of the edge from vy to v1 also occurs with probability p, and
these two edges occur independently. More precisely, in Theorem [[L2] Corollary
[3] and Corollary .4l we multiply the second term of the lower bound by 2, divide
the upper bound by 2, and we add log2 to our expressions for c. Everything else
is left unchanged.

3. ANALYSIS OF k-PARTITE GRAPHS FOR DIAMETER 2

Here we apply our analysis to k-partite graph sets for k& > 3. First, we present
a definition.

Definition 3.1. Let k > 2. A simple k-partite graph is an undirected graph whose
vertices can be divided into k sets, such that there are no edges between two vertices
in the same set.

We exclude the bipartite case (k = 2) because the only bipartite graph that has
diameter 2 is the complete bipartite graph; we analyze that case by itself in the
next section.

Convention 3.2. For each k-partite graph, we label the k partite sets of the graph
in a non-decreasing order in terms of the number of vertices each set contains. Thus,
the ith set is a set containing n; vertices.

Theorem 3.3. Fix & > 3 and for each n € N, n > k + 2, pick ni,ng,...,ng € N
such that ny < no < ... < ng, ng_1 > 2, and ny +ng + --- +nx = n. Let
n®) = (ny,n9,...,n;) and let G(n™, p) denote the set of all k-partite graphs with
the partite sets having n1,ng, . .., ny vertices respectively where each edge is chosen
independently with probability p. Also, let P(G(n®),p)) be the probability of a
graph from G(n(k), p) having diameter 2. Then

P(G(n™,p))
o p)n T
2
MM (1 — 2\—Np_1 71€2 2 1— 2\Ng—MNg—1—Nk—2
_(1+ ng-1(1—p?) n nj 1 ( P)2 )
ng 3n;;

>1

and
P(G(n™,p))
< 2 ( L 2ua(l —p2>‘"“<1—p)>1
ng(nk — 1)(1 = p?)n—me (nk —1)
3 n—mg
30 (14 ) (1-p?)2
(nk—1—1)
Proof. As in the proof of Theorem [[.2] we may assume that p € Q N (0,1) for all

n € N.
Let p = £ where r, s € N. As in the proof of Theorem [[L2] we let A be the set of

all graphs in G (n(k), p), allowing for a number of duplicates of each possible graph

+
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to accommodate the edge probability p. Since the complete k-partite graph has
t:= Zl§i<j§k n;n; edges, we have r! copies of the complete bipartite graph and
|A| = st.

We let B be all pairs of vertices. Thus, |B| = "("2_1). For a graph a € A and
a pair of vertices b € B, we say a ~ b if the pair of vertices b in a do not share a
common neighbouring vertex and are not connected by a single edge. Thus, we will
have w(a) = 0 if and only if a is connected with diameter at most 2. For each pair

of vertices b € B that are in the ¢th partite set for some 1 < i < k, we will have

D(r,s,n,n;) := degb
=((s =) 42r(s — )" ((s — 1) + r)t7 22
— (1 _ p2)n7m5t'

For each pair of vertices b € B with one vertex being in the ith partite set and the
other in the jth partite set where i < j, we have

D(Tv S, 1, Ny, nj)
= degb
= ((s =7)* +2r(s — )" ((s — 1) ) 2R (1 — p)
= (1 —p?)" (1 - p)s”.

It follows that

Z degbd

beB
LIy
=3 (5)a-rres B an -y,
i=1 1<i<j<k
By the simple sieve, we obtain
P(G(n™, p))
2 _ n2\n—n
>1- ni(l—p*)n=ne
2
I (1 — 2\—ng_1 7]{2”27 1— 2\ —Ng_1—Nk_2
.(14_ ng—1(1 —p*) I r ( p)2 )
Nk 3ng

To get an upper bound for P(G(n®), p)), we need to estimate > by bwen 101, b2).
Similar to the proof of Theorem [[.2] by calculating n(b1,b2) based on the number
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of vertices b; and by have in common, we can get

Z n(bl, bg)

b1,bo€B
2
< (Xpepdegd) 1 4p?
< EB BT (14 Lo
s 1= 1PP
3D D B 3 M—MNg—Nkg—1—"Nk—2
+TL (T,S,n,nk,nk 1) (T;Sanvnkvnk 2) 1+ p
st(1 —p?)? (1-p)
N k\ ning—1D(r, s,n,nk, ng—1)> 14 pd O\
2 st (1-p)
k2("2’“)nk_1D(r,s,n,nk)D(r,s,n,nk,nk_l) p? T T -1
P 2 L+
st(1—p?) (1-p)
N kn3D(r, s, n,ng)? ( 3 )"n’“

1 s
s M)

Then, by the Turan sieve, we get

+

2
ng (g — 1)(1 = p?)n—ms

P(G(n®,p)) <

(nk — 1)
3 n—mg
38 (1+ ) (1 =p?)2
_l’_
(nk—1 —1)
This completes the proof of Theorem [3.3 O

By substituting p = 3, we deduce from Theorem B3 the following.

Corollary 3.4. Let P(G(n™,p)) be defined as in Theorem B3l If p = %, then we
have
P(G(n™,p),1/2)

L REAPT ( m)e TR (34
- 2 Nk 3n3 ’

In the case when p — 0 as n — 0o, we have the following.

Corollary 3.5. Let P(G(n™, p)) be defined as in Theorem B3l Let lim,, o p*(n—
ng) = 0. We have

n2e—v*(n=mi)

PG, p) 2 1 :

2 —p? Mg —Nf—
: <1+ %61’2%71 <1+ Tk*ng_1e P~ (ni—nk 2)))
Mk 6n;€
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and
(14) P(G(n™, p))
2 -1
2ep” (n=mk) 2n)—
<(1+ 0(1))672 (1 4 Mep%kl)
ny. ng
T e LR s e
1+ .
2(nk,1 — 1) (nk,1 — 1)
Suppose further that
(15) lim (lognk_l —logn — p2nk_1) = —00,
n—oo
(16) lim (2logn + (p* — p*)(n — ny,) — logny_1) = —oo,
. 3,2 _ 2 —
(17) nhﬁngo ((p® = p*) (n — nk) + p°ni—1 + logn) 00,
and that
2ng_
lim (2logny —p*(n —ng) —log2+1log (1 + ZTh1 s =c
n— 00 Nk

for some ¢ € R.
1) If ¢ < 0, we have

P(G(n(k),p)) >1—(14o0(1))e".
2) If ¢ > 0, we have
P(G(n™,p)) < (1+o(1))e "

Proof. Since lim,, o p*(n —ng) = 0 and p=2 > 1, for n — oo, by similar reasoning
as in the proof of Theorem [[.2] we have

e~ (1 —pz)p72'p2("_"") S e P (n—ny) (1- pz)p2(n—nk)
= e P () (1 4 o(1))
and
eP -1 < (1 —p2)7p72'p2"k*1 < eP k-1 (1 _pz) —p’ng 1
= "™ (14 0(1)).

Thus the first term in the upper bound of P(G(n®, p)) in Theorem B3 becomes
2

(18) -
ni (e = 1) (L= p2)" 707
= nZng -1
L 2o (=P 1)
(nk — 1)

2€p2(n7nk) 2ng_1 2 -1
19 =(1 1 1 L .

(19) (1o)X (1 2t

For the second term, first note that since lim,, p4(n —ng) = 0, we have

lim (n — ng)p? (@f;p) - 1) —(n—ng)p”(p—1)=0.

n—00
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Thus the second term in the upper bound of P(G(n®) p)) in Theorem B3 becomes

p3(n—ny) 3
3k3e 12 (1—p?)~2  3k3eP (n—nu)
20 = 1+o0(1)).
(20) ng—1 — 1 ng—1 — 1 ( o(1))

Combining Equations (I9) and (20)), the upper bound of Corollary B follows. Also,
by Equations (I3)), ([I6]), and ([IT), Statements (1) and (2) follow as in the proof of
Corollary [[4 O

Remark 3.6. Similar to Remark 2] all o(1) terms in Corollary 3.5 can be made
explicit.

We consider one more application of the sieves to random k-partite graphs.

Definition 3.7. The k-partite Turdn graph (named after the same P4l Turdn) on
n vertices is defined as the k-paritite graph on n vertices such that the partitioned
sets are as equal as possible. In other words, for each 1 < i < k, we have n; = L%J

orn; = [#].

In the case of k-partite Turdn graphs, we can calculate ), degb a lot more
precisely, using the above methods. Then we can prove the following.

Theorem 3.8. Let G'(n, k,p) denote the set of all Turdn k-partite graphs where
each edge is chosen independently with probability p. Also, let P(G'(n,k,p)) be
the probability of a graph from G’(n, k, p) having diameter 2. For n > 2k, we have

P(G'(n, k, p))

201 _ 2\n(1—1/k)—1

and

P(G'(n, k,p))

2k 2N\1-n/k -1 2k
S I = ) h (1 + (k=D =p7) (1 —p)) 1-=—

s \n(1—1/k)+1 -
1 (1+ ) (1—p?)2 oy
n(k —1) n '

Corollary 3.9. Let G'(n, k,p) be defined as in Theorem If p = £, we have

+

PG k122 1 - B (1 e gy ) (14 £).

In the case when p — 0 as n — 0o, we can prove the following.

Corollary 3.10. Let G'(n,k,p) be as in Theorem B.8 Let lim, o p*n = 0. As
n — 00, we have

1

nQe—np2(1—; np?
P(G'(n,k,p)) > 1= (1+ 0o(1)———— (1 + (k- 1)ek>
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and
(21) P(G'(n, k,p))
2 1 _
2ke™P (1—;) np? 1
np®—np?)(1-1/k
. (1 n 2k2ne( (p p))( /%) + 2k2ne(np3—np2)(l—1/k)+nff>
k—1

as n — 0o. Suppose further that

1 np?
lim <210gn—logk—np2 (1 — E) —log2 + log (1—|— (k- 1)ek>) =c

n—oo

for some ¢ € R\{0}.
1) If ¢ < 0, we have

P(G'(n,k,p)) >1—(1+o(1))e".
2) If ¢ > 0, we have
P(G'(n,k,p)) < (1+o(1))e "

Remark 3.11. Similar to Remark[21] all o(1) terms in Corollary B.I0lcan be made
explicit.

Remark 3.12. We can similarly derive all of the above results for directed k-
partite graphs on n vertices where each directed edge is chosen independently with
probability p. Furthermore, for any two vertices, say v; and vs, occuring in different
partite sets, the existence of the edge from vy to vy has probability p, while the
existence of the edge from vs to vy also occurs with probability p, and these two
edges occur independently. In the appropriate theorems, corollaries, and Corollarys,
we multiply the second term of the rebound by 2, divide the upperbound by 2, and
we add log 2 to our expressions for c.. Everything else is left unchanged.

4. BIPARTITE GRAPHS WITH DIAMETER 3

Here we analyze bipartite graphs in a similar way to k-partite graphs, but instead
of considering diameter 2, we consider diameter 3 since, except for the complete
bipartite graph, all bipartite graphs have diameter at least 3.

Theorem 4.1. For each n € N, n > 4, pick ni,ne € N such that 2 < n; < nsy and
ny+ng = n. Let G”(n1,n2,p) denote the set of all bipartite graphs with the partite
sets having n1 and ne vertices respectively where each edge is chosen independently
with probability p. Also, let P(G”(n1,n2,p)) be the probability of a graph from
G"(n1,ne,p) having diameter 3. Then

2(1 _ 2\n1 21 _ n2\n2—n1
P(G”(nl,ng,p)) Z 1— n2(1 p ) (1 4 nl(l p ) )

2
2 ns
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and
P(G//(nl,nz,p))
< 2 +(1+(1p”’)> (8+ 5 )
| na(ng = 1)(1 —p?)m na (1-p)

: <1 4 - DA —p2)n2n1>—1 |

ng(’ng — 1)

Proof. As in the proof of Theorem [[.2] we may assume that p € Q N (0,1) for all
n € N.

Let p = = wherer, s € N. As in the proof of Theorem[L.2] we let A be the set of all
graphs in G”(ny,na, p), allowing for a number of duplicates of each possible graph
to accommodate the edge probability p. Since the complete bipartite graph has
ning edges, we have 12 copies of the complete bipartite graph and |A| = s™1"2.

We let B be the set of all pairs of vertices such that both vertices of a pair occur
in the same partite set. Thus, |B| = (") (). For a € A and b € B, we write a ~ b
if the pair of vertices b in the graph a do not share a common neighbouring vertex.
Thus, we will have w(a) = 0 if and only if a is connected with diameter at most 3.
For each pair of vertices b € B in the set containing n; vertices, we have

D(r,s,m,n1) := degb = ((s — )% + 2r(s — r))"2((s — r) 4 7)™ "272"2,

For each pair of vertices b € B in the set containing no vertices, the ny and no are
switched in the above equality. It follows that

> degp= S S DAZP Sl S DU,
beB

By the simple sieve, we obtain

2 1— 2\no 2 1— 2\n1
P(G”(nl,ng,p)) >1— nl( 2p ) _ 7’L2( 2p )
n3(1 —p*)™ (1 L ma —pz)"“’”l)

2
2 ns

=1-

To get an upper bound for P(G"(n1,n2,p)), we need to estimate » 5, , pn(b1,b2).
Using the same argument as in the proof of Theorem [[.2] we can get

Z n(bl, bg)

bi,b2EB
B (nl) (nl - 2) D(r,s,n,n2)? N (n2> (ng - 2) D(r,s,n,n1)?
2 2 sninz 2 2 §ninz
n 2(n1> <n2) D(r,s,n,n1)D(r,s,n,na) . <1 N 4p3 >
2 2 snan2 (1—p)2
N D(r,s,n,n2)*na(ng — 1)(ny — 2) ( 3 )nl
)

p
1+
(1-p

nin2 _ 1 1 _ 2 ni _ 1 1 _ 2 na2—mni
L8 na(ng — 1)(1 — p?) 14 ni(n1 —1)(1 - p?) '
2 HQ(TLQ — 1)

sninz
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Then, by the Turan sieve, we can get

ni(m — (L =pH)mem
TLQ(’IIQ — 1) ) ’

P(G" (n1,n9,p)) - (1 +

ni(n; —1)(1 — p2)”2’”1
<MW—UOﬂﬂm(+ na(na — 1) )

2
3 8 \™ 2\2n2—2n 2™
1 (14 5) " @ =pprem (14 g25)
+ . +
Ny no
3
8”% ((1_p)2) (1 _p2)n2 "
+ p)
na

Notice that

and

It follows that

P(G"(n1,n2,p)) (1 +

ni(ny —1)(1 —p2)"2_"1>

N9 (ng — 1)
2 4ni (1 + —<1pr>)”2 (1 —p?)2re=2m
nam = (L= ) 3
3 mn1
(1 * <1p—p>) 8ni(l —p*)n2—m
+ 4+
n2 n2(1 —p)
p° \™"
2 +(1+(1—p)) (8+ 8 )
= na(ne — 1)(1 —p*)™ n2 (1-p)
from which we obtain our upper bound. This completes the proof of Theorem
41 O

By substituting in p = %, we deduce from Theorem 1] the following.

Corollary 4.2. Let P(G"(n1,nz,p)) be defined as in Theorem 1l If p = %, then
we have

P(G//(nl’nQ,p), 1/2)>1— n%(3/4)n1 <1 N n%(3/4)n2n1>

2
2 n;

and

204/3)" 24(5/4)"1) (1 L 1)(3/4)n2—n1>1 |

P(Gll(nlan%p)v 1/2) < (7’L2(712 _ 1) o TLQ(’IIQ — 1)

Remark 4.3. The upper bound given for P(G"(ni,n2,p),1/2) in Corollary
will in general only be non-trivial when ny much larger than n;. For instance, if

ny < min{ 213%&247;)%8, l"gl:é(g}‘f) 181 then the upper bound will be less than 1.
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In the situation where the edge probability p — 0 as n — oo, we will show the
following.

Corollary 4.4. Let P(G"(n1,n2,p)) be as in Theorem 1l Let lim,, o, np* = 0.
We have

2 ,—nyp?
P(G(n,p)) 21— % (1 + e21°g”1*21°g"2*("2*n1)p2)
and
2712 210n7210n7(n7n)2_1
(22)  P(G(n,p)) < (1+0(1)) [ Sem? (1+e gn1—2logna—(ns lp)
ny

. (1 + 8n26"1p2(”_1)) .
Suppose further that
lim (2 logny — 2logns — (N2 — nl)pQ) = —00,

n—o0
and

lim (2 logng — nip® — log 2) =c

n—o0
for some ¢ € R.
1) If ¢ < 0, we have

P(G"(n1,m2,p)) > 1 —(1+o0(1))e".

2) If ¢ > 0, we have
P(G"(n1,m2,p)) < (1+o0(1))e™".

Proof. By the upper bound of P(G(")-?,p) in Theorem E.I] we can get
n1(ﬂ1 _ 1) (1 _pz)n2n1>

nz(’ng — 1)

P(G"(n1,n2,p)) <1 +

(1 5)"
< 2 + (8 + ) L
na(ng — 1) (1 —p2)™ 1-p

Since lim,,—yo0 np* = 0, we have lim,, oo n1p* = 0 and so

lim nip? (% — 1) —np?(p—1)=0.

n—r oo

Also, since p~2 > 1, we have

(1=p)™ > =¥ (1— p2)"7 = emr(1 - o(1))

and
3 n1 3
1+ £) me :
( 1p << ot .n26"1p2(%—1).
N N n3
Also,
n% (1 _pg)n2*n1
ns (1 —p?)
_ teognl—Qlognz (1 _ p2)p72.(n2*n1)p2 (1 _p2)71

2

> teognl—Qlogng—(ng—nl)p2 (1 _ p2)(n2*"1)P (1 _p2)*1 )
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Since lim,,—,00 np* = 0, we have

. o\ (n2—n1)p®
nl;rrgo (1 —p ) =1.

We thus obtain our bounds. Statements (1) and (2) follow as in the proof of
Corollary [[4 O

Remark 4.5. Similar to Remark 2] all o(1) terms in Corollary [£4] can be made
explicit.
n—1

Substituting in ny = ng = § or ng = “5= and ny =

asymptotics for Turdn bipartite graphs.

”TH can lead to similar

Theorem 4.6. Let G"”'(n,p) denote the set of all Turdn bipartite graphs where
each edge is chosen independently with probability p. Also, let P(G"'(n,p)) be the
probability of a graph from G"'(n,p) having diameter 3. For n > 4, we have

(n + 1)2(1 _ p2)(n71)/2

P(G"(n,p)) 21 -

8
and
P(G""(n,p))
_ g 2 (1 + (1’1—31,))”/2 o 8
— | n(n—2)(1 — p2)n/2 N n < " (1—p)>
(n=3)(1—p")\ "
()

Substituting p = % gives the following.

Corollary 4.7. Let G"'(n,p) be defined as in Corollary Ifp = %, then we
have

(n+1)*(3/4) "D/
1 .
In the situation where the edge probability p — 0 as n — oo, we have the
following.

Corollary 4.8. Let G"'(n,p) be defined as in Corollary L6l Let lim,, o, np* = 0.
We have

P(G"(n1,n2,p),1/2) > 1 —

n2e_L§2
P(G"(n,p)) = 1= (1+0(1))—

and
»2

4 n np?
PE" ) < (1 o(1) (e ) (14 806 F 0.
n
Suppose further that
2
lim <2logn —log4 — %) =c

n—oo

for some ¢ € R.
1) If ¢ < 0, we have
P(G"(n,p)) >1— (14 o(1))e".
2) If ¢ > 0, we have
P(G"(n,p)) < (1+o0(1))e.
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Remark 4.9. Similar to Remark 2] all o(1) terms in Corollary L8 can be made
explicit.

Remark 4.10. Again, we can give analogous results for directed bipartite graphs
on n vertices where each directed edge is chosen independently with probability
p. Furthermore, for any two vertices, say v; and ve, occuring in different partite
sets, the existence of the edge from v; to vy has probability p, while the existence
of the edge from ve to w; also occurs with probability p, and these two edges
occur independently. In the appropriate theorems, corollaries, and Corollarys, we
multiply the second term of the lowerbound by 2, divide the upperbound by 2, and
we add log 2 to our expressions for c. Everything else is left unchanged.

5. INITIAL RESULTS FOR GRAPHS WITH DIAMETER d > 2

We now generalise the above results for any given diameter d > 2. In this section,
we give such a result for a graph from G(n,p) having diameter at most d for some
d > 2 with some restrictions in place for n and p. Then in the next section, we refine
this result to make it more clear and meaningful by imposing further restrictions
on n and p. First, a note.

Note 5.1. Throughout this note let

' d—2 1—(1— (4np)tip \ 4=2 1— 1_pj+1 n?
f(n,p,d,zo):zpl_I(J< 0_r) 11 % ’

(4np)‘io e

4 (6 ) 4p(n—i0—4npi0—...—(4np)d4i0)> 2-d

h dyig) :=(1—= (=
(napv 710) ( 5\3

with the conventions that h(n,p,2,ip) =1 and
4 sey4np\ 1
h’ sy 9y ) = 1—-= (_) )
(n,p, 3,1i0) < 53 )

n—1 d=2
1+ I (n 1 z;’;o(mp)%) d>3,d <d—3
9(n,p.d,dig) = { 1+ 150 Tl (n = 1 = i (4mp)io)
+ (n - zj;§(4np)%)
1828 (n —1- Z;’;O(mp)%o) d>3,d>d-3.

We will prove the following theorem.

and

Theorem 5.2. Fix d > 2, d € N. Let G(n,p) denote the set of all simple graphs
on n vertices where each edge is chosen independently with probability p. Also, let
P(G(n,p),d) be the probability of a graph from G(n,p) having diameter at most
d. Suppose that

2+ 8np + 2(4np)> + ...+ 2(4np)? <n —2
where d’ > 0. We have

P(G(n.p),d) > 1 - @h(n,p, d,1) (1 = f(n,p,d, 1))"" "D
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and

nd—2

dy-2(nd 42 2y nt 0y )
P(G(nvp)ad) < (1 -p ) ? »? et h(’fL— lapv d7 2)

(1= fln,p,d,2))* o0t
1

T G

—1+

To prove Theorem [5.2] we first need the following two lemmas.

Lemma 5.3. For all n,m € N with m < n, we have
n nAm el +1/(12n)
( ) < (L)
m m 2Tm (1 — %)
Proof. Robbins shows in [5] that for all m € N, we have

\/%merl/Qe*m . el/(12m+1)' <ml < \/%merl/Qefm . el/(lZm).

Thus we have

(n) n" 2mn e
< . eT2
m/) ~ mm(n—m)""" \2rm - \/27(n —m)

(
) (5) =
< .
nem m 2mm (1 —22)
( n )“m (n)m el/(12n)
n—m m 2mm (1 - %)
nym el+1/(12n)
<2y e
m 2mm (1 — %)

O

Lemma 5.4. Suppose f : N x N satisfies f(n,i+ 1) < f(n,i) for all i,n € N. Let
r € R, r > 0 satisfy % < 1. Then for all n € N and for all 4?_2 <t <n we have

T

zn: (?)Tif(m) < (1 - g (g)t>_l % (?)rif(n,z’).

=0 =0

4nr

Proof. First assume that n > 2 and t < n — 1. For all ¢ > 1 we have the
following;:
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Thus we have

ime1 (D)7 <1+ iz M (")t f(n, i) )
Z?o()rlf”’ P Lthrl()Tf(n i)

(1 S () (o, 12) )
iz (Prifn, [t] +1)
Die [t]+1 ( )7"

B Z?o()rz

< (LtJnH)rLtHl = 1
(1+7r)" P 4i

4(Ltjn+1)TLtH1
- 31 +r)m

IN

+

By Lemma [5.3] we have

t 1 t 1
[t] + [t] + \/27T(M+1) (1_(Ltjn+1))

( enr ) [t]+1 el/(12n)
< - S —
[t +1 2r(1 — 1/n)
(e(r—l— 1))t el/(12n)
< - _—
4 2(1 —1/n)

with the second inequality following from ¢t < n—1 and the third inequality following
from @ < § < 1. Thus we have

Sty (riflni) 40 (#54)
Yico (Drifnd) 7 3(1+r)my/2n(1—1/n)
4el/(12n) (%)t
3VT

36
3 (1)< (1-26)) % (1)

>1 ndn—1§t<n. Then we have

M O (- () O <46

Finally, 1f t =n or n = 0, then the desired result holds trivially. ([l

<
Thus

0
Now assume that

We will now prove Theorem 1.

For each n € N, let G(n,p) denote the set of all graphs on n vertices with edge
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probability p, and let P’(G(n, p)) be the probability of a graph from G(n,p) having
diameter at most d. Let p = £ where r = 7(n),s = s(n) € N. We let A be the set
of all graphs in G(n,p), allowing for a number of duplicates of each possible graph
to accommodate the edge probability p, so that

Al=> ( ; )r’%s—r)(z)-’“ =s(2).
k=0
We let B be all pairs of vertices so |B| = (g) For a graph a € A and a pair of
vertices b € B, we say a ~ b if there is no path between the pair of vertices b that

consists of at most d edges. Thus, we will have w(a) = 0 if and only if a is connected
with diameter at most d.

Pick a pair of vertices b € B and call them v; and vy. To calculate degb, we
need to calculate the number of graphs in A such that there is no path from v; to
v that consists of at most d edges. To help with this calculation, we will calculate
a generalised notion of degb as follows. Let 0 < iy < n — 1. Pick a specific set of ig
vertices out of the n labeled vertices, as well as another vertex, say v, out of the n
labeled vertices. We will let C'(n,r, s,d, o) denote the number of graphs in A such
that there is no path from any of the ¢ vertices to vertex v that consists of at most
d edges. We can derive the recursive formula

C(n,r,s,d+1,ig) = (s — T)io("_io)s(g)fi“(n%“)

n717i0 .

”_1_ZO> i io) 4 io(n—io—i1) o(°9)

+ E ) §0 —(s—r)° s—r)° 07t ) g\ 2
=1 < “ ( ( ) )

(23) -C(n —ig,r,8,d,i1)

valid for all 0 < iy <n — 1 and d > 1, which can be simplified to

’ﬂ—l—io .

_1_

Clnrsd+rio= > ("717"
i1

11=0
(24) 'C(n_i07T757d7i1)

if we assume that ig > 0. As well,

C(n,r,s,1,i0) = (s — T)i“s(g)ﬂ'“

for all 1 < 49 < n — 1, completing the formula. Then we can deduce that

C(n,r,s,d,1) = degb if we are working with diameter d. Let D(n,p,d,ig) =
W so that D(n,p,d,ig) is the probability that the edge distance between v

2
andsany of the ¢ vertices is greater than d. We will prove that for all 0 < ig <n—1,

0<p<1,d>1that

, dyio (nd 14 n 2 gm0y )
(25) D(Tl,p, d7 ZO) Z (1 -Pp ) v P P
n—1

PSSR

If we also have the additional constraint 1 < j¢ < T
+4np+(4n
d’ > 0, then we also have

(26) D(n,p, d,io) < h(n,p,d,io) (1 — f(n,p,d,ig))? s

We prove by induction on d. First, we need a few lemmas.
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Lemma 5.5. Fix 0 < 7 < 1 and let g(z) := W Then g(z) is a decreasing
function on R. Also, Fix y > 1 and let h(z) = 1_(7147:”)31 Then h(z) is a non-
increasing function on [0, 1].

1-(1—r)"
rr

Proof. Fix 0 < r < 1 and let g(z) := . Let ¢’(z) be the derivative of ¢

with respect to . Then
ar(1—r)®log(l—r)—(1—->0Q—=7)*")r

9/(35) = 2272
_z(@—r)log(l—r)) —(1—-(1—-r)7)
ra?
(1-r)*—1
< 0. "

Therefore g(x) is decreasing. Let h(z) := k(1117;x)y Let h'(z) be the derivative of

h with respect to . Then
ya(l— )L =y (1= (1—a))

h(z) = y2a2
(=2t -1
T
<0.
Thus h(z) is a non-increasing function on [0, 1]. O

Lemma 5.6. Let 0 < ¢, <1 and y > 1. We have
(1—gr) <1-q+q(1—r)".

Also, if C < % where y < M, then we also have
1—q+q(1—r) <(1-Cqr)".

Proof. We observe that the lemma holds for r = 0. Fix 0 < ¢ <1 and y > 1 and
let f(r)=1—qg+q(1—7)¥ —(1—qr)¥. Let f'(r) be the derivative of f with respect
to r. Then

Fr)=—qy(1 =)+ qy(1 —gr)? ' =qy((1—gr)?"' = (1 =)~ 1) >0,
It follows that f(r) > 0 for all 0 < r < 1 and so the first result follows. Let
C< % where y < M. From Lemma[5.5] we therefore have

— _ Y
C<M
yr

_ _ 4 a(1 — r)?
1 (1 64 r)v)
- -
_1-(—q+q—r'"
< "

Thus
1—Cqr> (1—q+q(1—r)¥)"/"
from which the result follows. O
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Lemma 5.7. Let 4,5 e NU{0}, 0 <p< 1, and ¢t > 1. Then we have
Q=P <1-p)+(1-01-p)")Q-p).

Also,letO<Cl<1,Cg<%and03<%whereM2tandN2i.
Then we also have

(1 - p)i + (1 - (1 —p)i) (1 - Clpj)t S (1 - 010203pj+1)it.
Proof. Let i,j € NU{0},0<p<1,and ¢t > 1. Applying Lemmal[5.0] twice we have

1-p)'+(1-1=-p)A-p)=01-(01-0-p)))+(1-010-p")A-p))

>(1-p (1-(1-p))
=(1-p +p(1-p))
> (1—-p/thH"

By Lemma we have

1-(1-p)" 1-(1-Cp)"

S VS V(o

Thus, applying Lemma [5.0] twice, we have
L=p)+(1-(1-p)A1-Cp)' =1~ (1-1-p))+ (1~ (1-p)) (1~ Crp)
< (1-CCip’ (1= (1-p)"))’

(
(1= CaCrp’ 4 CoChp (1 — P)i)t
(1 — C3CQClpj+l)it.

O

For d = 1, we have D(n,p,1,i) = (1 — p)’. Suppose for some d > 1 (5] holds
forall 0 <ip <nm—1,and 0 < p < 1. We will prove it holds for d + 1. First, we
can verify that (23] holds if i = 0 (in which case both sides of (28] are just equal
to 1), so assume that ig > 0. From (24]) we have

D(n,p,d+1,ig) = (1 — p)o(n=io) Z

0 i
11 =
n—1—ig . _ _
) ) — 1= ) . iv(nd-1ynt=2  nd=3, 1
D D () R T T R s S
i1=0

. . . d—1, pd—2 d—3 n—1—ip
= (1= p)olr=io) (1+((1— pTe—1)(1-ph"t T ++)

_ io io io d nd71+ndT*2+nd;3+“.+ﬁ n—1—1ip
=(1-p°(Q-p°+Q1-010-p~)Q-p9) » »
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Using Lemma [5.7] we thus have

D(n,pod + Lyi) > (1= py(1 — ptyon 1= (n 5 et o)
=1 . _2pd+1)i0 @y (1 = prtyieln—imio) (n T 2T el )
14+p+p*+...+pt)0
d+1vio (—p—p?—mp®)i A1 ig(nflfio)(nd71+"d;2+nd;3+...+ dl,l)
> (1—p™)re °(1—p™) R v

nd—

> (1— pd+1)(1+p*1+p*2+p*3+,,,+p*d)z‘o(1 _pd+1)io(n—1)("d’1+#+ 223+"'+pd1—1)

nd—1 nd—2

>(1_pd+1)io(nd+ T et )

Thus (25) is proved. Next we prove (28] again by induction on d. First, applying
Lemma [57] we have

D(napv 2, io) = (1 — p)if’(l —p +p(1 _ p)io)nflfio
< (1 —p +p(1 _p)i())’n,fl

]

Suppose for some d > 2 with any d’ > 0 (26]) holds for all 1+ 4np + (4np)? +... +
(4np)d/ <n-—2,and 0 < p < 1. We will prove it holds for d + 1. We have

n—1—ip .
: ) —1- ) )
D(n,p,d+1,io) = (1_p)10(n_10) Z (n 11 zo) ((1—p)_l°—1)“D(n—i0,p,d,il).
i1=0

We divide into three cases.

n—1 .
Case 4. Tranp < %0 <n-—1.

We have the following:

n—1—igp .

o L

D(n,p,d+ 1,ig) = (1 - p)o(n=i) 3 (n i io
1

i1=0

n—1—1ig .
s<1—m“@*“<1+ S ("7 e -

)@= = 1) D= i)
21
(1 - f(n - i07p7 d7 il))ilg(n_imp)dﬁ)il) h(n - iOapu d7 Z1)) .

We can deduce that h(n —ig, p,d,i1) < h(n — i, p,d,4dnpig) < h(n,p,d+ 1,ig) and
from Lemma 55 we can deduce that f(n,p,d, 4npip) < f(n —ig,p,d,i1). As well,
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g(n —ig,p,d,n—1—1g) < g(n —io,p,d,i1). Thus we have

n—1—1ig .
o 1 , ,
D(n,pyd+ 1,i0) < hin,p,d+ 1, i0) (1 — p)o(n=o) (” > (n ' zo)«l—p)-m—l)“

11

(1 _ f(n,p,d, 4npi0))i1g(nfi0,p,d,o,nflfi[)))

= h(n,p,d+1,ip)(1 — p)io("_io)

(1 (15— 1)1 fGr, ., i) o010
< (1 =p)°h(n,p,d+1,ip)

’ﬂ—l—io

. . . . n—1—1ig
(=P 4 (U= (1= ) (1= (., d, dmpi) 2o mton 1) T

We note that g(n —ig,p,d,0,n — 1 —1ig) < n?! and so, using Lemma[5.7] we thus
have

D(?’L,p,d—f— 17i0)
< h(n,p,d+1,ip)

- ig(n—io—1)g(n—io,p,d,0,n—1—1ig)+io
(1- 1—(1—pdyn'! ’
1—- P > < b >f(n,p,d, 4npio)>

Dio nd—1pd

(
= h(n,p,d+1,i0) (1 = f(n,p,d + 1,ig)) 0" ~o~Deln=iopdOn=1io)tio

We can deduce that (n —ip — 1)g(n —ig,p,d,0,n —1—1ig) + 1 > g(n,p,d+1,0,4g)
and so we have (26)).

Case 5. 19 < %

Given a set of i1 vertices and one additional vertex, say v, in a graph from G(n —
i0,p), we know that D(n —ig, p,d, 1) is the probability that the edge distance be-
tween v and any of the i; vertices is greater than d. By adding one more vertex to
our set of i1 vertices, it therefore follows that D(n—ig, p,d,i1+1) < D(n—ig,p,d, i1).
Thus, by Lemma [5.4] we have

Anpio

4 /e 4npio -1 . . n—1-—1 ;
1 — (= _ p)io(n—io) 0 _ —t0 __
D, p,d+1,i0) < (1 - (3) ) (L =p)ormo) 37 ( )((1 P)

i1=0

<(1-56)") e
| (1 * Z (” L ) (1=p)7 1)

l)llD(n - iOapv dvil)

: (1 - f(n - i07p7 d7 il))ilg(n_imp)dﬁ)il) h(’l’L - iOapu d7 Z1)) .

We can deduce that h(n —ig,p,d,i1) < h(n —ig, p, d, 4npip) and from Lemma 5.5
we can deduce that f(n,p,d, dnpig) < f(n—1ig,p,d,i1). As well, g(n—ig,p,d,0,n—
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1 —1ip) < g(n—1io,p,d,0,41). Thus we have

4 anpip\ T _ _
D(n,p,d+1,ig) < (1 - = (g) . ) (1= p)iotn=io)

(1 s P (R

111

! - n,p,a, TLp’LO . Tlopd0nt Tl—io,p, ) TLp’LO
(1 f( d 4 ))Z g(n ’Lopd n—1 ’Lo) h,( d 4 ))

4 anpio) 71 - - io(n—io)
- 5 (_) h(n_ZOapv d74np10)(1 _p) 0 0

nlz
¢ n—l—z
’Ll 1

0> ((1 _p)—io _ 1)1’1 (1— f(n,p,d, 4npl-0))i19("ioﬁpﬁd701n1io))

=h(n,p,d+1 zo)(l —p)loln=io)

. . n—1—1
(1= 1) (1~ f(n, . d dmpi)) om0 im0}
< h(n,p,d+1 Zo)(l — p)io

. n—1—1
(L= (L= p)) (L= £(m, . d, dpig) 000 =1=) "0

We note that g(n —ig,p,d,0,n — 1 — i) < n%~! and so, using Lemma 5.7, we thus
have

D(?’L,p,d—f— 17i0)

< h(n,p, d + 17 ZO)
_ io(n—io—1)g(n—1io,p,d,0,n—1—ig)+ig
(1- 1—(1—phn"" N\
1- .0 ) > < (’I’Ld_lpd) f(nvpa da 4np7’0)
h(n,p d"' 1 'LO) (1 _ f(n,p,d+ 1,io))io(n—io—1)g(n—i0,p,d,o,n—l—io)-i-io )

We can deduce that (n —ig —1)g(n —ig,p,d,0,n—1—1ig) +1 > g(n,p,d+ 1,0, o)
and so we have (20)).

n—1 I>
Case 6. ig < T r— +(4np)d’+1’d >0

Given a set of i1 vertices and one additional vertex, say v, in a graph from G(n —
10,p), we know that D(n —ig, p,d, 1) is the probability that the edge distance be-
tween v and any of the i; vertices is greater than d. By adding one more vertex to
our set of i1 vertices, it therefore follows that D(n—ig, p,d,i1+1) < D(n—ig,p,d, i1).
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Thus, by Lemma [5.4] we have

4 dnpio\ ! o Amio gy _ _
Do+ o) < (1-3 (5)™ ) @=peno 3 ("7 - 0D g

5 \3 i1=0 11
4 /e 4npio -1 ) .
__(z _ p)to(n—io)
< (1 - (5) ) (1-p)
4npig 11— _ _
<1+ 2 < 0)«1 —p) -1t

'Ll 1
: (1 - f(n - i07p7 d7 il))ilg("—iO,P,d7d/7i1) h(’l’L - iOapu d7 Z1)) .

We can deduce that h(n—ig, p,d,i1) < h(n—ig,p, d,4npip) and from Lemma[5.5 we
can deduce that f(n,p,d,dnpig) < f(n—1io,p,d,i1). As well, g(n—1ig,p, d, 4dnpip) <
g(n —ig,p,d,i1). Thus we have

D(n,p,d+ 1,ig)
<13 <§>4”“'°)1 1=y
<1+4§0< )((1— p)~ — 1)

(1= f(n,p.d, dnpig)) /" 0P LA gy — o, p, d, Ampi)

4 anpip\ T _ _
= (1 5 (g) P 0) h(n — i, p, d, dnpio)(1 — p)o ")

n—1—1ig

1= ) . ) » / )
1+ > (" ’°)<<1—p>-m—1>“ (1= f(n,p, d, 4npio)) " ’)

111

. . . . ’ . n—1—1
= h(n7p7 d+ 1720)(1 - p)’to(n*m) (1 + ((1 _p)*lo - 1) (1 - f(n7p7 d7 4npi0))g("_7’0)p)d7d 74”1”0)) '

’n,f’L'o —1

< B p,d+1yi0) (1= p) ((1=p) + (1= (1= p)*) (1= f(n,p.d, dnpig)) "ot 4nrio))

We note that g(n — ig, p,d,d’, 4npiy) < n?~! and so, using Lemma [5.7] we thus

have

D(n7p5d+1710 <h(n,p d+1 Zo)

— io(n—io)g(n—io,p,d,d’ ,dnpig)-+io
1 _ 1-(1— pd nd—1 . 0
<1 0 )" > < (nd_lp; F(n, p, d, 4npio)
(

=h n,p, d + 1 z0) (1 - f(’l’L D, d + 1 io))iO(n_iO)g(n_iO)p)d7d/74npi0)+i0 .

We can deduce that (n—ig— 1)g(n —io,p,d,d’, dnpig) +1 > g(n,p,d+1,d" 4+ 1,4g)
and so we have (20)).

By (26), we have

Z degb < s(3) <Z> h(n,p,d,1) (1 — f(n,p,d, 1))9(%:0,(1161',1) '

beB
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Hence, by the simple sieve, we have
P(G(n.p),d) > 1 - <’;’> h(n.p,d,1) (1= f(n,p,d, )7 P

We now calculate n(by, b2) to get an upperbound for Zle P(G(n,p),i) using the
Turén sieve. If the two pairs of vertices by and bs are the same, then we just have
n(b1,by) = degb. If by and bs have exactly one vertex in common, then we can see
that n(by,b2) = C(n,r,s,d,2) and use (20). Hence the only question is when the
two pairs of vertices are disjoint.

As in our calculations for degb, to help calculate n(by,bs) in this case, we will
calculate a generalised notion of n(by,bs) as follows. Let 0 < ip < n — 2 and
0 < iy < n—2 where ig + i < n — 2. Pick two disjoint sets of vertices having
io and i( vertices out of the n labeled vertices, as well as two other vertices, say
v and v', out of the n labeled vertices. We will let C'(n,r,s,d, io,i)) denote the
number of graphs in A such that there is no path from any of the iy vertices to
vertex v that consists of at most d edges, as well as the requirement that there is
no path from any of the i{, vertices to the vertex v’ that consists of at most d edges.
If ig = 0, then we have C’(n,r,s,d,ig,iy) = C(n,r,s,1,4)) and if i, = 0, then we
have C'(n,r, s,d,i9,15) = C(n,r,s,1,4). So suppose that ig, iy > 0. Then we have

C'(n,r,s,d+1,ig,iH) < Z

i1=0

n—2—io—if S,
n—2—1y— 1
i1

> (Sio _ (S _ T)io)il (S _ T)io(n—io—ig—il—l)

n727io*i6*i1 n—9_ iO _ i/ _ il . , 1’1 , ) L .

. Z ( y 0 ) (810 _ (S _ T‘)Z()) (S _ T,)zo(n—zo—zo—zl—zl—l)
i, =0 “

(27)

(9ot (Q) iotinio o o (5 — i — il v, s, d, iy, 1))

valid for all 1 <, ify <n — 3 with ig + 4o <n —2, and d > 1. As well,
C'(n,r,s,1,i0,44) = (s — T)ioﬂ[gs(g),io,ié

for all 0 < ig,iy < n — 2 with iy + 4 < n — 2, completing the formula. Then we
can deduce that C(n,r,s,d,1,1) = n(by, be) if we are working with diameter d. Let

D'(n,p,d,ig,i4) = Lnl)ng) so that D’'(n,p,d, g, i) is the probability that the
2
edge distance between v and any of the i vertices is greater than d and that the

edge distance between v" and any of the 4(, vertices is greater than d. We will prove
that for all 0 <ig,ip <n—2,i0+ip <n—2,0<p<1,d>1that

(28) D'(n,p,d,ig,i4) < D(n—1,p,d,io + ig)-
For d =1, we have
D' (n,p,1,i0,ih) = (1 — p)©ti = D(n —1,p,1,io + i)

so (28) holds for d = 1. Suppose for some d > 1 28] holds for all n € N, 0 <
10,00 <n—2,ip+ iy <n—2,0<p<1. We can see that [28) holds if ¢ = 0 or
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iy = 0. So assume that 0 < 49, iy < n — 3 with iy + i <n — 2. First we have

n—2—ig—ij,

— 2 — g — 1 g ) o
D'(n,p,d+ 1,ig,1p) < E (n ; 0 ZO> (1-(1-p¥)' (1 — p)lo(n—io=ip—i—1)
- 1
11:0

n—2—ig—ip—i1

n—2—ip—ih—iy 2\ it (n—io—il, —iy —i! —
B (2 ) e

i
i =0

/ . . .
-D (TL — 10 —19,D, dvllvll)

n—2—io—i .,
io(n—io—ip— n—2—ip—1 _ i
< gy ST (TR TR (1 )
i1=0 !
NIRRT 9 g — i —i
./ . . — — — — ./ 1
(1 = p)lo(n—io=ip=ir—1) ( Z-O/ 0 1) ((1 —p)~to — 1)
=0 !
1

-D(n—1—1ig — iy, p,d, i1 + }).
Writing k = 41 + 4, we have

n—2—ig—ij, ) y
L, o, — 9 —
D'(n,p,d + 1,ig, i) < (1 —p)lotio)n—io=t=1  §~ <” klo ZO)D(n —1—ig— i), p,d, k)
k=0
k

(=p =) S (F)a=me -yt a-p o (a - -1)

41=0

_il

n—=2—io—ig

=(1- (i0+ip) (n—io—iy—1) n—2—ip—ig Din—1—in—i v.dk
- p) Z k (’I’L 20 10, P @, )
k=0

k o \—io—ih _ (1 _ »\—ih i
: ((1 —p) o — 1)k Z (Zkl) <(1 pzl —p)_%(i 1 ) )

11 =0

n—2—ig—i, ) )
_ (1 -ty (M2
k

>D(n— 1—ip — iy, p,d, k)
k=0

(I1—p)~o—1

n—2—io—i . .
’ (n —2—ip— i

. ((1 —p)_ié _ 1>k (1 n (1 _p)—io—i6 . (1 _p)_i())k

= (1 — p)liotio) (n—io—ig—1) Z .

)D(n— 1 —ig — iy, p,d, k)
k=0

L k
: ((1 —p) T = 1)

Suppose we have n — 1 labeled vertices. Pick ig of these vertices where 0 < ig <
n — 2 and another vertex v among the n — 1 vertices. The number of graphs from
G(n — 1,p) on these n — 1 vertices such that there is no path from any of the i
vertices to vertex v that consists of at most d edges is C(n —1,7,s,d, ip) where % is
the edge probability. Adding one more vertex to these n labeled vertices, we can see
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that s"1C(n — 1,7,s,d,i9) > C(n,r,s,d,ip). We deduce that D(n — 1,p,d,ip) >
D(n,p,d,ip). Thus we have n(by,bs) < S(Z)D(TL —1,p,d,2) whenever by and by are
not the same pair of vertices and hence we can use (28] to get an upper bound.
Thus, by the Turan sieve, we have

N2D(n—1,p,d,2) + (2)D(n,p,d, 1)

(2)°D(n,p, d, 1)

_ D(n—1,p,d,2) 1+ 1
~ D(n,p,d,1)? (5)D(n,p.d, 1)

-1

P(G(n,p),d) < (

,d—2  ,d—3

d—1 7
< (= py 2T ) i~ 1 pd, 2) (L= f(n — 1, p, d, 2))F A0 )
1

D ) )

—1+

6. RESTRICTED RESULTS FOR DIAMETER d > 3

Here we impose further restrictions on n and p in Theorem to make our
result more clear and meaningful. Since the case d = 2 was treated in Section 2,
we assume d > 3.The result is Corollary [6.1]

Corollary 6.1. Let d > 3 be fixed. Suppose that

(29) na~1 §p§n%+2;2_1.
Also suppose that
(30) (4%d)** < n.

Then we have

n

P(G(n,p),d) >1— (2

) (1—pH™ (1 + 4d+1dn%)
and

2(1 —pd)_"df1 (1 + 2n%)
nin —1)

P(G(n,p),d) < + 4% 23

We prove Corollary 61l Suppose that 29) and @B0) hold. From (23)) and (30),
nt/d =1
we have 2 < n'/? < np. From (B0), we can derive that 4d (%)3 < 4ddnz® < 1.
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Also, from (29) and (B0), we can deduce that + + 16@’;% < %. Thus

2—d
h(n,p,d,1),h(n —1,p,d,2) _ % (g) R L
nl/d
( SON )

nl/4

(™)
<1+4d( )3
(31) <1+ 4%naa.

with the last two inequalities following from (B0). Also, from ([Z9), we have
pd—lnd—2 < (n;erfl)d*l nd—2 — n;—;—ﬁ'
Also, from ([B0), we have
44 1gn =~ T < 497 1g(4%d) "t =

Thus, from ([29), we have that both 1— f(n,p,d,1) and 1— f(n, p,d,2) are bounded

above by
1— 1 — ) (4np)i a—2 1— (1 _pj+1)nj
bop H ( 2(4np)? Jl;ll nipitl
i\ d—2 - L
2p(4np)’ — 4p* (4np)* nIpitl — p2ip2i+2
<l-—p H ( ( ) 7 ( ) H —
i=0 2(4np)’ i nJpl
d—2 _
=1- dH 1—2p4np H 1_n.7p]+1
=0 j=1
<1l- d(1—2p(4np)d 2)2d ’
<1-p*(1—-4% p?ind=2)
p? -
<1-p'(1-4" )

<<1—pd><1*4d’1<d*””2_5 =) (%)

. (174d71(d71)n;_;7ﬁ7) (knﬁlm )
< (=79

—1 1
(1—4‘1*1an*@>

(32) < (1-p
From (29) and ([B0), we can derive

2(4 d—1
(np)1 <n-

4dnp
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Thus we have

d—1
(4np)?—?
gn,p,d,d=1,1)> [n—1— ——=—
T dnp
d-3\ 41
> (n —1 - M)
7
1 4dn172_1d 2d2 -t
> In—-1- 56
1

(33) > pd-t (1 — 4d72dn%72d2)
and
d—1
2(4np)?d—3
g(n—l,p,d,d—1,2)><n—2— —
4np
d—3\ 41
o (n _g_ 16(4np) >
7
2 4dn1 2d 242 -t
>(n—-2- 78

(34) > pd-1 (1 —4d—2dn5—i*#).
Substituting in (31), B2]), and (B3] into the lower bound in Theorem (.2 we obtain

n 1 nd71<172~4d’2dn;_;7ﬁ2_> <1f4d71dn;_;7ﬁ7>
PG ) > 1= () (1+ atans ) (-

(35)

L,
- nd=1(1-2.49"1dn2d " 242
>1—(;‘> (1+4ddna5)(1—pd) ( )

From (29) and ([BQ), we have

plat=t (2040 an w3 ) < 2040 Tn s < L

[\)

Thus, from (30), we obtain

1
242

2-4d’1dn%

_pd-1 _
(36) (1 - p%) ( ) <1+ 4%dnza.
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Thus we deduce

P(G(n,p), ( ) ! (1 +3. 4ddn%)

>1- < > dyn ! (1 +4d+1dn%)
Also, from 29) and @B0), we have

(l—pd)72( e =Y < (1 — py=2n "8/ 2np)).

and 3 1
3p”l_1nd_2 < 377,5_‘11 547 < 37”L2d2 < m =61
Thus we can deduce
1
(1 _pd)72(nd71)(3/(2np)) <1+ 64n2a <1+ 4ddn2d2
Thus
(37) (1 p) =2 )A+3/@np) < (1 )20 (1 + 4ddnﬁ) .

Similarly, we can obtain

(38) (1 _pd)f(ndfl)(lJrB/(an)) <( _pd)ind—l <1 N %nm;) |

Substituting in BII), B2), (4), Ba), B7), and @B8) into the upper bound in The-

orem [5.2] we obtain

*1<4ddn%7ﬁ) - 2(1 —pd) (1 + 133712112)

P(G(n,p),d) < (1 + 4ddni17>2 (1 —pd)_

21— ph) " (1+ 12nz)
n(n—1)

n(n—1)

_ 4
< (1+4ddnﬁ) 1+

2(1 _pd),nd71 (1 + %nzoﬂ
n(n—1)
with the second inequality following from (B8] and the third inequality following

from (B0I).

< ) + 4942 3z

7. DIRECTED GRAPHS FOR DIAMETER d > 2

Using the above methods, we can obtain similar results about the probability
of a random directed graph on n vertices having diameter d where each directed
edge is chosen independently with probability p. Furthermore, for any two vertices,
say vy and vg, the existence of the edge from vy to ve has probability p, while the
existence of the edge from vy to vy also occurs with probability p, and these two
edges occur independently. We proceed exactly as above the only changes being

as follows. We replace the factor of s(¥) in @3) and @4) with s~V replace

the factor of s(%)+ioio+(3 0) o kinig+i with sCotio)n+ai in (27), and replace (5)
wherever it occurs with n(n — 1). Consequently, in Theorem and Corollary G.11
we multiply the second term of the lower bound by 2, divide the last term in the
upper bound in Theorem [5.2] by 2, and divide the first term in the upper bound in
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Corollary [6.1] to get the analogous results for random directed graphs. Everything
else is left unchanged.

8. ANALYSIS OF k-PARTITE GRAPHS FOR DIAMETER d > 2

Here we analyze the diameters of k-partite graphs for some fixed k& > 3. Let
G(n1,na,...,ng,p) denote the set of all simple k-partite graphs with partite sets of
size n® vertices respectively where each edge is chosen independently with prob-
ability p. Here we obtain upper and lower bounds on the probability of a random
simple k-partite graph with partite sets of sizes n® vertices with independent edge
selection having diameter at most d for any specific d > 2, d € N. Again, anal-
ogous to our treatment of the random graphs G(n,p), we impose restrictions on
ni,Ng,...,Nk, and p. Then in the next section, we refine this result to make it
more clear and meaningful by imposing further restrictions on ni,ns,...,nk, and
p. We use the following notation:

Notation 8.1. Let

[ngal]lgggk = {(21712771k)0§7/l Snl_17V1 S]Skuj#l OSZ] STL]},

i) = (ig 1,02, - - 0 k)s
i = (ir1,01.2, - i1),
n® .— (n1,n2,...,nk)

Note 8.2. Throughout this note let

u (n(k)a m,q, l) = Z Ty My = = Ty, s

(11,02, yim ) E[K]™ 01#

U1 (n(k)a i(O)vpa m,q, l)

= > (niy — Li(i1) — do,iy ) (niy, — Li(d2) — do,i, — 4n4,pi0) (i — d0,i5 — 4nispio — 4niyp(4npio))
(11,02, yim ) E[K]™ 01#

- (ni, — Li(ia) — do,i, — 4ni,pio — 4ng, p(4np)io — 4ng, p(4np)*io)

(i, — 1y(im) — d0.4,, — 4nq,,pio — 4ng, p(dnp)io — ... — 4n,, p(4np)™ %iy),
and
V2 (n(k)u i(0)7p7 m,q, l)
= > (niy — Li(i1) — to,iy ) (i, — Li(i2) — d0,i, — 4niypio)

(151200 v ) €[] 017
- (iy — 11(i3) — d0,i5 — 4nizpio — 4ni,p(4npio))
< (ni, — Li(ia) — do,i, — 4ns,pio — 4ng, p(4np)io — 4ng, p(4np)*io)
(M = Li(im—1) = 0,1y, — 4N, pio — 4ng,,_, p(4np)io — ... — 4n;,_ p(4np)™ i)
(i, — 1y (im) — d0.4, — 4nq, pio — 4n,, p(dnp)ip — ... — 4n,, p(4np)™ >iy),
where

[K]™ 007 = { (i1, 9, i) 11 # @i A LYL <G <m—1 ij #ij1}
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and
1 z=1
]l[(fL‘) =
0 z=#1
with the conventions that
U1 (n(k)v i(O)apv 15 q, l) = V2 (n(k)7 i(O)apv 15 q, l) = Z (n’il - ]]-l(ll) - 7;0,1'1)
(i) Elk] a2
and
v2 (H(k)7 i©,p,2,q, l) = Z (14, =Ly (i1) =0,i, ) (i, — L1 (32) — 0,4, — 414, Pio).
(i17i2)€[k]1’q‘l’¢
Also, let
k . . . 2 . d—5 .
4 /e 4p(nj710’j74n]‘p107(4np)4nj;mof(4np) 4dn;pig—...—(4np) 4nj;mo)
h ( ). 7d7-<o>) - 1-2 (_)
E\n 7, p,a,1 H 5\3

j=1

with the conventions that hyj, (n®), p,2,i(®) =1,

hi (%9, ,3,i) _Jﬁ <1 - g (g)%p)l ,

and
k . —2
4 e\ 4p(n;—io ;)
i) =T (- 3(5)7 )
k n 7p5 71 H 5 3
7j=1
Also, let
n—mn d=2,7=1
n—n; —n d=2,j#1
L+ Y04 0 (009,50, pom, j,1) j#1,d>3,d <d—3
S v (0®5© pom,i 1) j=1d>3,d <d-3

19,1, p,d d', i) =
n 1JI Y Y Y 71 * —
o (051 L+ 3202 o (00,19, pom, 1)

+vp (0§ pd—1,5,1)  j#Ld>3,d>d-3
S92 (009,10, pom, 1,1)
+v (n®, i@ p.d—1,1,1) j=1,d>3,d>d-3

and

9 (n(k) Jbp,d,d i(o>) — J Ik (05,1, p,d +2,d',i) d22,d <d-2
S RXTY 2NN gk(n(k),j,l,p,d—i-2,d—2ai(0)) d>2,d >d—2.

We will prove the following theorem.

Theorem 8.3. Fix d > 2, d € N. Let G(n(k),p) denote the set of all simple
k-partite graphs with partite vertex sets of sizes mi,no,...,n; and where each
edge is chosen independently with probability p. Also, let P (G (n(k), p) ,d) be the
probability of a graph from G (n(k), p) having diameter at most d. Suppose that

8n;p (1 +dnp + (4np)® + ... + (4np)dl_1) <n;—4

2—d
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for all 1 < j < k where d’ > 0. We have

k .
P«%n“%pxd>>1——§j(§>hkOﬁ”Jxmlﬂﬂ(1—f0undJJf““““*“¢”4“)
=1

= Y mgmih (n%9p,d 19) (1= f(n,p.d, ) (I AE D)

1<j<I<k
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and

P(G(a%p) ) [ X (7;) (1= ptySma b P STy (1 p) o e

=1 1<j<i<k

) ("z (n—1) (e —2) + (7;1) (m . 2)) hi (n“‘) —1W 4.2 1<1>)

1<i<k

N

(0 fnp,d,2))o (00 L 210)

+ Z <7’Ll (nl — 1) g + 2(7;) (nl - 2) nj> hk (n(k) — ]_(1),p7 d, 1(1) + ]_(J))
1<j#I<k
(1= f(n,p,d,2))o (01 LLpd.d 10410 g (00010l p.d.d 10 +1D)

+ Y (uny (ny — 1) g (g — 1) (ny — 1)) hy, (n(k) —1W, p,d,2- l(j))
1<jAI<k

. (1 — f(n P d 2))2gk(l'l(k)71(1),j,l,p,d,dl,2-1(j))

n n 7 (pk) _1012) 7 1(11) 4 102)
F () (e (000109 20 (1 (2 T )

2
1<l #l2<k

(1= f(n,p,d, 2))92(n“‘)—1<‘1>,zz,lz,p,d,d/,l“v+1<12))

+ > n?n; ng,hi (n<k> 10 5 g 100 4 1(j2))

1<j1,j2,l<k
1,71,j2 all distinct

. (1 _ f('rL,p, d, 2))9’9(n(k)*1(1),j1,l,p,d,d’,l(jl)Jrl(jz))Jrgk(l’l(k)71(1),j2,l,p,d,d’,1(jl)+1(J'2))

ny : ‘(a0 —102) 1y 1) b d.d/, 101 410

1<4,l1,l2<k
7,l1,l2 all distinct

(1= f(n,p,d,2))% 0" 150 pdd 100 410)

Lilois i , . oy o
Y R (apd, 100 £199) (1 - f (n.p,d,2)) 0T L)

1<l1,l2,51,j2<k
l1,l2,j1,j2 all distinct

(L= f(n,p,d, 2))%(““‘)*1“1)JéJzypyd,d’,1“1>+1<j2))

k
_ (Z (T;l) (1 _pd)zfn’:lo u(n® m, 1, 1)pm 9t n Z njnl(l B pd)zgnleou(n(k)ymﬁjyl)pmfd*,l

1=1 1<j<i<k

n; 5t ) 1) pm—d+1 P Sl )y 5. 0)pm it
£ 30 ()4 g EE I ST 1B
=1 1<j<i<k
We will now prove Theorem [R.3

For each n € N, let G(n(k),p) denote the set of all k-partite graphs with par-
tite sets of sizes n vertices with edge probability p, and let P(G(n™,p)) be the

T

probability of a graph from G(ni,nz,p) having diameter at most d. Let p = %
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where r = r(n),s = s(n) € N. We let A be the set of all graphs in G(n®),p),
allowing for a number of duplicates of each possible graph to accommodate the
edge probability p, so that

t

=% (2) PR (s — rytk = gt

k=0

where ¢ is the number of edges in the respective complete k-partite graph. We let
B be all pairs of vertices that occur in the graph so |B| = (%) where n is the total
number of vertices. For a graph a € A and a pair of vertices b € B, we say a ~ b if
there is no path between the pair of vertices b that consists of at most d — 1 edges.
Thus, we will have w(a) = 0 if and only if a is connected with diameter at most d.

Pick a pair of vertices b € B and call them v; and vy. To calculate degb, we
need to calculate the number of graphs in A such that there is no path from v; to
v that consists of at most d edges. To help with this calculation, we will calculate
a generalised notion of degb as follows. Let 1 <! < k and 0 < 4p; < n; for all
j#land 0 <ip; <my—1. Pick a specific set of ig ; vertices out of the labeled
vertices in the partite set consisting of n; vertices, as well as another vertex, say v,
in the partite set consisting of n; vertices. We will let Cy,(n™®, 1,7, s,d,i(®)) denote
the number of graphs in A such that there is no path from any of the ig vertices
to vertex v that consists of at most d edges where the 4o vertices come from the
partite set that consists of v; vertices. Let ig = 49,1 +%0,2+...+%0,k. We can derive
the recursive formula

Ck(n(k), I,r,s,d+1, i(o))
k

S y L. . i L . . (i0—ip,j)%0,5
— > 11 (nJ 10,9 ]ll(])) (st — (5 —p)ioiod ) (5 — p)lio=iog) (=i —i1) g5t
" 11,5

i<1)€[nj7io,j,l]1§j§k j=1 J

(39)
(™ — i 1 s d, i)

valid so long as at least two of the iy ; values are nonzero. If, however, only one
of them is nonzero, say o j, then the factor (s~ — (s — r)io=i0.)" is replaced
by 1 for the respective j value. Everything else is left unchanged. Also,

Ck(n(k), l,r s, 1, i(o)) = (s — r)iot0. gt—ioFio

Then we can deduce that Ck(n(k),l,r,s,d,i(o)) = degb if all of the i ; values
are 0, except for one of them having the value 1 if we are working with diameter
k :(0
d. Let Dy, (09,1, p, d,i®) = C@Lrsdi®) o ihatr P (0,1, p, d,i©) is the
probability that the edge distance between v and any of the iy vertices is greater

than d. We will prove that for all (i(®) € [n;,{]1<j<x we have
(40) Dy (n<k>, L,p.d, i“”) > (1 — p?)Xi=rios Thsou(n®mjl)pm =

n;
i0,5+4n;pio+4n;p(4np)io+(4n;p) (4np)2io+...+(4n;p) (4np)d' —1ig

. . . ni—1
forall1<j<kwithj#1,and1 < io,L+4mpi0+4nzP(4"P)i0+(4nl:;)(4np)2i0+»»»+(4nzp)(4np)dl71i0

If we also have the additional constraints 1 <
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where d’ > 0, then we also have
(41)
Dy (n0,1,p, d,i) < e (009, p,d + 1,8 ) (1= F(n,p, d + 1,i0) > 0,591 (205Lp.d.d' i)

For d = 1, we have Dy, (n™,1,p,i(®) = (1 — p)io~io. Suppose for some d > 1 [{Q)
holds for all (i®) € [n;,{]1<j<k, and 0 < p < 1. We will prove it holds for d + 1.
From (39) we have

k . .
_ Z H (nj - 7/0.,j - ]ll(j)) (1- p)(io—io,j)("j—io,j) ((1 _ p)io,j—io _ 1)“4

k . .
. > II <”j o ]11(])) (1 — p)lio=io)(ms=ios) (1 — pyio.s=io _ 1)

i(l)e[’nj—io,j,l]lgjgk Jj=1

m—d+1

. (1 _ pd)n,j Zi;lou(n(k),m,j,l)p

nj—io,j —11(J)

k
[T = p)omo)mion) (14 (1= p)ios =0 = 1) (1 = p?) (a1
j=1

k P
— (1 _ p)(io—io,z) H ((1 _ p)io—io,j 4 (1 _ (1 _p)io—io,j) (1 _ pd)zgnleou(n(k)7m,j,l)pm*d+1>ng 0, —1:1(3) -

Jj=1

Using Lemma [5.7] and doing a change in variables we thus have

Dy (0, 1,p,d +1,i®)
k
> (1— p)io—io,z H(l _ pd+1)(i0*i0,j)(nj*]lz(j)) S u(n® m, g )pm et
j=1

k
>(1- pd+1)(1+p’1+p*2+...+p*d)(z‘o—io,1) H(l _ pd+1)(io—io,j)(nj—nl(j))an;lo u(n0 m j,1)pm a1

Jj=1

> (1 - pd+1)p7d(i0*i0wl) (1 — ptt1)lo—iog)n; S oo u(ntm g )pm et

—

<
Il
-

i0,q 351 5 2o w(n m g )pm Tt

=(1- pd+1)P7d(i0*io,z) (1 _pd+1) i£q

==

_Q
Il
-

k
(1 o pd+1)i0,q anzo u(n(k) 1m,q,l)pm—d '

q=1
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Thus Q) is proved. Next we prove [{I) again by induction on d. For d = 2,
applying Lemma [5.7] we have

Dy ( W 1 p 2 ,1<o>)

nj—t0,;—1L1(4) . i
(i0—10,5)(nj—1%0,5) TS nj =%, — ]]'l(]) 10,5 =10 11,5 01,4
(1 —p)lomioa)lni=ios) — § " : (L=p)yor= =1)" (1 —p)**”

1,5

'l:h

<
Il
—

11 ]‘:0

k

10 0,1 H 1 —p _|_p p)iofio’j)njfio,j
j=1
J#l

(1= f(n,p,2,ig)) P~ 0"

IN
I

(1 - f(n7p7 27 Zb))io,mnj

|
=
-

3
&
Ty
3 e

(1 - f(nvpa 271'0))1.0’7”(”7"”17"0-

=

= (1 - f(napv 25 7b))iuJ(ninl)

—

m
m

I

Suppose for some d > 2 (@) holds for all i(®) in the stated ranges, and 0 < p < 1.
We will prove I holds for d + 1. We divide into three cases.

<lforalll<j<kwithj#1l and —2—1 <1

Case 1. 0,1 +4nipto —

+4n Pio

We have the following;:

Dy, (n(k)7 lapu d+ 1, i(0)>

< 3 hi, (n<k> —i® p 4, i<1>)

'(1)6[nj—i0 Jilli<j<k

H (nj i0,j ]ll(j)> (1 _p)(ir)*io,j)("j*io,j) ((1 _p)io,j*io _ 1)i1’j

i1,

(1= f(n—io,p,d, il))h,jgk(n(k)—i(o),j7l,p,d70,i(l))'

We can deduce that hj (n(k) —i® p d, i(l)) < hg (n(k) —i® p d, 4npi(0)) < hy (n(k),p, d+1, i(o))
forall 1 < j <k and from Lemma[5.5] we can deduce that f(n,p, d,dnpio) < f(n—
iOvpa da 7’1) As WGH, 9k (n(k) - i(o)ajv lvpa da 07 n(k) - i(O) - 1(1)) < 9k (n(k) - i(o)vja lapv d7 Oa i(l))
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Thus we have

Dy (n<k>,z,p,d+ 1,i<°>)

(10 t0,5)(n;—to,5)

.':]»

< hg (n(k),p,d+1 i )

j:l
nj—io,; —1i(4) . . ‘
. Z (nj - 10',]‘ - ]]'l(j)) ((1 _ p)io,j—io _ 1)110'
7;11j:0 Zl"j
. 11,5 n—i i,l,p,d,0,n" —i'%) —1
(1= f(n,p,d,4npig)) 1,596 (0% =i 5,1,p,d,0,n —i(® _1D)
k
— hy (n<k>7p, d+1, i<°>) T[] (1 - ptioion(ni—ion
j=1

nj—io,j —11(J)

(4 (= PO — 1) (1 = Fm.p.d, dmpi)) (<7t on® =2 ))

= (1 —p)otoip, (n(k),p, d, 4npi(0))
k nj—io,; —L1(4)
. H ((1 _ p)m*io,j + (1 _ (1 _ p)’L'O*’L.O,j) (1 _ f‘(n7p, d, 4npl-0))gk (n(k)7i(0)7j,l,p,d,0,n(k)7i(0)71(1))) J ¥ .
j=1
We note that gr (n® —i(® j.7,p,d,0,n® —i® —10) < nd=! and so, using
Lemma [5.7] we thus have

Dk (n(k)alap7d+ lai(O))

k
< hi (n(“>,p,d+ L i ) [T (1 = f(n,p.d+ 1, ig)) oo on(n™ =1l d 0 = =20 ) 0y =i, ~ 113D
Jj=1
0,1 Z;?:l(nj —10,5)9k (n(k)7i(0),j,l,p,d,O,n(k)fi(O)71(1))
:hk (n(k)ap7d+17i(0)) (1_f(n7p7d+1720)) s

<1+z§_1<nmo,jnz<j>>gk(n<k>i<°> ,j,z,pvd,oyn<k>i<°>1“)))
(1_f(n7p7d+1710)) i7a

119-

We can deduce that
k

Z( J_ZO,J)g/C (n(k) - i(0)7j7 lapu d7 07 n(k) - i(O) - 1(1)) 2 gk (n(k)u lu lupa d7 07 i(O))
j=1
T

and

1+Z ZO,J_]]-l ))gk (n(k) - 1( )7j7 lapu d7 07 n(k) - i(o) - 1(1)> 2 9k (n(k)7 q, lapu d7 07 i(0)>
J;ﬁq
for all 1 < ¢ < k with ¢ # [ and so we have ({I).

Case 2. 1 < for some 1 < j < k with j # [, and/or 1 < —M—1__,

0,5 +4n pio i0,1+4n;pio
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We proceed exactly as in Case 1, except that for every j # [ with 1 < —

i0,;+4n;pio’

we replace the summation > 9 with Ziﬂ jm and multiply all the expres-

1,5

iy 1
sions following Dy, (n(k),l,p,d—i— 1,i(0)) < by (1 — % (%)47”17 0) . As well, if it’s

the case that 1 < milﬁ}i_nllpio’ then we replace the summation ZZL;iowfl with

me”-“ and multiply all the expressions following Dy (n(k),l,p,d—i— 1,i(0)) < by

11,1 1
(1-te5™)

R <j<
Case 3. 1 < o ot am p(anmiot (i) (i Fio -t (i (i) p 1O AL S <k
. . n;—1
with J # l’ and 1 < iOYL+4nlpig+4nlp(4np)io+(4nlp)(4np)2i0+...+(4nlp)(4np)d/io :

We proceed exactly as in Case 1, except that for every j # [, we replace the summa-
tion Z?j;m’j with Z?lnjm and multiply all the expressions following Dy, (n®),1,p,d + 1,i(?) <

1 o .
by (1 -1 (E)MJPZO) . As well, we replace the summation S27 " " with S Fm

3 i1, 01,1

|
and multiply all the expressions following Dy, (n®,1,p,d + 1,i(®) < by (1 —1 (g)”‘"””“ .

As well, we replace g (n® — i@ 5,1, p,d,0,n® —i©® — 10} with g, (0™ —i©), 5,1, p,d,d’, 4pio - n¥)
and use

k
Z(nJ_ZOJ)gk (n(k) - i(O)ajv lvpa da dl74pi0 : n(k)) Z gk (n(k)7 lv lvpa d+ 17 d/ + 15 i(O))
j=1
i
and

k
1+ Z(nj - iO,j - ]]-l(.]))gk (n(k) - i(O)vjalapv d7 d/74pi0 : n(k)) Z gk (n(k)7Qalap7d+ 17d/ + 1ai(0))
=1
;';ﬁq
for all 1 < ¢ < k with ¢ # (.
By Il), we have

k .
Ziep 48D _ 5~ (@hk (09, p,d, 1) (1 = f(n, p,d, 1)) (* Hhrd 1)

S
=1
+ 30 it (009,p,d,19) (1= f(n,p,d, 1)) ACT),
1<i<I<k

Hence, by the simple sieve, we have

k .
P(G@™,p).d) > 13" (T;l> i (009, p,d, 10) (1 = f(n, p, d, 1))+ bt 1)
=1
= > g (0%, p,d,19) (1= f(n,p, d, 1) (R AL )

1<j<I<k

We now calculate n(by, by) to get an upper bound for P (G (n(k),p) ,d) using the
Turén sieve. If the two pairs of vertices by and bs are the same, then we just have
n(b1,bs) = degb. If by and bs have exactly one vertex in common, then we can see
that n(by,b2) = Ck (n(k),l,r,s,d—l— 1,i(0)) where ip = 2, and use (26)). Hence the
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only question is when the two pairs of vertices are disjoint.

As in our calculations for degb, to help calculate n(by,bs) in this case, we will
calculate a generalised notion of n(by,bs) as follows. Let 1 <13 < kand 1<l <k.
Also, let 0 <ig j,ip ; < nj with g j+ip ; < nj for all j # 11,12, Also, if [ # la, pick
0< i07117i6,11 <n, — 1 with ’L'()yl1 + ié),h <n, — land 0 < i07127i6,l2 <n, — 1 with
i0712—|—i6712 < ny,—1. Otherwise, pick 0 < iO,llaié,ll < ny, —2 with Z'O.,ll‘H'fJ,ll < n;—2.
Let 49 = 40,1 + 90,2 + ... +%0,x and 26 = i671 + i6)2 +...+ i(),k'

First, let Iy = Iy = I. Pick two disjoint specific sets of ig; and iy ; vertices out
of the labeled vertices in the partite set consisting of n; vertices, as well as two
other vertices, say v; and vs, in the partite set consisting of n; vertices. We will let
c, (n(k), I,r,s,d,i®), i(O)/) denote the number of graphs in A such that there is no
path from any of the iy vertices to vertex v; that consists of at most d edges and
no path from any of the i(, vertices to vertex ve that consists of at most d edges.
We can derive the recursive formula

Cp (09,1, 7,s,d+1,1,1)

< ¥ D

iM €[n;—io j—if ;LUi<j<r i €lng—io,j—if ;—i1,5.L1< <k

k . . .
) H <n] - ZO-,j - Z/O-,j — 2 . ]]-l(j)) (Sigfi[),j _ (S _ ,,,,)’L‘o*io,j)il,j (S _ T)('L.O*io,j)(njfio,j71.6,]'71.1,]')
j=1

i1,

: L . .
n; —i0; —tg; —t1,;—2-1 g T ANC N i i 0 i—il —iy i—i
. ( j g~ o i1y l(ﬂ)) (Sza—za,j (s r)’o—z'o,j) " (s = ) oit) (ng—iog —ig =13 =1 ;)

. gt/ Hio+ip—ioa =it O (n<k> —i©@ 5@ s g i), i<1>’)

valid so long as at least two of the ig ; values are nonzero and at least two of the i
values are nonzero where ¢’ is the sum of the number of potential edges among the
io and i( vertices and the number of potential edges with one vertex among the 1
vertices and the other vertex among the ¢; ; vertices for all 1 < j < k. If, however,
only one of the g ; is nonzero, say io,;, then the factor (s~ — (s — r)io_iovi)“‘j
is replaced by 1 for the respective j value. The same holds if only of the ig)j is
nonzero. Everything else is left unchanged. As well,

/ - S _ i i . ./
o (n<k>,z,r,s,d,1<°>,1<0> ) = (s — r)iotio—ioa—ip, gt—io—iptio.+ip,

Let D;c (n(k)7 l,p,d, i(O), i(o)/) — C;/C(n(k),l,r,s,d,i(o),i(o) ) <o that D;C (l’l(k), I,r,s,d, i(O)7 i(o)/>
is the probability that the edge distance between v and any of the iy vertices is
greater than d and that the edge distance between v” and any of the if vertices is
greater than d. We will prove that for all (i) € [n;,1]1<j<) we have

43) D} (n<k>, Lp,d,i®, i<°>’) < Dy (n<k> —10 1 p. i@ + i<°>’) .

st

For d =1, we have

D (n® 1 p d.i® i) = (1—p)yiotic—ioi=io, — pr (k) _ 1M 7 5 1 {0 4 {0
k 9 7]97 ) 9 p k 9 7]97 )
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so (@3] holds for d = 1. Suppose for some d > 1 ([@3)) holds for all (i?) € [n;,{]1<j<k
and 0 < p < 1. Assume that two of the 4g; are nonzero and two of the ij ; are
nonzero (if the case is otherwise, then we can proceed similarly). First we have

Dj, (n(k), Lp,d+1,i®, i(o)l)

< (1 _ p)io,z-i-if),L—io—if)

2 2

. . -/ . ’ . . .
iMelnj—io,j—ip ;. bili<j<n i €ng—io,;—if ;—i1,5.L01< <k

k , , .
. H (nj —do,; — g, — 2 ]lz(])) ((1 — p)ioi—io _ 1)i1,j (1 _p)(iofio,j)(nj7i0,jfz'g,j)

j=1 .
g gl i 9. i L i g . L
) (nj 20,5 ZO’JiI ‘Zl,j 2 ]]-l(])) ((1 _p)ZU,j710 _ 1) 1, (1 _p)(loflo,j)(njflo,j710,j711xj)
1,5
. Dy (n<k> —i©@ @ 0 7 g i 4 i<1>’) '
Writing v = i) + i = (v1,v2,...,vk), we have

Dy (0, 1,p,d + 1,1, 1))

< Z Dy (n(k) —_i©® _ i(O)/ _ 1(1)7 I,p,d, V) (1— p)io,zﬂ{,’lfio,ig

: -/
vE([n;—io, iy ;blli<i<k

k ) y ) N
. (1 _p)(ig+i67ig,jfi6,j)(nj71'0,]-71'6’].) (”j ~log ~iny =2 11(])) ((1 _ p)z‘{,’jﬂ'{, _ 1) J
i=1 v
D7 wping (L= p)iT = 1) (1= p) ) (L= pyoa i — 1)
i1,j:O

Thus

< 3 D, (n<k> —i® 3@ _ 10 | pq V) (1 — p)iottiou—ioiy

: -/
vE([n;—io,j—i ;blli<i<k

k . . . v
(1 _p)(ingié)fig,j7i61j)(njfig,j7ié)yj) (”j — 0, T, 2. 11(])) ((1 _ p)iéyjf’ié) _ 1) J

Uj
1 - pyioa—io —1\"
N PNl Ul I
I= (-

Jj=1
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Thus
Dj, (n(k), Lp,d+1,i®, i(o)l)

< 3 Dy, (n<k> 3@ O 0 gy 4, v)

. =
vE[n;—io,j—ig ;> Ll1<i<k

k . . . o

L - p)tetib—ios i) m=ios =i ;- 1) ("i —loj — gy — 2 MJ)) ((1 — p)ioartio —io—iy _ 1) ’
.

Jj=1 J

— Dy, (n<k> —10 1 pd+1,i® + i<°>’) .

Thus we have [@3). Now assume that Iy # lo. Pick two disjoint specific sets of
io,; and g ; vertices out of the labeled vertices in the partite set consisting of n;
vertices, as well as two other vertices, say v, and wvs, the first being in the partite
set consisting of m;, vertices and the second being in the partite set consisting of
ny, vertices. We will let C}/ (n(k),ll,lg,r,s,d,i(o),i(o)/,i(o)”) denote the number
of graphs in A such that there is no path from any of the iy vertices to vertex vy
that avoids vertex v, and consists of at most d edges, no path from any of the
vertices to vertex vy that avoids vertex (v1) and consists of at most d edges, and no
paths from any of the i vertices to either vertex v, or v that consists of at most
d edges. We can derive the recursive formula

’ "
O//cl (n(k)vllleaTaSad+ 1ai(0)ai(0) 7i(0) )
< (S _ T.)if),ll—ifﬁ'io,b —iosif)—if),h-i'io—io,b
k . . .
. H Z ( n; —ig; — 1, (3) — L1, (4) )
=1 ) il;j7i/1,j7i/1/,j7nj - ig,/j = 1,(j) — Li,(j) — ill/,/j

0<iy j+i) ;+17 ; <nj—ig’; =11, (5) =11, (j
117 117 117 117
(s — r)(lo —ig's ) (nj—ig);—~i1%;)

-/ =17 -/ -1 : . -1 : -1 -/
(s — T)(ZOJ”O —ip j—ig 5 )ir.s+(io+ig —do ;—ig ; )ii ;

./
. il
i i s io—io ) 1,7 il —il . il —il o\ LI
. (510 Wi — (s —r)% 10,1) i (Slo Wi — (s —r)h 10,1)

-7/

-1/
. (5%’*104 _ (S _ T)Zg_zg,j i (S - ’I”)lg_zg,j (Slo_m’j _ (S _ T)lo—l(),j) (816_164 _ (S _ T)lé_z(),j)) 1,5
(44)
S 65 (00 500 () 30 @
-8 2 Cy (n —1i i, 1o, p,d, iV 1VY 1 )
valid so long as no expressions in (@) do not evaluate to 0. If, however, an

expression does evaluate to 0°, it is replaced by 1. Everything else is left unchanged.
As well,

o (n<k> I oo, s.1,i@ ;0 i<o>”) — (s—p)io 0.ty i =i 1y +2i6 i, =i 1, gt—iotio,ty —ipio,i, —2if +if 1, +id,
) 3 ) ) ) 3 ) ) :

Oy (0,1 la,mys,d,i i@

St

so that

Let D! (n(k),ll,lg,p, d,i<0>,i<0>’,i<0>”) —
Dy, (n(k),ll,lg,p,d,i(O),i(O)/,i(O)N> is the probability that the edge distance be-

tween v; and any of the i vertices is greater than d, that the edge distance between
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v, any of the i{, vertices is greater than d, that the edge distance between v; and
any of the i( vertices is greater than d, and that the edge distance between v', any
of the g vertices is greater than d. We prove that

D;c/ (n(k)a llv l?apv d7 i(O)v i(O)/a i(O)”)
< i (009, 4 1®") (1= F (n,pyd g S (03 8.)on (0091 it )
(45)

' (1 B f (n » d i/”))E?ZI (i(),j+i6l,j)gk (l’l(k)*1(11),j,l2,p,d,d,,i(0)”’)
y 17y Yy Q0

n; =11, (§) =11, (5)
io,j+ih it +(4n;p+an;p(4np)+(4n;p) (4np)2+...+(4n;p) (4np)d —1) (io+if+iy )
for all 1 < j < k where d’ > 0 by induction on d. First, two lemmas.

assuming 1 <

Lemma 8.4. Let 0 < p < 1 and 0 < Cy; < 1. Also, let y1,y2,ys3,t1,t2 > 1,
M >t +ty, and N > y1 + y2 + y3. Suppose that

1-(1—z)M
0<Cy< — 7
<tz= Mz
and
1-(1-p"
0<Cy< —
< (U3 < Np
Then

(1 _ p)y1+y2+y3 + ((1 _p)y2+y3 _ (1 _p)y1+yz+y3) (1 _ Cl,T)tl

+ ((1 _p)y1+y3 -1 _p)y1+y2+ys) (1-— le)tz

+ (1 —(1— p)yzﬂ/a —(1— p)y1+ys +(1 - p)y1+yz+y3) (1— Clx)tlthz
< (1 _ 010203$p)(y1+y3)t1+(y2+y3)t2 .

Proof. From Lemma we have

1—(1—$)M<1—(1—$)t1+t2 I—(1—-2) 1—(1—2)*

46 Oy <
( ) 2= Mz - I(tl + t2) < .Itl ’ ItQ
and

1—(1=9p)V 1—(1=p)¥1tys 1 — (1 —p)v2tys
(47) Oy < 1-p)" 1-(-p) (1-p)

Np plyr+ys) 7 ply2+ys3)
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We have the following:

(1-— p)y1+y2+y3 + ((1 _p)y2+y3 - (1 _p)y1+yz+y3) (1— Clx)tl

(L= p)H = (L= p) ) (1= Ca)'

(L= (L= p) 9 — (1= p) P40 4+ (1= )00 (1= )2
=1- ((1 —p)¥etvs — (1 —p)y1+y2+y3) (1 —(1- C’lx)tl)

- ((1 —p)¥rtys — (1 —p)y1+y2+y3) (1 —(1- Clx)t2)

— (1 —(1—p)¥2tys — (1 —p)t¥e 4 (1 — p)y1+yz+ys) (1 —(1- le)tl"rtz)
<1l-0C ((1 —p)¥2tys (1 _p)y1+yz+y3) (1 —(1- x)tl)

- ((1 — p)y1+ys —(1— p)y1+yz+y3) (1 —(1- x)tg)

- (1 -(1 _p)yz+y3 - (1 _p)y1+y3 + (1 _p)y1+yz+y3) (1 —(1- x)t1+t2)
< 1—C1Comty ((1—p)¥2H¥s — (1 — p)vrtvztes)

— C1Comty (1 — p)Vrt¥s — (1 — p)vrtyatys)

— CuCoalts + 1) (1= (1= p)Hs — (1 )t 4 (1= pyntowtus) (1 — (1 — g)fr+ta)
=1-C1Conty (1 — (1 —p)¥H¥) — C1Comty (1 — (1 — p)¥2+93)
< 1—C1C2Csprti(y1 + y3) — C1C2Cspxta(ya + ys3)
<(1- 010203Ip)(y1+y3)t1+(y2+y3)t2

with the first inequality following from Lemma 5.5 the second inequality following

from (Gl), and the third inequality following from (@X). O
Lemma 8.5. Suppose f1, fa, f3, fa : N x N all satisfy f,(n,i+1) < fy(n,i) <1 for
alli,n € Nand 1 < ¢ < 4. Let r1,72,73 € R, 71,72, 73 > 0 satisfy % < 1.
Then for all n € N and for all 221tr2478) 4 — ) wo have
r1+r2+r3+1
> " PR fu (nyiy + iz + i)
i1,12,13,n — 11 —i2 — 13

0<iy+iz+iz<n
- fi(ny iy 4 dg 4+ 43)" fo(ny iy + g +i3)2 f3(n, 41 + in + i3)®
4 rent) n i1 in s . . .
= 1_5(5) 2 bryigy iy — iy — iy — iy) 12 8 4 (i 2 )
0<irbiaTis< (e Nl 2,08, 1— 12 — i3
- fi(nyin 4o +d3)™ fa(nyin + i +43)"2 fa(n,in +d2 +i3)".
Proof. For all 0 <1i < n we have

> ( . '>Til7”§27”§3f4(”ai)f1(”,i)“f2(”,i)i2f3(n7i)i3

i1 +i2+iz=1i i1,12,13,1
- CZ) (rufa(n, i) + rafo(nd) + 73 fa(n,0)" faln,d).

Noting that

dn(ryfi(n,i) +rofa(n,i) +rafs(n,i)) _ 4n(ry +re +173)
rifi(n,i) +rafe(n,i) +rafa(n,i) +1 = ri+ra+r3+1
the result follows from Lemma [5.4] O

IN
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We prove ([45) by induction on d.
Note 8.6. For simplicity of notation, we define the following:

@7 .— §(0) L (0 4 ;(0)”

=11 . -/ -/
19 =10 t19+ 1

/A -/ -1/
to,j =20, Tl Tl

((4) . . 11
19 =10+ 1

(4) s N
Ly, 7= 10,5 + 20,4

.(5) . 7
1y =g+ g

.(5) . 7
to,; = o5t 0,

TCOMUPSE (O NI {CO LI 1O [/ P N e /1

N/ ./ -1/
BRSNS Wi S WE

For d > 2, we have the following by ([@4)) with the second inequality following
from Lemma R4t

D;c/ (n(k)a llv l?apv 25 i(O)a i(O)/v i(O)N)

k .
< H Z (1 _ (1 _p)io—io,j)n,j (1 _ p)(igﬂg—ié,j—if)/,j)h,j

J=10<dy 41y iy j<nj—ig’, =1y () =11, (4)

./
. (1 —(1- p)ié”%,j)h’j (1 — p)(ioHic —ios =it )it 5
-1/
Zl,j

1 _ p)ig,i&j i (1 _p)if),*ig,j (1 _ (1 - p)’io*’io,j) (1 _ (1 _p)i{)fi{),j))

11 . .
G g nj_zo,j_ll,j_]lll(J)_lb(.7)
=gy
. . 111 Y T
p)’LO*’LU,ll +ig —0,1, T 10,1, T —0,14

. . -1/ -1/ -/ -/ -1/ =1
11—1%1,1; iy 1 +11_11,12 +iy 1,1y

(1 -
“(1-p)

111
/

k s

_ H ((1 — P2 401 _p)i6+i{,’7ioyj—i6’yj+1 Fp(l— p)z‘o+i6’—z‘o,j—i6’,j+1 (1 _p)ig”—ié’,’j) 970
J

J#lh

(L — pyloTion i i, (1 p 4 p(1 = pyieiE =i =i, )T

_-/// _1
i/ —i/ +i”—i” i()-‘ri//—i() . —i“ ’n.12 10,12
. (1 _ p) 00,12 % Tro1p (1 — D +p(1 _ p) 0 2 20,15
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Thus

Dy (0, 11,15, p, 2,1® 5, ")

k
< TI (0= 7 (np,2,igny) ot o2 oa o, =26 ) (s i)
j=1

J#l 2

(L= £ (nyp, 2, ) o6 =i, =50 ) ey i1, =1)

(U= f (., 2,0 (o ot i) (i )
so that

;c/ (n(k)7 llu l?upa 27 i(0)7 i(O)/a i(O)N)

k
111 111

< H (1—f(n,p,2, iloll))(iomn-‘rigﬂn)(n—nll—nyn_i()//-‘rlo’ll+7,0Ym—1+]]_l2(m))

m=1
m;éll
(1= f(n,p,2, ity o i) (non =i+, —1)
k
T (= £ (i, 2,gy) G i) (1t = =7 4 =152, ()
b) b b)
I

i

(U= f (n,p, 2,7)) e i) (a0, 7).

Suppose for some d > 2 (@H) holds for all i(®), i©’ and i©" in the stated ranges,
and 0 < p < 1. We will prove (@3] holds for d + 1. We have

D;c/ (n(k)u lla l27p7 27 i(O)u i(O)/a i(O)N)

k 1 . .
<11 3 ( n; — gy — 11, (7) — L1, (4)
Y -/ /4 11! . -

. . ) . . . \l14,0 0 ng —ap . — 1 —1;
j=1 Ogll,j+1/11j+1/1/,jgnj*16/1/]-*]]-11(J)*]-Lz () IVERS W RS W RRAY] 0,5 1(]) 2(])

. (1 — p)(iglfig,lj)("j *ié)l,ljflll (j)7]112 (J))

-/

v
(U gy oy 2 i (1 pyoaio — 1) (1 gy — 1)

111 111

. ((1 _p)lo,j_lo _ (1 _p)io,j—io _ (1 —p)i;),j_if) N 1)1'14
. DZ (n(k) _ i(O)///7 ll; 127p, d, i(l)7 i(l)l, i(l)//) '

We divide into three cases.

Case 1. 2 mil=Li(la) < for a]1 1 < j < k.

77T 77
i +4n;pig

O

)
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We have the following:

D;cl (n(k), llv l?upa d+ 17 i(0)7 i(O)/’ i(O)N>

" 12
<H Z hi (n<k>—i<°> p.d,i® )

G104l +i  <ng—ifl, 11, (5)— L1y (5)

n; —ig; — L, () — L1, (5) )
i17j7i/1,j7i/1/,j7nj - ig,/j = 1,(j) — L, (j) — ’/1”3
=117 117

. (1 _ p)(zo _lo,j)("j_i(),j_i(),j_ig,j_lh(j)_112(j))

./

.7
1— p)io_iO,ll +i6_i6,12 +2i6/_i6/,11_ig,12 ((1 _p)io,j—io _ 1)i1*j ((1 _ p)zo,j_ié _ 1)Zl’j

111 111

(1= p) 8o — (L= p)s~io — (1= p)bsio 1)

Fn— it p,d, iy (ot )oe (a0 =@ 102 511 p.d 0 40")

£ i ) U)o (00O A0 a0

- (
.(1_
.(_

1

We can deduce that

hi (n<k> —i©@" p 4, i<1>'") < hu (n<k> —i©@" p 4, 4npi<°>'”) < I (n<k>,p, d+1, i<°>'")

for all 1 < j < k and from Lemma [5.5 we can deduce that

f (n’p7 d7 4npi/0//) < f (n - 7:/0//7p’ d’ 7:/1//) °

As well

i (n<k> —i@" _102) 1 0,0 —§©@" _ 1) _ 1<12>) < g (na«) _i©@"” _

and

i (n<k> —i@" 100 1y d,0,n® — @ _ 1) _ 1<12>) < gk (na«) _i@"” _

1(12)7j7 llupa d7 07 i(l)/”)

1(11)7j7 l27p7 d7 07 i(l)lll)
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Thus we have

D;c/ (n(k)a llv l?apv d + 15 i(0)7 i(O)/v i(O)N)

/1

< hp (n<k>, pd+1, i<o>’”) (1 — p)fo— o Hio—io,, +2i5 —it, ~ig 1,

L = ) G660 (=~ 2 )11 ())
T ( n; =gy — 11, (§) — 11, (4) )
S i1 g AN AN/
0<in j+4y ;+i7 ; <nj—ig’; =11, (5) =1Ly (4) A A A A ]lll(j) L, (]) 1
(= pyios o — 1) ((1 —p)os i — 1) -
(=P = (= pyosTo — (1 =)o +1)

(n » d 4npilll))(il,j+i/1/’j)gk(n(k)_i(o)/”_l(l2)7j;l17p7d;07n(k)_i(o)///_l(ll)_1(12))
)y 17y My 0

=1
1,5

1-—

f
L F (o dmp (32 G 5o (950 10 0,9 10 1))
b b) b

so that
D;c/ (n(k), lla l27p7 d+ 17 i(O)’ i(O)/’ i(O)N>
< hi (n(k),p, d+1, i(o)m) (1 — p)lo— o oo, +2i ~ig, ~igi,

N /11

k
. H(l _p)(zo *10,1)("1'*10,1*111(j)*]llg(j))
j=1
. (1 + _

(1 =)o —1)

(1= f(n,p,d, dnpig’
+ ((1 — p)ios~io — 1)

(1= f(n,p,d, dnpiy’
I ((1 _ p)ié)l,ljfié)” _ (1 _p)io,j*io _ (1 —p)i61j7i6 4 1)

. (1 _ f (n » d 4npi///))gk(n(k)—i(o)m—l(l2),j711,17,d70,n(k)—i(o)m—l(ll)—1(12))

y 2y Yy 0
=1y (5) 11, (4)

g
))gk(nu«)i(o)'“1<11)1jyl2ﬁp1d701n<k)i(o)'“lul)102)))”] b0,

))gk (n(k)_i(o)’”_l(lz) )le)p)d’O)n(k)_i(o)”/_l(ll) _1(12))

))gk (n(k),i(o)'”,l(h) Jsl2,p,d,0,n) —1(®"" _101) ,1(12))

(1= f(n,p,d, dnpiy’
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)l lg,pyd+1,i©@,i©)) 1(0)”>

/1

< hp (n<k>, pd+1, i<o>’”) (1 — p)fo—ion Hio—io,, +2i5 —it, ~ig 1,

T (-

j=1
(1= pyoiha = — (1 - p) =i

(k) _;(0)""" _102) 5 (k) _;(0)""" _1(1) _102)
. (1 _ f(n p,d 4npl///))gk(n i 1Y2) 4.01,p,d,0,n i 1y —1%v2 )

(1= pyiomoo s - (1 - pyi i)
(1= f(n,p,d, 4npz"/))9k(n<k)—i<°>”’—1<‘1>,j,lz,p,d,o,n“‘)—i<°>’”—1<'1>—1“2))
)

111 111

+ ((1 — )i — (1 —p)os i — (1 —p)ioa i + 1)

(- f(npd, 4npz”’))g’“(“(k)4(0)/”71“2)’j’ll’p’d’o’n(k)4(0)///71(11)71(12))

ni—1 '_]]-l () ]]-l ()
(k) _3(0"" _1(1) 4 (k) _3(0)""" _1(11) _1(2) 7 1 2
1 g (n®) —i(© 1 J,l2,p,d,0,n™) —i(© 1 1
. ( f (n D, d 4”2)7/”/))‘ k( s ))

We note that gi (n<k> — i@ 100 i d 0, n®) —§©@" _ 1) _ 1<lz>) < pd-1
forall 1 < j <k and j' =1;,ls and so, using Lemma B4l we have

1
DY (0, 11,1y, pd + 1,510 5©")
< hy, (n ,p,d+1, i(0 )'//) (1 _p)i(’*iwl+i67i6v12+2i6,*i6',11_ié’,lz
k " " 1"
H (n,p,d+1, Z///))( <4>_l§)>) K (00 —1©" _102) 1y p d.0,n 0 (@ _100) _102)) (n; —it" —1,, ()11, (7))
)
j=1
= f(pyd 1,y (7 =05 o (a9 HO" =200 i p.d 0,009 0" 200 —102)) (n—igy ~11, () =11, (1)
)
o
<t (09, p,d+1,i©@")

ig) Sh_q gk (009 =i @ —102) 1y p.d,0,n ) —i(@" 100 —102)) (n; —if 1., (j))
(1= f(n,p,d+1,ig)) i#h

ity <1+Z’“ 1 9x(n <k)—i<°>”’—1<‘2>,j,ll,p,d,o,n““—i”)”’—1<‘1>—1“2>)(nj—i'o’,’j—111(j>—112<j>)>
J#q

—

(1= f(n,p,d+1,ig))

I
-

=29
s
=

i), 5y gk (n09 i@ =100 15 p,d,0,0%) i@ —100) _102)) (n; —if, 1, (5) )

(1= f(n,p.d+1,ig)) 7

iy <1+E§-_1 g (00 —i@"" =100 515 p.d, 0,0 —i (@ —100) _102)) (i —1,, (j>—112(j>)>

(1—f(n,p,d+1,iy")) i#q

-
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We can deduce that
k
> (ng =g = 1,(5) g (n(k) i@ _10) 50 pd, 0,009 —§©@7 100 _ 1(12))
i=1
Jq?fll
(48)
2 gk (n(k) - 1(12)7 llu llapu d7 07 i(O)/H>

and

)=

(nJ - 7’6//] - ]]'ll (.7)) 9k (n(k) — i(o)”/ - 1(11)7j7 lQapu d, 07 n(k) — i(o)”/ — 1(11) — 1(12)>

j=1
J#l2
(49)
2 gk (n(k) - 1(11)7 12; lepa da 07 i(O)/H) .
Also,
k n "
1+ ) (ng =gy — 1, (5) — 11, (5)) g (n“" 1@ —1%2) 51y, p,d, 0,00 — i@ — 1) — 1“2))
=1
g’iq
(50)

> gi (n(k) —1%) ¢, 14, p,d,0, i(o)w)

for all < ¢ < k with ¢ # l1, and

1+ zk: (ny — i, — 1, (j) = 1,(4)) g (n<k> i@ 100 51, . d 0,00 — @ _ 10 _ 1<‘2>)
s

(51)

2%(mm_1mp%bmﬂﬁﬂ@w)

for all < ¢ <k with ¢ # l. Thus we have ([@3)).

Case 2. 1<wforsom61§j§k.

777 T
igy4n; pig

We proceed exactly as in Case 1, except that for every j with 1 < %,
0,4 7P
=11

1"y < 4npig’ over the summations of 4y j,i) ;47 ; and

1,5
multiply all the expressions following D}/ (n(k), l,la,p,d+1,i®, i@, i(O)”) < by

we add in the condition 7

- —1
(1 — % (%)471”) ° ) , which can be justified by Lemma [R5l

i— L1y () =11, (4)
Case 3. 1 < A} 2 for
i0,5+ih iy +(4n;p+dn;p(dnp)+(4n;p) (4np)2+...+(4n;p) (4np)d) (io+iy+if )

alll < j <k

We proceed exactly as in Case 1, except that for every j with 1 < njr;llir(f,,) _J]rl jﬁn’(?gi/u ,
T, 50,4 Pl

: s /11 il : N ]
we add in the condition #{7; < 4n;pig’ over the summations of i1,5,1} ;, 17 ; and

multiply all the expressions following DY/ (n(k),ll,lg,p,d—i— 1,i(0),i(0)/,i(0)”) <
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-1

by (1-4(5)"") ", which can be justified by Lemma B3 As well, in all

the functions gj,, we replace 0 with d’ (except where we replace it with d’ + 1
in the right-hand side of the inequalities @S], [@9), (&0), and (&I)) and replace

n®) — i@ _ 100 _ 102) with 4npi®"”

We can deduce that Dy, (n®),1,p,d,i®) < Dy, (n® — 1M 1 p d,i(®). Thus we
have n(by,b2) < s'Dy, (n(k) —1MW 7 p,d, 100 4+ 1(52)) whenever by and by are not
the same pair of vertices with one pair having its vertices in the partite set consisting
of n; and nj, vertices, and the other pair having its vertices in the partite set consist-
ing of n; and n;, vertices. Also, we have n(b1,bs) < D}/ (n(k), I1,la,p,d, 101 10G2) O)
whenever b; and by are not the same pair of vertices with one pair having its ver-
tices in the partite set consisting of n;, and nj, vertices, and the other pair having
its vertices in the partite set consisting of n;, and n;, vertices with [y # l. Thus,
by the Turédn sieve, we have

P(o(s.5)
- Tz (= 1) (m = 2) + () ("3 7)) Di (0% ~19,1,p,d,2-1)

(S (3)D (009,19, d.10) + 3,y mymD (8, 1,p.,16)) )’
Si<jmick (= 1)n; +2(%) (i = 2) ;) Dy (0 =101, p, d, 10 +10))
(S (3)D (009, 1,p.d,10) + 5,y nymD (a9, L p. d. 1<j>))2
N i<k (mmg (ny = 1) +mn (ng — 1) (n; — 1)) Dy (n® =101, p d,2.10))

+

(S (3)D (009,1,p,d,10) + 5,y nymD (0, p,d, 1<j>))2
Sk (3)(5) DY (0% 1,15, p,d,160,102), 0)
(S (3)D (009, L,p,d,10) + 52,y mymeD (n9, 1, p, d, 1<j>))2
> 1<t 2 d<k n?nj nj, Dy (n(k) 1M1, p,d, 100 + 1(j2))

1,71,j2 all distinct

+

+

2
(Zf:l (5)D (0, 1,p,d,10) + 2i<jer<k D (0,1, p,d, l(j)))
Z 1<5,l1,l2<k (nél)nlgnng (n(k)ull7l27p7 d71(11)7 1(J)7O)

701,12 all distinct

2
(Zle (EZ)D (n(k>,l,p, d, 1(1)) + Zl§j<l§k njnD (n(k),l,p, d, l(j)))

Llajija pyr k ; ;
> 1<lidagre<k 2D (n( ) 1y, o, p, d, 1(J1)7]_(J2)70)
l1,l2,71,72 all distinct

2
(Zf:l (EZ)D (n(k)’ l’p’ d’ 1(1)) + Zl§j<lgk njnlD (n(k)u lupa d7 1(‘])))

1
Z;ﬂzl (?)D (n(k),l,p,d, 1(1)) + Zl§j<l§k njn D (n(k),l,p,d, 10)).

+

—1+

Theorem [R.3] follows.
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9. RESTRICTED RESULTS FOR k-PARTITE GRAPHS WITH DIAMETER d > 3

We impose further restrictions on n1,ns,...,ng, and p in Theorem to make
our result more clear and meaningful. Since the case d = 2 was treated in Section
3, we assume d > 3. The result is Corollary [@.11

Corollary 9.1. Let d > 3 be fixed. Suppose that (29)) and ([B0) hold. Also suppose
that n; <ng < ... < ng and

(52) n'"2atEE < py.

Then we have

- (0 d—1.
(53) P«xn&%p%d)>1—(1+2”“4%mz%) — (1= (n.d-1,00)
1<5,i<k
and
(54)

-1

_ . w(n® d_1 _
P(GmY, p),d) < 492" Pnzz 4 [ 37 nj;“ (1 - pt) (=10 (1 + 5nﬁ) .
1<50<k

If we have  —1 <n; <3 +1forall 1 <j <k, ie we are dealing with k-partite
Turan graphs, then we have
(55)

P(G(n(k)ap)ud) >1-

and

(56) 1 1
¥ 2% ) e T 2k

PG )<~ (1+E-0 (-9 ) (%)

We prove Corollary @11 Suppose 29), (B30), and (B2]) all hold. As in the proof
of Corollary [6.1] we can derive (32). From (29), B0), and (52)), we can deduce that

% + M < i. Thus all of the h; functions in Theorem R.3] are bounded

above by
] 4 /e 4p('n,j737877,]‘[7(1+4np+...+(4np)d75))
II(1-5(3)

(-2 )
SEHENN
(

o 30/ 2D
1 4d(—)
v (€ )
k

2—d

[

—dk

k
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with the last two inequalities following from (B0). From @3)), (0), and (B2), we

can derive
87”@p(4np)d’2 <

1 - 4np

7’Lj-4

for all 1 < j < k and so we can apply Theorem R3] with ' = d — 1. All of the g
and g, functions in Theorem wiht d' = d — 1 are bounded below by

d—1
4 64p(4np)?—3
o (1 — - L
> [ (1 -5

(1,920 sig—1)€[K]d~ 1@ 17 m=1
> (1 - 4d*1n*3/<2d>)d_1 u (n<k>, d—1,j, l)
> (1 - 4d—1dn—3/<2d>) u (n<k>, d—1,j, z)
(58) > (1 - 4d—1dn5—i*ﬁf) u (n<k>, d—1,j, z)

with the last three inequalities being derived from 29)), B0), and (2)). Making use
of 32), 1), and ([E), we obtain

b n 1Nk
P(G(n™,p),d)>1-) <2l> (1 +4ddnm) (1-p?)

—1__1_\2
(174d71dn2d W) u(n®,d—1,1,1)

=1
k ( a1y 24527\ (n0© )
—1 1—-4%""dn 2 2d ) u(n™ d—1,5,1
E n;n (1 + 4ddnm> (1- pd) .
1<j<i<k

As in the proof of Corollary [6.1], we deduce

_ . (0 d—1 i
P(Gm®,p),d) >1— (1 T 2k+14ddnﬁ) 3 ”72”1 (1-p%) (n®d-1.30).
1<j,1<k

By (B0) and (52), we have
np > n2itaz > 4% > 192

for all 1 <j < k. So we have

_ —1
U( m,j,l)pm*d“<u(n(k>,d—1,j,l) (1—nT3—ﬁ)

192 -1 1
(k) — y ) - d " 242
<u(n ,d—1,7,1 (1+191n2 2d>.

d—1

m=0

We can derive

1017 =2 701 32"
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Thus we have

gL
W

(1_pd)72u(n(k) ,dfl,j,l)%n 2

-5k _ast T ma e . 384 - 32n22
191 - 31

> < 143n3a°.

Thus

M=

(nl) (1- pd)zf”;l‘)u(n(k)’m’l’l)pWHl + Z njng(1 —pd)zg”;lo“(‘“(k)7"“]”)1’"17‘Hl

2 :
=1 1<j<i<k
(59)
-1
k
<3 <Zl)<1—pd>“(““‘*“l*l> 0 () ) ) (1 )
=1 1<j<i<k
and
—2
k
n d—un()m m— d*un()m- m—
Z(zl)(l—p%zm% (ST (1= pt) (e e
1=1 1<j<i<k
(60)
-2
k
< Z (7”;1) (1 _pd)u(n(k>,d—1,l,l) T Z (1 _pd)u(n(k)7d—l,j,l) (1 _’_?milg)

1=1 1<j<i<k

If we let hy(), gk,j1, and gj ;, stand for any of the hy, gk, and g; functions re-
spectively where j and [ are in the second and third arguments respectively in the
functions in Theorem B3] then for any 1 < j1, jo, 11,12 < k we have

Be() (1 = [, p, d,2) v ¥ 90

(1+4dd ;lz)k(l @) <174d71d";_;7ﬁ?)2(“(““‘)*dflvﬂ'lvll)ﬂ(““‘)vdflvimlz))
< n 2d —p

(61)

< (1 +4ddm;dlz>’“+2 (1 _pd)u(n“‘),d—l,j1,z1)+u(n<k>,d—1,j2,z2)

where we also have the above if we replace g, j, 1, with g; ; ; or if we replace

k,ja 1> With g; 5 ;. making use of [32), (B7), and (). Substituting (59), (€0), and
(1) into the upper bound in Theorem B3 and noting that

v (5)(7) < ()

ng (ng —1)nj + 2(2) (n—2)n; < 2(7;)71171]-,

and

2

mnj (nj — ) myn; (ng —1) (n; — 1) < nlznj
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for all 1 <1 # j < k we obtain

—1\ k+3
P(Gm®,p),d) < (1+4%n57) " —1

k

ny u(n®™ qd— u(n®™ d—1,4
+ §:<2>(1—P% (AL 1 S (1 = pt) )

=1 1<j<i<k

-1
< 4942+ 3 e
—1

n;ng d u(n(k),d—l,j,l) 1 - —1
| X - 1- — (1+3nm)

- ni
1<5,l<k

-1
< 4442k t3p 3
-1

. wln®™ d—1.4 —1 _
> = (1= pt) (7410 (1=nFmm) (14305 )

1<5,1<k
—1

_ , w(n® d_1 _
< adaptpm 4 |30 B (g gyl (1+5n7).

1<5,I<k

To get the results for the k-partite Turan graphs, we proceed as follows. In this
case we know that % —-1<n;< % +1 for all 1 < j < k and so we can deduce that
(62)

(n—%—l)d_2 (n—%—2) <u(n(k),d—1,j,l) < (n—%—l—l)d_Q <n—2?n+2

if j # 1 and

(63) (n—%—l)d_l<u(n(k),d—1,l,l) < (n—%ﬂ)d_l.

Using (&3), &4), [62), and ([@3) we obtain (B3] and (B4).

10. DIRECTED k-PARTITE GRAPHS FOR DIAMETER d > 2

Using the above methods, we can obtain similar results about the probability of a
random directed k-partite graph with the partite sets containingny < ns < ... < ng
vertices respectively having diameter d where each directed edge is chosen indepen-
dently with probability p. Furthermore, for any two vertices, say v, and ve, the
existence of the edge from v; to vo has probability p, while the existence of the edge
from vo to v1 also occurs with probability p, and these two edges occur indepen-
dently. We proceed exactly as above the only changes being replacing the factor of

i0,j (f0—%0,5)

s— 2z with (") in @), replacing ¢’ with (io; +1if ;) (n — n;) in @2),
and replacing the factor of s 2 with s*0. 3 in (@), and replacing ( QJ)
and n;n; whenever they occur with n; (n; — 1) and 2n,n; respectively. The only
other extra consideration is in our calculation for n(by, b2) where one pair of vertices
has its vertices in the partite sets consisting of n;, and n; vertices and the other
pair of vertices has its vertices in the partite sets consisting of n;, and n; vertices
(here j; and jo may or may not be the same) where the paths concerned ends at
one of the vertices in the n; set and begins at the other vertex in the n; set. To

-1

(1 + 3n%)



SIEVE METHODS IN RANDOM GRAPH THEORY 59

deal with this case, we would define C}” (n(k), I,p,d,il®), iol), which we define the

(0) 30’

same way as Cj, (n(k), l,p,d,i ), except we consider directed paths from the

io vertices to vertex v, and directed paths from the vertex v’ to the i( vertices and
this case can be dealt with in exactly the same way as Cj, n® [ p, d,i(o),io/

Consequently, in Theorem B3] and Corollary 0.1l we multiply the second and third
terms of the lower bound by 2, divide the last term in the upper bound in The-
orem [R3] by 2, and divide the first term in the upper bound in Corollary by
2 to get the analogous results for random directed graphs. Everything else is left
unchanged.

11. BIPARTITE GRAPHS FOR DIAMETER d > 3

Here we analyze the diameters of bipartite graphs. Let G(n1,n2,p) denote the
set of all simple bipartite graphs with partite sets of size n; vertices and nq vertices
where each edge is chosen independently with probability p. Here we obtain upper
and lower bounds on the probability of a random simple bipartite graph with partite
sets of size nj vertices and mo vertices with independent edge selection having
diameter at most d for any specific d > 2, d € N. Again, we impose restrictions on
ni1,nz, and p. Then in the next section, we refine this result to make it more clear
and meaningful by imposing further restrictions on ni,no, and p. First, a note.

Note 11.1. Throughout this note let

gb(nu n;,p, d7 dlu Z0)

n—n; d=2
n—nj;
ia l m —1:
(0= 1) S Ty (7= 5 = Sy (4np)2 4o )
: (nj —-1- Z;n;()l(élnp)%io) d,d both even, d <d—3
n—ny
R R e = ST (4np)24-1
+n=n;) 320 Ilne (n—ny Zq:l( np) %0
: (nj —-1- E;n:_ol (4np)2‘1i0) deven,d odd, d <d—3
1+ ZZ%:O Hin:O (”j -1- Z;nzl(‘m]?)?q_lio)
- : (n —nj— 2220(4”]9)2%0) dodd ,d even,d <d—3
d' -1
1+ 5205 Tho (m = 1= X0, (4np)~ i)
: (n —nj— E;’;O(mp)?%o) d,d both odd, d' < d—3
n—nj;
422 m 1.
(=) Y02 Ty (0= g = X, (4np)2 o)
: (nj -1- E;n:_ol (4np)2‘1i0) deven,d—3<d
d—3
1+ 5202 Mo (mg = 1= X5, (4np)* 1o
: (n —n — Z;’;O(mp)?%) dodd, d—3<d.
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and

/ /- -/
gb(n17n27pa da d 20, 7’0)

TL2—i6 d=2

na — i,
FE ! (na = 1 ()i — S (4mp) iy
oo (m = 1= Sy (4np)*io — Sy (4np)+ig) >3
. (77,2 -1- E;nzo (4np)?9if — Z;n;ol (4np)2q+1i0) d <d-3,d even,
0 Ty (= 1= S ()i — 7 ()i
(m2 = 1= o ()it — ! (Anp) i

ne — i
EX5 (me— 1 S ()i — S0 (4np) 20
oz (m = 1= Sy (4np)io — g (4np)r+1ig)  d > 4
(m2 = 1= S (dnp)20if — S5 (4np)* i) @ <d—3,d odd,
F X005 Moo (= 1= S gmp)io — X7 (4np)?r 14
= (2 = 1= Sy (4mp) iy — Y (4np) e+ i)

Ng — 7,6
§-2 1N 2¢4+1; _ YU+ 2q,;/
+2 o (2 — 1= ,0(4np) io — g (4np)™ig
o (71— 1= Xy (4np)tio — St (4np) iy d >4
: (ng — 1 =320 (4np)*9if — Zgzol (4np)2q+1io> d > d—3,d even,
£-2 1 m . m .
+ Zl2:O Hm:O (nl —-1- ZQZO (4np)2q20 — ZqZO (4’]’Lp)2q+1llo>
(m2 = 1= S0y (4mp) iy — Y7 (4np)e+ i)

Nnog — 16
=3 1o Anp)29 L0 — S (40 0)24;
+20 5 (ne quo( np) o Zqzo( np)9iy
'Hinzo (m —1- E;n:o(‘lnp)”io — Z;n:o (4np)2q+1i6) d>3
: (n2 — 1= (dnp) iy — ! (4np)2q+1i0> d' > d—3,d odd,
ﬂ m . m .
+ 302 T (nl S ()i — S (4np)2q+ug)
. (n2 — 1= (dnp) iy — ! (4np)2q+1i0) .

We will prove the following theorem.

Theorem 11.2. Fix d > 2, d € N. Let G(n1,n2,p) denote the set of all simple
bipartite graphs with partite vertex sets of size n; and no vertices and where each
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edge is chosen independently with probability p. Also, let P(G(n1,ns,p),d) be the
probability of a graph from G(ni1,ng,p) having diameter at most d. Suppose that
d is odd. Let d’ > 0. Suppose that
2+ 8np + 2(4np)® + ... + 2(4np)? <n; —1
for j = 1,2 where d’ > 0. If d is odd, we have
P(G(n1,n9,p),d) > 1 —mninsh(n,p,d, 1) (1 — f(n,p,d, 1))gb(n’"1’p’d’d/’1)

and

i d—1 %nn d—l i 195, —2;
() FALE e T )

-2
P(G(?’Ll,ng,p),d) < (1 _pd) (
(L= fn.p.d 22
1

B 1 + d—1 a—1 d—1 .
((nlm)T"’Zlfl (nlnz)Tfl(p“?l-irp*?l))

nlnz(l - pd)

If d is even, we have

2
P(G(n1,na,p),d) > 1Y (T;J)h(n,p, d,1) (1 = f(n,p,d, 1)) mmapdd)

j=1
and
-2
2 d—2 a-2 d—2 _
. n—n;)( (nin +3°2 (nyn L(pt=2l =2t
P(G(n1,m3,p), d) < Z@)(l—pd)( L )

j=1

2
(Z @) h(n—1,p,d,2) (1= f(n,p,d,2))* @ "=ttt d)
j=1

+2 (n1> (7;2) h(n7p7 d7 1)2 (1 - f(n7p7 d7 1))9{7(712,111,p,d,d',l,l)—i—g{)(nl,ng,p,d,d/,l,1)>

-1
1

+

2 i, @1 ((1n2) T (ame) T 24 )
Zj:l (QJ)(]‘ —p?)

We will now prove Theorem [11.2)

For each n € N, let G(n1,ne,p) denote the set of all bipartite graphs with partite
sets of size n; vertices and ns vertices with edge probability p, and let P(G(n1,n2,p))
be the probability of a graph from G(n1,ng, p) having diameter at most d. Let p = =
where r = r(n),s = s(n) € N. We let A be the set of all graphs in G(n1, na,p),
allowing for a number of duplicates of each possible graph to accommodate the
edge probability p, so that

ning
|A| _ Z (n1:2)rk(s _ T_)nlng—k — gmn2

k=0
If d is odd, we let B be all pairs of vertices that occur in the same partite set so
|B| = (") + ("?). If d is even, we let B be all pairs of vertices where the vertices



62 Y. R. LIU AND J. C. SAUNDERS

in the pair occur in different partite sets so that |B| = nine. For a graph a € A
and a pair of vertices b € B, we say a ~ b if there is no path between the pair of
vertices b that consists of at most d — 1 edges. Thus, we will have w(a) = 0 if and
only if a is connected with diameter at most d.

Pick a pair of vertices b € B and call them v; and vy. To calculate degb, we
need to calculate the number of graphs in A such that there is no path from v
to vy that consists of at most d — 1 edges. To help with this calculation, we will
calculate a generalised notion of degb as follows. First suppose that d is odd. Let
0 < ip < max{ni,n2}—1. Pick a specific set of ig vertices out of the labeled vertices
in one of the partite sets, as well as another vertex, say v, in the same partite set.
We will let Cy(n,nj,r,s,d—1,1i) denote the number of graphs in A such that there
is no path from any of the iy vertices to vertex v that consists of at most d — 1
edges where the iy vertices come from the partite set that consists of v; vertices.
Now suppose that d is even. Let 0 < ig < max{ni,na} — 1. Pick a specific set of
ig vertices out of the labeled vertices in one of the partite sets, as well as another
vertex, say v, in the opposite partite set. We will let Cy(n, n;,7,s,d —1,49) denote
the number of graphs in A such that there is no path from any of the iy vertices to
vertex v that consists of at most d — 1 edges where vertex v comes from the partite
set that consists of v; vertices. If d is even, we can derive the recursive formula

Cb(na ng,n,s, d + 15 7’0) = (S - T)ionj Snln2ii0n]‘

n;—1
4 i—1 . i o
(64) + Z <nj~ > (s = (s=r)°)" (s— rY M= Oy (n — g, ny, 7 5, dy i)

valid for all 0 < ¢y < n —n; and even d > 2, which can be simplified to
(65)

nj—l
1 _ o ) .
Cy(n,nj,r, s,d+1,49) = Z <nJ, > (s“’ —(s— 1")“’)11 (S—T)Z“("jﬂl)cb(n—io,nj, r,8,d,i1)
: 11
11:0
if we assume that ig > 0. On the other hand, if d is odd, we can derive the recursive
formula

Cb(na nj, 7,8, d + 15 7’0) = (S - TYO (ninj)snlnai’m(ninj)

(66)
" n—nj; io io 71 io(n—nj—i1) . . .
+ Z ; (5 —(s—r) ) (s—1) ! Cy(n —io,nj —io,7,5,d,11)
11:1 Zl
valid for all 0 < iy <n; —1 and d > 1, which can be simplified to
(67)
n—nj ) . ) i ) )
Cb(n’ n;, 7,8, d+1, iO) = Z <n i nj) (Slo - (S - T)ZD) ' (S_T)Zo(ninjizl)cb(n_im nj_iOa r,8,d, Z.1)'
: 1
11:0
As well,

Cb(nv n;,T,s, 15 7’0) = (S - T)ios’ﬂlnz—io

for all 0 < ig < n — n;, completing the formula. Then we can deduce that
Cy(n,nj,r,s,d—1,1) = degb if we are working with diameter d. Let Dy(n,n;,p,d—
1,i9) = Ovlnmyrsd=lio) o, ghat Dy(n,nj,p,d — 1,ip) is the probability that the

BEED)
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edge distance between v and any of the 4o vertices is greater than d — 1. We will
prove that if 0 <ip <n—n;, 0 <p<1,d>1is odd, then
(68)

d—3 d—5

d—1
io| (n1m2) ™2 +(nin2) ™2 “Lp D+ (ning) 2 B N4 (p @) g p—(d=1)
Dy(n,nj,p,d,io) > (1—pd)0<( 112) T+ (man2) "E (T T )+ (mana) T2 (0T T p >)

njfl
4np+(4np)®+...4(4np)?

and that under the additional constraints ig <

n—n; : /s i< n;—1 < n—n;
1+(4np)2+...+(4np)?' ~1 ifd"is odd, ip < Anp+(4np)3+...+(dnp)d 17 o= 1+(4np)2+...+(4np) ¥’

if d’ is even and is at least 2, or ig < n —n; if d = 0, then we also have

and io <

(69) Db(n7 n;, P, d7 Z0) < h(n7p7 d7 z0) (1 - f(n7p7 d7 7b))iogb(,nﬂnj 7p7d1d/7i0) .

Also, we will prove that if 0 <ip <n; —1,0<p<1,d>2is even, then
(70)

Dy(n,nj,p,d,io) > (1 pd)io(n—"j)((nlnz)%ﬂmnz)%(P’1+P*2)+(mnz)%(p’3+p*4)+~~+(1f(d73)+P7(d72))>
b\Tty 15, Py Ay t0) = -

" . . s
and that under the additional constraints 7q < pr—EE +J T

njfl . 0 . n—mn; . njfl
Tranp)er e @ I8 0dd o < e T 10 S Tt @

if d’ is even and is at least 2, or igp < n; — 1 if d’ = 0, then we also have (G3J).
For d = 1, we can see that (G8) holds. Suppose d is odd and (@8) holds for all
0<ip<n—mnjand 0 <p<1. We will prove that (70) holds for d + 1. First, we
can verify that (70) holds if ip = 0. For what follows let

7 and i <

d—3 d—>5

d—
Cy(n1,n2,p,d) := (n1n2)71+(n1n2) 2 (p ' p )+ (nane) 2 (pP4p )4 A (D p @),
By (7)), we have

Db(nanj7p5d+ 157;0)

: VIR (n—ny i ; : . .
= (1 —p)otrms) Z ( i J) (A =p)™" = 1)" Dy(n —ig,nj — io, p, d,i1)
11=0

> (1= p)retn—ma)

n—m;

P

(n — nj) ((1 _ p)_io _ 1)1'1(1 _pd)ile(’ﬂlyn27p7d)
11

= (1—pyot=) (1 +((1-p o -1)(1- pd)cbml,nz,p,d))"*”j
(=) (1= (1)) 1= gy}
Using Lemma [5.7 we thus have
Dy(n,nj,p,d+1,ig) > (1 — p*tyilnma)@lnnap.d),

Suppose d is even and (70)) holds for all 0 < iy <n; —land 0 <p < 1. We will
prove that ([G8) holds for d + 1. First, we can verify that (@8] holds if ic = 0. By
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[©3), we have
Db(nanjap7d+ 157;0)
’ﬂj—l
i()’n,‘ n] - 1 71‘0 il o o
:(1_p) 7 i ((1_p) _1) Db(n_ZO;njapvdvll)
i1=0 !
njfl 1
> 1 _ 101 J 1 _ -0 __ 1 11 1 _ d 11(n7nj)Cb(n1,n2,p,d71)
im0 ) - a )
11 =

. . njfl
_ (1 _p)zgnj (1 + (1 _p)flf) _ 1) (1 _pd)(nfnj)Cb(nl,n2,p,d71))
. . . n;—1
=(1—p)° ((1 —p)P+(1-(1-p))(1 —pd)(”*"j)c*’("l’"2”"1*1)) T
Using Lemma [5.7 we thus have

Db(n, nj7p7 d + 1, 10) > (1 _ p)ZU(l _ pd-i-l)io(n—nj)cb(nlng,p,d—l)(nj—1)

d+1yi
al a _217 e dyio | (1 — ptH1yio(n=ny)Cu(mana,p.d=1)(n;~1)
I+p+p?+...+ph)h
> (1- pd+1)ioe(fpfp2<rpd)io(1 — pitlyio(n=ny)Ch(nina.p.d=1)(n;—1)
> (1-— pd+1)(H—pdi1+p72+’3+...+p7d)i0(1 —pd+1)io("—"j)cb("1"2>1’>d_1)("1_1)
> (1 _ pd+1)iocb(n1,n2,p,d+1)_

Thus (68)) and (70) are proved. Next we prove (69) again by induction on d. For
d = 2, applying Lemma [5.7 we have

. o n—n, » , .
Db(n,nj,p,2,lo) = (1 _p)w(n ") Z ( 11 J)((l _p) 0= 1)“ (1 _p)“
11=0

= (1—p)=m) (p+ (1 — p)t=io)n=ns
=L —p+p(l—p))"

p(1— (1 —p))\ ")
< <1 — T) .

Suppose for some odd d > 3 ([69)) holds for all iy in the stated ranges, and 0 < p < 1.
We will prove (69]) holds for d + 1. We have

. in(n—n — n—nj; —3 i . . .
Db(nanjapv d+157’0) = (1_p) o 2 Z ( il J)((l_p) 0_1) lDb(n_ZOanj_ZOapv dvll)'

11=0

We divide into three cases.

n—mn; - L
Tnp < 10 <mn; -1

Case 1.
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We have the following:

Db(nanj7p7d+ 17i0)

= (1 —p)otn—m) Z < i J> (A =p)~" = 1)" Dy(n —io,nj — io,p,d,i1)
11=0

n—m;

= (1 —p)ioln=ms) <1 + Y (” ;”ﬂ') (1= p)~io — 1)1

i1=1

(1 - f(n - iOapv d7 il))ilgb(n7i07nj7i01p1d701i1) h’(n - iOvpa da Z1)) .

We can deduce that h(n —ig, p,d,i1) < h(n — i, p,d,4dnpig) < h(n,p,d+ 1,ig) and
from Lemma 55 we can deduce that f(n,p,d, 4npip) < f(n —ig,p,d,i1). As well,
g(n —io,n; —io,p,d,n—mn; — 1) < gy(n — g, nj —i0,p,d,41). Thus we have

Db(nanj7p7d+ 17i0)

n—n;

< h(n,p,d+ 1,ig)(1 — p)otn=m) (1 + (n ;n]) (L=p)~ =1

i1=1

(1 - f(n,p,d, 4npi0))“gb(”*i07"j*io,p,d,o,nfnj))
= h(n,p,d+1,ip)(1 — p)io(n=7)
) (1 +((1=p)~ —1)(1 — f(n,p,d, 4npi0))gb(n*io,nj7i01p1d701n7nj)>'n,fnj
< h(n,p,d+1,ip) ((1 - p)io +(1-01- p)iO) (1-f(n,p,d, 4”1’@'0))%(”71'07"1*ioﬁpﬁdyo,nfnj)>"—"j |

We note that gy(n — io, nj,40,p,d,0,n — n;) < n¢~1 and so, using Lemma [5.7], we

thus have

Db(nanjapu d+ 17i0)
< h(n,p, d+ 17i0)

. _ io(n—nj)gs(n—io,nj—io,p,d,0,n—n;)
1—(1—pyo\ [1—(1—pn"" )

pig nd— lpd

= h(n,p,d+1,i0) (1 — f(n,p,d + 1,4q)) 0t m)oe(n=ioms=io.p.d.Om=ni)

We can deduce that (n—n;)gy(n—1io, n; —i0,p,d,0,n—n;) > gp(n,n;,p,d+1,0,1p)
and so we have (20).

Case 2. iy < "4:;]'

Given a subset of i; vertices from a set of n; vertices and vertex, say v, from
a set of ng vertices in a graph from G(nyi,n2,p), we know that Dy(n,n2,p,d, 1)
is the probability that the edge distance between v and any of the i; vertices is
greater than d where n = n; + na. By adding one more vertex to our set of iy
vertices, it therefore follows that Dy(n,na,p,d, i1 + 1) < Dy(n,ne,p,d,i1). Thus,
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by Lemma B4 we have

Db(nvnjvpa d+ 17i0)
4npig

4 /e 4npio -1 . ] n—"n.: i i . . .
< (1 ~ 5 (g) ) (1 —p)“’("fnf) Z < i J> (1—=p)~* = 1)"* Dy(n —i9,nj — i0,p, d, 1)

i1=0

<(1-3)™) oo
<z< Q"

11 1
: (1 - f(n - i07p7 d7 il))ilgb(n_imnj_iO)p)dﬁ)il) h(’l’L - iOapu d7 Z1)) .
We can deduce that h(n —ig,p,d,i1) < h(n —ig, p, d, 4npip) and from Lemma 55|

(
we can deduce that f(n,p,d, dnpip) < f(n — io,p,d,i1). As well, gy(n — ip,n; —
i0,p,d,0,n —n;) < gp(n —i9,nj — i0,p,d,0,41). Thus we have

)

Db(nvnjvpa d+ 17i0

(-2 e
(14—4%0( ) 1—p)* _1)i1

! (1 - f(napv d7 4npi0))ilgb(n7ioynj7i07p7d107nin]‘) h(nvpa da 4np7’0))

4 /e 4npio -1 o
<|1-= (—) h(n — io, p, d, 4npig) (1 — p)io(=m)

- (1 + 2. (" | ”) (1=p)~" = 1) (1= f(n.p,d, 4np>><>>
11
< hn,p.d+1ig) (1 — p)o—)

(
( 0 1) (1= f(n,p, d, dnpio)) o om0 )
h(

n,p,d+ 1,io) ((1 =)+ (L= (1= p)") (1= f(n,p, d, dmpig) om0 b0 n)) T

We note that gy(n —ig, nj —io,p,d,0,n —n;) < n?~! and so, using Lemma[5.7} we
thus have

Db(nanjapu d+ 17i0)
< h(n,p, d + 17i0)

] - i0(n—nj)gs(n—io,n;—io,p,d,0,n—nj)
L—(L—p)*\ (1= —p)""" .
-1 d,4
< p < pZO > < nd_lpd f(nvpa ; ’erlo)

= h(n,p,d+ 1,i0) (1 — f(n,p,d + 1,ip)) 0t~ ")oe(n=ioms —iowpd0m=ni).

We can deduce that (n—n;)gy(n—1io, n; —%0,p,d,0,n—n;) > gp(n,n;,p,d+1,0, )
and so we have (20).
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n—mn; n;—1
(4np)3+...+(4np)d’ -1

10 <
dnp+(dnp)o+..+(np)? ' "0 = TH(anp)2+. F(dnp)T 1
’ﬂj—l

<
0 S Tt )

Case 3. iy < OR iy < prvs

Given a subset of 7; vertices from a set of n; vertices and vertex, say v, from
a set of ng vertices in a graph from G(nyi,ne,p), we know that Dy(n,n2,p,d, 1)
is the probability that the edge distance between v and any of the i, vertices is
greater than d where n = n; + no. By adding one more vertex to our set of i,
vertices, it therefore follows that Dy(n,na,p,d, i1 + 1) < Dy(n,ne,p,d,i1). Thus,
by Lemma 54 we have

Db(nvnjvpa d+ 17i0)
4npig

4 sey4npio\ ! (s n—n; i i . . .
<(1-3(5)"™) amprem X (MU @ 0 0 Dal o = i)

i1=0

<(1-3)™) women
(1 1 Y () [CRE

7,11

: (1 - f(n - i07p7 d7 il))ilgb(n_imnj_iO)p)d7d/7i1) h(’l’L - iOapu d7 Z1)) .

We can deduce that h(n —ig,p,d,i1) < h(n —ig, p, d, 4npip) and from Lemma [5.5]
we can deduce that f(n,p,d, dnpio) < f(n — io,p,d,i1). As well, go(n — io,n; —
i0,p,d,d', dnpig) < go(n — i, nj —i0,p,d’,d',i1). Thus we have

Db(nanj7p7d+ 17i0)

(- 2™) e
(oS () mre

(1= £, p.d, dnpig)) (om0 LA (3, dAnpi) )

dnpig\ ~! |
< (1 - — (E) p 0) h(n — 19, P, d, 4npi0)(1 _ p)zo(n—nj)

— n—nj; —3 i . \\© n—ig,nj;—1 ! Anpi
-(1+Z( (=) 1 (0 i) O’P’d’d’m))

< h(n,p,d+1,ip)(1 — p)or=)
( 0 —1) (1~ f(n,p,d, 4npi0))gb("_i0’"f_iOxdevd'Anpio)) v
< h(n,p,d+1,io) ((1 P+ (1= 1=p)") 1~ f(npd 4npi0))gb("_i0’"j_iOxdevd'Anpio)) "
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d—1

We note that gy(n —ig,nj; —i0,p,d,0,n —n;) < n®" ' and so, using Lemma [5.7] we

thus have
Db(nanj7p7d+17i0)
< h(n7p7d+ 17i0)

—p . - io(n—n;)gy(n ianj*ig,p,d7dl7 npio)
( p)lo 1 (1 -p )"d ! . 4

N 1

( ( pio ) ( ndflpd J (TL, p, d, 4TLZ)ZO)

= h(n,p,d + 1,i0) (1 = f(n,p,d + 1,4q))" (" "9 (nfoms =0 p.cd’dnpio)

We can deduce that (n —n;)gs(n—1io, nj — o, p, d, d’, dnpip) > go(n,nj,p,d+1,d" +
1,i0) and so we have (20).

Suppose for some even d > 2 ([69) holds for all iy in the stated ranges, and
0 < p < 1. We will prove (G9) holds for d + 1. We have

nj—l
Dafrsng i) = (1=p) s 3 (™) (1-p) 1) Dy i)
11=0

We divide into three cases.

njfl - .
Case 1. i < 1o <n-—n;.

We have the following;:
Db(nanjapu d+ 17i0)

n;j—1
oM c n; —1 — i . .
= (1 _p)lonj Z ( Jil )((1 _p) 0 — 1) lDb(n - ZOvnjvpadall)

11=0

= (1 — p)ioms <1+njzl( ) (1= p)~ — 1)

11 1
(1 - f(n - iOapv d7 il))ilgb(niimnj1p1d701i1) h’(n - iOvpa da Z1)) .

We can deduce that h(n —ig, p,d,i1) < h(n —ig,p,d,dnpig) < h(n —ig,p,d+ 1,10)
and from Lemma 5.5 we can deduce that f(n,p,d,4dnpig) < f(n —io,p,d,i1). As
well, gp(n — 0, nj,p,d,nj — 1) < gp(n — 49, nj,p,d,i1). Thus we have

Db(nanj7p7d+ 17i0)

njfl

h(n,p,d +1,i0)(1 — p)*"s (1 + > (n zlnj) (A=p)~" —1)"

=1
(1= f(n,p,d, 4npi0))i19b(”*i07"j»Pﬁdyo,njfl))
= h(n,p,d+1,ig)(1 — p)™
( -1)(1 = f(n,p,d, 4npi0))gb(”*i07"j»Pﬁdyo,nj71)>”J‘*l
(n,p,d+1 20)(1 —p)io
(-

(1= (1= p)*) (1 = f(n,p,d dnpig)) "~ orsmtom=1)

<h

njfl
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We note that g,(n — ig,n;,40,p,d,0,n; — 1) < n?~! and so, using Lemma [5.7] we
thus have

Db(nanjapu d+ 17i0)
< h(n,p,d+1,ip)

) _ ig(nj—1)gs (n—io,n;,p,d,0,n;—1)+io
1—(1=p)o\ (1= —pH™"" :
1= d,4
< p < pZO > < nd_lpd f(nvpa ; ’erlo)

= h(n,p,d+1,i0) (1= f(n,p,d +1,ig)) ("~ Vo impd Omy=Dio

We can deduce that (nj; —1)gy(n —io,nj,p,d,0,n; —1)+1 > gy(n,nj,p,d+1,0,40)
and so we have (26)).

Case 2. i < &
np

Given a set of i1 vertices and one additional vertex, say v, in a graph from G(n —
i0,p), we know that Dy(n — ig,p,d, 1) is the probability that the edge distance
between v and any of the i, vertices is greater than d. By adding one more ver-
tex to our set of i; vertices, it therefore follows that Dy(n — ig,p,d,i1 + 1) <
Dy(n — ig,p,d,i1). Thus, by Lemma [5.4] we have

Db(nvnj7p5d+ 17i0)
4 /e 4npio -1 . .4n;m'o n: —1 » X ) ) )
< (1 - g (g) ) (1 _p)zon] Z ( ]il )((1 _p) 0 — 1)“Db(n - zOunj — 10, P, d7ll)
1=0
4 /e\4npio ! .
™) 0
( = 3 ) (1-p)

<1+4§0 ("3 ) (1 —p)~io — 1)

11 1
: (1 - f(n - iOapv d7 il))ilgb(niimnj1p1d701i1) h’(n - iOvpa da Z1)) .

We can deduce that h(n —ig,p,d,i1) < h(n —ig, p, d, 4npip) and from Lemma 5.5
we can deduce that f(n,p,d, dnpio) < f(n — io,p,d,i1). As well, go(n — io,n; —
i0,p,d,0,n —n;) < gp(n —ig,nj —io,p,d,0,41). Thus we have

)

Db(nvnjvpa d+ 17i0

4 4npi -1 .
< (1 - 5 (g) 0) h(n - iOapv d7 4”}”0)(1 - p)lonj

n;—1
<1+Z( ) (1—p) 7o — 1) <1—f(n,p,d,4npz'o>>“g“"‘“’"f’p’d’”’"j‘”)

111

< h(n,p,d+1,ip)(1 — p)i‘)"j

. njfl
(1+ 1) (1= Fln,pyd Anpig) o 2A0m 1)
< h(n,p,d+1 20)(1 — p)io

; 3 njfl
(1= (1= p)) (1 f(m,p. d, dnpig)) "o rt0ms=D) 0
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We note that g,(n —ig,nj,p,d,0,n; —1) < n¢~1 and so, using Lemma 5.7, we thus
have

Db(nanjapu d+ 17i0)
< h(n,p,d+1,ip)

. _ ion;jgy(n—io,n;,p,d,0,n;—1)+io
1—(1—p)o\ (1-(1—pdn"" S\

pro nd=1p?

= h(n,p,d +1,i0) (1 — f(n,p,d + 1,ig)) ("o ma p-d:0mi =)

We can deduce that (n; —1)gy(n —io,nj,p,d,0,n; —1)+1 > gy(n,nj,p,d+1,0,40)
and so we have (20).

. n;—1 - n—n;j 1 n;—1
Case 3. i < ¢ 0 i T@n? 0 S Tt 1@ 7T OR0 S 4 s r@p T

n—n;

o <
0= T anp)> 4 A (dnp) ¥

Given a set of i1 vertices and one additional vertex, say v, in a graph from G(n —
i0,p), we know that Dy(n — ig,p,d, 1) is the probability that the edge distance
between v and any of the iy vertices is greater than d. By adding one more ver-
tex to our set of i; vertices, it therefore follows that Dy(n — ig,p,d,i1 + 1) <
Dy(n —ig, p,d,i1). Thus, by Lemma 54 we have

Db(nanj7p7d+ 17i0)

Anpio

4 reydnpio) 7! ion; nj—1 —i i : ~ ~
<(1—g(§> ) (1—p)°JZ( i )((1—]9) ° — 1) Dy(n —ig,nj — i0,D,d, 1)

i1=0

(2™

(U= o, pdy i) PO g i) )

We can deduce that h(n — ig,p,d, 1)
we can deduce that f(n,p,d, 4npio)

(n — g, p,d,4npip) and from Lemma [5.5]

<h
< f(n —io,p,d,i1). As well, gp(n — ig,n; —
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i0,p,d,d', dnpig) < gy(n — io,n; — io,p,d,d’,i1). Thus we have
Db(nanj7p7d+17i0)

) 4 /e 4npio 1h . d. 4 . 1 QoM
< _g(§> (TL_7107p7 ) ’I’Lplo)( _p)

’ﬂj—l
nj —1 —i i . \\i1g(n—io,nj,p,d,d’ ,dnpi
-<1+ >0 (" )@= = 0 4= g dnpin) e W)

’Ll:l
< h(n,p,d+1,ip)(1 — p)i(’"ﬂ'
. . , . n;—1
i+ 0 1) (L= f(n,pyd, dnpi)) 2 ioms pett o)
< h(n,p,d+1 zo)(l — p)io

. . . ’ . n;—1
=Py + (1= (1= p)) (1= f(n,p, d, dmpig)) "ot dnwio))

We note that g,(n —ig,n;,p,d,0,n; — 1) < n%~1 and so, using Lemma 5.7, we thus
have

Db(nanjapu d+ 17i0)
< h(n,p,d+1,ip)

—p . — —p - ion;gp(n—io,n;,p,d,d ,4npio)
1—(1—=p)o 1-(1 d)nd ! .

\! p — d,4

( ( iO nd 1pd f(n7p7 s nplo)

= h(n,p,d + 1,ig) (1 = f(n,p,d + 1,i)) oo (- iomsp e dnpio) o

We can deduce that (n; —1)gy(n —io, nj, p,d,d’, dnpio) + 1 > gp(n,n;, p,d+1,d +
1,ip) and so we have (26)).

By (26]), we have

2

D degh< ™™y (T;) h(n,p,d, 1) (1= f(n,p,d, 1)) ot D

beB j=1

if d is even, and

> degh < s™ ™ ninzh(n, p,d,1) (1 = f(n,p,d, 1))" P

beB
if d is odd. Hence, by the simple sieve, we have

2
P(G(n1,na,p),d) > 1Y (T;J)h(n,p, d,1) (1 = f(n,p,d, 1)) mmapdd)
j=1
if d is even, and
P(G(n17 ng,p), d) >1- n1n2h(n7p7 d7 1) (1 - f(n7p7 du 1))917(717"1;17;117(1/71)

if d is odd.

We now calculate n(by,bs) to get an upperbound for 2?21 P(G(n1,na,p),1) us-
ing the Turan sieve. If the two pairs of vertices b; and by are the same, then we just
have n(by,bs) = degb. If by and by have exactly one vertex in common, then we
can see that n(by,b2) = Cy(n,n;,r,s,d,2) and use (69). Hence the only question is
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when the two pairs of vertices are disjoint.

As in our calculations for degb, to help calculate n(by,bs) in this case, we will
calculate a generalised notion of n(by,b2) as follows. Suppose that d is even. Let
0 <ip<n;—2and 0 < iy <nj—2whereig+iy < n; —2. Pick two disjoint sets of
vertices having iy and 4(, vertices out of the n; labeled vertices in one of the partite
sets, as well as two other vertices, say v and v’, out of the same set. Suppose that
dis odd. Let 0 <ip <n—n; and 0 < i < n—n; where ig + iy < n—mn;. Pick two
disjoint sets of vertices having iy and i{, vertices out of the n —n, labeled vertices in
one of the partite sets, as well as two other vertices, say v and v, out of the opposite
partite set consisting of n; vertices. In both cases, we will let C{(n,n;,r, s, d, i, ()
denote the number of graphs in A such that there is no path from any of the ig
vertices to vertex v that consists of at most d edges, as well as the requirement that
there is no path from any of the i{, vertices to the vertex v’ that consists of at most
d edges (note that this does not generalise the construction where d is even and by
is a pair of vertices from the set of n; (or ns) vertices and bs is a pair of vertices
from the set of ng (or ny respectively) vertices, we will return to this case later). If
io = 0, then we have C}(n,n;,r,s,d, i, i) = Cp(n,nj,7,8,d, i) and if ¢ = 0, then
we have Cj(n,nj,r,s,d, io, i) = Cy(n,nj,7,s,d,i9). So suppose that ig,i; > 0. If
d is odd, then we have

C{,(n,nj,r,s,d—i— 1,1’0,1'6) < Z (n . TLJ) (310 _ (3 - T)lo) 1 (5 — r)lo(n—nj—n)

VA
i1=0 1

nfnjfil . ’i/
n—m; —1 . . 1 . . . .
. j : ( /] 1) (SZ() _ (S _ r)lé) (S _ ,r,)lé)(nfnjfnflll)snzé)
(2
1

o
i7=0

(71) -C{)(n—io—ig,nj—io—ié,r,s,d,il,ill)

valid for all 1 < g, iy < nj; — 3 with ig + i < n; — 2. If d is even, then we have

n;—2
J S _9 ) o o .
Ch(nyny,rys,d + 1i0,ip) < ) (nj' )(S” —(s=r)")" (s =)l Dglo

=0 v M
n;i—2—1i X
: ]Z 1 (”j -2- il) (Sig —(s— T)ié))zll (s — p)io(ms—ir=ii=1) girig+iy
&\
(72) -Cy(n — 19 — ig,nj, 7, 8,d,i1,1})

valid for all 1 < g, iy <n —n; — 1 with ig + 3 < n —n;. As well,
Ch(n,ymj,r, s, 1,ig,ih) = (s — r)iotiogmna=io=i

for all 0 < 4p,i( < n —n; with ig + iy < n — n;, completing the formula. Then we
can deduce that Cy(n,nj,r,s,d,1,1) = n(b1, be) if we are working with diameter d.
Let Dj(n,p,d, g, 1) = G, Liosio) o that Dj(n,nj,p,d,io,ip) is the probability

sn1m2
that the edge distance between v and any of the ¢ vertices is greater than d and
that the edge distance between v’ and any of the if, vertices is greater than d. We

will prove that
(73) Dg(nvnjvpada 7’0;7’10) < Db(n - lanj - lapv d7 10 + 7’/0)
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for 0 < p<1,0<ig,i; <n; —2, i+ iy < nj — 2 if we assume that d > 2 is even,

and for 0 < p <1, 0 <ip,iy < n—ny, ip + iy < n—n; if we assume that d > 1 is
odd. For d = 1, we have

Djy(n,n;,p,1,i0,ih) = (1 — p)*tio = Dy(n—1,n; — 1,p, 1,4 + if)

so ([73) holds for d = 1. Suppose for some odd d > 1 ([73) holds for all n € N,
0 <ig,ip <n—mnj, io+iyg <n—n;, 0 <p< 1. We can see that (73) holds if ip = 0
or i, = 0. So assume that 0 < 4g, iy < nj — 3 with ig + iy < nj — 2. First we have

n—m;

Di (. njop.d Lo ip) < 3 <n ;1nj> (1= (1 =p))" (1 — pyotn—ms=in)
i1=0
n—mn;—i n—n; —i1 A , o
il =0 3
1
- Dy(n —ig — iy, nj —io — ib,p, dyix, i)
. Ty n— n. . .
< _ \io(n—njy) j \—io L
(1-p) Z ( i ((1-p) 1)
11=0
(1 - p)lonmni—iv) n—g:—n n—nj—i ((1 —p) i — 1)%
— it
11:

-Db(n—l—io—ig,nj—1—i0—i6,p,d,i1 +’L/1)
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Writing k = 41 + 4, we have

Dy (n,p,d+1,ig,ih) < (1 — p)lotio)n=ni) Z( )Db(n—l—zo ih,ny — 1 —ig — i, p,d, k)
k=0
k . 7:1 .o .’ —i1
(a-ph-1)" () P = 1) (1= )7 (1= p) o 1)

= (1 —p)lo+io)n=ny) (" _knj>Db(n —1—ig—ib,n; —1—ig—ih,p,d, k)

Mk

3 o
:o

<

k‘

k Cdo—il _ (1 _ =it \ @
{a-» Zo-1)kz( )( pzl_p)%(ilp) )

K2

O

3 o

S
<

— (1 = p)liotig)n—my)

~(O—pV%—1Y

=(1 _p)(ioﬂ'fu)("*n]‘)

M

(n_knj)Db(n—l—io—iBanj —1—io —ig,p.d, k)

(1 —p) o - —p))"
(I—p)~%—1

=0

1+

e N

3
S

(]

J
(n knJ)Db(n—l—io—iB,”j_1_i0_i6’p’d’k)

x>
(=)

., k
: ((1 —p) T — 1)
=Dy(n—1,n; —1,p,d+1,ip + ig).

Thus (73] holds for d + 1. Suppose for some even d > 2 (73] holds for all n € N,
0 <o, iy < nj—2,i9+i, <n—n;—1,0 < p < 1. Assume that 0 < ig, i < n—n;—1
with g + i <n —n;. First we have

Dl’,(n,nj,p,d—i— 1,i0,10 Z ( ) 1 — (1 _p)io)il (1 —p)io(nj—h—l)

—2—17 . .
n 2—1 7\ U1 i (s —i1—i! —
b <J 2T (1) gyt
=0 “
Db( Z07”_]7pud Z1711)
<oppe S (72 e
11 0
i’(n'filfl)nj_Q_il nj—2—1i —i g
(1= p)rotm > » (I-=p) -1
o 1
1

-Dy(n —1—1ig —ig,n; — 1,p,d, iy +1i}).
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Writing k = 41 + 4, we have

n;—2
S J .9
Dj(n,nj,p,d + 1,0, i) < (1 — p)lotio)n=1 §~ ("Jk )Db(n —1—io—iyn; —1,p,d, k)
k=0
—i N —i i —i1) —if —h
(a=p 1) 3 () (@=p e =) 1) (1 p) 1)
11=0
n]‘72 ) 2
— (1 _p)(ioJrié))(nj*l) Z (n]k )Db(n —1- iO _ i;)’nj _ 1717, d, k)
k=0
EEL (kY [(1=p)—io—io — (1 —p)=in )"
fso \i (L—p)~h -1
’ﬂj-2 ne — 2
= (1_p)(i0+i6)(nj—1) Z ( ]k >Db(n_1_10_167nj_17p,d, k)
k=0
. N\ k
i F (L—p) oo —(1—p)*
(@ —p)io - 1) 1+ _
(( p) ( 01

’ﬂj-2
. ./ P 2
= (1 _p)(l()"rlo)(nj—l) (n] >Db(n 11— iO _ 167”/] _ 17p, d, k)

2\ k
: ((1 —p) o - l)k

< Dyp(n—1,n; —1,p,d+ 1,ig + i(,).

(=)

Thus (73) holds for d + 1.

We now generalise the construction for n(bq, b2) where d is even and by is a pair of
vertices from the set of ny (or ny) vertices and by is a pair of vertices from the set
of ny (or nj respectively). Pick ig vertices out of the set of ny vertices if d is even
or out of the set of ny vertices if d is odd. Also, pick i(, out of the set of ng vertices
if d is even or out of the set of n; of vertices if d is odd. Also, pick another vertex
v out of the set of nq vertices and another vertex ’ out of the set of ny vertices.
Let C}'(n1,na,7,s,d, 9, 1) denote the number of graphs in A such that there is no
path from any of the 7y vertices to vertex v that consists of at most d dges, as well
as fulfilling the requirement that there is no path from any of the i, vertices to the
vertex v’ that consists of at most d edges. Suppose ig,i(, > 0. If d is odd, then we
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have
v
ne—ig—1 )
o d+1.in. i ng —ip — 1 io io) %1 io(n2—ih—i1—1)
b(nl,’I’LQ,T,S, + 710710) < i (S —(S—’f') ) (S—’f')
i1=0 !
—io—1 . .
e ny —19 — 1 i i Z/1 i (n i 71-/71)
. g ., s —(s—r)o) (s—r)olmTroTh
h 3]
i, =0
. -/
Z“ ZZO io\ (il o e L
. lO lO ,rl1+l2 (S _ ,r)zo7l1+107l2+l110+l2107l1l2 510107l1107l210+l1l2
Lhi=0l,=0 N1/ \"2
(74)

2 . -/ . ./
: Cb (nl —1%0,N2 — %, T, S, d7 Z177’1)

valid for all 1 <ig <m3 — 1,1 <4 <ng — 1. If d is even, then we have

ni—ig—1 .
ni—ig— 1 . o . SN
Cy (n1,mg,r,s,d + 1,40, 4) < Z ( Lo ) (s“’ —(s— r)“’)“ (s — r)“’(”l*z(f”)s“”6
i1=0 g
ng—io—l . 1 7:/
S (T T () st
i\ =0 “
(75) 'Cl/)/(nl _i/o,TLQ_’L.Q,T',S,d,il,’L./l)

valid for all 1 <ip <mng — 1,1 <ij <ny — 1. As well,
Cy (n1,na,m,8,1,40,10) = (s — r)iOHf’s"l"Z_io_if’

for all 0 < g < mg — 1, 0 < i < ny — 1, completing the formula. Then we can

deduce that Cy(n1,ne,r,s,d,1,1) = n(by,be) if we are working with diameter d.
Let Dj(n1,na, p,d, i, i) = w so that Dj(n1,na2,7,s,d,io,i() is the
probability that the edge distance between v and any of the iy vertices is greater
than d and that the edge distance between v’ and any of the i{, vertices is greater

than d. We claim that
Dll;l(nlu n2, p, d7 i0, zIO) < h(n7p7 d7 o + zIO)2
(76) (1= fln,p,d,io + ig))iog(nl7"2,P,d7d/7i07i6)+i69("27"1,P,d7d/7i67i0)

. . ni—1 no—1
ifd 2 3isodd, 1 < o it a7 22 S o @ + e T T

where i) = ip or ij = i, depending on the parity of d’ and the inequality in question.
Also,

Dll;l(nla na2,p, d7 iOa 7’/0) < I’L(Tl,p, d7 iO + 7’/0)2

(77) (1= f(n,p,d,io + ié))iog(nl7"2P,d7d/7i07i6)+i69(n27"17:D7d,d/7i67i0)

. . ni—1 no—1
iftd > 2iseven, 1 < ot Anpih 1 (dnp)Zio+ (Anp)Biy ot (Anp) T iy and 1 < T T Anpio T (Anp)2in + (Anp)Piot. 1 (Anp) @

where i) = ip or ij = i, depending on the parity of d’ and the inequality in question.

We prove by induction on d in the same way that we proved (26]) and (€9). For
illustration purposes, we prove the base case d = 2 and one of the cases for the
induction step. First, two lemmas:
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Lemma 11.3. Let 1,22 > 0. Then we have
(I=p+p1—-p)")A=p+p(l—p)*) <1—p+pl—p)=Fe.
Proof. Note that
0<(1-(1-p)")A=(1=p*™)=1-(1-p™ —(1=p)*+(1-p)=*
so that
(1—p+p(1—p)") (1 —p+p1—p)*2) = (1—p)*+p(1—p)" ' +p(1 —p)*** +p?(1 — p)= 17

<(1-p)P+pl—p)(1—p)" T +1)+p*(1 —p)=rte
1—p+p(l—p)=tee

O

Lemma 11.4. Let r1,r2 € N. Then

T1 T2
5 55 (1) (12 Yammsopyrmr o g

ma

Proof. Wlog we may assume that r; < ro. We have

T1 T2
E E 8! r2 pm1+m2 (1 _ p)Tl—m1+T2—m2+m1T2+m2T1—mlmz
mia mao

1
_ Z <7‘1 >pm1(1 _ p)T1—m1+T2+m1T2 (1 _|_p(1 _ p)rl—ml_l)T2 )

If r1 = 1, then we have

1

1 ,
> ( )p”“ (1= p)tmatratmrs (14 p(1 —p)t=-m1)™
mi

m1:0

=(1-p)"*"(1+p)+p(1—p)?*
<l1—p+pl—p)=*
If r1 > 2, then we have the following:
1
Z (T‘l )pml (1 _ p)’l‘l—ml-‘r’f'g-‘rml’f‘g (1 +p(1 _ p)rl—ml_l)T2

m
m1:0 1

r
(1 —p)T1+T2 Z (Tl )pml(l — p)(’r2*1)ml

my

IN

m1=0
(1-p)(1—-p+p(1l—p=)"
(1—p+p(l—p))°
1—p+p(l—p)*
<1—p+p(l—p)t

IN A

with the second last inequality following from Lemma [I1.3 O
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For d = 2, we have

0 i — 1
Dll;l(nlun27p727i07ilo) < (1 _p)lo(ng—lo—l) Z ( ? . 0

i ) (1=p)7 —1)"

i1=0

io(nliioil)nliioil ny—ig—1 i i i i

(1-p) > ST (@) ey
i/ =0

. -/
0 %0

. -/
. Z Z <’;§)> <’;2>pll+l2(1 _ p>io*ll+i6712+l1i6+lzio*lllz

11=0102=0
AT it i ni—io—1
<(I=p4+pl—p)o)= " (1—p+p(1—p)°)

: (1 —p+p(l— p)““/“)

) " ig(n1—io—1) o,
< (1= foup.2i0)o 0D fnp,2i0)) T (1= flnp 20+ )t
< (1= f(n,p,2,i0 + ia))io(nz—ig)ﬁ-ig(nl—io)

with the second inequality following from Lemmal[lT.4l Suppose for some odd d > 3,

([76) holds for all 4g,ij in the stated ranges, and 0 < p < 1. We will prove (77)
holds for d + 1. We have

Dll;l(nl, na, p,d + 1o, 16) < (1 _ p)io(nz—i6—1)+i6(n1—io—l) (1 -p _|_p(1 _ p)io+i6)

nzi—l <7’I,2 — Z/O - 1> ((1 )71-0 1)11
_ i b
11:0
ni1—ip—1 ny — io 1 i &
> i ((1_p) 0_1>
=0 !

- Dy (ny — ig,n2 — ig, 1, 8, d, i1,1}).
The case that we will prove follows.

Case 1. % <ig<n-1.
We have the following;:

Dy (n1,n2,p,d+ 1,i9,i() < (1 — p)io("27%71)”6(”1%071) (1 —p+p(l - p)i°+i6)

na—ig—1 .
ng —1g — 1 i i
=y (TR ene-y
i1=1
m ot ny — io -1 —i Z,1
1+ Y o) (a-me)
=1

“h(n —ip — iy, p,d, i1 + i) h(n —ig — i, p,d, iy + 7))
. (1 _ f(n — i — 26 p,d, i1 + ill))ilg(w—if)»m—io7p7d,07i17i'1)

. ./ . 7 \\ 41 9(n1—io,n2—i(,p,d,0,i] 1)
.(1_f(n_20_207p7d721+21)) .
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We can deduce that h(n — ig — ij, p,d, i1 + i) < h(n —ig — i, p, d, 4np(ip + if)).
Also, from Lemma B8 we can deduce that f(n,p,d,4np(io + i5)) < f(n —ig —
ig, 0, dy i1 +1i4). As well, g(ng — ig,n1 — 0, p,d,0,m1 —ig — 1,n0 — i — 1) < g(ng —
ig,n1 — do,p,d,d',i1,41) and g(ni — ig,na — 44, p,d,0,n2 — i — 1,ng —ip — 1) <
g(ny —ig,na —i4, p,d,d’, i1,4;). Thus we have

DZ/)/(TLl, n27p; d + 15 7;05 7’/O)
< h(n —ig — iy, p, d, dnp(io + ip))>

. (1 _ p)io("2*i6*1)+i6(n1*i0*1) (1 —p _|_p(1 _ p)io+i6)

1+ nzzzo: 1 ( 1) (1—p) —1)"

11 1
o o
-(1—f(n,p,d,i1+i’1))“g("2 io,m1 ~i0,p,d,0,mz2—ig ~1,m1 ~io 1))

ny— ’Lo

1+ Z (”1_10_1) ((1—p)*i6—1)ii

=1
(1= fln,p,d, iy +Z./l))i'lg(nl7i0,n27i6,p,d,O,nlfigflﬂmfif)fl))
< h(n,p,d+ 1,io +iy)?
(1 )Z()(’Ilz ig—1)+ig(n1—ig—1) (1 _p+p(1 _p)io-i'if))

L = 1) (1= padyAnplio +g)))?"* o iophOm i)

(1 ( (1—p)~io — 1) (1 — f(n,p,d, 4np(io + ig)))g("l*“’"27i6’p’d’0’"1*i°71’"2%*1))
(

< h(n,p,d+1 zo+20)2 (1 -p+pQ1 —p)i‘)“())

) i no—ip—1
(1= (1= p)") (1 = f(n,p, d, dmpliq + i)/ o —ombOmaio i mio =D T8

- ig ni—ig,n2—ig n1—io—1.10—i" — ni—igp—1
'(<1—p>1°+(1—<1—p>10) (1= F{n,pyd, dnplio + ig)))™ ome o a0m oYM

We note that g(n2 - i67nl - z.OapuduOﬂ,Ll - Z.0 - 17”2 - 7’/O - 1)79(”1 - i07n2 -
il,p,d,0,ny —if — 1,n1 —ig — 1) < n?~! and so, using Lemma [5.7] we thus have

Dll;l(nlu n2, p, d+ 17i07i6) < h(n7p7 d+ 1,40 + 110)2

L yyio(n2—ih—1)g(nz—il,n1—io,p,d,0,na—ih—1,n1 —ig—1)+i
'(1_f(napad-l—l,lo—f—lg))zo(nz ig—1)g(nz—ig,n1—io,p,d,0,n2—ig—1,n1—io—1)+io

(L= f(n,p,d+ 1, g + if)) o ~iomDelm =iona=iopd 0m —io—Lnz—ip =)o

We can deduce that (ne —if—1)g(ne —ig, n1 —io,p,d,0,ne —iy—1,n1—ip—1)+1 >
g(n17n27p7d+ 1707i07i10) and (nl _iO - 1)9(”1 —Z'O,’I’LQ _i/07p7 d707n1 _iO - 17”2 -
ip — 1)+ 1> g(ne,n1,p,d+1,0,i),i0) and so we have ([77)).

The rest of the cases can be proved similarly.

We can deduce that Dy(n,n;,p,d,i0) < Dy(n —1,n; — 1,p,d, ). Thus we have
n(bi,b2) < s™™Dy(n—1,n; —1,p,d,2) whenever b; and by are not the same pair

ng—i6—1

nl—io—l
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of vertices with each pair having at least one vertex in the partite set consisting
of n; vertices. Also, when d is even, and b; and by are two pairs of vertices with
one pair having its vertices in the partite set consisting of n; vertices and the
other pairs having its vertices in the partite set consisting of no vertices we have
n(by,b2) < s™™Dy(nine,p,d,1,1). Hence we can use ([G9) and (7) to get an
upper bound. Thus, by the Turdn sieve, for even d > 2, we have

P(G(n1,n2,p),d)
B S ((’3)2Db(n —1,nj —1,p,d,2) + (¥) Do(n,nj,p, d, 1)) +2(%) ('5) D" (n1,n2,p, d, 1,1)
(2521 ("y) Do(n,n;,p, d, 1))2
S 2 (%) Do(n — 1,my — 1,p,d,2) + 2(%5) () D" (n1, 2, p, d, 1,1)
(2521 ("5) Do(n,nj,p.d, 1))2

1
— 1+ 5 —
Ej:l (2J)Db(na nj, Py d? 1)

_ d—2 -
nj) (1 _ pd)(n—nj) ((nﬂw)%-‘rzl:?l (n1n2)¥71(p1721+p,21)>

-1

—2

AN
N

J
n; 2 /
12 (2]> h(n = 1,p,d,2) (1= f(n—1,p,d,2))> 0" brd 2

o) ()02 1 e )

-1

1

+ - 3 -
(n=ny) (nam2) T 45,2, (mana) 5 7 (220420 )

2 7
D1 (2)(1 -9
and for odd d > 3, we have
n%n%Db(n - 17”1 - lapv d7 2) + TL17’I,2Db(TL,TL1,p,d, 1)
n%nng(n7nlapud71)2
Dy(n—1,n1 — 1,p,d,2) 1

P(G(ni,n2,p),d) < -1

Db(nanlapv d71)2 TLlTLQDb(n,TLl,p, dvl)

d—1 =l Al 0y oi o
(nin2) T +3, 2 (nan2) 2z I (p" " 4p~ )

-2
<(1-p% (
. f(?’L —1,p, d, 2)2~gb(n71,nj71,p,d,d’,2)

1

d—1 a1 d—1_, . N\
(nin2) T 43,2, (nina) 2 <p172J+p721>)

h(n - 17p7 du 2)

1+
nina(1 —pd)(

12. RESTRICTED RESULTS FOR BIPARTITE GRAPHS FOR DIAMETER d > 3

We impose further restrictions on ny,n2, and p in Theorem [I1.2] to make our
result more clear and meaningful. The result is Corollary (2.1
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Corollary 12.1. Let d > 3 be fixed. Suppose that 29) and @B0) hold. Also
suppose that n; < ny and

[~

2
1-2-

S

(78) n 2 < ny.

Suppose d is even. Then we have

_ _ 1)1 — pd (n1n2)?2 Y (na—ny)
P(G(n,p),d) > 1— n2 (1 +4d+1dnﬁ) (1_pd)n‘f/2n§/2 . ni(ny — 1)(1 — p) '
2 ’ng(nz — 1)

and

2(1 _pd)—nf/2n5/2*1 (1 + 27’L%) n (’I’Ll _ 1)(1 _pd)(’ﬂl’ﬂz)d/271(n2—n1) —1
P(G(n,p),d) < 1+

HQ(TLQ — 1) TLQ(’IIQ — 1)
+ 443 dn 3
Suppose d is odd. Then we have
. -1
P(G(n1,n2,p),d) >1—mning (1 + 4d+1dnﬁz’> (1 — ptylmn2)=2"

and
d—1

(1 — phy=(mn2) = (1 n 2n%)

ning

+2. 482 g

P(G(n1,n2,p),d) <
We prove Corollary 2.1l Suppose (29)), (30), and (B0) all hold. As in the proof
of Corollary [6.1], we derive (BI)) and ([B2]). As well, we can derive that

16(4np)i—3
7
Thus we can apply Theorem [I1.2] for d’ = d — 3. Suppose d is even. Then d > 4.

From (29), 80), and (78), we can derive

d/2 (d—2)/2
4 d—3 4 d—4
gb(n,nj,p,d,d—3,1)>(n—nj—%> (nj—l—%>

Snl—l.

1— 1

16n2p2

44 (np)d—3 1 49(np)tt d/2
63(n—n;) n, 252n;;

- _g\ d/2
Nd/2, d/2—1 <1 4% (np)*-3 _ 4%(np)? 3> /
J J

63(n — n,) 252n;;

-1 1 -1 1 d/2
4dp 7T "5 4%%@)

d/2,d/2-1 1— B
(79) > (n— )/ 2n /> (1 B 4d*3dn%—#) |
d/2 (d—2)/2
2(4np)*3 2(4np)d—*
16n2p 16m2p?

(80) > (n— nj)d/2n;1/271 (1 _9. 4d—3dn;—;—$> 7
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/2 d/2-1
4np)?—3 4np)?—3
gg(n27n17p7d7d_37171)> (nl_l_(lpi)l> <n2_1_(1p7)1

df2,dj2=1 (1 _
> nNq' Ny ( T T
- - d/2
/2, d/2—1 9.49-3p= "3z 18p 7 a2 /
>y’ Tng 1-— - — -
- - d/2
/2 _d/2—1 90.493p% "5z 18p7 32 /
>ny' g 1- —
7 7216
(81) > ntli/2ng/2_l (1 _ 4d73dn%7#) ,
and
82 b n17n27pad;d_3;171 > nd/2_lnd/2 1—4d73dn%_# .
9y 1 9

Substituting in (31), (32]), and [79) into the lower bound in Theorem [IT.2] we obtain

2 : - n—n;)4/2pd/271 l—éldfldn;_dlii12 1—4'17211715_;7‘12
P(G(n17n27p),d) > 1 _ Z (n2.7> (1 + 4ddnﬁ) (1 _pd)( J) J < 2d )( 2d )
j=1
(83)
2 _ —1_
nj -1 (n—ny)¥2n4/? 1(172-40“15171 7d Hf)
1- J (1 444 2) 1-pd ’
> ; <2> + nza | (1 —p%)

As in the proof of Corollary [6.1, we deduce

2
PG ) ) > 1= 3 (15 ) (1 atttansd) (1 iy
j=1

_ - _ _ pd)(nin2)* 27 (na—n1)
S (M) (1 et ) (1t (1 il 20O Zp
2 ng(’ng—l)

Also, from [B0), we have
< (1 . pd)_2n(zz>il nd7272l (p172l+p72l))

_16nd—3,—2

<(1-pH)”
Also, from (29) and @B0), we have
16p°2nd =% _ 16020 a2 § 16024 11
3 - 3 3 3-44-2d — 192°
Thus we can deduce

—1
ignd—3,-2 192n347
1—pd) == <14 2207
(1-p9 + o1
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Thus
—2
— u _
i (ZJ) (1 _pd)(n—nj)<(n1ng)%+zl:21 (nlnz)%fl(plle_i_p,m))
j=1
2 —2 .
2 192n 342
(84) < Z < ) (n n;j)(ning) 2 (1 n %) '
7j=1

Similarly, we obtain

i (ng>(1 _ d)(ﬂ—n])((vnnz) T3 (nana) T (p! 2z+p,2l)>
P
2 1 3
" =5 384n 3
85 3) (1 = pd)(n—n;)(ninz) 2 L 38dna )
(85) < ;(2)( p?) 4 Bedn>
Note that by (), (), @), €D, ET), and E2) we have
(n_l p,d 2)( (n_l p7d 2))2 qb(n 177’j_17p,dd 32)
(1 424 1 4d—1dnﬁfﬁ7>(n,nj)d/zn;z/zfl(172.4d73dn;_;7i§>
+ n2d2)
(1+4dd 1) 1= 2'4‘“1171571*%)<n_nj>d/znj/zf1
T 2d
(86)
(1+4ddn2d2)3 2(n n])d/z ?/271
and

h(n,p, d, 2)2 ( f(n p.d, 1))_% na,n1,p,d,d—3,1,1)+g; (n1,n2,p,d,d—3,1,1)
-1 1

11 11
. (1+4ddn§§-)2(1_pd)2<1_4d1dn2d 2d2>(nf/2ng/2—1+nf/2f1ng/2) (1 _4d—34,3d 2d2>

(87)
_ 4 _
< (1 + 4ddnﬁ) (1 —pd)"f/zng/Q 1

Substituting (84), (85)), (86l), and (87) into the upper bound in Theorem [T.2] we
obtain

_1\5
P(G(n1,n2,p),d) < (1+4ddnm> -1

d\—nd/2pd/2-1 384n 5 _
2(1 7 ) L (1 i 383 ) (1 + nl(nl - 1)(1 —pd)("1"2)d/21("2n1)> !

d/2—1_d/2
+ny Mg

_|_

nz(’ng — 1) ’ng(nz — 1)

TLQ(’IIQ — 1) + HQ(TLQ — 1)

+ 483 dp |

2(1 — dy—n?/2pd/2=1 1 384712d2 _ 1
AT TR (L w1ty 1<"2"1>>
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Suppose d is odd. Similarly to how we derived ([[9), we derive

=N (d—1)/2
4np)d—3 2 Anp)d—14
gp(n,nj,p,d,d—3,1) > <n2_1(&> (nl—l—%>

1
~ 16n2p2 1-

16n2p2
(88) > (mna) T (1 4 -%dn 357
and
= -
2(4 d—3 2(4 d—4
gb(”—l,n1—1,p,d,d—3,2)>(ng—%> <n1_2__(np)1 >
1= 1= onme
(89) > (nyng) = (1 _9. 4d—3dn5—i—ﬁ) ,

Substituting in (B1), (32]), and (BY)) into the lower bound in Theorem [IT.2] we obtain
1

d —1 d (nlng)% (1—4d71dn%7ﬁ> (1—4d73dn%7m>
P(G(n1,n2,p),d) > 1 —ning (1 +4 dnﬁf) (1—p%)

d—1

>1—ning (1 =+ 4d+1dnﬁ) (1 _ pd)(nlng)T .
Similarly to how we derived (84), (B8], and (BG6) we also have

_ a1 B
(1 - pd)72<(n1n2)%+zl:21 (n1n2)%7l(p1721+p,21)>

—1
a5t 192n242
1 — pd)—2(nin2) 2 1 4 22enEt
(90) < ( P ) + T ,
e % -l g/ 1-2 —21
(1 _ pd)7<(n1n2) 2 43,34 (ning) 2 (p 1p ))
-1
dzL 384n2a*
91 1— d\—(ning) 2 1 334n 242
o - ( P ) < + 383 ) ’
and
n—»L1p,a, —f(n—1,p,d, gv(n—1,n;—1,p,d,d—3,
h 1 d,2)(1—f 1 d.2 2-gp(n—1 1,p,d,d—3,2)
~1)\3 a-1
(92) < (1 +4ddnﬁ) (1 = ph)2mn) =

Substituting @0)), (@), and ([@2) into the upper bound in Theorem [IT.2] we obtain

d—1 —1
d\—(nin2) 2 384n 242
(1 —p)~(mmn2)72 (1+T§d>

nin2

1\ 4
P(G(n17n27p);d) < (1 =+ 4ddnﬁ) —1 +

d—1

(1= p) =) T (1 4 220 )

nin2

< + 4d+2dnilf.

13. DIRECTED BIPARTITE GRAPHS FOR DIAMETER d > 3

Using the above methods, we can obtain similar results about the probability
of a random directed bipartite graph with n; and no vertices in the partite sets
having diameter d where each directed edge is chosen independently with probabil-
ity p. Furthermore, for any two vertices, say v; and vy, the existence of the edge
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from vy to v9 has probability p, while the existence of the edge from vy to v also
occurs with probability p, and these two edges occur independently. We proceed
exactly as above the only changes being as follows. We multiply the second term
in (64) by s, multiply the right-hand side of (GH) by s‘"i, multiply the sec-
ond term in (G6) by s*(~"), multiply the right-hand side of (@) by s®(™—"),
replace the factor of siio with shio+otio)(n=n;) jp (@), replace the factor of
$itioHiy with gitiotiot(io+ig)n; ip (72), replace (s — ,r)io7l1+i67l2+l1i6+l2i07l1l2 and
Sioif)*llif)*lzioJrlllz with (S _ T)iO*llﬂLif)*lerllif)Jrlzio and Sio(nzflz)Jrif)(nl*ll) respec-

tively in ([{4)), replace st with sionztiont jn ([T, and replace nina, ("21), ("22), and
(") wherever they occur with 2n1ny, ny(ni — 1), n2(nz —1), and n;(n; — 1) respec-
tively. The only other extra consideration is in our calculation for n(by,bs) where
d is odd and we may have both pairs of vertices each consisting of a vertex from
each of the partite sets, but where the paths concerned start at vertices in opposite
partite sets. To deal with this case, we would define C}"’ (n,n;,r,s,d+ 1,14, 1),
which we define the same way as the function C} (n,n;,r,s,d+ 1,19, 1), except we
consider directed paths from the ig vertices to vertex v, and directed paths from
the vertex v’ to the 4 vertices and this case can be dealt with in exactly the same
way as Cj (n,n;,r,s,d+1,i0,i5). Consequently, in Theorem and Corollary
[[2.1] we multiply the second term of the lower bounds by 2, divide the last term of
the upper bounds in Theorem by 2, divide the first upper bound in Corollary
2T by 2 and divide the the first term in the second upper bound in Corollary 12|
by 2 to get the analogous results for random directed bipartite graphs. Everything
else is left unchanged.
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