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ASYMPTOTIC FORMULAS RELATED TO THE M;-RANK OF PARTITIONS
WITHOUT REPEATED ODD PARTS

CHRIS JENNINGS-SHAFFER AND DILLON REIHILL

ABSTRACT. We give asymptotic expansions for the moments of the Ma-rank generating function and for
the May-rank generating function at roots of unity. For this we apply the Hardy-Ramanujan circle method
extended to mock modular forms. Our formulas for the Ma-rank at roots of unity lead to asymptotics for
certain combinations of N2(r, m, n) (the number of partitions without repeated odd parts of n with Ma-rank
congruent to r modulo m). This allows us to deduce inequalities among certain combinations of N2(r, m,n).
In particular, we resolve a few conjectured inequalities of Mao.

1. INTRODUCTION

In this article we study a certain statistic defined on integer partitions. In particular, we give asymptotics
for the moments of the My-rank generating function and asymptotics for the Ms-rank generating function
evaluated at roots of unity. We recall that a partition of a non-negative integer n is a non-increasing
sequence of positive integers that sum to n. Rather than studying all partitions, our attention will be
focused on partitions without repeated odd parts. However, to describe our results and how they fit into the
current theory, it is best to begin our discussion with ordinary partitions. As an example, the partitions of
S5areb,4+1,3+2,34+1+1,2+2+1,24+1+1+1,and 1+1+ 141+ 1, while the partitions of 5 without
repeated odd parts are 5,4+ 1, 3+ 2, and 2+ 2+ 1. We let p(n) denote the number of partitions of n and
let p2(n) denote the number of partitions of n without repeated odd parts.

A classic statistic defined on integer partitions is Dyson’s rank of a partition [I7]. The rank of a partition
is defined as the largest part minus the number of parts. With the partitions of 5 listed above, the respective
ranks are 4, 2, 1, 0, —1, —2, and —4. We let N(m,n) denote the number of partitions of n with rank m.
Of course, the rank was defined with a purpose in mind. Two of Ramanujan’s three famous congruences
for p(n) are p(5n +4) = 0 (mod 5) and p(7Tn + 5) = 0 (mod 7). With N(r,m,n) denoting the number of

p(5n+4)
5

partitions of n with rank congruent to r modulo m, Dyson conjectured that N(r,5,5n + 4) = and

N(r,7,7n+5) = w. That is to say, grouping the partitions of 5n + 4 according to their rank modulo
5 gives 5 equinumerous sets and grouping the partitions of 7n 4+ 5 according to their rank modulo 7 gives
7 equinumerous sets. One can verify this is indeed the case with the partitions of 5 listed above. This
conjecture was resolved by Atkin and Swinnerton-Dyer by non-trivial means in [6].

There is much interest in the rank past these two congruences. Before continuing, we should give names
to our generating functions. We let

P(q):= > p(n)g", P2(q) ==Y _ pa(n)q", R(Ga):=), > N(mmn)("q"
n=0 n=0

n=0m=—oo

A key issue is that while P(g) (and P2(q)) is essentially a weight —1 modular form, the function R((;q) is
not. Many of Ramanujan’s odd order mock theta functions can be expressed in terms of R({;q) (see [19]
where R((;q) is hs(¢,q) and [21I] where R((;q) is g(¢,q) up to minor factors). For this reason R((;q) is
called a universal mock theta function. While once illusive, the automorphic properties of R((;q) are now
well understood. The rank generating function is essentially a mock Jacobi form and, when ( is specialized
to a root of unity times a fractional power of ¢, R({;q) is a mock modular form (in that it is the so-called
holomorphic part of a harmonic Maass form). The definitions of these terms are somewhat involved, so we

direct the reader to [111 15, [32].
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FIGURE 1. 2-Modular Diagrams of 5,4+ 1,3+ 2,and 2+ 2+ 1
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There is another rank function, the Ms-rank, and it fits into a similar framework. For a partition w, we
let ¢(7) denote the largest part of 7 and #(7) denote the number of parts of 7. The Ma-rank of 7 is defined
as [€(m)/2] — #(m). To see this is a reasonable definition from the standpoint of simple combinatorics, one
should view partitions in terms of their 2-modular Ferrers diagram. For an ordinary Ferrers diagram we
take a partition m = w1 + M + - - - + 71, and first draw a row of m; boxes, then ms boxes below that, and
so on, ending with a row of m, boxes. In this way each box has weight 1. For a 2-modular graph, we
instead write each part m; as a sequence of 2’s possibly followed by a single 1. We then use this 2-modular
representation of each 7; to draw and label the boxes. The 2-modular Ferrers diagrams are given in Figure
1 for the partitions of 5 without repeated odd parts. While the rank of a partition is the length of the
first row minus the number of rows in the ordinary Ferrers diagram, the Ms-rank is the length of the first
row minus the number of rows in the 2-modular Ferrers diagram. It turns out it is natural to consider the
Ms-rank just for partitions without repeated odd parts. As a quick justification for this, we notice that
conjugating a Ferrers diagram (flipping the picture along the main diagonal) of an ordinary partition results
in another Ferrers diagram. However, to conjugate a 2-modular Ferrers diagram and get another 2-modular
Ferrers diagram, the underlying partition must not have any repeated odd parts. We let N2(m,n) denote
the number of partitions without repeated odd parts of n with Ms-rank m.

The Mos-rank, as defined above, was introduced by Berkovich and Garvan in [§]. The Mas-rank enjoys
many of the same properties as the ordinary rank. While it is not used to establish congruences for pa(n), it
is used in proving congruences for certain other partition functions [I8]. It turns out the generating function
for N2(m,n), which we denote by R2((;q), is also a universal mock theta function as many even order
mock theta functions can be expressed in terms of R2((;q) (see [19] where R2((;q) is h2((, —¢q) and [21]
where R2((; q) is k(gé, —@) up to minor factors). The function R2((;q) is in the same class of automorphic
functions as R((; ¢). Furthermore, both the generating functions of the rank and the Ms-rank can be found
among the identities in Ramanujan’s lost notebook (for R((;q) see [5, Chapter 2] and for R2((;q) see [4]
Chapter 12]).

Before finally explaining the contributions of this article, we must speak a bit about asymptotics. Hardy

and Ramanujan’s asymptotic for the partition function is p(n) ~ ﬁ exp (7r %") as n — 0o, and their

asymptotic expansion [20] is

L) ox (z 2 (n— L))
1 1 d Plzy3 24 1
P = o 3 Akt T +0(n 1),

where

Ai(n) = Z W,k €XP (—#) ,
0<h<k,
(h,k)=1
and wp, i, are certain 24th roots of unity. Rademacher [28], improving upon Hardy and Ramanujan’s circle
method, found that in fact

1 & ca (s (FV30-4))
p(n) = T ;Ak(n)kz - 1

n—9
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As students of Rademacher, Dragonette [16] and Andrews [2] established related asymptotics for the
coefficients of R(—1;¢). Both gave their estimates as exponential sums similar to Hardy and Ramanujan’s
formula for p(n). They conjectured that a Rademacher type formula also existed. In particular, if a(n) is
the coefficient of ¢" in R(—1;q), then

_ i (—D)L ] Ay, (n - w) exp (% n— ﬁ)
k(an 1) |

In [I4], Bringmann and Ono proved this conjecture.

For a modern exposition of the circle method applied to the partition function, one should consult [3]
Chapter 5]. Bringmann [9] demonstrated that one can extend this method to mock modular forms. In
particular, Bringmann gave a formula for the coefficients of R(e%% ;q) in a form similar to that of Hardy
and Ramanujan’s formula for p(n). Going further Bringmann, Mahlburg, and Rhoades [13] found it possible
to also deduce such formulas for the moments of R((; q), which are defined as Ny(n) :=>">°__ m‘N(m,n).

This is the treatment we give R2((; ¢) and is the main content of our article. Specifically, we first consider
the My-rank moments N2,(n). We deduce an asymptotic expansion for N2¢(n) of a form similar to that of
Hardy and Ramanujan for p(n). This formula is stated in Theorem 2.I]and the resulting asymptotic value of
N2¢(n) is 22). Second, we determine an expansion for A (%;n), which are the coefficients of R2(e )
These formulas are stated in Theorem Third, using Theorem we determine asymptotic values for
certain combinations of N2(r,m,n) (the number of partitions of n without repeated odd parts and Ms-rank
congruent to r modulo m). Using these asymptotic values, we deduce a few inequalities among certain
N2(r,m,n). With these inequalities are included the remaining conjectured inequalities of Mao from [25].
This is contained in Section 7. In the next section we give the necessary definitions to state our results,
introduce the various functions relevant to our study, and end with an outline of the rest of the article.

In particular, the conjectured inequalities of Mao that we prove are as follows. We note that while our
proofs of these inequalities are via asymptotics, we do indeed prove that the inequalities hold for all stated
values of n.

Theorem 1.1. Let N2(r,m,n) denote the number of partitions without repeated odd parts of n with M2-rank
congruent to r modulo m. Then the following inequalities hold,

N2(0,6,n) + N2(1,6,n) > N2(2,6,n) + N2(3,6,n) forn >0,
N2(1,10,n) + N2(2,10,n) > N2(3,10,n) + N2(4,10,n) forn > 3.
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2. PRELIMINARIES AND STATEMENT OF MAIN RESULTS

As discussed in the introduction, we let N2(m,n) denote the number of partitions of n without repeated
odd parts and with Ms-rank equal to m. The generating function for N2(m,n) is R2({;¢) and from [23] we
have that

oo

R =3 ( q’; (jq;qz)n _ ((q e (HZ C‘l)(—l)"qu +"(1+q2")>' 2.1)

—= (Ca* e d?), Cg*m)(1 —¢1g?)

Here we use the standard g-Pochhammer notation given as (a;q),, := [[j, (1 — ag?), for n either a non-
negative integer or oo, and (a1, ...,am;q), = (a1;q), - (am; q)n. For £ a non-negative integer, we define
the ¢-th Ms-rank moment and its generating function by
oo
N2(n):= > m‘N2(m,n), R24(q ZN24
m=—00

Due to the symmetry R2((; q) = R2(¢™}; q), we have that N2(m,n) = N2(—m,n). In particular N2y(n) =0
when £ is odd and so only the even moments are of interest to us. _
Our goal is to determine asymptotics via the circle method for the coefficients of R22x(q) and R2(e el q).
We state these formulas shortly, but first we require some additional definitions and notation. For h an
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integer, we let . denote the value of h modulo 4 with h € {-1,0,1,2}. For relatively prime integers h and
k, with k > 0, we let [—h], denote a choice of an inverse of —h modulo k. When & is odd, we choose [—h]
so that 32 divides [—h];. We will make additional assumptions on how to choose [—h]j, which are discussed
later. These additional assumptions only appear in certain proofs, and are not needed to correctly read the
statements of propositions and theorems. For real x, we let |z] denote the floor of 2 and let {z} denote the
fractional part of = as given by {«} := z — |z|. Throughout this article, we let 7 denote a point in the upper
half-plane H (so that Im(7) > 0) and let ¢ := exp (2mi7) (so that |¢| < 1). We use big O notation and <
interchangeably, and use O, and <, to indicate dependencies of implicit constants.

Dedekind’s n-function is defined by n(r) := g (¢:9)o- This function satisfies the modular transfor-

mation (A7) = v(A)vV/yT + dn(r), where A = (3 g) € SLa(Z) acts on the upper half-plane by Mobius

transformations. We recall Mobius transformations are defined as At = ‘i:i'g Here v(A) is a 24th root of
unity determined only by the matrix A and the standard branch of the square root is taken so that its value
has positive real part. Since v(A) will appear in our formulas, we note a convenient form for the n-multiplier,

which can be found as Theorem 2 in Chapter 4 of [22], is

V(A)_{(ﬂ)eXP( 3 ((a+0)y = po(y* = 1) = 3v)) ify=1 (mod 2),
(1) exp (5% ((a+0)y—B6(v* —=1)+35§ —3—-3y0)) if6=1 (mod 2),

m

where () is the generalized Legendre symbol as in [29).
We define a related 24th root of unity as follows. Suppose h and k are relatively prime integers with

k > 0. We see that (h _lT[k};]h]k ) is an element of SLy(Z) and 242 = (Z H[h[h]h]k )% We then
— 17Nk - k
define x(h, [—h]y, k) to be the 24th root of unity given by n (22) = Rk, k \/777 ( ’“’H/z) Using

the above formula for v(A) and properties of (2), we see that x(h, [— h] ,k) depends on the choice of [—h]x
modulo 24k and x(h, [—h]x, k)® depends on the choice of [—h]; modulo 8k.
We let

E(h, [=hJi, k) 1= % x (B, [= ] k)™ (=1)"5" exp (—h - M) 7

i 2 7wi(h—h)(204+1) | F
Qt(h, k:) — (—1)“1exp( hgfklﬂ) + ( 42 + 8_]?) ,

o (k) :

T(—t+52+1).

In principle, one can make any choice of [—h]g, but must carry that specific choice through all relevant
calculations. To allow simplifications in various formulas and calculations, we make some assumptions
about our choice of [—h]g. These assumptions deal only with fixed k& and h and only appear in the proofs.

When k£ = 0 (mod 4) we assume [—hlsx = [~h]r = [~h]g/s. In particular, when & = 0 (mod 4) we have
% =0 (mod 4). When k =1 (mod 2), we assume that [—4h], = %. These are viewed as choices

made for a fixed value of k and h, so such a choice is possible. Clearly such choices would be impossible for
all k£ and h simultaneously.

We let I, (x) denote the modified Bessel function of the first kind. We recall the Bernoulli polynomials
B, (z) are defined by texP(mji =3, M. Lastly we define the constants k(a, b, c), for non-negative

exp(t)
(= 1)a+c(2(a+b+c))532c(%)
a!(2b+1)!(2¢)!Ire4e+?

. We now state our main results.

integers a, b, and ¢, by k(a,b,c) :=

Theorem 2.1. For ¢ a positive integer and N = |\/n], we have the asymptotic expansion

A a c—
N2ge(n) =27 3 k Z K (8n = 1) k(b o) (%\/Sn - 1)
1<k<N, a+b+c=¢
k=0 (mod 4)

+\/l§ Z Ak}in) Z (2k)° (8n_1)2a+4c 3 w(a.b, )] s (i 8n—1)

1<k<N, atbte=¢
k=+1 (mod 4)

+ E[(n),




where

—i > hexp (=) ¢ (b, [~hla, ) ifk=0 (mod 4),
0<h<k,
(h,k)=1
Ag(n) := . o (2t — e ) g(an, e k) he st (mod 0
- — if k= mo ,
0<h<k, sin(7)
(h,k)=1

nlog(n) iff=1,
Ei(n) <
e(n) < {nﬂl ife>2,

as n — 0.

When « is a half-integer, I, (x) ~ \/% as x — oo, and so taking the terms corresponding to £ = 1 and
¢ = £ give the main asymptotic. In particular, we find that

N250(n) ~ (—1)V2(8n)" " Bay(1) exp (ﬁ@) , (2.2)
as n — oQ.

Theorem 2.2. Suppose a and ¢ are integers with ¢ > 0 and ¢ 1 2a. Then with A(%;n) defined by

2mia

R2(e™<%5q) => 0" o A(%;n) ¢", and N = |\/n], we have that

A(a ) 8Ln(ﬂ) > SILE 25: y h<w\/ (m)(8 1>> D (m)
—-n)=-——== _— CcoS =/ Tj.a,ck(m)(8n — iac.kn(m
¢ 8n —1 1<k<N, vk j=1m=0 BV ’
k=0 (mod 4),
2ctka

8i sin(™2) 5 (—1)le]

+ a,c n
Ven—1 42y vk ( o
k=0 (mod 4),
()71
s i (Ta ka a
8isin(7) (_1)L26J 271-({’;—0} — i) (8n—1) N
+ 8 1 Z \/E cosh k Da c,k,n
/Sn — ek,
1<k<N,
k=0 (mod 4),
{5e}>4
4sin(Z2) 3 (—1)5¢ cosh <7r\/8n——1> c
VB —1 1<k<N, vk 2k fehn
k=0 (mod 4),
2clka
a M,
4sin(T2) (-l K & (
_ c cosh [ —1/7ja,ce(m)(8n —1) ) Djg.crn(m)
V8n —1 1<;N7 Vk jgﬁ — L \/ J j
k=1 (mod 2),
ct2ka
. /ma ka “
N 8sin(72) Z (—1)L2c ] cosh ﬂ'({%} —3)V/(8n—1) D
V8n —1 Vk 2% a,c.k,n
1<k<N,
ey

2' . ra . 212(1 _
n isin( %) Z ) cosh (@) Cria,ckn + Oae (\/ﬁ) )

Vén —1 1<k<N, vk 4k
k=1 (mod 2),
c|2ka



where

i T — a 2
Dlackn Z h§ 4k,§) exp _27rlz€nh_|_4 [kh]4k LI;_CJ —(2m—|—
0<h<k,
(h,k)=1
TN T — a 2
Daa,cen(m Z h§ —hlar, ) exp _Qkh+4 [khm —[8]" + @m+
0<h<k,
(fk)=1

DB,a,c,k,n(m) =

0<h<k,
(fk)=1

D4,a,c,k,n(m) = Z Eﬁ (h7 [—Plak, %) exp _Qﬂlicnh + 4ﬂi[;h]4k o I_%J — (2m+
0<h<k,
(fk)=1

D5,a,c,k,n(m) = Z Eé‘ (h [ h]4k7 4) exp _27rlzcnh + 471'1[;h]4k . L%JQ + (2m+
0<h<k,
(7, k)=1

Deackn(m) = > cos(F 2| k)csc(ZE)¢ (4h, Chle k:) exp (—2zink)
0<h<k, il—hl o 12 ke )
S« oxp (S (22— s 1) (2] 1)),

Dr,0,c5n(m) :=

h<k, J
(

(hok)=1 xexp( LR

( (
( (
ST g (b [=hlan, §) exp (-2l - s (Ko (o +
( (
( (

Df = 9 +h¢ (h[=hla, &) exp (- 252L)
0<h<k, ) ~
(71 o (1ot (— e — [ e ] + 1)1 — ) 7 5 (2] 1)
Da,c,k,n = Z S1n < ( |'2)2:J+1)k) 5 (4h, [7Z]k7 ) exp( 271']1677/}7, + ﬂl[;kh]k
0<h<k
(h,k)=1
Coa,ekn = Z hesc (”[ h]‘““) [—h]ak, %) exp (_ 2w]z'€nh _ ﬂi[*fz];kkaz
0<h<k,
(h,k)=1
(m(1+h[ R )
Clackn = ¢ (4n, [_h]k,k exp _ 2minh m'kac[
et 0<§;k sin (Z£) sin (%) ( * ) ( k ’
(h,k)=1
and
T1aek(m) =4 {52 } —6{%} —8m{Le} +1
T2,a,e,k (M) = 4{ } +2{k“}—8m1_{ }
r3a,c,k(m) 4{ } —2{ }—8m{ }-|—
T4a,c,k(m) 4{ } —2{ }—8 { }
r5ack(m) 4{ } +6{ }—8m1—{ }
Poacn(m) i= 3 {2e}’ — (e} —m{2ka} 4 L,
raealm) = {2} 4 4 {2y {2y L

An explicit bound on the error term is given in (G.1).
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We introduce the various functions that will arise in the proofs of these theorems. As is now common
when dealing with mock modular forms, we use various functions from Zwegers’ groundbreaking thesis [33].
For z € R we let

B(x) := / t3e E(x) :=sgn(z) (1 — B(z?)).
For w € C and 7 € H, we let
Hu;7) 1 = Z q%"2 exp (2min (u+3)) = —igBe ™ (™ e g, g q)oo ,

nez+7
u n—=% —1n? _orinu
S(u;r) = Z (sgn(n) - F ((n+ E’(](Tg) 2Im(7’))) (-1) éq 3”2 ,
nes+7
by = [ Sl 2
oo cosh(mx)
For u,v € C\(Z7 + Z) and 7 € H, we let
' a emiu o (_l)nq%n(n+l)e2winv
u(u,v,T) E 19(’1); 7_) n;m 1— eQm’uqn ’

f(u, v;7) = p(u,v;7) + £S(u — v; 7).

Any use of these functions is under the assumption that the parameters are chosen so that the functions are
well defined, even if we do not state these conditions explicitly. These functions satisfy various elliptic and
modular transformations. In particular,

H(—u;7) = H(u;71), (2.3)

H(u+7,7) = —q? €™ H (u; 7) + 2¢5 ™, (2.4)

Su+1;7) = =S(u; 1), (2.5)

S(u;T+1) = e T S(u; 1), (2.6)

S 3;_1) = V=irexp (—=2) (H - §)(us7) (2.7)

T
If k, ¢, m, n € Z, then

pu+kr+Lliv+mr+nT)= (—1)k+e+m+”q%(k*m)2ezﬂ(k*m)(“*”)ﬁ (u,v;7) . (2.8)

If A= (: g) € SLy(Z), then

_ u v oar+ B\ _3 _m'”y(u—v)2 ~ '
i (S s ) v e ses (<P ). (29)

As a matter of notation, sums indexed by + should be read as

D FE) = F(H) + F(-),
+

where f(+£) is a summand depending on the choice of 4+ or —.
By elementary rearrangements of the series on the far right side of (2.1), we find that

R2(¢;m) =4(1 =) (Cillu(2u, —T;47) — u(2u,7’;47')) , (2.10)

where ¢ = exp(2miu). From this it is now clear that the functions introduced above are indeed relevant to
our study of R2((;7). We note this form of R2({;7) has a removable singularity at ¢ = +1.
So that the purpose of our later calculations is clear, we briefly recall the circle method. If Z—g, %, and %

are three successive Farey fractions of order IV, then we define
1 , h  ho+h 1

0, = —— = -
0L N4+ 17 RET kT ko4+k k(ko+ k)
7

for h > 0,



v hi+th h 1

MR Ik k k(R t k)

We note that these measure the distance from % to the mediants with the neighboring Farey fractions. Using
Cauchy s theorem, given a function F(q) = Y anq", we let C be the circle centered at the origin of radius
exp (—3%), where N = |/n] and find that

1 F(q) ! s . ™n .
= i ), gt dg = /0 F (exp (—35& + 2mit) ) exp (35 — 2mit) dt

"
'Lgh k

= Z exp (—%)/ ’ F(exp( (h+z(——zk¢)))))exp (QWT" (%—ikfb))d@.
0<h<k<N ik
(h,k)=1
With z = % — tk®, this becomes
, Ik
ay, = Z exp (—%) / F (exp ( t(h+ zz))) exp (27””) dd.
O%h<)k§N — 9k
h,k)=1

1+h[ Al B .
h = . ) [Ehliti/z nd recognize the resulting
k_—[- h]k k

integral as representing a Bessel function (see equatlons (@3) and (4], as well as Proposition [B.11]) and
an error term. This method applies to mock modular forms for the reason that while they do no satisfy a
modular transformation, mock modular forms can be completed to harmonic Maass forms (which do satisfy
a modular transformation), and the part of the harmonic Maass form other than the mock modular form
can often be shown to only contribute to the error term.

We apply this method to R29,(q) for Theorem 21 and to R2(e e ;q) for Theorem In determining
the relevant transformation formula for R2(e <*;q) we use ([2I0). It turns out we can also use ([Z.10) to
determine the relevant transformation for R22.(q) by considering the function R2(u;q) := R2(e*"™;q) and
recognizing R2(u; q) as

We look to apply a modular transformation with h*” = (

Z R24( 2mu
(g

The final transformation for R29¢(q) is stated in Corollary B77l Due to the more complicated nature of the
transformations for R2(e = q), the final transformations are stated in Propositions (.6, 5.8 and

The rest of the article is organized as follows. In Section 3 we give the transformation formulas, bounds,
and identities relevant to applying the circle method to R22¢(q). In Section 4 we prove Theorem 2] and
discuss some calculations to support its validity. In Section 5 we give the transformation formulas, bounds,
and identities relevant to applying the circle method to RZ(GZTQ q). This turns out to be more involved
than the corresponding results for R24,(q). Furthermore, since we use Theorem 2.2 to prove inequalities, we
must keep track of explicit upper bounds for the error terms. In Section 6 we prove Theorem and give
an explicit upper bound for the error term. In Section 7 we discuss and prove a few inequalities related to
N2(r,m,n) (the number of partitions of n without repeated odd parts and with Ms-rank m). In Section 8
we give our final discussion and closing remarks.

3. IDENTITIES RELEVANT TO N24(n)

We follow the development in [I3] and the culmination of this section is Corollary Bl To understand
R24 (e2m(7c+”)), we must determine modular transformations for ,u(2u :EM' M). For this we first
investigate S (u F 252 242 and [i (u, £252; 24i2) - Many of our proofs require lengthy but straightforward
calculations. We omit the details when these calculations are nothing more than reducing various exponents

and basic algebra.




Proposition 3.1. Suppose h and k are relatively prime integers with k > 0, u,z € C, and Re(z) > 0. Then

exp [z o TOFED)" i)
htiz . htiz 10k 10k= 2 ¥ i ih + i
S (uF iz, hoiz) — = SOF RS — H) (2 F s+ ot (LR
=0

Proof. By Proposition 2.3 of [I0] we have that
k—1
)= Zexp (ﬂz(ﬂ*kﬂjkl)(ﬂfkﬂ) n 77ri(2£fk+1)(26h;£k+4ku+2k+h$h))

S (u ¥ h;li-kiz; h-il;iz

=0
x 8 (kutiz (0= 552 7 3) F 4 + th+ S pn + k2.
By applying (23, (Z6]), and (7)) we compute

S(k:u+iz(£— BElelyshithy %;khﬂkz)
n(hFdku)? w2 (40—2k+2F1)>

A-mk=1)  h=h . hFdku)(46—2k+2F1
— (—1)t+tht ) T oxp (—7i (B 4 (hF4ku)( 25D ) 4 _
p 4 Sk 16Kz 16k

%

(S—H) (27 f +a* ek ).

1
X
Vkz
Direct calculations reveal that

(A=h)(k=1) | h=h . hFdku)(46—2k+2F1 _ _
R (_m <%j:( )(Sk F) | @e—kt1)eh ZI;+4ku+2k+h1h)>)

=exp (FI4) &/ (h, k),
exp (wz ((2sz+1141k)(2sz+1) -~ (4572k+211)2)) — exp (_%) 7

16k
O

and so the proposition holds.
Proposition 3.2. Suppose h and k are relatively prime integers with k > 0, u,z € C, and Re(z) > 0. Then

ﬁ(uvihz}jz; h—};iz)
re o m(RFaRG)? U iw o R(=hleti/z h[=hly . [~hlx+i/z
= exp <_16_k+(Tkz):FT> &(h, [_h]]ﬁk)ﬁu (7,1 a 4]1];:_/ ) - It 4[k ]k;[ ]rz-i-/ )

Proof. By 29)), with A = (Z *T[%L]k ), we have that
1Tk
[=hlkti/z

~ h+iz . h+iz\ __ ~ h+iz .
i (u, £ 5575 2 )—/L(u’i i ’A( k ))

-3 =i Tz w(hFdku)? mi(hFdku 1
= x (b, [=hlk, k) 646XP(—m Ot + T ))ﬁ

~ (iu h—h) ([=hle+i/z M([=hle+i/z) —_ 1+h[=hly. [“hle+i/z
(—i(4 ( ]’7@ /2) 4 A jffg/ T 4[k]k7[ ]2 /)'

X [t

z?

Using (Z8) we find that
~ [ iu h_ﬁ — 1/z h([— i/z — _ iz
u(— 1 () (ohleiss) | MMctifs) o Leh(hly  [cki/ )

T exp (g ([l (0= 1)+ 200 = D)) = 2z (0= ) + 200 = B) (5 5 ko))

= (_1)T
X 7i (_u 4 Mhlecti/z) o Lbhlhly [_h],;:i/z) ,

Noting
Xy (=R k)~ €% (=1)"7" exp (TG0 — s ([hli(h—R)* +2(h = R) ) ) = exp (F552) (s [~hlx, k),
i > 7 ™ h U 2

exp (SEF — s (0= 7)7 + 200~ ) (o 4k)) ) = enp (L)

we see that the proposition follows.



Proposition 3.3. Suppose h and k are relatively prime integers with k > 0, u,z € C, and Re(z) > 0. If
h £ 2 (mod 4), then

(5555 )

Tz m(hF4ku ’ Tiu 1 iu h([— i/z - - i/z
—oxp (- + el o) $<§(h, [, R (22, B t/2) g L, [l

. k=1
i . = )
+—§ Fhk)H (&7 4o, k); 2 ) |.
2\/E£:0€€( ) (z :F4kz ( ) kz))
If h =2 (mod 4), then

(2

iz g TL:F4/€'U, 2 i 1 i (=Rl ti/z hi—h hleti/s
= exp <_16_k + % + T) ﬁ(ﬁ(’% [=h]k, k) (7,i (hptefe) p TAAL A, (DRt )

. k-1

(3 . e .
+——=> & (k) H (2 F 4 + o™ (k) 1=

SVF 2 OoH (2 gfs o (6 by )

7 mi(h[—h]k—h[—h]x—[—h]Ks—1

. k-1
7/ s U N
— —mgﬁf(h,k)exp (—m 7$mai(€, k)))

Proof. In both cases the left and right sides are meromorphic functions of z and u for Re(z) > 0, so it suffices
to prove these identities in the case that £+ € R. By definition,

po(u, £5E ) = [ (u, 52 02 — 58 (uF BRE M)

and so by Propositions [3.1] and we deduce that

p 5 )

ro o om(RFakw)® ) 1 iu 1 R(—h]ati/z hl=hlx . [=hlk+i/z
. (—w—kﬂTmHT)—(s<h,[—h]k7k>u(;,i (tet/2) g LMt [hlbi)z )

NE

i i ([ i/z — — i/z
o+ 5E(h, [l k)S (12 ML) o LEAChe, [Shts/)

1

k—1 . k-1
- F(hk)S (25 2 oa® (0 k) ) + —= S 6 (k) H (25 i o (k) ) | (3.1
S 2T S (27 + o (i) + 3 S (23 3 (k) |- @)

Next we verify the cancellations between the S(wj; ) terms. For this we follow the method used by Bringmann
and Mahlburg in [I2] and by Bringmann, Mahlburg, and Rhoades in [I3]. The key point is that if a function
of the form

Z a(n)l (%, 47T|n|1m(7')) q ",
neQ\{0}
where T'(a; x) is the incomplete Gamma function, is a holomorphic function of 7, then in fact the function
is identically zero. One can quickly deduce this is the case by using that % annihilates any holomorphic

function of 7.
To begin we note that

B(x) = /OO tTre Tt = %F (3;7z).

We rewrite S(w;T) as
S(w;T)
10



2 .
= 5 (st s+ 322) s+ 3220 ) 5 (o B) 2 ) ) (-t
nez+%
For a such that —3 < a < 1, we have sgn(n) = sgn(n + a) for all n € § + Z. Thus for a, b € R with |a| < 1,
1

Slar —b;7) = — E sgn(n) (—1)"_%(]_%"
NG
ne3+z

In the case when h # 2 (mod 4), we claim

2

e~ 2min(am=b1 (197 (n + a)?Im(7)) . (3.2)

k—1
- T((=hlp+i/z - —h]iti/z 1 iu o _ih i
€l ()3 (2 7 MU o Lot [oHtl2) - 57 65 (1, 1) (2% 4 + 0¥(0 k)i 22) = 0.
=0

We set 7= 7= and w = %, For w,«, 3 € R and h # 2 (mod 4), we have by (B2) that

S (2 F 4 +oi i +8)
= % Z sgn(n) (—1)"7%exp (—m'n2 (1 + B) — 2min (w:FETT—I—a))F<%;27T (n:F%)QIm(T)).
nez+%

This implies

ih? i ([~ i/z — — i/z
exp (— =452 (§<h, [~hlk, k)S (2 PRl o Leh[ohl [SH e )

k—1
1 ) S )
VGO CEE = +ai(€,k);k—;)>
=0

is a holomorphic function of 7, because (3] shows this difference is expressible in terms of ; and H functions,
with an expansion of the form

Z a(n)l (%, 47T|n|Im(T)) q ",

neQ\{0}

and so the function is identically zero. The assumption that % € R is so that the % term in S’(% F % +
a; 7= + B) contributes only to the b term in S(a7 — b;7) (and not to the a term).

In the case when a = $%, we have sgn(n) = sgn(n + a) for all n € % + Z except for n = —a. As such we
have for b € R and a = :F% that

—2miab

S(ar — b;7) = qée
1 .
+— Z sgn(n) (—1)"_%q_%"26_2’”"(‘”_b)1" (1;27(n + a)’Im(7)) . (3.3)
VT 4
ne;+7Z,
n#—a
By a similar argument we find the S(w;7) terms almost fully cancel when h = 2 (mod 4). However, there

are terms that remain due to the q%e in (33). Upon calculating these terms, we find that they are as
stated in the proposition. O

—2miab

In Proposition 33 we found that in some cases various S(u; 7) terms do not simplify to zero. That S(u;7)
may at times contribute to the holomorphic part of f(u,v;7) is entirely expected. In particular one can
verify that S (%;7') = q%.

Lemma 3.4. Suppose h and k are relatively prime integers with k > 0, u,z € C, and Re(z) > 0.
(1) For k=0 (mod 4), we have that

. 2mi(h+iz) 2 sin(mu
R2 (e%w;eﬁ) = % exp (—ﬁ + ”k;ﬁ + WTFZ)

% Z$exp (jFﬂTuh) (5 (h, [~ A, %) y (2;_u7 ih([fh]};gwri/z); 4([7h]4;€k+’i/z))
+

11




kg
T (et 04) ) )
(2) For k =2 (mod 4), we have that

. ri(htiz) 2 si
(o =44 ) - I o (g4 2 ) S e (2

X <g (2h [~2h], &

(, 2[—2h]p +i/z  1+2h[—2h]} 2[—2h]ﬁ+i/z>
) w 2 T 2 . 2
z 2k 2k d E

.k
b ) (2 o+ (1)) )
(8) For k =1 (mod 2), we have that

i, 2mithtiz) sin(mu) rz | mwhul —h]
R2(2 e & ): \/z exp(—ﬁ—l— kz );$(§(4h[
; kol . .
T ovR ;gf(zlh,k)H (5% +a™ (L) 3z) )

Proof. The proofs of all three cases follow from similar calculations and so we only give the proof for the case
when k = 2 (mod 4). This case is actually the most complicated, as it requires verifying the cancellation of
additional terms that are not present in the other two cases. By ([2I0) we find

R2 (e2ﬂ'iu; GW) _ 2(1 . 627riu) (6—27rzu (2’(}, h+zz 4(hz-zz)) (2u7 hJ]rciz; 4(h;€|-iz)))

— ’L(l _ e27riu)e—7riu Z :Feiﬂiu'u (2,“, + h-l];iz; 4(hz—iz))
+

k) 1 (2273F1+h[ ] , [—h]:]:—i/z)

= 2sin(mu) Z Fetmivy, (2% + thgiz; 4(hz—iz)) '
+

In the case that £k =2 (mod 4) we note that ged (2h, %) =1 and 2h = 2. Applying Proposition [3.3] with
k»—) , h— 2h, u+— 2u, and z — 2z gives that

2mi(h+iz) 2 sin(mu
R2 ( 2miu. eﬁ) = 7\/_ (ru) exp (—% + 05+ W’iuz) Z$6XP (T
+

N
, o[—2h], +i/z  14+2h[—2h], 2[—2h]j +i/z

X (5 (2h7 [_2h]§a %) M <%a =+ 2]3 + ok 2 ; k2 >

. B

¢ k iu k i
+ 7 & (20, 5) H(% F oz +a= (6.5)555)

£=0
i . v e (2020 —2n[-2n] —[-2m); 1)

+§§(h[ 2h]§ §)€Xp<_m:|:7+ 2 T 2

kg
- Y n e %wmi(a%»)-

To finish the proof of (2) we must verify

i wi(2(~2h]  —2h[~2h]  —[~2h] ), ~1)
0= Fexp (F) <§§ (2n. [-2n]4, §) exp(—& mu St Sl >
+

12



E
2

kg
N e e )!
=0

To begin we note

i mi(2[—2h] . —2h[— 2h] (2]~ 1)
Z$€XP ($%) (55 (2h, [_2h]§7§) exp(_ mi Tu k _ L >

+

—1

mlw

1

T e (- Tt (1))

k

2

=0
)
- + 7 (2n, % 0, 5)).
\/Eexp Thz zi: ng §) exp (Fria* (. %))

A direct calculation reveals that
& (2h, %) exp (—m'ozJr (6, %)) = —5’57671 (2h, %) exp (m'a (% —(—1, %)) .
From this it follows that

k1
doED & (2h5) exp (Fria® (65)) =
+ (=0

1

vl
|

(]

& (2h,5) exp (=mia™ (¢, 5))

~
N <”3

~1
- 521271 (2h,§) exp (m'of (%—é—l,g)) =0.
£=0
This establishes (2). O

Next we need bounds relevant to the H terms appearing in Lemma [34l For h and k integers with k& > 0,
—% <a< 3, and u,z € C with Re(z) > 0 we define the functions

_ o\?!
Hy kpo(us; 2) = H( +aF 4kz; kz) ; Hﬁf,’k,h,a(u;z) = (%> Hy gopalu; 2).
Lemma 3.5. Suppose h and k are integers with k > 0, —= < a< i 5, and Re(z) > 0. Then

¢ _
Hj(:,)k,h,a(o?z) < |2 éeXp( T6k Re( ))
Proof. We essentially use the proof of Lemma 3.4 from [I3], however we must take some care because in the

case of h = 2 the function cosh m(w + %) has a zero at w = 0. However, this technicality amounts to only

a small annoyance, and we only supply the proof for this case.
From

Z,

- exp(—k—:—wa(%+a$fTiZ))d
a3 2) _/R cosh(rz)

we see that

T

i)’ | oo (5 — 2 (a7 4t))
d
R

cosh(rmz)

N
hi Tw?
=|——] exp (— F ) ~ dw.
z RZF%

kz =~
e 2 cosh (7r (w + %))
We wish to shift the path of integration back to R by use of the residue theorem. When h =2 the integrand,
SN R
(w =+ %) exp (—— — 27rwa)

g(w) = )
cosh (7T (w + %))

13




has a simple pole at w = 0 with residue — (il) . For e > 0 we let R, := R—[—¢, ]|. By the residue theorem
we now have that

N
2m - -
Hj(f)k h, a(O Z) = lim <——) exp (_'1725};% ¥ ﬂ'z;ux)

e—0 z

X

SN w?

I YANYAS | (w + m) exp ( — — 27rwa)

n z(:l:z) +/ 4 = dw
2 < cosh (7r (w + %))

We obtain the stated bound for H(ieﬁ)kﬁ hya(O; z), if the integral near zero is bounded independently of £ and
z. For this, we note

1

/,jg(w)dw + /: g(w)dw = /f g(w) + g(—w)dw,

2

and the latter integral is uniformly bounded because g(w) + g(—w) does not have a pole at w = 0 since the
(£0)“H?
28

residue of g(—w) is
g

. . . omin,  2milhtiz)
We now establish the main identity for R2( ;e & )

exp( vru® ) sin(mwu)

that leads to the required transformation of

R29(q). As in [13], we let f,(u;z) := . Lemma 3.1 of [13] states

smh(%)
= (2miu)?" Ca—9e
folu;z) = Z ((2#))' Z vk(a,b, )zt 702
r=0 " atbte=r

where k(a,b, c) was defined in Section 2. We note this expansion is valid for |u| < |z].

Proposition 3.6. Suppose h and k are relatively prime integers with k > 0, and u,z € C with Re(%) > %
and u sufficiently small. If k =0 (mod 4), then

14

s Tz k
Ro (egm;e%) _ihexp (g - @)ﬁ(h, [—hlak, §) (s 2) +Zaf 2mu

If k=2 (mod 4), then

N z\/_exp( % -2 (1+@h - D20l ) ) € (2n. (205, §) |
k ) = 7z fe(u; 2)

k
2

oz

R2 (62”“; e

4

" Z e 2mu

If k=1 (mod 2), then

mz ™ mi[—hlk [=hlk
o 2milhtiz) exp (_ i T Tokz — 1ok ) §(4h, ==, k) 2mu)f
R2 ( 27mu; %) - _ 2 E .
€ c 251n(“4k)\/5 Far(u 22) + ac(z 2!

Here ag(z) < k2|z|27¢ as z — 0, with the constants depending on € but not k.

Proof. We only give the proof for k = 0 (mod 4). When k =0 (mod 4), we have h = +1 and so 9(+h7;47) =
+hi(7;47). Letting 7 = %, we calculate that

iu | h([—hlax+i/2) . 4([—hlax+i/z
(277:|: ( ]zk /)7 ( ]z]xck /))

I
~_hexp (_2”7“) i (—1)™exp (4772'7'71(71 +1)+ 27ri%7'n)
- (T3 47) o 1 —exp ( 47”‘ + 871'27'71)

ih

. R (6271'17'7 667”7-, 687”7'; 687”7') -
2 Slnh (7)
14



(—1)" exp (4m'7'n(n T1)+ 2m‘ﬁm)
1—exp (—4”7“ + 87m'Tn) '

27y 2miT  6miT  _8miT, 8miT -1
:I:zhexp( )(e , e ,e ;e )OO g
neZ\{0}
We claim

iu o h(=hlaxti/z) . A(=hlax+i/2 ih 1 (2miu)*
M(277:|: ( ]zk /), ( ]AIL: /)):i +E;a4(2) 7

2sinh(2”7“) il

where a;(2) < 2| “exp (—2ZRe(1)) as z — 0. We note that if we have two functions f(u,z) and g(u, z)
and we wish to say,

2
flu,z) =g(u,z) + NZa miu)"

where a;(z) <, |2|YN~Ye(2) as z — 0, then we can prove this by checking that f(u, ) —g(u, z) is meromorphic
with at worst a pole of order N at u = 0, apply Cauchy’s theorem along a circle coz exp (27i6) where ¢ is
chosen small enough so no other singularities are inside the circle, and verify that on this circle |f(u, z) —
9(u,z)| < €(z). In our case we use the circle = exp (27i0), and must establish bounds when v = Z% for
|w] = 1. We see that

(—1)" exp (4m'm(n T+ 2m'ﬁm)

’LhGXp ( 27ru) (627TiT, eﬁTriT7 e87riT; 68771’7—);01 Z 11— exp ( 471'u + 87T’LT7’L)

ne€Z\{0}
is analytic at u = 0, and at u = £ is O(e®™™) = O (exp (—%’Re(%))). Additionally,
Z?L 2miT  _6miT  _8miT, 8miT 1 Z?L _ Zﬁ 27T
iZsmh(%“) (e ¢ ¢ ' ) 2smh(2”“) _i2smh(2”“) x Ofe )

and so this term has at worst a simple pole at u = 0, and at u = 5= is O (62””).

From this we see that

2sin(mu . Ter_ il _ il
(mu) wku + 4kz)Z:FeXp (:F?Tuh)g(h7 [—h]4k,%)u(217u,:|:h([ h]zk-i-/ );4([ h]é;ck"l‘/ ))

NG exp( T+
ihsin(mu) F,w Wuh 2mu
=~ o oy e (24 ) o (#2) € l £)+ 3o)

where ag(z) < |22 exp (—2xRe(L)). We notice that

iﬁSin(ﬂ-u) Tz wku? muh kY _ i?LeXp (ﬁ—ﬁ)f(h,g) .
~ s (2 o0 (5 + 4 ) e (722 € () = - Fu(us ).

To handle the contribution from H (2“‘ F kz —i— Q@ (E, ’Z) ; %), we apply Lemma with v — 2u and
k— % to find

14

2mu
H(21“¥kz+a ,—,kz) Zae

where ay(z) < |z|~* exp (— 7 Re(1)). Thus

H(_ kY. 4i
\/z =0

where ay(z) < |2]27¢, and so

.. k 2
2i sin(mu) exp (—% + TR 4

— W)zexp( ) N6 () H (2w ot (04) i )

15




where ay(z) < k2|z[27¢
Altogether, along with part (1) of Lemma [B4 we find that

. mi(htiz '7Le T _ T2 h h s 2
R2 (6277111,;6%) _ _Z Xp(4kz 41\9/)}5( [ ]4k 4 u P +Zal 7TZ’[L

where ag(z) < kz|z|2 7. O
The following corollary follows from isolating the coefficient of u?* in Proposition 3.6l

Corollary 3.7. Suppose h and k are relatively prime integers with k > 0 and Re(%) > % If k=0 (mod 4),
then

2mi(h+iz) )

R24, (e F = —ihexp (= —2=) ¢ (b, [=hlaw, &) Z ki(a,b,¢) 27 072 4 agy(2).

a+b+c=~
If k=2 (mod 4), then

2wi(h4iz)
R24 (6 k )
— —ivV2exp (_% —m (1 +(2h— 1)[_2%)) ¢ (2h B, g) Z (a,b,¢)23 =972 4 qoy(2).
Jr

If k=1 (mod 2), then

Tz s i[—h]k [=h]
vy o (<5 4 e - ) € (4n 5 k)
Ry (57 ) = - 4k ok Sm(jff) ! Z k(a, b, €) 23172972 4 ,(2),

Here |age(2)] < k2|z|272¢ as z — 0, with the constants depending on ¢ but not k.

4. THE PROOF OF THEOREM [2.1] AND CALCULATIONS

Proof of Theorem [2]l We use the circle method as explained in Section 2 with F'(q) = R22/(q), along with
Corollary B to find that

,’9// .
N22g(n) = Z exp (_%)/ h,k R2., (e%(thiZ)) exp (27rnz) dd

0<h<k<N, =k
(h’)k)_
= —i E heXp( M){( 4k,4 E kk(a,b,c)
0<h<Kk<N, atbte=e
k=0 (mod 4),
(h,k)=1

O}k
’ ™ Tz 2mnz 1_a—2¢
X/ exp(m—m—i——k )2’2 dd

719;1,)6
2 Y exp(—%—g—;(1+(2h—1)[—2h]§))§(2h B g) S ke(a,b,c)
0<h<k<N, a+b+c={
k=2 (mod 4),
(h,k)=1

L ) o

X exp (—% + —”knz) 227972¢dd
—¥

h,k

exp (——Qﬂ;ihn - m[lﬁk] )5(4h ()} k)

- Z Z k%k(a,b,c)272¢

wk
0<h<k<N, sin(7*) atbte=t
k=£1 (mod 4),
(h,k)=1

16



I}k
’ mZ s 2mnz 1_a—2¢
X / exp (—@ + % T Tk ) z2 dd

719;1,k
_ L
+ Z exp (—25hn) / ak,20(z) exp (2522) dD, (4.1)
0<h<k<N, ik

(h,k)=1

26 In estimating the various error terms that appear, we recall z = % — 1k®,

1
3
so that Re(z) = % > % and % < |zl < % Additionally, from well known properties of Farey fractions,

we have ﬁ < 1%,1@719%,1@ < k(Nl+1) and Re(%) > g Our estimates of integrals are only max-length type

where ay, 20(2) <4 k22|

estimates.
We first estimate the integral involving the error term ay 2¢(z). Here we have

i L (B
3 exp(_%)/ an20(2) exp (P2 dd <Y m< ) v

n

0<h<k<N, =%k 0<h<k<N,
(h,k)=1 (h,k)=1
N
<<l n2271 Z kl*QE'
k=1

We note for £ > 2 that the series 377, k'~2¢ converges, whereas for £ = 1 we have that Y1, k~! < log(N).
As such,
2mih T 2 20-1
Z exp (—25hn) / ak,20(z) exp (2222) d® <; n* (1 + 61,¢1og(n)), (4.2)
0<h<k<N, ok
(h,k)=1
where 61 =1if ¢ =1and §;,=01if £ # 1.

Next we bound the integral involving exp (—% + 2”%) We let w = # — ik®, so that z = kw, and

Ik . ) ~z Hih g ) 81
/ exp (_% 4 27rknz) Z§—a—20d(1) _ _ik—§—a—20/ w§—a—20 exp (( n—4 )Fw) dw.

/ 1 91/
_ﬁh,,k ~NZ _“9h,,k

We consider two cases given by a + 2c = 0 and a + 2¢ > 1. When a + 2¢ = 0, the above yields the bound

<2 (L L V(@ bT) s,
SN+ AN T RN +1)2) TP\TTaN? '
(4.3)

L ) T
exp (—% + —”k"z) z27972dd

When a 4 2¢ > 1, we instead have that

_1_4-9¢ 1_a—2¢
S 2k~ 2 2 (E) 2 exp ((Sn - 1)7T> < k—1—2a—4cna+20—l.

Dk
’ _ Tz 2mnz %—a—ch(I)
|/_%exp( %) RN D) \n IN?

(4.4)

In handling the remaining two integrals, we wish to express them in terms of a Bessel function and an
error term. While we could go through the calculations, this is well known as a general result. A form
meeting our needs can be found in [30, Lemma 6.1]. In particular,

ﬁ;{,k 27(8n — 1 72‘1*?*3 5—a—2c|—%
s Tz 2mnz i_a-2¢ 7T(7’L ) ™ n
[ e (4 232) e vy BV +0 (S

719%,1@ k k1+|§7a72c|
(4.5)
LI 2a+20_% 8n— 1 Za+de=3
s Tz 2mnz 1_a—2¢ _ 7T( n ) T/
/19/ exPp (16kz T4k + k )Zz d® = k Ia+2cf% (E 8n — 1)
“Vh,k

n|%fa72c|7%
+0 | ———|. (4.6)
it —a—2c|
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We note the error terms in (L) and (6] are at least as large as the bounds in (£3)) and (@.A4]).
With equations (]) through ([G]), to complete the proof of Theorem 2] it only remains to verify that

1
a20| 3

1
nl3
DD D
k1+|§7a72c|7a
0<h<Kk<N,atbte=¢£
(h,k)=1
This bound is easily deduced by breaking up the inner sum according to a + 2¢ =0, a + 2¢ # 0 with ¢ < ¢,
and a + 2¢ # 0 with ¢ = /. O

It is worth running some calculations, which we perform with MAPLE, to see these asymptotics are
accurate. In Table [[] we list approximations of the ratio given by the estimate in (22) divided by the exact
value of N22,(n), as well as the ratio given by the sums in Theorem 2] (with the real and imaginary parts
rounded to the nearest integers) divided by the exact value of N29¢(n). In Table 2] we list the exact value
of N29(n) along with the sums in Theorem 2] (with the real and imaginary parts rounded to the nearest
integers). For these values of n, the imaginary parts all round to 0. We include fewer values in Table
because of the difficulty in displaying such large numbers. In particular, N25(10000) is a 96 digit integer.

Table 1: Ratios For Asymptotic Estimates

{ n Ratio for (222) Ratio for Theorem 2]
1 10 1.892666 1.057143

1 100 1.170779 1+25x1078
1 1000 1.049075 1+1.3x10728
1 10000 1.015085 1+42x107%
2 10 4.999495 1.172507

2 100 1.447874 1+7.0x1077
21000 1.117096 1+25x%x10725
2 10000 1.035043 1+8.0x 1079
3 10 23.68219 1.389405

3 100 2.082709 1.000007

3 1000 1.245479 1+20x10724
3 10000 1.070652 1+6.0x107%8

Table 2: Exact Values For Asymptotic Estimates

¢ n N2g(n) Theorem [ZT] Estimate

1 10 70 74

1 100 447153528 447153539

1 1000 362167772560345987220442602052 362167772560345987220442602098

2 10 742 870

2 100 101241563496 101241634569

2 1000 952322772130308063286982695330572 952322772130308063286982719167207

3 10 9910 13769

3 100  44527325322888 44527640083065

3 1000 5403854807373412384336767926688986652 5403854807373412384336778811025822044
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5. IDENTITIES RELEVANT TO R2 (e%cm;q>
Tia wi(h+iz) .
We must determine appropriate transformations for R2(e2 c Gt ) While we can reuse some of
the calculations from Section 3, many must be redone. The reason for this is in Section 3 we worked with
mi(h+iz) . . . . . . .
R2( 2miu, et ), took u as a variable, and exploited a series expansion at uw = 0. But in this section

u=2, Wthh is a fixed constant and not near zero. Furthermore, we require explicit upper bounds on the

error terms. To apply the circle method we need transformations for R2 (e%% ; e%i(}lz“z)) that allow us to

easily determine the negative powers of ¢ in the resulting u(u, v; 7). The required transformations are stated
in Propositions (.6 £.8] and [5.10] however it is a slow process to deduce these results. The calculations of
this section iteratively refine transformations and bounds until we arrive at these propositions.

Proposition 5.1. Suppose h and k are relatively prime integers with k > 0, u € R with v & Z, and
Re(z) > 0. Then

(g )

2 3 1 il ku — —hi—
= (—1)thud exp( T4 K ({ku}$ ) ﬂF%)z 2 (exp( Liw] (—[—h]k | k) + LRl bRl hlk))

% €(h7 [_h]kuk)ﬂ ({ku} [—h];;c-l-i/z —u[—h]k,ih([ ]k"t‘Z/Z) 1+h[ ]k [— h];;c-i-z/z)

:F
. k-1
1 } h\ i 2
+ W/ ZE:O &F (hy k) exp (2mi [ku) o™ (¢, k) H (({ku} Z) ™+ ; kz) ) + E1(u, h, k, z),

where E1(u, h, k, z) is defined as follows. When {ku} F % =—
Ei(u, b, k, 2) == (—1)* exp (- & e E: %

1
2

x (%g(h, [—h]k, k) exp (% (— eu)? + [ku) + (2 [Fu| — 1)hh — %) + %)

_ S &F (b k) exp (wi(2 [ku) — 1) (£, k)) ) ,
=0

NS
A

when —3 < {ku} ¥
El(uvh’a k,Z) = 07

when {ku} F % =3
El(uvh’a k,Z) = (

=

DO .

—Dexp (—f F %) 2
x ( (0, [=Rle, k) exp (T (= [u® = Lhu) = (2 [ku] + 1252 - 1) & mCLaE))
. k-1
i ) i
W ;gf(h, k) exp (mi(2 [ku] + 1)a® (¢, k)) )
h 3

and when 3 < {ku} ¥4 <3

Ei(u,h,k,2) = (1) exp (—1’;—1 E ({ku} 54 - %) ¥ ”;“) 2

x (z‘&(h, [=h]k, k) exp (% (— [ku|® = [ku) £ (2 [ku) + 1)252 — i) 4 ﬂi(2LZ:J+1>)

. k-1
- ﬁ ST € (h k) exp (mi(2 [ku) + 1)a™ (4, k) ) .
£=0

Proof. As is the proof of Proposition [3.3]

(1
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w(hFaku)’ ; _1 ~ (iu h([— iz — — i/z
= exp (—g—wi( i) $”2ﬂ>z %<§<h, [l )7 (22, £ P/ o I [l )

. k=1
_ F _ v o b o L
ok gge (h,k)(S — H) (z F ars o (6 F); kz))'
We begin with an elliptic shift for g using that
i o [~h] +i/z

> L — u[—h]k

With (2.8]) we find that

i (i?u,ih([—hi;;+i/z) == 1+h4[]:h]k; [—h];;c-i-i/z)

= (1) exp (= ((ru)? — Qo L) o =) (g [ = LR )

X 7i ({ku} k+z/z u[_h]kjiﬁ([fhé]lfri/z) + 1+h4[];h]k; [7h];;€+i/z) '

By Propositions 1.2 and 1.9 of [33], we deduce that for n € Z,

(S—H)(w+nm;71)= (—1)”62”"”+”"2T(S — H)(w; 7).
Thus

@—LUGg¢g;H1wk)#)ZQJﬂM%m(—%(ww2—w@?¢§ww)+mmwwaﬂa@)

x (S = H) ({ku} & F 4 + a* (L R) 2.

Since
(hFdku)’ 2
16 —(k )+{ku} i \_ ul = ({ku}$ ) )
we have
p (o, B

~\ 2 . . _ _hi—
— (_1)Lkuj exp (_% + % ({ku} == %) T %) 2’7% (exp (rrzL:uJ (_[_h]k LkuJ + M))

X§ULP44mknLQku}kw%fuZ_44_hhjiﬁq—qgmu>$1+ﬂ;mk»—mwmu)

—EéESfQWMkﬁmp@wHMQQi@JM(S—EU((Hm}$%)f;+aiw$ﬁgﬂ
+ex p(WUWJ ( [ h]k LkUJ + 1+h[—h]§—ﬁ[—h]k)>
x BB g (((huy 7 5) 2L — [ LA v )

We next verify the cancellations between the S(w; 7) terms. These follow from arguments similar to those
in the proof of Proposition 3.3l We let 7 = ;= and suppose «, 3,7 € R. We define 5%,v by

1 ifyel+2z,
0 else.

We find that
ST +ao;7+ B)

1.2
qz"

Z (_1)77.7%qf%(n+7)2e—ﬂin2ﬁ72ﬂ'inasgn(n +4)T (%’ m(n + 7)221111(7'))
nei4z,

N
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n q%’y2 Z (_1)71_%q—%(n+’7)2e_ﬂ-in2ﬁ_2ﬂina (sgn(n) _ sgn(n + ’7))
ne3+7,
n#—y

+ 61 ( )’Y 2 Sgn(,y)qév2e—7riv2,8+27riva'
We note the series involving the incomplete I'-function is of the form
Z a(n)l (%, 47T|n|Im(T)) q ",
neQ\{0}

and we recall that a function of this form is identically zero when holomorphic. As such, the contribution
from the various S(w; ) terms is dependent on whether or not v is a half integer and what values of n satisfy

segn(n) = sgn(n + 7). We now apply the above with v = {ku} F 2. The calculations for the four ranges of
{ku} $ 7 are similar, and so we only give the details for the final case.

When 1 < {ku} F2 < 2, we calculate that

e, [hl, k) exp (T ([ [fu) + SEAEHLR L)

2 (({ku} F ) M u[—h] + 1+h4[;h]k; [—h],;cﬂ'/z)

><

f

— i€ (h, [~h], k) exp (L,f“J (== o) = HEEHPER ) 2 ()

X exp (,% ({ku} Th_ %)2 + i (({ku} - %) =M ), + _1+h4[kh]k)>

Z{e (h, k) exp (2m |ku| o™ (¢, )) S (({ku}:F %) k—lz + ot (0, k); kz)

NP

)’ - =it

_ng;(h,k)exp(m(zwuj Dot (6,k) - & ({ku} ¥ 5 ) +%({ku}$——%)2)

. 3 2 2
= i&(h, [=h]k, k) exp (_% ({ku} + Z) + % ({ku} Fqi- —) )
x exp (T8 (= u? = b & (2 [k + 1) 258 — 1) 4 T2l
) k—1 - . 4 . W 2 " L 2
- VE D& (hk)exp  mi(2 [ku] + D)o (6 k) = % ({ku} ¥ Z) + 5 ({kU} Ti- 5) .
£=0
The proposition then follows after elementary cancellations. 0

Next we bound the H terms appearing in Proposition 5.1 As was the case with N25,(n), these will not
contribute to the main term for A (9; n)

Proposition 5.2. Suppose k is a positive integer, a, f € R with |a| < 5 L and — < p<i 5, and Re(z) > 0.
Then

| (2 +o:it)| < [sec(m5) | K¥Re(2) ~* exp (~ T Re(L) + mha?Re(2) ") if f# 4,
+ta;2 )| < 1

ST (1 Re(2) ) exp (e Re(2) i#8=—1
Proof. By definition,

2 B
. ) exp (——Z—27m:( - +a))
H(ﬁ+a;l)—/ , i dz
R

cosh(mx)

B ( ﬂﬁ2+2 ' 5)/ exp(—”k—“z’z—waa)d
TP TR TN Je s cosh(n(w—ip))
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where we have used the substitution w = = 4+ i8. We wish to shift the path of integration back to R. For
this we first note that the integrand tends to zero as |Re(w) | — oc.
When 3 # —%, the integrand has no poles as w varies from 0 to [, and so for 5 # —% we have that

7T7JJ2

) /R exp (_W — 27rwa) .

cosh(m(w — if))

H(%—i—a;k—iz) = exp (— ,f
Using the trivial bound
1 2 2

= _ - < - — =
[cosh(n(w = iB))| ~ Jer@=A) 4 c=rta=im] < [o=mip 1 gmip] — | %o<(mO)l
we find that
_1
’H (ZB +a; kz)’ < |sec(7rﬁ)|exp( Re( ) + mka’Re(1)” 1) k%Re(%) 2.
However, when 8 = % the integrand has a simple pole at w = 0 with residue —<. As such, we instead
have

| ‘ _e exp ———27T’LUO&)
H gtz +ai5) =ew (i —io) (14t ([ + ) ey

_ . ) ) w? ( 2mwao 67271'71]0() p
= exp (—m — ma) + Z/o exp ( Tz ) (e’”ﬂ — eimu) w | .

27rwo¢ —2mwa

< 1. Thus

Since —% <a< %, we have that

eTW _e—TW

[ (ot i) <o (Re(2)) (142 [ e (-5 Re(d))

= exp (~FRe(2)) (1+ k3Re(1) 7).

From Propositions 5.1 and £.2] we deduce the following corollary. This corollary contains the necessary
transformation for the relevant u(u,v; 7) and initial bounds.

N|=

O

Corollary 5.3. Suppose h and k are relatively prime integers with k > 0, v € R with u € 7, and Re(z) > 0.
If =5 <{ku} ¥ § <3, then

p (o 2 22)
= (=) exp < =+ ({ku} F ) T ”;“) 273 exp (L,f“J (—[—h]k [ku| + —”h[*h];*m*hh))

w €(h, [, k) ({ku} % _ u[_h]miﬁ([*hifri/z) - 1+h4[;h]k; [*h]);;ri/z) + B, bk, 2).

Ifi <{ku}:F < 3, then

o £ 25)

(et (~ g+ (00 7 )" 53 ) e (S () L)

% €(hy [=h]w, k)p ({ku} [—h],;:ri/z _ u[_h]k7ih([—hiz+i/z) - 1+h4[]:h]k; [—h},;:ri/z)

+ i(_l)tkuJ exp < Tor T s ({ku} Fi- %)2 = %) z*ég(h, [—h]k, k)

X exp (Lkh]’C (— lku)? = [ku] £ (2 [ku] + 1)kt — %) + %) + Es(u, h, k, 2).
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Here Es(u, h, k, z) is bounded as follows,

1
{exp ”?66(; Ells %(%—i-kz—i—kRe() 2) zf‘{ku}i ‘ 2
1
<

|Es(u, h, k, 2)|

e (m (Thu) 7 ) ) exp (- 5t + =ERe(2) ") 2l -2 Re(4) e

{ku} $ < , the corollary follows by directly applying the bounds in Proposition [£.2]
(k) < 3 We omit these calculations.

Proof. When —%
and noting that |

When {ku} F2 =1 we note by (23] that
H (gt + 0¥ (k) 75) = H (=55 = o (k) 52) -
As such we obtain the same bounds as when {ku} ¥ % =—1.
When 1 < {ku} 2 < 2, we use (Z2) to obtain that
H(Br+a;7) =2exp (mi((B — 1)1+ a) + 25T) —exp (2mia+ mi(28 — 1)7) H (B — )T + oy 7) .

We see that the additional contribution of

2 .
(_1)LkuJ exp( R ({ku} F ) ¥ %) 5

+

Nl=

INEN

. k-1
x = gg(h, R exp (2mi [ku) o (€,k) + mi ({ku} F & 1) & + mia® (6, k) - $2 )

cancels exactly with the contribution of
5 _ . k-1
— (=1)F) exp ( Iz 4 n ({ku} Fh _) ¥ %) z*%ﬁ ST eF(h k) exp (mi(2 [ku) + 1)a (0, k)

from Fj(u, h,k, z). Furthermore, when % <fB< %, la| < %, and 7 = ki we have that
o (- 52) 1 (22 )
< fsec (w(8 — 1) exp (~ Z%2Re (1) - T Re (L) + ZRe(L) ) ki Re(L)

1

= |sec (mf)| exp (—”TBQRe@) + %Re(g)*l) k2Re(1)72.

< g

S

Thus we obtain the same bound when 1 < {ku} ¥ 2 < 2, as when —1 < {ku} F

N[

Depending on the value of k modulo 4, we will apply one of three transformations to R2 (e%% ; ew).

Each of these three transformations results in two p-functions. For each of these p-functions we must
determine the g-terms with negative exponents and explicitly bound the remaining terms. This is a straight-
forward, but lengthy process, and consumes the next six propositions. The proofs each require a similar set
of calculations and as such we omit many of the proofs of the later propositions. The following proposition
is for one of the two p-functions corresponding the case when k=0 (mod 4).

Proposition 5.4. Suppose uy,us € R with 0 < uy < 1, and |q|7 < 3. If uy =0, then

L
q 32

—+F
2 sin(mug) tE

g Hmy (a7 +ug, §;7) = —

where

|| 32 lq| = 1 1 a2 (1 + |q|7)
|E| < + ; . + + T :
1—|ql  1-2|g|5 \2|sin(ruz)| 1—]q| (1 —2[q[7)(1 — |q|)?

If uy > 0, then

My

L1, —1)2 . ) B 1

q 3(ur—17) ,M('UJ17'+U2,£;T) - E eﬂ'zu2(2m+1) —+ . L muy
m=0
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Mo
7_7u_1 23
+i E e —Tiug 2m+1)q +32+m(1 u1)+E

m=0

_ [ 16uf—56ui+1 _ [ 16u3+40u; —55
where M1 = ’VT B M2 = W B and

(1 + |g|7 1 1 £
B| < lq| (1 lq|7) +( _ 1_u) L4 _d ).
(1—-2lgl3)(1—]g))? \1—lglr ~ 1—gltm 1—2|g|t

Proof. By definition,

iq_%(ul_i)2+%eﬂ'iu2

—L(u;—1)2 T. —
q 2 1—7 M(U1T+U2774—77—)_ T 3 1_€2ﬂiu2qn+u1
(q47q4aQ§Q)m n=-00

2
“1

. ul 1 : ) 3
zq_T+T_ﬁe”1“2 1 e—27rzung—u1

- (q%,q% 0 q) 1— eQﬂ'iu2qu1 + 1— e*Qﬂ'iqulful
oo

n(n+1
G
Z _ eQﬂ'iu2 anrul
neZ\{0,—1}

First we bound the series term as

>

neZ\{0,—1}

()

|Q| | |"("+1)
1— 827riu2 anrul Z

R |Q|4 + Iql
= lal =

—lal)?

In consideration of the infinite product, we let pa 4(n) denote the number of partitions of n into parts not
congruent to 2 modulo 4. Thus

oo

n n 1
S <Zp24 gl < Z n)lql* <Z2"|q|4:71-
(qz,q4 g; q) =0 1= 2|q|5
As such,
1L2 u n(n n <
i~ B+ e (-1 g% (1 + |al*)

>

Tiug qntu — 1 :
() ety O | = =20~ P

Furthermore, we find that

u% + 3uq

X 1 1 672771'712 %7711
iqu T*%eﬂ'“w 1 3 -1 2miu Hu + 72771'3 1—u
(qz,q?,q;q) 1 —efmuagm 1 —e=mugimm
o0
- g~ F+ -+ 1 . PG
>~ 1— 2|q|i |1 _ 627riu2qu1| 1— |q|17u1

__ld= 1 L1
T 1-2gi \[L—e¥iugu] 1 |g[tmm )

We see the contribution to the main term is of a different form depending on whether u; = 0 or u; > 0.
First we handle the case when u; = 0. We see that

. 1 ; 1
Zq—ﬁeﬂ'lug q—ﬁ

1—e2mivz —  2sin(mug)’

The remaining term to bound is

. 1 3 ;
quﬁJrZefﬂ'wQ

1— e—27riuzq
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Since the main term is as stated in the proposition, we need only verify the error term E is bounded as
claimed. For this, we note the error term is bounded by

|q| 32 FE 1 1 g3 (1 + |q|7)

L—lg|  1-2|q|% (Il — ] 1o ItJI) ’ (1—2|ql*)(1 — [q])?

_ lal® lq| %= ( 1 1 ) g% (1 + Jq|7)
2| sin (

= =+ .
L—lg|  1-2|gs (rug)| 1 —1q 1—2]q[7)(1 — |q])?
2 2
Next, when u; > 0, we begin by setting b; := W and by = W. In particular, this

yields
—Mpsm Ly, =0,
—“;-1—%—3% 3 —up+ba(1—wy) =0,
and My = [by — 1], My = [ba — 1]. As such, _%f + ?Q% — 3% + muy > 0 exactly when m > Mj, and
_ué + 3w 35 + 3 —u1 +m(l —uy) > 0 exactly when m > M. We then write
1 M, eZﬂiUQ(M1+l)q(M1+l)u1

_ 2mwiuem  muq
1 — e2mius qu1 - Z € q + 1 — e2miuz qu1 ’

m=0

—2miug o3 —u M; —2mius (Ma+2) 2 —uy+(Ma+1)(1—u
e 2qi—™ _ Z : 67271—1'“2(m+1)q%7u1+m(17u1) + e 2(Mz )q4 1+ (M2+1)( 1)
1— e—27riu2ql—u1

1— e—27riuz 1—uq ’
m=0 q

and observe the bounds

T32¢ —+

q 1— e27rzuz qu1 1— e—27rzuz ql—u1

, , 3
—§+3%1 L i (ezmug(1\41+1)q(1\41+1)u1 e—27rzu2(Mg+2)q4—u1+(M2+1)(1—u1))|

PO S
R e A S /]

We see then the main term, when u; > 0, is as stated in the proposition. Furthermore, we find the error
term F is bounded by

Jal% (1 + |q|7) 1 1 1q|%
1 + ” + p— 1+ —_— .
(1—2lgl5)(1—1g))2  \L—lgl"  1—[g[' 1—2q|*

O
The next proposition handles the other p-function corresponding to the case when £ =0 (mod 4).
Proposition 5.5. Suppose uy,us € R with 0 < uy < 1, and |q|7 < 1. Ifup =0, then
a1
—L(urtd)? T q = 5
2 4 —_ [ —
q 12 (ulT + u2, 19 7—) 2Sin(7TU2) + L,
where
gl 1 g7 Pl lal7 (1 + || )
|E| < 7 1+ T ) g 1 + ! 2
sin(muz)| 1 —2]q|1 —lal (1 —2jg[F)(1~lql) (1 —2lq7)(1 —[a])
If uy > 0, then
, M3 W2 My 2 .
q—%(u1+i) I (ulT + us, 2;7,) - Z eﬂ'iug(2m+l)q—71+jl—$+mu1 iy Z em’ug(2m+1)q—71+71+%+mu1
m=0 m=0

M5 2
. u 3 E
T e e )
m=0
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_ [ 16u?—40u;+1 _ [16u?—40u; -7 _ [16u2+56u;—71
where Ma = {73%1 LMy = [T g = [T g

92 1 3 1 1 (14 |q|f

o + 1—u + |q| 1 ( u + 1-u )+ |q| (1 |Q| ) '
gl =gl 12l \1—lgl™ ~ IT—lgl*=" ) (1 —2|q|3)(1 - |q])2
Proof. By definition,

|E| <
1_

g Ty, (urT +ug, —5;7)

| ig- R i L emiegion 5 (—1)mg™ 5l
(qi Lq,q; q) Loermmmgn 1 —emmegmn - G-y LT
We bound the series term as
> (—1)"q7_l(n+1)’% < jal* + gl
s, T g | S g
Again we bound the infinite product by ‘ T ‘ < —L . As such, we have that
(q47q4 -,q;q)oo 1-2|q|%

n(ntl) n 15 7

DI i Jal % (1 + |q]*)
Tiug gn+u — 1 .

(qi,q%,q;Q) ez gy LT T (1= 20g]3)(1 — q])?

2
oM wl 1
—1q 2 1 32¢ 2

Furthermore,
u u . —2miug 2 —u 7
—iq L+t _%eﬂ'zuz - 21 -1 € 72:1.34 1ju < 1|q|32 )
(%, :0) L—e?rimgtou | = (1 —2lg (1~ [gl')
o0
We use that
1 o0
1 n
1 3 :1+‘14+ZP274(”)‘147
(q47q4aQ§Q) n=2
[o ]
where pg 4(n) is as in the proof of Proposition[5.4] to obtain the bound
“% uy 1 ; 1 1 1 |q|%
iq_T+T_§eﬂ—zu2 - 1 —qZ <

(st at0) T g | = (1 alg DL~ ebrivsgue]
o0
We see the contribution to the main term is different depending on whether u; = 0 or u; > 0. We first
handle the case when u; = 0. We see that

—iq_ﬁemw q_i
1—exriua 2 sin(mug)
The remaining terms to bound are
—ig=s i lq| 52 —igmmtiemmiua | |q|53
1 — e2miuz | = 2| sin(mwug)|’ 1 — e—2miuzg = 1—|q|"

The main term is as stated in the proposition. Furthermore, the error term FE is bounded by

z 39 5 z 15 4
lq|32 g5 lq|32 lq|32 lql2 (1 + |q] %)
2fsin(muz)|  1—lq| * 2|sin(rug)|(1—2|g|5) (1 —2[g[3)(1—1]g)) (1 —2|gl7)(1—]|q])?
Next, when u; > 0, we begin by setting b3 := w, by = %2?177, and b5 := W. In

32114
particular, this yields

u 1 _
T1—3—2—i-b3’u,1—07

2
u
2 +

2
_w o, w1 41 _
3 +% — 33+ 1 +baur =0,
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u

- o

—I—%—%—F%—m—l—%(l—ul):(),

2
2 2
and M; = [b; —1]. As such, —?—I—%—%—I—mul > 0 exactly when m > Ms, —%—F%—%—Fi—kmul >0
exactly when m > My, and —% + ?Q% — 3% + % —u1 +m(1l —wuy) > 0 exactly when m > Ms. We then write
1+ qi 627Ti’u.2(M3+1)q(M3+1)u1

M3 M4
— E eQﬂ'iu2mqmu1 4 E e27riu2mqmu1+i 4
m=0 m=0

e27Tiuz(M4+l)q(M4+l)ul+i

+ 1— e?ﬂiug qu1 ’

1— e27riuz qu1 1— e?ﬂiug qu1

. 5
e*Zﬂququul

1— 6727riu2q17u1

7271'1"U.2(M5+2) 7u1+(M5+1)(17u1)

5
qZ
1— e*Qﬂ'iu2 qlful

)

M
— E e*Qﬂ'iuQ(erl)q%7u1+m(1—u1) + e
m=0

and observe the bounds
2 2miug (Mz+1) ,(Ms+1)uy 2mius (Ma+1) ,(Ma+1)ui+ 2
_iqi%JruTl*%eﬂ'iuz (6 q € q !

1— e?ﬂiug qu1 + 1— e?ﬂiug qu1

. 6727riu2(M5+2)q%7u1+(M5+1)(17u1) ) |

1— e—27riuzq1—u1
< 2 n 1
U S

We see then the main term, when u; > 0, is as stated in the proposition. Furthermore, we find the error
term F is bounded as claimed. O

With Propositions [B.4] and B35, we establish the transformation and required bounds for
R2 (e, ew) when £ =0 (mod 4).
Proposition 5.6. Suppose a,c,k,n € Z with c,k,n >0 and k =0 (mod 4), u = 2 with 2u ¢ Z, and z € C
with Re(z) = % and Re(1) > % If ¢| %, then

sin(mu) 1

R2 (e%iu; 672”",1*”)) = —h(-1)% 272 (hy [~ Rak, &) exp (-T2 + = — wi[—h]aku?)

sin(mu[—h|ak)
+ E3 (’LL, kv TL),
where

| Es(u, k,n)| < | sin(mu)| /2 (0.208 cse(Z) + 0.288 + 1.49\/E) .

If c k—;, then

ofF

R2 (ezm; QMJ)) = 2isin(ru)(—1)L

~ Ml .
x (—hzexp (e (- [P -m+ D | 5)) -5+ 2 (G {EY-HE -n{$)+5))
m=0

x

_E%exp(%(_L%f-y@m—k%“k_;J+2m+%))
m=0
con (-5 + 2 (4 + &} -m0-(3)-B))
M
_Ezjoexp(% (_ Lk_zuf_@m—i—%) L%J)_%+%(%{%}2—%{%}—m{k—;}+$>>

My
T [ — u |2 u Tz s w12 u u
~ R e (R (B - em o ) B 8) - R (Y 1) ) - %))
m=0
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| e{ k) se{ k)41 [ e{ B} a0{ ke ) 55 [ e{ B —a0{Er )1 B
where M; = { 2 32{%“}2 , My = 232(1_{%1) , M3 = 2 32{%}2 , My =

[16{% 2,40{%“ 7—‘7 M = {16{%}2+56{’%}71—‘;

32{ke} - 320—-{&}
; ku h ; ku h
5=t r<{¥-i<% 5= )1 Uz<{F}t+i<g
0 else 0 else
and
10.6 2.962 + 4.01Vk
Es(u, k,n)| < |si nf 20 40062 4 22T 2EVEY
|E5(u, k,n)| < [sin(ru)|/ % (1—exp (—4ix) sin( L) )
Proof. We recall that
R2 (6271'1"&; SW) — 2Sln(ﬂ'u) Z :Fethr’L'u'u (2,“7 :l:h-‘,];iz; 4(h;:iz)) )
+
We apply Corollary with u — 2u, k — k/4 and note that |h| = 1 and [=h]k/a = [=hlar. We only

consider the case when —% < {k—;} F % < %, as the other case follows by similar cancellations and estimates.
We find that

R2 (62”“; e%) = 2sin(mu) Z Fetmiuy (Qu, + Atz —h,:;f)
+

= 2hsin(mu) Z$(—1)L%J exp (—ﬁ - w ({&} ¥ %)2) 273 (h, [=hlar, &)
+

i — w |2 u u 2
x exp (4milphle (ke ® 2 Lk 4 ({8} 7 1))
X i ({%“} URRAV2) — 90y — ) g, £ E8HILE, 4([_h]‘}€k+i/z)>
+ Ef(u, h, k, 2),

where |E%(u, h, k,z)| < 4|sin(nu)E2(2u, h, k/4, z)|. We apply Propositions 5.4 and with uy = {&¢},
ug = —2u[—h|ag, and 7 = w. We note that |¢| < e=*™. Furthermore, when u; = 0 we have that
ug is at least % away from the nearest integer to us, and when u; # 0 we have that % <up < c;cl

In the case when ¢ divides k—za, we have that {k—;} =0, and so by Propositions [5.4] and [(5.5]

exp (_w ({ke} - %)2) i ({%u} M=Matifz) _ gy [_p],, [ZHati/z, 4([—h]<;€k+i/z>)

_ _m'([—h]4k+i/z)> 1 E
exp( 4k 2 sin(—27u[—h]ax) 5

where |E| < 0.036 csc(Z) 4+ 0.071, and
wi([— i/z " 2 u — i/z — i/z — i/z
exp (_% ({k2) + 1) )u ({%} MMatilz) gy [_p,, — [Ehlacti/z, A= bt ))
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_ mi((=hla+i/2) 1

= E
exp( 4k ) 2 sin(—2mu[—h]ax) T
where |E| < 0.068 csc(Z) + 0.073. Thus
R2 (627Ti’u.. 6727”(2+iz))
= _h(-1)% sin(mu) 2726 (hy [~hlag, &) exp (=22 + 1= — wi[—hlarku®) + Es(u, k,n).

Here we see we can bound F3(u, k,n) by
|Es(u, k,n)| < 2 sin(wu)||z|_% (0.104 csc(Z) 4 0.144) + 4| sin(mu) B (2u, h, k/4, 2)|
< [sin(mu)] /2 (0.208 csc(Z) +0.288 + 1.49VE)
In the case when ¢ does not divide 22, we have that {k“} # 0, and so by Propositions 5.4 and 5.5

exp (_w ({f=) — 1) )u ({%u} A=Mlanti/z) _ gy [_p],, [Zhlati/e, 40 ]‘;‘f“/z))

My
=" exp (~2miu{hlaom +1) + OB (4 ()73 () o (b))
m=0
Mo )
+1 Z exp (27Tiu[—h]4k(2m—|— 1)+ 787”([ 4k +i/2) ( s{ Bl em (- {2+ g—g)) +FE
m=0
where |E| < $ +0.0000003, and
exp (_ Ami(=hlati/z) ((hu} 4 %)2) 1 ({%u} M=Matifz) _ gy [_p),, —[Ehlati/z, 4([7h]<;€k+i/z))
=—i Z exp (—2m'u[—h]4k(2m+ 1)+ M (—% {%“}2 + 2 (B om (B} — %))
m=0
—i > xp (—2min[~hlay(2m + 1) + SRR (4 ()7 4 4 () L (1) 4 )
m=0
Ms ‘
—i Y exp (2miul—hlap(2m + 1) + At (g (l)® S fk) b (1- {B2)) + B)) + B
m=0

where |E| < % -+ 0.00303. As such, when ¢ does not divide @,

2mi(h+iz) )
k

R2(e2’”“;e
= —2ihsin(ru) (1) L5 ¢ (b, [~Rlax, &) 272
x(iexp(—%iu[—hhk@muwg+§—:(5{ —3{Ey-m{s)+ %))
x:xp(%(—v—;ﬁ— )+ ({51 - D - {8 + 3 {3 +om () -
b 3% exp (Bmiui-thu(om + 1) - 5+ 32 (350 + 1 {8} —m (- () - 2))
x;xp(w(—v—;ﬁ— ]+ ({5 - D - {8 -3 {3 +om - (8D +B))
+Zexp( miul-hlum+ 1)~ 5+ 82 (3 {8 - 1 {8} - m {5} + )
xexp(%(—t%ﬂﬁ%w ({5} + > — {5V 1 iR - %))

1))

(SIS

N[



+ZGXP(_2wiu[—h]4k(2m+1)_%+%(%{k_; 2_%{%“}_m{k_2u}_é))
exp (L2 (= [k 4 B ([} 1) - (502 () o {8} + )
+%exp@mu[—h]zxk(?m*‘l)_%""%(%{%}2+%{%}_m(1_{%})_%))

xoxp (At (= [ ® L[] ({8} + 17— (B - 3 () om (1- {B2)) + 2))
+ Es(u, k,n)
= —2ihsin(mu) (1) LF L (h, [=hlar, &) 2

(35 o (st (- 1" - o ) 31) - 1 32 (408D - 108D - (34 )

m=0

[SE

b3 exp (At (— 517 ¢ (amr 3 [ 2] <2+ )
m=0
o (<5 + 2 (HEY 1 -n0-{8) - 3))
N
+ 3 e (e (- - emr D)) - 5+ E G -1 -m {8+ 5))

+3 e (e (= () - ma P L)1) -2 (Y - HE) -m{) - 5))

b3 oxp (A (= |88 om ot §) |4+ 2+ 5)

4 us U 2 U U
com (53 (1) + 1 (8) - m (- (1)~ B)) ) + Bk
We find that Fs5(u, k,n) can be bounded as

5.3

1—exp (=7F)
+ 4] sin(mu)||z| 2 csc(£) exp (%) (% + 4 + gﬁ)

106 2.962 4+ 4.01
< |sin(mu) |\/7< +00062+%)\/_>'
in
2c

|Es(u, k,n)| < 2|sin(ru)||z|”2 < + o.oo:n)

O

The following proposition handles the two p-functions when k = 2 (mod 4). The proof is a sequence of
calculations in a manner similar to the proof of Propositions (5.4 and [5.5] which we omit for the sake of
brevity.

Proposition 5.7. Suppose ui,us € R with 0 < wuy < 1, ug is an odd integer, and |q|* < % If uy =0, then

1 1 Jal= (1 + q])
< Ty <2|sin<m2>| B ) |

’q T(ui+3)? (UlT—l—’UQ _1+ﬂ.7)’< 1 1 +|CI|%(1+|Q|)
T2 T (1=20g?)? \ 2fsin(ruz)] (1 q])?

‘qié("ﬁ%)zu (urT +ug, T + %5 7)
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If uy # 0, then

3
q_%(ul—%)2u (ulT+U2,I+U_3;7—)‘ < 1 1 + 1 + 2[gl? :
2T A =20gPP \ =gl =gt (1 gl)?
uf

g 2mta)y (urT 4+ ug, —Z + %) = —ig~ 2 exp (miug — T2) + E,

where

1 lql? 1 (1+ql?)
Bl < 1+ + + .
o 1—|q|u1< <1—2|q|2>2> =T —21aPE " = 2aP2( — Ja)?

Using Proposition 5.7 we deduce the transformation and bounds needed in the case when k = 2 (mod 4).
In particular, in this case, there is no contribution to the main term.

Proposition 5.8. Suppose a,c,k,n € Z with c,k,n >0 and k =2 (mod 4), u = £ with 2u ¢ Z, and z € C
with Re(z) = £ and Re(L) > £. If ¢ | ka, then

) mi(htiz 1.43
’RQ (627"“‘;62 (—Z+ ))’ < |sin(7‘r’u,)|\/% (7 + 342\/%4— 21) .

sin(Z)

If ¢t ka, then

‘R2 (ezmu;e%)‘ < |sin(7ru)|\/% (# +6.81 cse(Z)VE + 1.6) .

—exp (—7)

Proof. As the proof is similar to that of Proposition 5.6, we are brief with the details. We apply Corollary
B3 with w +— 2u, k +— k/2, h — 2h, z — 2z and note that 2h = 2. We have that —2 <{ku}— 3 < 1 forall
k and u, and —% < A{ku}+ % < % exactly when c¢ divides ka. In writing out the result of applying Corollary
B3] we only give the case where ¢ does divide ka and note the other case has a similar expression. Here we
find that

R2 (62771'71. 6727”(}’2+”))
27i[—2h]  [kul?
— Vasin(ru)(~1)¢ (26,205, §) = exp (—7>

2mi[—2h]

<o (5 + Tk () ¥ 1))

) - ) (a2

x exp | +miLkul (1 4 2h[~2h]x — 2[—2h] _

k k
2 2

2( [—2h] g +5= [—2h] 5+ 142h[—2h]; 2([—2R]k+o
X 1 {ku}w—w[—%];,i k@ G- - ‘. ( . 2)

+ Ey(u, h, k, 2),

where |Ej(u, h, k, )| < 4|sin(mu)E2(2u, 2k, k/2,22)|. We apply Proposition 5.7 with uy = {ku}, up =
—2u[—2h]) /9, uz = :F%/;h]k” and 7 = w We note that |¢] < e ™.

In the case that ¢ divides ka, we have that u; = 0 and so

2mi( [—2h] g + 4= [—2h] k + 2= 142h[—2h] ), 2([-2h]x+& 0.504
exp —¥ | —2u[-2h]y, +—F— F —5—=; ( = ) < Sz TO
From this, it follows that
‘R2(62”“' U in(ru)) [ (23 4 s a0V 421
’ - F \sin(Z) ' )
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When ¢ does not divide ka, we instead have

2.02
‘q—%<u1—%>2u(u17+%§+%;7)‘ < =T +0.02,
q
2mi( [—2h] p +55 ) {ku}? i 14+2h[—2h]
O (i a5 4 8557) = e |- ), Ty

+E,
where |E| < == 2‘07 + 1.103. Noting there is an extra term from Corollary B3] since {ku} _|_ > 1 7 we find
that
R2(e*™™; P )
= —ivZsin(mu)(~1) g (2h, [-2n]5, %) 2 exp (52 + T

kz

2mi[—2h] & i w
xexp< it ( k) + ({ku} + %)Q_huwﬁij_{ku}?_ku_g)_%)
hlg, g) ~3 exp( =+ W{k”} )

% exp (27”[ 2h] % ( UWJQ k| — 2Lkuj+i)(2h—2) . %) _ m(2L§ZJ+1)> + Eq(u, k,n)

+ ivV2sin(ru) (1) el (2n, -

We see that we can bound Fy4(u, k,n) as
5.72
|Ea(u, k,n)| < |sin(ru) |\f +6.8Lese(T)VE + 1.6 | .
1—exp ) ¢
O

We now consider the two p-functions appearing in the case when k = £1 (mod 4). The following propo-
sition handles both of these p-functions. The proof is much the same as that of Propositions [(.4] and [5.5]
and as such is omitted.

Proposition 5.9. Suppose ui,us € R with 0 < wuy < 1, ug is an odd integer, and |q| < % If uy =0, then

m\»—A

w2

q 2 p(uar +ug, %5 7) =

4 sin ( ) sin(mus) + E,

where

5] < 2 (1+ 1 )+( V2lal? V2a[* (1 + |a])

(1—1ql) 1-2[q| ) 4(1 —=2[g|)|sin(mus)| ~ 2(1 —2|q|)(1 — [q])*
If uy # 0, then

2
M (2 1) __1 1
g 7 p(uaT +ug, % 7) = — E emiEmAhuz =5ty b
m=

2sm
U3 M7 ; ui_uy
+ 2771%3 Z efﬂ'z(2m+1)u2q77f—+ +m(1—u1) —|—E
sin (752) 4=,

4u?—12u;+1 4u?412u;—15
where M6 = ’VT B M7: W B and

z z
|E|§@< S > Ll ) VARl
2 \1—lg[*t ~ 1—|g|'~ 1-2[ql )~ 2(1—2[q|)(1 —]ql)

We now give the last proposition for a transformation formula and bounds for R2(e*™; e&iﬂz))

corresponds to the case when k = +1 (mod 4) and uses Proposition [5.9
32
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Proposition 5.10. Suppose a,c,k,n € Z with c,k,n >0 and k =1 (mod 2), u = ¢ with 2u ¢ Z, and z € C
with Re(z) = £ and Re(L) > £. If ¢ | 2ka, then
R2 (627Ti’u.. 672ﬂi(2+iz))
i(—1)%sin(mu) cos(mu(l + h[—hlg)) _1
= z 25(
2sin (2£) sin (252 )
+ E5(’LL, kvn)a

where

b, e k) exp =ik b - Thotle 2 4 22

|Bs (u, k,n)| < | sin(mu)], /2 (4.04 eso(Z) + 1515vk + 55.86) .
If ¢ 2ka, then
R2 (e2ﬂ'iu. 672’”'(’;*”))

= (—1)2kul sin(ﬂ'u)z_%g

cos (—”LQSUJ’“) Mg
>< _——

3 exp (% (_ 12ku|?® — [2ku] (2m + 1) — %))

/~
>~
=
T
>
=
o~
—

sin (%k) m=0
U 2 u
X exp (—% + 55 ({2k2} — —{2§ b m{2ku} + %))
. 7r|_2kujk) M
sm( T ,
— i1+k7:k exp (% (— |2ku)® + |2ku| (2m + 1) + 2m + %))

=

U 2 u
X exp (—% = (% + @ —m(1 —{2ku}) — %))

+ 032 sin (ﬂ(QLQkZJJrl)k) exp (m[;kh]’“ (— |2ku)® — |2ku| — i) -4 7 ({2ku} — %)2) ) + Es5(u, k,n),

4{2ku}®—12{2ku}+1 4{2ku}?412{2ku}—15
where Mg = [ { }8{2ku{} 4 -‘, M; = { { 8}(17{2‘;;“})} —‘;

0 else.

5 {1 if L < (2ku},

and

18.98

| Bs(u, k,n)| < | sin(m)|\/% L 1515ese(Z)Vh +4.83VE +40.72 | .
1 —exp (—ﬁ) ¢

Proof. As with the proofs of Propositions and 5.8, we begin with an application of Corollary 5.3l Here

we use u — 2u, h — 4h, z — 4z and note that 4h = 0 and [—4h]; = %. The proposition then follows

from Proposition and a lengthy calculation. O

Lastly we require a proposition to rewrite the terms corresponding to negative powers of ¢ as Bessel
functions. As mentioned in Section 3, this process is well known. However, we require a version with the
error terms bounded explicitly. We give this is the following proposition.

Proposition 5.11. Suppose Z—g, %, % are three consecutive Farey fractions of level N = |\/n], r > 0, and

z = % —ik®. Then forn > 2,

19;1/,k 1 s
z72exp (02 T2 L ) i = ———  cosh (— r(8n —1 ) + FE,
/_%k p (5= — 5 + ) kz(8n —1)2 v )

where

\/5(1 +6627r(1+2r)) N 2(2 _ \/5)

|E| < T
3n kni

NS
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Proof. We note that

—19;1’ 4k ik J& i

o 1 [t
, ¥k
2mnz Tz r 0 -1 2mnz Tz r
/ z 2exp( — = —kz)d@——, z 2exp(—k ——4k+—) dz.

n k1+k
We use a well known integral representation of I,,(u) [31, p. 181] given by

(u/2)° /(0+)

211

I,(u) =

Here the path of integration starts just below the negative real axis, loops counterclockwise around the
origin, and ends just above the negative real axis. Using the change of variable t = m(

—v—1
7 exp(t+4t)dt

— 00

1
i+) this becomes

1 2ku oo —v—1 2mn ku?
I,(u) = 3 <77r(8n — 1)) Lm z exp (— -t 71'(871—1)) dz.
Setting v = —3 and u = £+/r(8n — 1) yields

™ iv2 8n— 1)1 (O
14 (E r(8n—1)):—¥/ z éeXp(%—"———I—}:)dz

4:77]"i — 00
As such,
(0+) 2\/57”'7“% ™

By Cauchy’s theorem, we can alter the path of integration in (B.I]) to the path indicated in Figure 2] (noting
that k; + k < 2N).

FIGURre 2. ‘
i | ¢ i
kotk | L5 f_z+k0+k
Y Le
L7 ﬁ
|
777777777777777777777777 O p g
|
L, —aN
Ly
_kli-{—k : L3 fszllk
|

Since
ntERTE
- 2exp(27mz—gz—|— )dz—/ z 2eXp(2”"Z—%+%)dz,
Tkl - kll«#k Ls
we bound the integrals over the remaining line segments. As these bounds are only max-length estimates
and evaluations of elementary integrals, we simply state them. The following bounds hold,

2k
/ z 2exp(—27mz —%—I—%)dz < —\/—Q,
Ly

/ z 2exp(2’mz—%+%)dz <(2-V2)n 1,
Lo

\/§€2ﬂ(1+2T)k

n

Bl

/ z 2exp(—27mz—%+%)dz <
Ls
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We note that we obtain the same bound on L7 as Ly, on Lg as Lo, and on Ly as L3. Thus

LI 9 1 [»tR+r )
™2z = — ™mz = mr
dTrexp (B2 - fE+ L) dD = 22 exp (- 4 ) de

. O R
2V/2mr
_ 2 (ZvrGn—1)) +E.
k(8n— 1)1 2 \k

where

VI 22-v3) | 2/Eeren

1

B < —
3ni kni n’

wlw

To finish the proof we use that half order Bessel functions can be expressed in terms of trigonometric functions
[31, page 80]. In particular, I_; (u) = \/ = cosh(u). O

6. PROOF OF THEOREM
Proof. We recall

A(Gn) = > ooz |

0<h<k<N —% k

19//
hok 2ria  2mi(htiz)

R2 (eT;eﬁ) ex p(%"z)dfl),

where z = % — ik® and N = |/n]|. We let 3¢, ¥1, and X3 denote the sums when k = 0, £1, and 2 modulo
4 respectively. Next we work out their contributions to the main term.
We take the main terms arising from Propositions and [5.10, which are of the form
_ LI
> exp (-2 [ e (2 - g 4+ ) de
0<h<k<N ok
(h,k)=1
k=j (mod 4)

and evaluate them with Proposition 511l We omit most of the details, as they are little more than copying
the statements of Propositions and with u replaced by %. However, we do briefly explain where each
main term comes from.

When k£ =0 (mod 4), we apply Proposition 5.6l The case when ¢ | % gives the Cp q,¢kn term. The case
when cJ( gives the Dj o ¢ kn(m) terms (for 1 < j < 5) from the sums with M;, and the 0, and d2 terms
combine to give the Da ek and Doy terms. When k=1 (mod 2), we apply Proposition B.T0 The case
when ¢ | 2ka gives the Ol,a,c,k,n term. The case when ¢ 1 2ka gives the D; o ¢ k.n(m) terms (for j = 6,7) from
the sums with M, and the d3 term gives the Dy ¢ i n term. We note there are no main terms corresponding
to k=2 (mod 4).

It then only remains to obtain an explicit bound on the error terms. We note the following bounds hold:

3 1 <@ 3 1 <2(m—1)\/N

1<k<N, vk m 1<k<N, \/_ m
k=0 (mod m) k#0 (mod m)
NN +m m—1)(N +1)?
S g N Em), S e D1
2m 2m
1<k<N, 1<k<N,
k=0 (mod m) k#Z0 (mod m)

In simplifying the error terms, we assume that a and c are relatively prime. This assumption does affect the
explicit constants, but does not change the big O term. We begin with X5, as it is the simplest.
Applying Proposition 5.8 leads to

)MENDS /ﬁ,

0<h<Ek<N,
(h,k)=1,
k=2 (mod 4)

2ﬂza

R2 g 2Eiiz) ) ‘ exp (42 Re(z)) d®
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1 1.43
<2 lsin(TH)) Y = <7ﬂ +3.42vVk + 2.1)
¢ 1<k<N, k \ sin (E)
k=2 (mod 4),
clka
+2¢27 Jsin (22| = < 572 O81VE 1.6)
¢ 1<k<N, k\1-exp(=%) sin(%)
k=2 (mod 4)
ctka

ISt

_ (ma 6.81 y 2 1.43 5.72(c— 1)

To bound the error term from Y7, we must determine an explicit upper bound on the number of sum-
mands appearing in the sums with index bounds Mg and M7 in Proposition 510l This amounts to only an
elementary calculus exercise. The number of terms appearing in the sums with Mg and M7 are bounded
above, respectively, by Bs . and Br ., where

2 _—de+4
BGC:: ’Vi-‘a B?c::

0 if ¢ < 12,
9 8C y

[£zett]ife> 12,

Using this, along with the fact that 7 4 ¢ x(m) < % for j = 6,7, we deduce (after a very lengthy calculation)
that the error term from ¥; is bounded by

’sin (%)’ (1 —1) (1 + 6 exp (%T”)) (14 Bg,c + Br,c) et
301

Al

1 2(c1 — 1)(1 + Bge + BM)) .

sin (ﬂ-—ca)’ (1+6exp (7)) < sin () + 3cy

6
N ’sin (”—C")’ <(1 4 Gexp (%Tﬁ)) (651111(21) + (c1 — (1 +3B6,c + B7,c)>

8.08 37.96 -1
poem [ B ey BT D e — 1)) Yt
z 1 —exp (—ﬁ)

sin (Z2)] 227 1515(c; — 1
+ Jsin C2)12 (1515 + # +4.83(c; — 1) | n2.
sin (%)
with ¢; := (Q—CC)
To bound the error from ¥y, we first note that the number of terms appearing in the sums with the M;
are bounded above by B; ., with

2 —24c+ 1(5}, By, e [02_4OC+16L By {1 if ¢ = 4,

32¢ 32¢ [w] if ¢+ 4,

Bl,c = ’7
32¢

& — 24c+ 16 0 if ¢ < 24,
B4,C =t | B5-,C = c2—560+16 s
32c(c— 1) [ £=Beete ] if e 04

After another long calculation, we find that the error term from ¥y is bounded by
[sin (%) | v2(c = 1) (1 + Bic + Bz + Bic + Bso) (1 +6™) + (1 + Byo) (1 +6e''7))
3¢
1+6e>™ (14 Bic+ Baoc+ By + Bs.c)2(c— 1)(1 + 6€37)
6 sin (%) 3c
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Al

+

(1+ Bs.o)2(c—1)(1 + 6611”)>n_
3c

LGl (CT)} <4627r <—0‘208 + O.288> +4e¥(c— 1) <—10'6 +0.0062 + —,2'962) )

sin (%) 1 —exp (—47”) sin (%
_ 11w _

VAL + 667 . 1 N (1+ Bic+ Bac+ Byc+ Bse)(c—1) N V2(1 4 6™ (1 + B3 .)(c— 1)
6 sin (%) 3 3
1 1

+ 2(2 - \/5) <m + 2(6 — 1)(2 + Bl,c + BQ_’C + Bgyc + B4_’C + B57c)> >n4

: Ta 27
N ‘sm (T)‘2e 149 4+ 4.91(c—1) ok
c sin (%)

We now see that the error term in Theorem is indeed O(y/n). Furthermore, for ged(a,c¢) = 1 and
n > 2, and explicit upper bound on the size of the error is

sin (ﬂ)‘ (aﬂf% + agnfi + agni + a4n%) , (6.1)
c
where
- 2350(01 -1+ Bg,c + B77c) " 35050(0 -1+ Bi.+ B+ By, + B5)c)
L C1 (&
n 2.9-10%%(c —1)(1+ Bs,.)
c )
- 1175 17525 4699(c1 — 1)(1 + Bs,c + Br.c) n 70099(c — 1)(1 + B1,c + B2+ Bac + Bs.c)
> sin (£)  sin(Z) c1 c
n 5.8-10%(c —1)(1+ Bs..)
c )
5116 1.2-10° 2.9-10%(c—1 89572(c1 — 1 35052(c — 1)(By.c + Boc + By + Bs .
. n n (c=1) (=) (c=1)(Bic+ Bac+ Bic+ Bs.c)
c c1 c C1 ¢
n 2.9-10'%(c — 1)Bs.. n 2351(c1 — 1)(Bg,c + Br.c) n 21035 8654 1176 6345(c — 1)
c c1 csin(%) c1 sin (%) c1 sin (%) csin (%)
22705(c— 1) 12253(c — 1) 40655(c1 — 1)
M=o () " c(l-exp (<2)) e (l—exp(—2))
1596 1.7-10% 5173(¢c; —1 7294 4295(c — 1 1.7-10%(¢; — 1
ay = 3663+ —— + Lomla-1) Se—1) (e — 1)
c c1 c1 sin (%) csin (%) c1 sin (%)
As a further bound of use, we find that if r; and ro are the first and second largest values of r, with
% appearing with non-zero coefficient in the main term, then the contributions to the main term

other than from ;1 may be bounded by

8(5+ Bi,c+ Bo+ B3+ Buc+ Bs . + B + Br.) cosh (mra/8n — 1) ZN: VR
k=1

V8n —1
3
- 16 (5 + B1,c + Bac + Bs,c + Bac + Bs.c + Bg o + Br.c) (v + 1)2 cosh (7r2v/8n — 1)
o 3vV8n —1 '

7. A FEW INEQUALITIES

We let N2(r,m,n) denote the number of partitions of n without repeated odd parts and with Ma-rank
congruent to 7 modulo m. For convenience we set (. := exp (%) It is not difficult to see N2(r,m,n) is
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relevant to our study of R2((?%;q), due to the fact that
co c—1
R2(C%q) =D > N2(r,e,n)¢e g™
n=0r=0
With partitions ranks, such as R((;q) and R2(¢;q), a common point of study is dissection formulas for
R(¢; q) (or in our case R2((;q)) and the equivalent identities among the N(r,¢,n) (or N2(r, ¢, n)).
For example, N(r,5,5n + 4) = % follows from showing that

> (N(r,5,5n+4) = N(0,5,5n +4)) ¢" =0, (7.1)
n>0

for 1 <r < 4. By using the minimal polynomial for (5 and the linear independence over Q of (5, (2, (2, (3
one finds (1)) is equivalent to determining that the ¢>** terms of R((s; q) are all zero. For the rank function
R(z; q), identities equivalent to the 5-dissection of R((5; ¢) and the 7-dissection of R((7; q) were established by
Atkin and Swinnerton-Dyer [6] to prove Dyson’s conjectures on N(r,5,5n+4) and N(r,7,7n+5). Identities
equivalent to the 3-dissection of R2((3; ¢) and the 5-dissection of R2((s; q) were given by Lovejoy and Osburn
[23] and identities equivalent to the 3-dissection of R2((s;¢q) and the 5-dissection of R2((19;q) were given by
Mao [25].

In some cases, one can deduce inequalities from such dissection formulas. For example, one of the formulas
from [23] is

> (N2(0,3,3n+1) — N2(1,3,3n + 1)) ¢*" = 0% )y

= o o (¢%q% %)
One finds, with the assistance of the g-binomial theorem [3, Theorem 2.1], that the above product has non-
negative coefficients when viewed as a series in g. As such it must be that N2(0,3,3n+1) > N2(1, 3,3n+1) for
n > 0. This is one of the many inequalities Mao established for N2(r, m,n) in [25]. Among these inequalities
are N2(0,6,3n+j) + N2(1,6,3n+ j) > N2(2,6,3n+ j) + N2(2,6,3n + j) for j =0,1; N2(0,10,5n+ j) +
N2(1,10,5n+75) > N2(4,10,5n+37)+N2(5,10,5n+7) for j = 1,2, 3; and N2(1, 10, 5n+5)+N2(2, 10, 5n+j) >
N2(3,10,5n+7)+N2(4,10,5n+7) for j = 1, 3,4. Mao conjectured additional inequalities, which we rephrase
as

N2(0,6,n) + N2(1,6,n) > N2(2,6,n) + N2(3,6,n) for n > 0, (7.2)
N2(0,10,n) + N2(1,10,n) > N2(4,10,n) + N2(5,10,7) for n > 0, (7.3)
N2(1,10,n) + N2(2,10,n) > N2(3,10,n) + N2(4,10,n) for n > 3. (7.4)

The restricted cases of (T2) when n = 9m + 5 and n = 9m + 8 were proved by Barman and Pal Singh
Sachdevain in [7], and (T3]) was fully resolved in [I] by Alwaise, Iannuzzi, and Swisher. Shortly we will
prove inequalities (.2 and (Z4]) (along with several others) by finding they hold asymptotically and then
verifying the inequality for a suitable number of initial values of n.

To begin, we note the following identities hold, all of which follow from the standard properties of roots
of unity and the fact that N2(r,m,n) = N2(m —r,m,n). In each case (¢ is assumed to be a primitive c-th
root of unity, that is to say a and c are relatively prime. We have that

R2(¢5,q) =Y _ (N2(0,3,n) — N2(1,3,n))¢",
n>0

R2(C:117Q) = Z (N2(0,4,7’L) - N2(2747n)) q",

n>0

R2(C8,q) = Y (N2(0,5,n) — N2(1,5,1)) ¢" + (¢Z* + ¢3*) (N2(0,5,n) — N2(1,5,n)) ¢",

n>0

R2(¢¢,q) = Z (N2(0,6,n) + N2(1,6,n) — N2(2,6,n) — N2(3,6,n)) ¢",
n>0

R2(<(717 Q) = Z (NZ(Oa 77 n) - N2(17 75 n)) qn + ( ?a + C’?a) (N2(25 77 n) - N2(1, 77 n)) qn
n>0

+ (G + ¢f") (V2(3,7,m) — N2(1,7,m)) ¢",
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R2(G%,q) = Y _ (N2(0,8,n) — N2(4,8,n)) ¢" + (¢§ — (&) (N2(1,8,n) — N2(3,8,n))q",

n>0

R2(C5,q) = Y (N2(0,9,n) — N2(3,9,m)) ¢" + (¢§ — ¢3* — ¢§*) (N2(1,9,n) — N2(2,9,n)) ¢"

n>0

+ (3 (N2(4,9,n) — N2(2,9,n)) ¢",
R2(¢forq) = > (N2(0,10,n) + N2(1,10,n) — N2(4,10,n) — N2(5,10,n)) ¢"

n>0

+ (€20 — ¢39) (N2(1,10,n) + N2(2,10,n) — N2(3,10,n) — N2(4,10,7)) ¢".

Using Theorem [2.2] we see that the asymptotic value of A (%,n) is obtained by taking the term with
largest 7 in cosh(mry/8n — 1) that has a non-zero coefficient. Some care must be taken in determining which
values of k give this leading term. In particular, a single value of k£ may appear in multiple sums and different
values of k may give the same hyperbolic cosine. Furthermore, if the hyperbolic cosine with largest r appears
multiple times, there may be cancellation. In determining the values of k that contribute to the leading term,
it is useful to note that 7 4.ck(m) < I for j = 1,2,4,5, r34.c6(m) < 2, and Tjack(m) < 15 for j = 6,7
We find that the lead term asymptotics for various A (%, n), the coefficients of R2(e2ﬂ_cm ,q), are as follows:

s (ln) N e3(n) cosh (@) s (ln> N e5(n) sin (%) cosh (%‘/?)
3’ 3v8n — 1 ’ 5’ 53 = 1 ;
y (171) _ 2v2cosh (HVE—1) B (1n> _ 4v2sin (7) cosh (=)
6’ 8n—1 ’ 7 =1 )
1 4y/2sin (%) cosh(“‘/ifl—’l) 1 4/2sin () Cosh(5ﬂJ38ng1)
A<§;n> - VB 1 ’ A<§;”> ~ = :
A 1 V2(V/5 — 1) cosh (37’\/2%"—’1)
Gﬁﬂ)w on—1 ’

6v2(5—v5) ifn=0 (
2v2(5+V5) ifn=1 (
e5(n) := { 20V/2 ifn=2 (mod5
2v2(5-v5) ifn=3 (
6vV2(5++v5) ifn=4 (mod5).

Although we can determine formulas for other values of %, we have restricted ourselves to displaying those
values with simple formulas for ¢ < 10.

e(n) —4y/6 ifn=0 (mod 3),
n) .=
3 26 ifn=1,2 (mod3),

Proof of (2). We are to show that A(%; n) > 0 for n > 0. From the asymptotic for A (%; q), the inequality
holds for n sufficiently large. We find that the next exponential term arising in the exact formula for A(%; q)

h(Zv8n—
is % , from which we deduce that

A(l' ) e () +E
6'1)~ VR —1 ’

where E is bounded as

112 (y/n + 1)% cosh (5v/8n — 1)

E| < +10'°/n.

Bl < 3v/8n —1 v
This shows the inequality holds for n > 3823, and with the assistance of MAPLE we find that the inequality
also holds for the initial values of n. O
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Proof of (4. Since
R2(Gio5 9) — R2( Cwa

=" (N2(1,10,n) + N2(2,10,n) — N2(3,10,n) — N2(4,10,n)) ¢"

(4 cos ( ) =
we are to prove that A(5g; ) > A(s;n) for n > 3. We find the the second largest exponential term in the
expansion for A ( 10 n) is COSh(“Sn_Sl ) . For A (10, ) we find that the largest exponential term is at most

% (in fact, it is exponentially smaller for n = 2 mod 3). Therefore,

R2(C10;q) — R2(Cloiq) = ) + FE,

where F is bounded as

112 (y/n + 1)% (cosh (45+/8n — 1) + cosh (75+/8n — 1))

E| < +2.4-10"/n.
|E| < WTES v
This shows the inequality holds for n > 1190, and with the assistance of MAPLE we find that the inequality
also holds for the initial values of n. 0

We now give a few new inequalities. As the proof method is the same as above, we summarize the results
in TableBl The columns are arranged to state the inequality for a combination of N2(r, ¢, n), the value of the
lower bound on n that is required for the inequality, the equivalent inequality between certain A (%, n), the
asymptotic value of the previous column, and the number of initial terms we must check with a computer.
For clarity, we include the two inequalities proved above.

Table 3: Some Inequalities

. . . . Initial
Inequality n Equivalent Inequality Asymptotic Terms
4+/6 cosh ( Z¥24n—1
N2(1,3,3n) > N2(0,3,3n) 1 —A(3:3n) >0 3\/2(4%112 ) 1286
N2(2,4,8n) > N2(0,4,87) 6 ~A(L:80) >0 toin(f) o () gy
b) ) n ) b) n 47 n 64n 1
4sin(%)cosh(7r 8(8n+1) 1)
N2(0,4,8n+1) > N2(2,4,8n+1) 0 A(5:8n+1)>0 T 876
4sin(i—’6r)cosh<7r 8(8n+2) 1)
N2(0,4,8n +2) > N2(2,4,8n+2) 0 A(%:8n+2)>0 N 870
4sin(:i—g)cosh<7r 8(8n+3) 1)
N2(2,4,8n+3) > N2(0,4,8n +3) 3 —A(3:8n+3)>0 o 892
4sin(%)cosh(ﬂ\/m>
N2(0,4,8n+4) > N2(2,4,8n +4) 8 A(38n+4)>0 T 934
1 4sin(%)cosh(”\/m>
N2(2,4,8n+5) > N2(0,4,8n+5) 1 —A(3:8n45)>0 876
(avn+)> (’7n+) (4’n+)> \/(n-l—o)l
1 4sin(%) Cosh(Tr v 8(8n+6) 1)
N2(2,4,8n +6) > N2(0,4,8n +6) 0 —A(%:8n+6) >0 T 869
4sin(?—{f)cosh<7r 8(8n+7) 1)
N2(0,4,8n+7) > N2(2,4,8n+7) 0 A(L8n+7)>0 oo 892
N2(0,6,n) + N2(1,6,n) . 2v/2 cosh ( 55=1 )
> N2(2,6,n) + N2(3,6,n) 0 A(gin) >0 —Ve=T 3823
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N2(1,10,7n) + N2(2,10,n) V3(v/5-1) cosh ( 22Y=T )

10y — A(3
> N2(3,10,n) + N2(4,10,n)  ©  Alwwin) = Algn) 1 1190
N2(0,10,n) + N2(3,10,7n) . (1=cos (%)) Alygin) (1- CO}:(?"))WM 1) L3
> N2(2,10,n) + N2(5,10,n) —A(Z;m) >0 o cosh (25T )

T Bn—1

With the results in Table [3] it is clear that we should expect many more inequalities. Below we list
additional inequalities, but omit much of the information of Table 8l However, we do note that among these
inequalities, the strictest requirement on n is n > 36 and the largest number of initial terms we must verify
is 2838. By [23] we know that N2(1,5,5n+ 1) = N2(2,5,5n+ 1) and N2(0,5,5n + 3) = N2(2,5,5n + 3),
and so we omit the inequalities duplicated by this fact. With the inequalities of Mao [25] and Table[3] these
account for all of the inequalities that follow immediately from our asymptotics for 3 < ¢ < 10,

N2(1,5,5n) < N2(2,5,51) < N2(0,5, 5n),
N2(1,5,5n + 1) < N2(0,5,5n + 1),
N2(2,5,5n +2) < N2(1,5,5n +2) < N2(0,5,5n + 2),
N2(0,5,5n +3) < N2(1,5,5n + 3),
N2(2,5,5n +4) < N2(0,5,5n +4) < N2(1,5, 5n + 4),
N2(3,7,n) < N2(2,7,n) < N2(1,7,n) < N2(0,7,n),
N2(4,8,n) < N2(0,8,n),

N2(3,8,n) < N2(1,8,n),
N2(3, 0 ,n) < N2(0,9,n),
N2(4,9,n) < N2(2,9,n) < N2(1,9,n).

We leave it to the interested reader to derive additional inequalities.

8. REMARKS

We have given asymptotics for the moments of the generating function of the Ms-rank of partitions
without repeated odd parts by following the methods established in [I3]. We note these methods were
used by Mao in [24] to determine asymptotics for the moments of the generating functions of both the
rank of overpartitions and the Ms-rank of overpartitions. Furthermore, these techniques were used in [30]
by Waldherr to determine asymptotics for the moments of the generating functions of Garvan’s k-rank of
partitions. As such, it is clear that the techniques of [I3] should be considered widely applicable.

Motivated by the asymptotics from [9] for the coefficients of R(e ca,q) along with the conjectured
inequalities from [25], we gave asymptotics for the coefficients of R2(e <*;q). However, given the represen-
tation used for for R2((; ¢) in terms of p(u,v; 7), we do not have asymptotics for the coefficients of R2(—1; q).
These asymptotics can be obtained by similar techniques, but one must actually carry out the proofs and
calculations. In particular, R2(—1;¢q) is u(—q), where p(q) a second order mock theta function [27]. Also, it
is worth noting that Mao [26] has given asymptotics for N2(m,n).

We have proved a number of inequalities among the N2(r, m,n), and have done so asymptotically. There
is a question of which of these inequalities can also be proved by g-series techniques. It is desirable to have
both proofs.
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