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We discuss asymptotic safety in four–dimensional N = 1 supersymmetric gauge the-

ories. Our main conclusion is that in a reasonable definition of this phenomenon there are

currently no controlled examples of it; there are reasons to believe that it does not occur.
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1. Introduction

In recent years there has been a resurgence of work on asymptotic safety. Much of

the interest has been in applications to quantum gravity. There has also been work on the

possible occurrence of this phenomenon in four dimensional N = 1 supersymmetric gauge

theories. Some of this work concluded that this phenomenon occurs and is exhibited in

certain models, in some cases at parametrically weak coupling.

In this paper we will revisit these models and argue in these models, and more gen-

erally, in four–dimensional N = 1 supersymmetric gauge theories that the phenomenon of

asymptotic safety does not occur. The reasons that asymptotic safety does not occur in

some cases involve the question what exactly is meant by asymptotic safety, therefore in

the following we begin with a brief general discussion of the idea of asymptotic safety in

quantum field theory (QFT).

A reasonable definition, which we will adopt here, is that an asymptotically safe QFT

is one that:

(1) approaches at short distances an interacting fixed point;

(2) does not fall into the Wilsonian paradigm.

Item (1) is self explanatory, but (2) requires some further explanation, especially since

some of the examples below do not satisfy it.

For the purpose of our discussion, the Wilsonian paradigm is the idea that a math-

ematically complete QFT is defined by specifying its ultraviolet limit, a conformal field

theory (CFT), and a finite set of parameters that describe the RG flow to longer distances.

These parameters can correspond to (marginally) relevant couplings in the theory, and/or

expectation values of operators in the CFT. A theory that does not fall into this paradigm

can be one that is defined in terms of its infrared CFT, and a flow up the RG.

The reason that item (2) in the definition of an asymptotically safe theory is (we

believe) necessary is that without it, the phenomenon in question is empty—it is part of

the standard picture of Wilsonian RG, and it is not clear why it deserves a special name.

To illustrate what we mean, consider the case of QCD, a gauge theory with gauge

group SU(Nc) and Nf (massless) flavors of fermions (quarks) in the fundamental represen-

tation of the gauge group. As is well known, for Nf < 11Nc/2 the theory is asymptotically

free, thus at short distances the gauge coupling goes to zero. The long distance dynamics

depends on Nf ; in particular [1], for Nf slightly below1 11Nc/2, the theory flows at long

1 More precisely, for Nf/Nc slightly below 11/2. This is easiest to achieve when Nf , Nc are

large.

1



distances into an interacting CFT, known as the Banks–Zaks (BZ) fixed point. As Nf

decreases, this CFT becomes more strongly coupled, and below some critical value of Nf ,

N
(cr)
f , the theory is believed to spontaneously break the chiral SU(Nf )L×SU(Nf )R sym-

metry to its diagonal subgroup, and approach in the infrared a free theory of the Goldstone

bosons of the broken SU(Nf ). The value of N
(cr)
f is not known in general.

If we removed item (2) in the definition of asymptotic safety above, a simple way to

construct asymptotically safe theories would be the following. Start with an asymptotically

free theory with Nf slightly below 11Nc/2. This theory flows in the infrared into the BZ

fixed point. We can take this fixed point to be the starting point of a Wilsonian analysis,

i.e. view it as an ultraviolet fixed point that we can perturb to flow to long distances.

An example of such a flow is obtained by adding a mass term to one of the Nf flavors

of quarks. This flow connects the BZ fixed point of the theory with Nc colors and Nf

flavors, BZNc,Nf
, to BZNc,Nf−1. It certainly satisfies criterion (1) for an asymptotically

safe theory, as the ultraviolet fixed point, BZNc,Nf
, is interacting, but we don’t need a

special name to describe it.

In this particular case, the infrared fixed point, BZNc,Nf−1, is typically also interacting

(in some range of Nf , Nc), but it is easy to construct examples where the infrared theory

is free. An example is turning on a mass term to multiple flavors, which describes the flow

BZNc,Nf
→ BZNc,N

′

f
. If Nf > N

(cr)
f > N ′

f , the infrared theory is free.

Another standard example of an RG flow that satisfies (1) above but not (2) corre-

sponds to generic points on the Coulomb branch of N = 4 SYM with gauge group SU(n)

(say). At short distances the theory is described by a non–trivial four–dimensional CFT,

while in the infrared it is a free U(1)n−1 theory.

The main point in the above discussion is that non–trivial fixed points are ubiquitous

in four–dimensional QFT, as are RG flows from such points to other (free or interacting)

CFT’s, so for the phenomenon of asymptotic safety to be non–trivial, we need some version

of criterion (2) above.

The rest of the paper is organized as follows. In section 2 we examine the claim of [2]

that a certain model of supersymmetric gauge theories exhibits asymptotic safety at weak

coupling. We point out that the RG flows discussed in [2] are standard Wilsonian RG

flows and thus do not satisfy criterion (2) above. These flows, however, do exhibit the phe-

nomenon that irrelevant (relevant) operators in the ultraviolet build up, as we flow toward

low energies, negative (positive) anomalous dimension, and eventually become relevant (ir-

relevant) in the infrared. Such operators are known as dangerously irrelevant (harmlessly
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relevant), and are well known to be ubiquitous in four–dimensional supersymmetric gauge

theories. More importantly for us, they are comfortably accommodated in the Wilsonian

framework.

In section 3 we comment on some supersymmetric gauge theories discussed in [3]

and some more recent follow–ups. These theories are free at long distances. They are

constructed in such a way that (at large values of couplings) they satisfy all the (algebraic)

consistency constraints that an asymptotically safe theory would satisfy. The authors’

presumption is therefore that these theories are described by interacting fixed points at

short distances.

We will argue that there are actually reasons to believe that such fixed points do not

exist. In such theories, there are non–perturbative techniques that allow one to study the

dynamics at fixed points in a way that does not rely on a weak coupling expansion, but

it often happens that these techniques break down when the coupling exceeds a certain

critical value. The detailed results of [3] as well as later work makes it plausible that the

breakdown happens before one reaches the regime where the strongly coupled fixed points

proposed by these authors appear.

Appendix A provides a brief review of dangerously irrelevant and harmlessly relevant

operators in N = 1 four–dimensional supersymmetric gauge theories. Technical details

that we will use in the main text will be found in Appendix B.

2. The model, a–function and RG flows

In this section we systematically analyze the pattern of RG flows in the model consid-

ered in [2] and show that it does not exhibit asymptotic safety, that is, it does not satisfy

the criterion (2) discussed in the introduction.

In our analysis we will employ the generalized central charge a–function constructed

in [4]. It offers a simple and non–perturbative approach for analyzing RG flows. A brief

review of this construction with an example is provided in Appendix B. In the following

we begin our discussion with a brief description of the model.

The model is a class of N = 1 supersymmetric gauge theories with a product gauge

group SU(N1) × SU(N2) coupled to (anti–)fundamental chiral suprfields (ψ̃̃
i
)ψi(i, ĩ =

1, · · · , Nf ), (χ̃̃i)χi(i, ĩ = 1, · · · , Nf ) and (Q̃̃
i
)Qi(i, ĩ = 1, · · · , NQ), and (an)a “(anti–)bi–

fundamental” chiral superfield (Ψ)Ψ̃. It has SU(Nf )L×SU(Nf )R×SU(NQ)L×SU(NQ)R×
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U(1)R global symmetry. The field contents of the model, and the representations under

which they transform are summarized as follows.

Chiral superfields SU(N1) SU(N2) SU(Nf )L SU(Nf )R SU(NQ)L SU(NQ)R

ψi(ψ̃̃i)(i, ĩ = 1, · · · , Nf ) N1(N1) 1 1(Nf ) Nf (1) 1(1) 1(1)

χi(χ̃̃i)(i, ĩ = 1, · · · , Nf ) 1(1) N2(N2) 1(Nf ) Nf (1) 1(1) 1(1)

Qi(Q̃̃i)(i, ĩ = 1, · · · , NQ) 1(1) N2(N2) 1(1) 1(1) 1(NQ) NQ(1)

Ψ(Ψ̃) N1(N1) N2(N2) 1(1) 1(1) 1(1) 1(1)

The authors included a Yukawa interaction of the form

W = yTr[ψΨχ+ ψ̃Ψ̃χ̃]. (2.1)

In the following we apply the construction of [4] and obtain the gradient flow equations

of the generalized central charge a–function in the configuration space defined by the

couplings of the model. The zeros of these equations determine RG flows fixed points.

We find these equations following the general procedure outlined in Appendix B. This

procedure involves constructing and extremizing an intermediate a–function.

The first step in the procedure is constructing an intermediate a–function. Adapting

the expression (B.2) for the model, we find that the intermediate a–function a(λi, Rj)

(i = 1, 2, y; j = ψ, χ,Q,Ψ) takes the following form

a(λi, Rj) = 2
(
N2

1 − 1
)
+ 2

(
N2

2 − 1
)

+ 2NfN1

[
3(Rψ − 1)3 − (Rψ − 1)

]
+ 2NfN2

[
3(Rχ − 1)3 − (Rχ − 1)

]

+ 2N2NQ
[
3(RQ − 1)3 − (RQ − 1)

]
+ 2N1N2

[
3(RΨ − 1)3 − (RΨ − 1)

]

− λ1 [N1 +Nf (Rψ − 1) +N2(RΨ − 1)]

− λ2 [N2 +Nf (Rχ − 1) +N1(RΨ − 1) +NQ(RQ − 1)]

− λy (2−Rψ −Rχ −RΨ) .

(2.2)

The three Lagrange multipliers: λ1, λ2 and λy, are related to the two gauge couplings

corresponding to the gauge groups SU(N1) and SU(N2), i.e. α1 :=
N1g

2

1

(4π)2 and α2 :=
N2g

2

2

(4π)2

respectively, and the Yukawa coupling αy := N1y
2

(4π)2 . The precise relations between the

multipliers and couplings, in the large N1, N2 limits, are given by [4-6]

λ1 = 8N1α1 +O(α2), λ2 = 8N2α2 +O(α2), λy = 8N2Nfαy +O(α2). (2.3)
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Where α denotes any linear combination of the couplings αi (i = 1, 2, y).

The next step is finding the local maximum of the intermediate a–function a(λi, Rj)

with respect to the unknowns Rk. That is, we evaluate ∂Ri
a(λj , Rk) = 0, which gives a

set of equations that can be solved for Ri := Ri(λj). In a certain finite region in the space

of couplings around the origin, i.e. the free fixed point λi = 0, we find

Rψ = 1−
1

3

(
1 +

λ1Nf − λy
2NfN1

) 1

2

,

Rχ = 1−
1

3

(
1 +

λ2Nf − λy
2NfN2

) 1

2

,

RQ = 1−
1

3

(
1 +

λ2
2N2

) 1

2

,

RΨ = 1−
1

3

(
1 +

λ1N2 + λ2N1 − λy
2N1N2

) 1

2

.

(2.4)

We substitute these expressions for Ri in a(λi, Rj) (2.2). This finally gives the gen-

eralized central charge a–function a(λi) := a(λi, Rj(λk)). Since it solves the equation

∂Rl
a(λi, Rj(λk)) = 0, its gradient flow equations in the configuration space of the model

are given by

da(λi)

dλ1
=− [N1 +Nf (Rψ − 1) +N2(RΨ − 1)] ,

da(λi)

dλ2
=− [N2 +Nf (Rχ − 1) +N1(RΨ − 1) +NQ(RQ − 1)] ,

da(λi)

dλy
=− (2−Rψ −Rχ −RΨ) ,

(2.5)

here the running R–charges Ri in (2.5) are given by their form (2.4) in terms of the running

couplings λi—in some renormalization scheme.

These equations determine the fixed points of the model in a certain finite region in

the space of couplings around λi = 0. In this paper, however, we work at weak coupling,

that is, in some small region around λi = 0. For simplicity, we also work in the Veneziano

large N limit2, that is, we take N1, N2, Nf , NQ to infinity while keeping their ratios fixed.

This is compatible with the weak coupling regime; this will become more evident in a later

subsection.3 The generalization to finite N is trivial.

2 N is some linear combination of N1, N2, Nf ,NQ.
3 Basically, the idea is that, as in the Banks–Zaks analysis [1], the couplings can be taken to

be arbitrarily small independently.
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Therefore, we can expand the running R–charges Rj in (2.5) (given by (2.4)) to linear

order in the couplings λi. Expanding (2.4) to leading order in λi yields

Rψ =
2

3
−
λ1Nf − λy
12NfN1

,

Rχ =
2

3
−
λ2Nf − λy
12NfN2

,

RQ =
2

3
−

λ2
12N2

,

RΨ =
2

3
−
λ1N2 + λ2N1 − λy

12N1N2
.

(2.6)

Substituting these in (2.5) gives the linearized form of the gradient flow equations

12N1
da

dλ1
= − [4N1(3N1 −Nf −N2)− λ1(Nf +N2)− λ2N1 + 2λy] , (2.7)

12N2
da

dλ2
= − [4N2(3N2 −Nf −N1 −NQ)− λ1N2 − λ2(Nf +N1 +NQ) + 2λy] , (2.8)

12N1N2Nf
da

dλy
= − [2λ1N2Nf + 2λ2N1Nf − λy(N1 +N2 +Nf )] . (2.9)

A vanishing condition on these equations, accompanied by the positivity constraint on

the couplings (2.3), specifies the fixed points of the various RG flows in the coupling space

of the model. In the following subsections, we consider the cases in which we turn on only

one of the gauge couplings, and the case in which we turn on both the gauge couplings;

these initiate RG flows in the configuration space. We will find all the resulting RG fixed

points, and we will examine the admissible RG flows that interpolate among them.

For convenience, we define the parameters ǫ1 and ǫ2 via

N2 := 3N1 −Nf − ǫ1, (2.10)

NQ := 8N1 − 4Nf − 3ǫ1 − ǫ2. (2.11)

Note that ǫ1 and ǫ2 are integers, and in the Veneziano large N limit, they are small,

that is to say, |ǫ1|, |ǫ2| ≪ N . In this limit, the couplings αi are in the weak coupling

regime, i.e. they are of O (1/N), therefore, as in the Banks–Zaks analysis [1], weak coupling

(perturbative) Banks–Zaks expansion in ǫ1, ǫ2 is applicable; we show this as we progress.

We note from (2.7) and (2.8) that near the Gaussian fixed point, i.e. λi = 0, for both

gauge groups to be asymptotically free, i.e. da
dλi

< 0 (here i = 1, 2), we must require both

ǫ1 and ǫ2 to be positive.
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For further convenience, we define a positive real number x as the ratio

x :=
Nf
N1

. (2.12)

The condition that the number of quarks NQ, given by (2.11), is positive reads now

x < 2. (2.13)

Note that, in this regime, the degree of the gauge group SU(N2), given by (2.10), is trivially

positive.

In each of the following subsections, we investigate the RG flows of the model in

the cases in which near the Gaussian fixed point at least one of the gauge couplings is

asymptotically free:

(1) ǫ1 > 0, ǫ2 > 0;

(2) ǫ1 > 0, ǫ2 < 0;

(3) ǫ1 < 0, ǫ2 > 0;

and/or in the case in which neither of the gauge couplings are asymptotically free

(4) ǫ1 < 0, ǫ2 < 0.

2.1. Turning the gauge coupling λ1 on

In this subsection we assume that at the Gaussian fixed point the gauge coupling λ1 ≈

α1 is marginally relevant, that is, ǫ1 > 0. The gauge coupling λ2 ≈ α2 can be marginally

relevant or irrelevant. We will investigate these possibilities here in the subsequent several

cases. However, for the moment, we only focus on turning the gauge coupling λ1 on.

Turning λ1 on results in an RG flow toward long distances. The resulting fixed point

of this flow is obtained by setting (2.7) to zero with λ2 = 0 and λy = 0. Note that since

we are turning only λ1 on, we do not impose the vanishing condition on (2.8) and (2.9).

One finds in the infrared the Banks–Zaks fixed point (λ∗1, 0, 0). Here,

λ∗1 =
4

3
ǫ1. (2.14)

Note that this fixed point is the fixed point BZ1 in [2]. To see this, we first note that

the two sets of parameters, i.e. ǫ, P defined in [2] and ǫ1, ǫ2 defined here, are related as

N1ǫ = −ǫ1, N2Pǫ = −ǫ2. (2.15)
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The desired result then follows readily using this and (2.3).

We note also using (2.14) that the gauge coupling α1 ≈ λ1/N1 is of O (1/N), therefore,

in the large N limit, it is in the weak coupling regime. This is consistent with our earlier

assumption. One can also check that this is indeed the situation in all the other cases that

we will consider below.

We note from (2.9) with λ2 = 0 and λy = 0 that the Yukawa coupling λy ≈ αy is

relevant at the fixed point (2.14) on the λ1 axis; it is a dangerously irrelevant coupling.

Therefore, one can turn it on at this fixed point. Turning on the Yukawa coupling drives

the theory further down in the infrared into the fixed point (λ∗1, 0, λ
∗

y). We find from (2.7)

and (2.9) with λ2 = 0 that

λ∗1 =
4

(
x− 3

2

)2
+ 3

4

ǫ1, λ∗y = N1 ·
2x(3− x)
(
x− 3

2

)2
+ 3

4

ǫ1. (2.16)

Note that this fixed point is the fixed point GY1 in [2]. One can see this easily using (2.3)

and (2.15) in combination with (2.10) which, in terms of the parameters defined in [2], is

x = ǫ−R + 3. (2.17)

In the following we investigate whether λ2 is relevant at the fixed points (2.14) along

the λ1 axis and (2.16) on the λ2 = 0 plane. In the case(s) in which it is relevant we can

turn it on, that is to say, we can use it to probe other fixed point(s) in the infrared. There

are two cases:

(1) ǫ2 > 0

We first examine the case in which ǫ2 is positive, that is, at the Gaussian fixed point

the gauge coupling λ2 is marginally relevant.

We first consider the RG flow that resulted the fixed point (2.14) on the λ1 axis. It

follows from (2.8) with λ2 = 0 and λy = 0 that the gauge coupling λ2 remains relevant4

along this flow provided the constraint

λ1 < 4ǫ2, (2.18)

4 To be precise, it is relevant only away from the free fixed point. At the fixed point, it is

marginal.
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is satisfied. Along this flow, λ1 ≤ λ∗1; thus, the gauge coupling λ2 is relevant throughout

the flow (away from the free fixed point) and in particular at the fixed point (2.14) along

the λ1 axis only if the constraint
ǫ1
ǫ2
< 3, (2.19)

is satisfied.

Thus, if the constraint (2.19) is not satisfied, then what happens is that as we flow

toward low energies, the gauge coupling λ2 that was initially marginally relevant in the

ultraviolet develops positive anomalous dimension, and eventually becomes irrelevant in

the infrared. Therefore, in the case in which (2.19) is not satisfied the gauge coupling λ2

is an example of a harmlessly relevant coupling (see Appendix A for a brief review and

examples of this class of operators).

In the regime (2.19) we can turn on λ2 at the fixed point (2.14) along the λ1 axis,

and depending on whether or not a condition is satisfied, the theory flows either into the

fixed point (2.24) (see below) on the λ2 axis or into the fixed point (2.32) (see below) on

the λy = 0 plane. We will come back to this later.

We next consider the RG flow that was generated by turning the Yukawa coupling λy

on at the fixed point (2.14) on the λ1 axis. We ask the question that to be able to turn on

λ2 at the fixed point (2.16) on the λ2 = 0 plane, that is, to flow further to longer distances,

what are the constraints that ǫ1 and ǫ2, and/or x must satisfy?

We first consider the case in which the constraint (2.19) is not satisfied, that is, λ2 is

harmlessly relevant and therefore irrelevant at the fixed point (2.14) on the λ1 axis. There

are two cases: x < 1 and x ≥ 1.

First we consider the case x < 1. It follows from (2.8) (and the assumption that (2.19)

is not satisfied) that x must satisfy the constraint

x0 < x < 1, (2.20)

here x0 is defined via the equation

ǫ1
ǫ2

= r2(x0) := −

(
x0 −

3
2

)2
+ 3

4

x0 − 1
. (2.21)

Therefore, in the regime (2.20), λ2 becomes once again relevant as we flow toward the

fixed point (2.16) on the λ2 = 0 plane, thus (in this flow) it is dangerously irrelevant; one

can turn it on at the fixed point (2.16) on the plane λ2 = 0, and flow further down in the

infrared into the fixed point, see below, (λ∗1, λ
∗

2, λ
∗

y).
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For x ≥ 1, on the other hand, we find regardless of ǫ1, ǫ2 that the coupling λ2 is

relevant at the fixed point (2.16) on the λ2 = 0 plane, and thus, in this case also one can

turn it on.

In the regime (2.19), we find that the gauge coupling λ2 is relevant at the fixed point

(2.16) on the λ2 = 0 plane with no constraints on the parameters of the model.

(2) ǫ2 < 0

In this case we take at the Gaussian fixed point the gauge coupling λ2 to be marginally

irrelevant.

We first consider the RG flow that resulted the fixed point (2.14) on the λ1 axis. It

follows from (2.8) (or equivalently from (2.18)) with λ2 = 0 and λy = 0 that irrespective

of the values of |ǫ2|, the gauge coupling λ2 remains irrelevant along this flow (away from

the free fixed point), and in particular it is irrelevant at the resulting fixed point (2.14) on

the λ1 axis.

We next consider the RG flow that was generated by turning the Yukawa coupling λy

on at the fixed point (2.14) on the λ1 axis. There are two cases: x > 1 and x ≤ 1.

First we consider x > 1. We note using (2.8) that as we flow toward the fixed point

(2.16) on the plane λ2 = 0, the gauge coupling λ2 can become relevant provided the

constraints ∣∣∣∣
ǫ1
ǫ2

∣∣∣∣ > 1, x0 < x < 2, (2.22)

are satisfied. Here x0 is defined via the equation

∣∣∣∣
ǫ1
ǫ2

∣∣∣∣ = −r2(x0). (2.23)

Therefore, in this regime, the coupling λ2 is a dangerously irrelevant coupling. Thus,

it is relevant at the fixed point (2.16) on the λ2 = 0 plane, and it can be turned on to flow

further into the fixed point, see below, (λ∗1, λ
∗

2, λ
∗

y) in the infrared.

In this case, i.e. ǫ1 > 0, ǫ2 < 0, and in the regime (2.22), the authors of [2] call the fixed

point (2.16) on the λ2 = 0 plane at which the dangerously irrelevant coupling λ2 is relevant

(and similarly as we will see shortly in the following subsection, in the case ǫ1 < 0, ǫ2 > 0,

the authors call the fixed point on the λ1 = 0 plane at which the dangerously irrelevant

coupling λ1 is relevant) an asymptotically safe interacting ultraviolet fixed point. As we

explained in the introduction, none of these flows, however, imply asymptotic safety but

10



rather they merely correspond to the RG flow phenomenon in which an initially irrelevant

coupling at relatively high energies develops, as we flow, negative anomalous dimension

and eventually becomes relevant at low energies.

For x ≤ 1, on the other hand, regardless of the values of |ǫ2|, the gauge coupling λ2

is irrelevant at the fixed point (2.16) on the plane λ2 = 0. Therefore, it switches off in the

infrared.

2.2. Turning the gauge coupling λ2 on

In this subsection we assume that at the Gaussian fixed point the gauge coupling λ2

is marginally relevant, that is, ǫ2 > 0. The gauge coupling λ1 can be marginally relevant

or irrelevant. We will consider these possibilities shortly.

Turning λ2 on drives the theory to flow in the infrared into the Banks–Zaks fixed

point (0, λ∗2, 0), here λ
∗

2 is obtained by setting (2.8) to zero. With λ1 = 0 and λy = 0 one

finds

λ∗2 =
4

3
ǫ2. (2.24)

This fixed point is the fixed point BZ2 in [2].

We note from (2.9) with λ1 = 0 and λy = 0 that the Yukawa coupling λy is relevant

at the fixed point (2.24) on the λ2 axis; it is a dangerously irrelevant coupling. If we turn

on the Yukawa coupling λy at this fixed point, then the theory flows into the fixed point

(0, λ∗2, λ
∗

y) in the infrared. With λ1 = 0, we find by setting (2.8) and (2.9) to zero that

λ∗2 =
4(3− x)

9− 4x
ǫ2, λ∗y = N1 ·

2x(3− x)

9− 4x
ǫ2. (2.25)

This is the fixed point GY2 in [2].

In the following we investigate whether λ1 is relevant at the fixed points (2.24) along

the λ2 axis and (2.25) on the plane λ1 = 0. In the case(s) in which it is relevant, we can

use it to access other low energy fixed point(s). Here also we have two cases:

(1) ǫ1 > 0

We first examine the case in which ǫ1 is positive, that is, at the Gaussian fixed point

the gauge coupling λ1 is marginally relevant.

11



We first consider the RG flow that resulted the fixed point (2.24) on the λ2 axis. We

find using (2.7) that for λ1 to remain relevant along this flow (away from the free fixed

point) one must demand that

λ2 < 4ǫ1. (2.26)

Since along the flow λ2 ≤ λ∗2, λ1 is relevant throughout the flow (away from the free fixed

point) and in particular at the fixed point (2.24) along the λ2 axis provided

ǫ1
ǫ2
>

1

3
. (2.27)

Thus, if the constraint (2.27) is not satisfied, then the gauge coupling λ1 can become

irrelevant in the infrared. In the case in which the constraint (2.27) is not met, it is a

harmlessly relevant coupling.

In the regime (2.27) we can turn on λ1 at the fixed point (2.24) along the λ2 axis,

and flow either into the fixed point (2.14) on the λ1 axis or into the fixed point (2.32) (see

below) on the λy = 0 plane depending on whether or not a condition is satisfied. We will

comment on this later.

We next consider the RG flow that was generated by turning the Yukawa coupling λy

on at the fixed point (2.24) on the λ2 axis.

Assuming the constraint (2.27) is not satisfied, that is, assuming that λ1 is harmlessly

relevant and thus irrelevant at the fixed point (2.24) on the λ2 axis, we now ask the

question, what are the constraints that the parameters ǫ1 and ǫ2, and/or x must respect

so that λ1 becomes relevant as we flow toward the fixed point (0, λ∗2, λ
∗

y)? There are two

cases: x < 1 and x ≥ 1.

We begin with the former. We find using (2.7) that λ1 can become once again relevant

provided the constraint

x0 < x < 1, (2.28)

is satisfied. Here x0 is defined via the equation

ǫ1
ǫ2

= r1(x0) := −
(3− x0)(x0 − 1)

9− 4x0
. (2.29)

Therefore, in the regime (2.28), λ1 is dangerously irrelevant, thus, it is relevant at the

fixed point (2.25) on the plane λ1 = 0, and one can turn it on at this fixed point to flow

further down in the infrared into the fixed point, see below, (λ∗1, λ
∗

2, λ
∗

y).

On the other hand, we find for x ≥ 1 that irrespective of ǫ1, ǫ2 the gauge coupling λ1

is relevant at the fixed point (2.25) on the λ1 = 0 plane.
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In the regime (2.27), the coupling λ1 is relevant at the fixed point (2.25) on the λ1 = 0

plane with no restrictions.

(2) ǫ1 < 0

In this case we take at the Gaussian fixed point the gauge coupling λ1 to be marginally

irrelevant.

We first consider the RG flow that ended at the fixed point (2.24) on the λ2 axis. It

follows from (2.7)(or equivalently from (2.26)) that irrespective of the values of |ǫ2|, the

gauge coupling λ2 is irrelevant along this flow (away from the free fixed point), and in

particular, it is irrelevant at the fixed point (2.24) on the λ2 axis. Therefore, it goes to

zero in the infrared.

For the gauge coupling λ1 to become relevant in the infrared one must turn on the

Yukawa coupling at the fixed point (2.24) on the λ2 axis. There are two cases: x > 1 and

x ≤ 1.

In the former case, the constraints that the parameters ǫ1 and ǫ2, and x must satisfy

so that the gauge coupling λ1 becomes relevant in the infrared as we flow toward the fixed

point (2.25) on the plane λ1 = 0 are

∣∣∣∣
ǫ1
ǫ2

∣∣∣∣ < 1, x0 < x < 2. (2.30)

Here x0 is defined via the equation

∣∣∣∣
ǫ1
ǫ2

∣∣∣∣ = −r1(x0). (2.31)

If these constraints are satisfied, then λ1 becomes relevant as we flow toward the

infrared. Therefore, in this regime, the coupling λ1 is a dangerously irrelevant coupling.

Thus, turning on λ1 at the fixed point (2.25) on λ1 = 0 plane generates a flow into the

infrared fixed point, see below, (λ∗1, λ
∗

2, λ
∗

y).

We also note here that in the regime (2.30) the fixed point (2.25) does not correspond

to an asymptotically safe fixed point for the same reason as in the earlier case.

For x ≤ 1, irrespective of the values of |ǫ1|, the gauge coupling λ1 is irrelevant at the

fixed point (2.25) on the plane λ1 = 0; it flows to zero in the infrared.
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2.3. Turning both the gauge couplings λ1 and λ2 on

There are two cases to consider: (1) λy = 0, and (2) λy 6= 0. In what follows we study

these cases.

We first consider turning on only the gauge couplings, i.e. we take λy = 0. In this

case the theory flows in the infrared into the fixed point (λ∗1, λ
∗

2, 0). This fixed point is

obtained by setting (2.7) and (2.8) to zero with λy = 0. One gets

λ∗1 =
1

2
(3ǫ1 − ǫ2), λ∗2 =

1

2
(3ǫ2 − ǫ1). (2.32)

This fixed point is the fixed point BZ12 in [2].

On the other hand, if we also turn on the Yukawa coupling λy, then the theory flows

in the infrared into the fixed point (λ∗1, λ
∗

2, λ
∗

y). Setting the equations (2.7), (2.8) and (2.9)

to zero we obtain

λ∗1 =
ǫ1(9− 4x) + ǫ2(3− x)(x− 1)

1
4 (2− x)

[
3(x− 5

3 )
2 + 11

3

] , (2.33)

λ∗2 =
ǫ1(3− x)(x− 1) + ǫ2(3− x)

[
(x− 3

2
)2 + 3

4

]

1
4 (2− x)

[
3(x− 5

3 )
2 + 11

3

] , (2.34)

λ∗y = Nf ·
ǫ1(3− x)(8− 3x) + ǫ2(3− x)x

1
2
(2− x)

[
3(x− 5

3
)2 + 11

3

] = Nf ·
1

2
[(3− x)λ∗1 + λ∗2] . (2.35)

This fixed point is the fixed point GY12 in [2].

We next check that these fixed points are in the physical regime. That is, we find the

regimes in the parameter space of the model in which λ∗1, λ
∗

2 (and λ∗y) are positive. There

are four cases:

(1) ǫ1 > 0, ǫ2 > 0

In this case both gauge couplings are marginally relevant at the Gaussian fixed point.

The fixed point (2.32) with λ∗y = 0 is physical if the constraint

1

3
≤
ǫ1
ǫ2

≤ 3, (2.36)

is satisfied. We note that this constraint consists of the intersection of the constraint

regions (2.19) and (2.27). This make sense in that one can reach the fixed point (2.32) on

the plane λy = 0 either by first turning on λ1, and then λ2 or vice versa; however, note that

this is true only if the (gauge) couplings are not harmlessly relevant. We will come back to
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this point shortly. On either side of the constraint region (2.36) we note from (2.19) and

(2.27) that either of the gauge couplings is harmlessly relevant, and thus turning on both

(at the free fixed point) drives the theory to flow either into the fixed point along the λ1

or λ2 axis. We will comment on this shortly. We also note that the Yukawa coupling λy is

relevant at (2.32) on the plane λy = 0, and thus we can turn it on, which in turn generates

a flow toward the fixed point given by (2.33), (2.34) and (2.35) in the infrared.

In subsection (2.1), in the case in which ǫ2 > 0, we saw that in the regime (2.19) the

gauge coupling λ2 is relevant at the fixed point (2.14) on the λ1 axis. We mentioned that

in this regime, therefore, one can turn on this coupling to flow in the infrared, depending

on whether or not a condition is satisfied, either into the fixed point (2.24) on the λ2 axis

or into the above fixed point (2.32) on the λy = 0 plane. In the following we will be very

specific.

Suppose that ǫ1 and ǫ2 satisfy the constraints (2.19) and (2.27). Thus, they also

satisfy the constraint (2.36) since
1

3
<
ǫ1
ǫ2
< 3. (2.37)

In this case, it follows from our earlier discussion and (2.36) that turning λ1, and then λ2

results in an RG flow that ends at the fixed point (2.32) on the plane λy = 0; note that in

this regime none of the gauge couplings are harmlessly relevant throughout the flow.

Now suppose, to the contrary, that ǫ1 and ǫ2 do not satisfy (2.27) (and therefore

(2.37)), that is, suppose that
ǫ1
ǫ2

≤
1

3
. (2.38)

Note that only the equal sign satisfies the constraint (2.36). Note also that in this regime

the condition (2.19) is trivially satisfied, and therefore, the coupling λ2 is relevant at the

fixed point on the λ1 axis, and as such we can turn it on at this fixed point and flow to

lower energies. In this case, turning λ1, and then λ2 will take us into the fixed point (2.24)

on the λ2 axis; therefore, also in this regime, turning both the gauge couplings λ1 and λ2

on (at the free fixed point) leads in the infrared into the same fixed point on the λ2 axis.

This can be understood as follows.

Consider deforming the fixed point (2.14) on the λ1 axis by turning on the relevant

gauge coupling λ2. For a non–zero value of λ2, we note from (2.7) that the coupling λ1

at this fixed point is irrelevant. Therefore, as we flow toward lower energies, the gauge

coupling λ1 shrinks toward zero, and the gauge coupling λ2, on the other hand, grows away

from zero. In the regime (2.38), we find from (2.7) and (2.8), the rate at which the coupling
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λ1 runs to zero is much faster than the rate at which the coupling λ2 runs away from zero.

Therefore, when λ1 (first) hit zero, we find the fixed point (2.24) at λ2 = λ∗2 on the λ2

axis. We note from (2.27) that in the regime (2.38) the coupling λ1 is irrelevant at this

fixed point, therefore it does not grow, i.e. it stays zero. The change in the central charge

a along the flow can be obtained using the generalized a–function. We find in accord with

the weak a–theorem ∆a = a(λ∗1, 0, 0)− a(0, λ∗2, 0) > 0.

In the regime (2.38), thus, what happens when we turn both the gauge couplings λ1

and λ2 on at the free fixed point is that as we flow toward infrared, λ1 develops positive

anomalous dimension, and eventually becomes irrelevant—thus it is harmlessly relevant—

while λ2 stays relevant (except at the free fixed point where it is marginally relevant).

Thus, the RG flow then finally ends at the fixed point (2.24) on the λ2 axis.

We also stated above in subsection (2.2) in the case in which ǫ1 > 0 that in the regime

(2.27) one can turn on the gauge coupling λ1 at the fixed point (2.24) on the λ2 axis to

flow in the infrared, depending on whether or not a condition is satisfied, either into the

fixed point (2.14) on the λ1 axis or into the above fixed point (2.32) on the λy = 0 plane.

In the following we briefly discuss these two RG flows.

If ǫ1 and ǫ2 satisfy the constraint (2.37), then it follows from our earlier discussion

and (2.36) that turning λ1 on at the fixed point (2.24) on the λ2 axis drives the theory

into the above fixed point on the plane λy = 0.

On the contrary, if ǫ1 and ǫ2 do not satisfy (2.37), that is, if

ǫ1
ǫ2

≥ 3, (2.39)

then the theory flows into the fixed point (2.14) on the λ1 axis. Here also the change in

the central charge ∆a = a(0, λ∗2, 0)− a(λ∗1, 0, 0) > 0.

We note from (2.19) that in the regime (2.39) the coupling λ2 is harmlessly relevant,

and for essentially the same reason as in the earlier case, therefore, in this regime turning

both the gauge couplings λ1 and λ2 on at the free fixed point leads in the infrared into the

fixed point (2.14) on the λ1 axis.

We next examine the fixed point given by (2.33), (2.34) and (2.35). There are four

cases, and we discuss them in turn in the following.

The first case is when the parameters ǫ1 and ǫ2 are allowed to take any values. In this

case we find that this fixed point is physical if the constraint

1 ≤ x < 2, (2.40)
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is satisfied. This is consistent with the results in subsections 2.1 and 2.2.

The next case is when the parameters ǫ1 and ǫ2 are such that

1

3
≤
ǫ1
ǫ2

≤ 3. (2.41)

In this case we find that the constraint is

0 < x < 2. (2.42)

We note from (2.13) that this constraint is trivially satisfied. That is, as long as we are in

the regime (2.41), there is always a physical infrared fixed point that is given by (2.33),

(2.34) and (2.35).

The other case is when
ǫ1
ǫ2
> 3. (2.43)

In this case the constraint on x is

x0 < x < 1, (2.44)

here x0 is defined via the equation

ǫ1
ǫ2

= r2(x0). (2.45)

The final case is when
ǫ1
ǫ2
<

1

3
. (2.46)

In this case the constraint is

x0 < x < 1, (2.47)

here x0 is defined via the equation

ǫ1
ǫ2

= r1(x0). (2.48)

Note that although the constraint (2.36) is the same as (2.41), the former is associated

with a different fixed point that lies on the λy = 0 plane. We also note that the constraint

(2.36) being identical to (2.41) is consistent with the fact that one can turn on the Yukawa

coupling λy at the fixed point (2.32) on the λy = 0 plane, and flow into the fixed point

given by (2.33), (2.34) and (2.35). Note also that the constraint (2.44) is the constraint

(2.20), and the constraint (2.47) is the constraint (2.28).
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(2) ǫ1 > 0, ǫ2 < 0

In this case at the free fixed point λ1 is marginally relevant, and λ2 is marginally

irrelevant. Since λ∗2 in (2.32) is negative, the fixed point given by (2.32) on the λy = 0

plane is unphysical.

Now consider the fixed point given by (2.33), (2.34) and (2.35). Note that to have a

physical fixed point one must allow x to take values only in the range 1 < x < 2 (since for

x ≤ 1, λ∗2 < 0). We find that for

∣∣∣∣
ǫ1
ǫ2

∣∣∣∣ > 1, x0 < x < 2, (2.49)

this fixed point is physical. Here x0 is defined via the equation

∣∣∣∣
ǫ1
ǫ2

∣∣∣∣ = −r2(x0). (2.50)

We note that these constraints are exactly the constraints (2.22). This is the case because,

since λ2 is not dangerously irrelevant, it switches off as we flow toward the infrared, and

thus we are effectively turning on only λ1.

(3) ǫ1 < 0, ǫ2 > 0

Here at the free fixed point the gauge coupling λ1 is marginally irrelevant and the

gauge coupling λ2 is marginally relevant. Since λ∗1 in (2.32) is negative, the fixed point

given by (2.32) on the λy = 0 plane is also, as in the previous case, unphysical.

Consider the fixed point given by (2.33), (2.34) and (2.35). We note that to have a

physical fixed point one must restrict x in the range 1 < x < 2 (since for x ≤ 1, λ∗1 < 0).

We find that for ∣∣∣∣
ǫ1
ǫ2

∣∣∣∣ < 1, x0 < x < 2, (2.51)

this fixed point is physical. Here x0 is defined via the equation

∣∣∣∣
ǫ1
ǫ2

∣∣∣∣ = −r1(x0). (2.52)

We note also here that these constraints are precisely the constraints (2.30). The reason

is due to the fact that λ1 is not dangerously irrelevant, and thus it flows to zero in the

infrared.
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(4) ǫ1 < 0, ǫ2 < 0

So far in the two preceding subsections, we discussed the cases in which at least one

of the gauge groups is asymptotically free. Here, however, we consider the case where

both ǫ1 and ǫ2 are negative. That is, at the Gaussian fixed point both gauge couplings are

marginally irrelevant, thus, none of the gauge groups are asymptotically free.

From (2.32) we find that for both λ∗1 and λ∗2 to be positive we must require both

the conditions |ǫ1/ǫ2| < 1/3 and |ǫ1/ǫ2| > 3. However, these conditions cannot be met

simultaneously. Therefore, the fixed point (2.32) on the λy = 0 plane is unphysical.

We also note that λ∗y in (2.35) is unphysical when both ǫ1 and ǫ2 are negative, hence

the fixed point given by (2.33), (2.34) and (2.35) is unphysical as well. Therefore, there

are no interacting ultraviolet fixed points of the Yukawa and gauge couplings.

We argue in the next section more generally that it is not possible to achieve asymp-

totic safety in four dimensional N = 1 supersymmetric gauge theories with or without

superpotentials, and in particular, at weak coupling.

3. Discussion

In this section we comment on certain supersymmetric gauge theories considered in

[3] and some more recent follow–ups.

The authors argued that asymptotic safety is realizable and it exhibits certain theories.

These theories satisfy all the consistency constraints that one would require an asymptot-

ically safe theory to satisfy. These constraints are algebraic in nature. They include the

constraints that at fixed points the scaling dimensions of gauge invariant operators cannot

be less than one and the central charges defined via two point functions of the stress tensor

and conserved currents must be positive, and that the Euler anomaly coefficient a must be

positive at fixed points and satisfy the inequality ∆a := aUV − aIR > 0, which is known as

the weak a–theorem. The weak a–theorem constraint is equivalent to the constraint that

at least one of the chiral superfields in the theory must have an R–charge larger than 5/3.

An example given is an SU(Nc) gauge theory with Nf pairs of fundamentals and

anti–fundamentals Q, Q̃, two adjoints A1, A2 and a superpotential

W = y1A1QQ̃+ y2A
3
1, (3.1)

that does not involve the adjoint A2.
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In the regime Nf < Nc this theory is free in the ultraviolet, and in the infrared it

flows into a non–trivial fixed point. The R–charges of the superfields at this fixed point

are

RQ = R
Q̃
=

2

3
, RA1

=
2

3
, RA2

=
Nc +Nf

3Nc
. (3.2)

In the regime Nf > Nc this theory is infrared free. The existence of an interacting

ultraviolet fixed point in a certain finite region around the infrared free fixed point can

be analyzed using the recent generalized central charge a–function construction [4] (see

Appendix B). At weak coupling with Nf very close to Nc, i.e. Nf/Nc = 1+ ǫ, 0 < ǫ≪ 1,

we find that there is no fixed point in the ultraviolet. The authors took Nf very far away

from Nc, i.e. Nf > 4Nc, so that at least one of the R–charges is large enough to satisfy

the above 5/3 constraint. For Nf > 4Nc, therefore all the constraints are satisfied.

We next argue more generally that the constraint that at least one of the R–charges

must be larger than 5/3 cannot be satisfied in four dimensional N = 1 supersymmetric

gauge theories in a regime in which the original infrared degrees of freedom, that is to say,

variables, do not break down.

Without loss of generality, we consider a supersymmetric gauge theory with a gauge

group G and coupling g containing chiral superfields Φi in irreducible representations ri.

We take a superpotential of the form

W = y
∏

i

(Φi)
ni , (3.3)

where ni are some positive integers. The exact running R–charges Ri of Φi along an RG

flow are given by (B.3) in Appendix B. For convenience we write it here again

Ri(λ, λy) = 1−
1

3

(
1 +

λT (ri)− λyni
|ri|

) 1

2

. (3.4)

The sum in the square root is positive in some finite region in the space of running

couplings containing the origin λ = 0, λy = 0—the free fixed point. In particular, it is

positive at weak coupling. The R–charges are therefore always Ri ≤ 1. It may happen

that some field develops sufficiently large, and positive anomalous dimension along a flow

(at strong coupling) such that its R–charge Ri > 1 [7]. In this case it is argued in [7] that

one has to take the other positive branch of the square root in (3.4). However, it is shown

in [7-9] that even in this case it cannot surpass the upper bound 4/3, therefore Ri ≤ 4/3.
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In the regime Ri > 4/3, in general, we are in the strong coupling regime and the

description in terms of the original infrared degrees of freedom often breaks down [10]. A

simple example in which a breakdown of degrees of freedom occurs is the electric SQCD

theory withNf < 3Nc/2 [10]. Thus, in a regime in which the theory is internally consistent,

it is hardly possible to meet the requirement that at least one of the R–charges should be

larger than 5/3. Our discussion, therefore, strongly suggests that asymptotic safety does

not occur in N = 1 supersymmetric gauge theories with or without superpotentials, and

in particular, at weak coupling.
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Appendix A. Dangerously irrelevant and harmlessly relevant operators

Consider deforming an ultraviolet conformal field theory (an ultraviolet CFT) by

adding to its Lagrangian a relevant operator. This results in an RG flow away from the

ultraviolet fixed point. It may happen that as we flow toward low energies, an operator that

was initially irrelevant (relevant)5 at the ultraviolet fixed point builds up negative (positive)

anomalous dimension, and eventually becomes relevant (irrelevant) in the infrared. Such

an operator that becomes relevant (irrelevant) in the infrared is sometimes referred to as

a dangerously irrelevant (harmlessly relevant) operator. Below, we review a few examples

of this RG phenomenon in N = 1 supersymmetric gauge theories in four dimensions.

Consider N = 1 supersymmetric QCD (SQCD); an SU(Nc) gauge theory with Nf

flavors of chiral superfields Qi and Q̃̃
i
(i, ĩ = 1, · · · , Nf ) in the fundamental and anti–

fundamental representations of SU(Nc) respectively. For Nf < 3Nc, the theory is asymp-

totically free in the ultraviolet, i.e. it describes free quarks and gluons, and it flows

in the infrared into a non–trivial fixed point. Now consider adding the superpotential

W = h
(
QQ̃
)2

. At zero gauge coupling g, the superpotential coupling h is irrelevant and

therefore it flows to zero in the infrared. On the other hand, if we turn on the gauge

coupling g, and if Nf < 2Nc, then h becomes relevant as we flow toward low energies [11].

Thus, in this regime of Nf the coupling h is a dangerously irrelevant coupling.

5 The operator can also be marginal.
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Another example of dangerously irrelevant coupling is the gauge coupling g in super-

symmetric QCD (SQCD) with Nf > 3Nc. In this regime of Nf , the gauge coupling g is

marginally irrelevant; therefore, the theory is free in the infrared. Now consider giving

masses to some of the quarks by adding the superpotential W =
∑n

i miQ
2
i . In the large

mass limit, the heavy quarks decouple from the dynamics. This reduces the number of fun-

damental quark flavors from Nf to Nf − n. If the number of light quarks Nf − n < 3Nc,

then the gauge coupling g becomes marginally relevant. Therefore, it is a dangerously

irrelevant coupling in this limit.

A further example of the phenomenon appears in the Seiberg dual description of

N = 1 SU(Nc) SQCD. The dual description has gauge group SU(Nf − Nc), Nf flavors

of chiral superfields qi and q̃̃
i (i, ĩ = 1, · · · , Nf ) in the fundamental and anti–fundamental

representations of the gauge group respectively, and N2
f singlet “meson” chiral superfields

M j

ĩ
(j, ĩ = 1, · · · , Nf ). The meson fields couple to the fundamentals q, q̃ through the

superpotential W = yMqq̃. In the conformal window, i.e. for Nf in the range 3Nc/2 <

Nf < 3Nc, both the original and dual theories are asymptotically free in the ultraviolet,

and in the infrared they both flow into non–trivial fixed points which are identified by

the duality [12]. At zero gauge coupling g, the Yukawa coupling y is marginally irrelevant

and therefore it switches off as we flow toward low energies. However, if we turn on gauge

interactions, y becomes relevant as we flow toward the infrared fixed point [11]. Thus,

the Yukawa coupling y is a dangerously irrelevant coupling. An example of a harmlessly

relevant coupling is t in the meson mass matrix W = tM2, which is the magnetic dual

of the superpotential W = h
(
QQ̃

)2
considered earlier. At the free fixed point, that is

in the ultraviolet, the mass matrix coupling t is relevant. However if we turn on the

(magnetic) gauge coupling g and Yukawa coupling y, and assuming that Nf > 2Nc, it

becomes irrelevant in the infrared [11]. Therefore, in this regime of Nf it is a harmlessly

relevant coupling.

Yet another example of the phenomenon arises in adjoint N = 1 SQCD (ASQCD),

i.e. N = 1 SQCD with an additional chiral superfield X in the adjoint representation of

the gauge group SU(Nc). ASQCD is asymptotically free in the ultraviolet for Nf < 2Nc.

Without a superpotential, turning on the gauge coupling g drives the theory to flow into a

non–trivial fixed point in the infrared [13, 14]. Consider now the operator TrXk+1. At the

ultraviolet fixed point, that is at g = 0, it has, for k > 2, dimension larger than three, and

hence it is marginal and/or irrelevant. However if we turn on g, for small Nf , it becomes
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relevant as we flow toward the infrared limit of the adjoint theory with W = 0 [15, 16].

Thence, in this regime of Nf , it is an example of a dangerously irrelevant operator.

The adjoint SQCD considered above also admits harmlessly relevant operators [4,

10, 14]. Consider ASQCD with W = 0 at its infrared fixed point in a regime where the

operator TrXk+1 is relevant. We are now interested in deforming the theory by adding the

superpotential W = gkTrX
k+1 + gk′TrX

k′+1. Consider first turning on only the coupling

gk. The operator TrX
k+1 will then drive the theory into a fixed point which we will call Fk.

At this fixed point, the R–charge of the superfield X is RX = 2/ (k + 1). Therefore with

k′ < k the operator TrXk′+1 is relevant at Fk. Now if we turn on the other coupling gk′ ,

then the theory at Fk will evolve further into a new fixed point Fk′ at which the effective

superpotential is W ≈ gk′TrX
k′+1. At Fk′ the operator TrXk+1 is therefore irrelevant,

and thus it is a harmlessly relevant operator [4, 10, 14].

Appendix B. a–function and RG flows

In this appendix we briefly review the generalized central charge a–function a(λi) that

is constructed in [4] (see also [5]) by extending the method of a–maximization [14] away

from fixed points of an RG flow. It is an analogue of the Zamolodchikov c–function in four

dimensions, and it manifestly satisfies the weak a–theorem, aUV > aIR.

In the following, we first outline the procedure for determining the form of the gener-

alized central charge a–function a(λi) of a four dimensional N = 1 supersymmetric gauge

theory. We then show how the generalized central charge a–function a(λi) can be used to

analyze an RG flow between an ultraviolet, and an infrared fixed points of the theory.

We consider a supersymmetric gauge theory with a gauge group G and coupling g

containing chiral superfields Φi in irreducible representations ri. We take a superpotential

of the form

W = y
∏

i

(Φi)
ni . (B.1)

We write more conveniently the gauge coupling g as α := g2

4π , and the coupling y as

αy :=
y2

4π
. There are two steps in finding the general form of the generalized central charge

a–function a(λ, λy) of the theory along an RG flow.
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The first step is constructing the following intermediate a–function; by abuse of no-

tation we use the same letter a,

a(λ, λy, Rm) = 2|G|+
∑

i

|ri|
[
3(Ri − 1)3 − (Ri − 1)

]

− λ

[
T (G) +

∑

i

T (ri) (Ri − 1)

]

− λy

(
2−

∑

i

niRi

)
,

(B.2)

where |ri| and T (ri) are the dimension and index of the irreducible representation ri

respectively. |G| is the dimension of the gauge group G, and T (G) is the index for the

adjoint representation of the gauge group G. For example, for G = SU(N), T (N) =

T (N) = 1/2, T (G) = N . The Lagrange multiplier λ imposes the constraint that the

superconformal U(1)R symmetry (at the non–trivial fixed points) is anomaly free (see also

[17] for a review); λy is the Lagrange multiplier for the constraint that the general R

symmetry is preserved by the superpotential W .6

The second step is finding the unknowns Ri and substituting them back into (B.2).

The Ri are obtained by extremizing the intermediate a–function (B.2) with respect to Ri

[14], which gives

Ri(λ, λy) = 1−
1

3

(
1 +

λT (ri)− λyni
|ri|

) 1

2

. (B.3)

Substituting the Ri (B.3) back into (B.2) yields the generalized central charge a–function

a(λ, λy) := a(λ, λy, Ri(λ, λy)) of the theory. Because Ri(λ, λy) solves ∂a/∂Ri = 0, one

finds that
da

dλ
= − [T (G) + T (ri) (Ri − 1)] := β̂G(λ, λy),

da

dλy
= −

(
2−

∑

i

niRi

)
:= β̂y(λ, λy),

(B.4)

here the Ri are given by (B.3).

Since λ, λy were originally introduced as Lagrange multipliers, we must extremize the

generalized central charge a–function a(λ, λy) with respect to the multipliers λ, λy. We

6 This can be easily generalized for theories based on product gauge groups, and consist of

more that one superpotential coupling by introducing as many Lagrange multipliers as there are

couplings.

24



note that there are two cases to consider. We first consider the case in which both the

couplings are turned on; and next, that only one of the couplings is turned on.

In the former case, we must extremize a(λ, λy) with respect to both λ, λy. This gives

β̂G(λ, λy) = 0, β̂y(λ, λy) = 0. (B.5)

In the latter case, if (say) only α is turned on, then λy = 0 and extremizing a(λ, 0) with

respect to λ gives

β̂G(λ, 0) = 0. (B.6)

On the other hand, if only αy is turned on, then λ = 0 and extremizing a(0, λy) with

respect to λy gives

β̂y(0, λy) = 0. (B.7)

These equations fix the multipliers λ, λy and in turn also Ri(λ, λy) and a(λ, λy). We

will denote the values of the multipliers which solves (B.5), (B.6), (B.7) by the same letters

λ∗, λ∗y in all these different cases; this should cause no ambiguity. We assume that λ∗, λ∗y

are such that the beta function for the coupling α is not singular in the regime α ≤ α∗;

the construction of [4] is valid only in a certain finite region in the space of couplings

containing the origin.

The Ri (B.3) at the fixed points λ = 0, λy = 0 and λ = λ∗, λy = λ∗y give the R–charges

of the chiral superfields Φi associated with the U(1)R superconformal symmetry. Similarly,

the generalized central charge a(λ, λy) at the fixed points gives the central charges aUV ,

aIR with aUV > aIR.

The Lagrange multipliers λ, λy are identified in the construction of [4] in some renor-

malization scheme with the running couplings α, αy; therefore, they are always positive. In

the vicinity of α = 0, αy = 0 it was shown in [4-6] that λ ≈ |G|α+O(α2), λy ≈ αy+O(α2).

The positivity of the Lagrange multipliers gives non–trivial constraints on asymptotic

safety.

The identification of λ, λy with the running couplings α, αy suggests the interpretation

of Ri(λ, λy) and a(λ, λy), in some renormalization scheme, as running R–charges and

central charge. Thus, in (B.4) we note that, in the vicinity of λ = 0, λy = 0, β̂G(λ, λy) is

proportional to the beta function for the coupling λ, and β̂y(λ, λy) is proportional to the
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beta function for the coupling λy.
7 We also note that this interpretation generalizes the

method of a–maximization [14] away from fixed points of an RG flow.

The equations (B.4), together with the positivity constraint, determine RG fixed

points in the space of running couplings λ, λy (in some renormalization scheme). In some

finite domain in the space of couplings containing λ = 0, λy = 0, the fixed points of RG

flows are found by setting (B.4) to zero, i.e. by solving the corresponding equation(s)

among (B.5), (B.6), (B.7).

We note that the gauge coupling λ is relevant throughout an RG flow (away from the

free fixed point) if β̂G(λ, λy) < 0. Therefore, if λ is relevant at the fixed point (B.7), then

turning it on will drive the theory further down in the infrared into the fixed point (B.5)

provided λy is not harmlessly relevant. In the case in which λy is harmlessly relevant we

flow instead into the fixed point (B.6).

We also note that away from the free fixed point the coupling λy is relevant along an

RG flow if β̂y(λ, λy) < 0. Similarly, if β̂y(λ, λy) < 0, then one can turn on λy at the fixed

point (B.6), and flow further down in the infrared into the fixed point (B.5). if, however,

λ is harmlessly relevant, then we flow instead into the fixed point (B.7).

Turning on both couplings at the free fixed point in the case in which they are

(marginally) relevant (and dangerously irrelevant) leads in general in the infrared into

the fixed point (B.5). If either of the couplings is harmlessly relevant, then it leads into

the fixed point (B.6) or (B.7) (see the preceding two paragraphs).

As a simple example to illustrate the procedure, we consider a class of N = 1 super-

symmetric gauge theories with a gauge group SU(Nc) coupled to Nf (anti–)fundamental

chiral superfields (Q̃)Q, and a bi–fundamental gauge singlet chiral superfield M . It has

SU(Nf )L × SU(Nf )R × U(1)R global symmetry. We summarize the field contents, and

the representations under which they transform as follows.

Chiral superfields SU(Nc) SU(Nf )L SU(Nf )R

Qi(Q̃̃i)(i, ĩ = 1, · · · , Nf ) Nc(Nc) 1(Nf ) Nf (1)

M
ĩi
(̃i, i = 1, · · · , Nf ) 1 Nf Nf

We take the superpotential

W = yTrQ̃MQ. (B.8)

7 In general one has da

dλi = Gijβ
j, where Gij is the metric on the space of couplings, and βi

are the beta functions.
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The first step in finding the a–function, and its gradient flow equations is constructing

the intermediate a–function (B.2). In this class of theories, it follows from (B.2), the

intermediate a–function takes the form

a(λ,Rj) = 2
(
N2
c − 1

)

+ 2Nf ·Nc ·
[
3(RQ − 1)3 − (RQ − 1)

]
+ N2

f · 1 ·
[
3(RM − 1)3 − (RM − 1)

]

− λ [Nc +Nf (RQ − 1)]

− λy (2− 2RQ −RM ) ,

(B.9)

where R
Q̃

= RQ; the U(1)R symmetry commutes with the chiral symmetry SU(Nf )L ×

SU(Nf )R.

The next step is extremizing (B.9) with respect to the unknowns Ri. This gives a

set of equations that can be solved for Ri in terms of the couplings λ, λy. We obtain the

running R–charges Ri(λ, λy)

RQ(λ, λy) = 1−
1

3

(
1 +

λNf − 2λy
2NfNc

) 1

2

,

RM (λ, λy) = 1−
1

3

(
1−

λy
N2
f

) 1

2

.

(B.10)

Substituting these into (B.9) finally gives the generalized a–function a(λ, λy). The

gradient flow equations of the a–function are then obtained using (B.10) in (B.4). For

small couplings λ1, λy, for instance, these flow equations to leading order in the couplings

are

β̂G(λ, λy) = −
Nc
3

[
(3− x)−

1

4
x
λ

Nc
+

1

2
x2
λy
N2
f

]
,

β̂y(λ, λy) =
1

6

[
(2x+ 1)

λy
N2
f

−
λ

Nc

]
,

(B.11)

here x :=
Nf

Nc
. With αg := Ncg

2

(4π)2 , αy := Ncy
2

(4π)2 , to leading order in αg, αy we have λ =

8Ncαg, λy = 4N2
fαy [4-6].
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