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Abstract

We review what is known about boundary conditions in General Relativity on a spacetime
of Euclidean signature. The obvious Dirichlet boundary condition, in which one specifies the
boundary geometry, is actually not elliptic and in general does not lead to a well-defined
perturbation theory. It is better-behaved if the extrinsic curvature of the boundary is suitably
constrained, for instance if it is positive- or negative-definite. A different boundary condition,
in which one specifies the conformal geometry of the boundary and the trace of the extrinsic
curvature, is elliptic and always leads formally to a satisfactory perturbation theory. These
facts might have interesting implications for semiclassical approaches to quantum gravity.
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1 Introduction

The goal of this note is to make accessible some basic properties of boundary conditions in Eu-
clidean gravity [1–4]. The facts described here are not new. The motivation for presenting this
material is that it may have applications to semiclassical quantization of gravity. There is an
extensive literature on this subject, a small selection being [5–12].

In Euclidean signature, letX be aD = d+1-dimensional Riemannian manifold with boundary a
d-manifold M . The most obvious boundary condition in Euclidean quantum gravity is to specify
the geometry of M (that is, its Riemannian metric) and integrate over all metrics on X that
are consistent with this boundary geometry. Another and equally simple boundary condition
is to specify the conformal geometry of M and the trace K of its extrinsic curvature or second
fundamental form (which is roughly the normal derivative of the metric along M). We will call
these the Dirichlet and conformal boundary conditions, respectively. The main point that we
aim to explain is that in general the Dirichlet boundary condition does not lead to a sensible
perturbation expansion, while the conformal boundary condition always does lead formally (that
is, modulo the usual ultraviolet divergences) to a sensible perturbation expansion about any given
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classical solution. Technically, the conformal boundary condition is elliptic, ensuring its good
behavior, and the Dirichlet boundary condition is not.

The conformal boundary condition is natural in the context of using the conformal structure of
an initial value surface (rather than the full Riemannian geometry of that surface) and the trace of
the extrinsic curvature as a maximal set of commuting variables. This idea has a long history [13].

Although the Dirichlet boundary condition is ill-behaved in general, one can show, by using the
ellipticity of a certain alternate boundary condition that is similar to the conformal one, that the
Dirichlet boundary condition is well-behaved at least in some respects if the extrinsic curvature of
the boundary satisfies a certain condition, for instance if it is positive- or negative definite. (The
precise statement here is a little subtle, as we discuss momentarily.)

In section 2, we review the concept of an elliptic boundary condition, and then in section
3, we explore this concept in the context of gravity. In gauge theory, there is a very natural
elliptic boundary condition in which the boundary value of the gauge field is specified. Gravity
is different, basically because of the second order nature of the Hamiltonian constraint equation.
As already remarked, one can get an elliptic boundary condition by specifying the conformal class
of the boundary metric and the trace of the second fundamental form, but not by specifying the
boundary metric.

To avoid confusion, we should stress that ellipticity of a boundary condition in General Rel-
ativity does not guarantee either existence or uniqueness of a solution of the Einstein equations
with specified boundary data. Nor does it have anything to do with positivity of the operator that
governs gravitational perturbations. Ellipticity does guarantee the properties that are needed to
construct perturbation theory. It ensures that the gauge-fixed Einstein equations (on a compact
manifold) have only finitely many zero-modes, and that modulo these zero-modes, the linearized
Einstein equations have a propagator with the usual properties.1 Mathematically, a differential
operator L with a finite-dimensional kernel and cokernel2 is said to be Fredholm; and a propagator
defined after removing a finite-dimensional space of zero-modes is called a parametrix.

Quantum perturbation theory is usually constructed by expanding around a classical solution.
Generically ellipticity is needed to ensure the properties that make perturbation theory possible.3

1 Technically, ellipticity is the right condition on a boundary condition to guarantee these properties if gauge-
fixing is carried out in the standard way, so that the gauge-fixed action for metric fluctuations has a nondegenerate
second order kinetic energy. In some other approaches to gauge-fixing, one would encounter a slight generalization
of the notion of ellipticity. See the remark at the end of section 2.2.

2The kernel of an operator L is the space of solutions of Lu = 0. To define the cokernel, consider the more
general equation Lu = f with a source f . The cokernel is the space of all f ’s modulo those for which the equation
can be solved. If L is self-adjoint – as are the linearized Einstein equations with some boundary conditions – the
condition of finite-dimensionality of the cokernel is redundant as there is a natural isomorphism between the kernel
and the cokernel.

3Perturbation theory also requires the absence of certain one-loop anomalies, which involve topological consid-
erations. Further issues arise if a theory has gauge symmetries that do not allow any useful regularization. This is
relatively uncommon.
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However, for the specific case of General Relativity, one can show that if the extrinsic curvature
of the boundary is positive- or negative-definite (and under somewhat more general conditions),
the linearized Einstein equations with Dirichlet boundary conditions are Fredholm even though
not elliptic. It seems plausible that they admit a parametrix, though this does not seem to be
rigorously known. So this may be a case in which perturbation theory is possible with a boundary
condition that is not elliptic.

A lecture by the author on issues possibly related to what is described here can be found in [14].

It is a pleasure to dedicate this article to Roman Jackiw on the occasion of his birthday. Roman
has introduced many important ideas in physics. The triangle anomaly was a milestone and a
turning point in the understanding of the strong interactions. His work on zero-modes of fermions
in the field of a soliton or instanton has been very important in both particle physics and condensed
matter physics. Also important for both relativistic physics and condensed matter physics has
been Roman’s work on topologically massive gauge theories in three spacetime dimensions. All
these things have in particular been important for my own work. Finally, since this article is
largely concerned with gravity, I think I should mention Roman’s work with Curt Callan and
Sidney Coleman [15] in which they constructed a new “improved” energy-momentum tensor with
a softer trace, more natural for the coupling of a quantum field theory to gravity

2 Background

2.1 Elliptic Boundary Conditions

First let us recall the definition of an elliptic differential operator. The symbol of a differential
operator is defined, roughly speaking, by replacing derivatives −i∂/∂xµ by momenta pµ. To be
more exact, if L is a differential operator of order n on a manifold X , then its “leading symbol”
is defined by making the substitution −i∂/∂xµ → pµ in the terms of order n and dropping terms
of order less than n. Thus the leading symbol of L is, for each point x ∈ X , a polynomial σx(p)
in p that is homogeneous of degree n. For example, the leading symbol of the Laplacian

∆ = −gµνDµDν (2.1)

is σx(p) = gµν(x)pµpν . Likewise, the leading symbol of the Dirac operator

i /D = iΓµDµ (2.2)

(where Γµ are gamma matrices) is σx(p) = /p = Γ · p.

If L has order n, then the leading symbol σx(p) is naturally understood as a function – or
more generally, as in the Dirac case, a matrix-valued function – on the cotangent bundle T ∗X ,
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homogeneous of degree n on the fibers. L is called “elliptic” if for all x ∈ X and all real nonzero
p, σx(p) is invertible. For example, the leading symbols σx(p) for the Laplacian and the Dirac
operator have this property so these are elliptic operators.

An elliptic operator L on a compact manifold is Fredholm. If L maps the space of sections
of some vector bundle E to itself (so that the eigenvalue problem Lψ = λψ makes sense and one
can define the spectrum of L), then L has a discrete spectrum. In particular, this is so if L is
self-adjoint, a common case. The eigenvalues of an elliptic operator tend to infinity4 in a simple
way that can be described semiclassically in terms of σx(p). In particular, the space of zero-modes
is at most finite-dimensional. L can be inverted, on a subspace transverse to the zero-modes, by a
Green’s functionG(x, x′) that is regular for x 6= x′, and whose singularities for x→ x′ are controlled
in the standard way by an operator product expansion. (In particular, the leading singularity for
x→ x′ depends only on σx(p).) Such a Green’s function defined after removing zero-modes is called
a parametrix; physically, it is used as a propagator in constructing perturbation theory. Ellipticity,
along with some topological considerations involving anomalies, also makes it possible to define
a “determinant” of L (or in appropriate circumstances, a Pfaffian) with standard properties. In
short, ellipticity guarantees the properties that are needed in constructing perturbation theory.5

Ellipticity is an “open” condition on differential operators, in the sense that if L is an elliptic
of order n, then any small perturbation of L (by terms of order n or less) does not affect ellipticity.
This is true because invertibility of σx(p) is similarly an open condition, invariant under small
perturbations.

Now suppose that X has a boundary M of dimension d = D − 1, and that we are given some
boundary condition for L along M that reflects a boundary condition on underlying quantum
fields. To be able to do perturbation theory in this situation, the boundary condition must satisfy
a condition that ensures that L will still have a propagator and determinant with appropriate
properties. This will always be true if the boundary condition is “elliptic.” Otherwise it is
typically not true.

Ellipticity of a boundary condition involves a condition that must be checked at each boundary
point. In checking ellipticity at a given boundary point x ∈ M , we only care about short distance
behavior, so we can approximate X by a half-space R

D
+ ⊂ R

D, with boundary M ∼= R
D−1, and

we can drop from L all terms of order less than n. Moreover, ellipticity at a given boundary
point x only depends on σx(p) for that value of x, so we can treat L as an operator with constant

4Here “infinity” means +∞ if σx(p) is hermitian and positive-definite – as for the Laplacian – or ±∞ if σx(p) is
hermitian but not positive-definite, as for the Dirac operator. If σx(p) is invertible but not hermitian, then L still
has a discrete spectrum but its eigenvalues are not necessarily real, and can tend to infinity in any direction in the
complex plane in which an eigenvalue of σx(p) can tend to infinity.

5 The definitions just given are adequate for most purposes, but in general one has to take into account different
scaling weights of different fields in defining what one means by the leading symbol σx(p). The definition of σx(p)
is modified, but a satisfactory theory still requires that σx(p) should be invertible for nonzero real p. This situation
can arise in gauge-fixing of Yang-Mills theory or gravity if one does not integrate out the auxiliary field. See the
concluding remarks of section 2.2.
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coefficients. In other words, if σx(p) =
∑
σµ1µ2...µnpµ1

pµ2
· · · pµn

, then in testing ellipticity, we can
replace L with

(−i)n
∑

σµ1µ2...µn
∂

∂xµ1

· · · ∂

∂xµn

. (2.3)

For example, if L is the Laplacian of eqn. (2.1), we can approximate it by the flat space Laplacian
∆0 = −

∑D
µ=1

∂2

∂x2
µ

, on a half-space, say the half-space xD ≥ 0.

Let us write ~x = (x1, x2, · · · , xD−1) for boundary coordinates and ~p = (p1, p2, . . . , pD−1) for
the momentum along the boundary. Also, let us write x⊥ for the coordinate xD in the normal
direction to the boundary, and p⊥ for the momentum in the x⊥ direction. We work on the half-
space x⊥ ≥ 0. In the approximation of treating L as an operator with constant coefficients, the
equation LΦ = 0 has plane-wave solutions exp(i~p · ~x+ ix⊥p⊥(~p)). Here p⊥(~p) is found by solving
the equation σx(~p, p⊥) = 0. Let us restrict to the case that ~p is real and nonzero, so that the
solution behaves as an oscillatory plane wave along the boundary. In this case, ellipticity of L
away from the boundary means that the equation σx(~p, p⊥) = 0 has no solutions for real p⊥.

Let us assume for the moment that σx(p) is hermitian for real p (as in Yang-Mills theory and
gravity with the usual gauge-fixing). Then, for given real nonzero ~p, the solutions of σx(~p, p⊥) = 0
occur in complex conjugate pairs, half with positive imaginary part of p⊥ and half with negative
imaginary part. The space of solutions is thus, for some nonnegative integer s, a 2s-dimensional
vector space V2s(~p). The importance of the sign of Im p⊥ is simply that a plane-wave solution
exp(i~p·~x+ix⊥p⊥(~p)) is exponentially decaying or exponentially growing as x⊥ increases, depending
on the sign of Im p⊥.

An elliptic boundary condition is one that selects, for every real nonzero ~p, a middle-dimensional
subspace Ws(~p) ⊂ V2s(~p) of allowed solutions, with the property that for sufficiently large |~p|, none
of the solutions in Ws(~p) is exponentially decaying with increasing x⊥. The intuitive idea is that
if a boundary condition allows solutions with arbitrarily large |~p| that are exponentially decaying
as x⊥ increases, then the operator L with this boundary condition has too many near zero-modes
that are localized at short distances along the boundary, and cannot have a discrete spectrum
(even when X is compact) or a satisfactory propagator.

For a boundary condition to be local as well as elliptic means that Ws(~p) must be defined by
vanishing of an appropriate function of the fields and their derivatives.

Let us verify that the usual Dirichlet and Neumann boundary conditions on the Laplacian
are elliptic. The plane-wave solutions of the Laplace equation are exp(i~p · ~x ± |~p|x⊥). Dirichlet
boundary conditions φ| = 0 (where φ| denotes the restriction of φ to x⊥ = 0) are satisfied by the
linear combination exp(i~p · ~x)(e|~p|x⊥ − e−|~p|x⊥), which is exponentially growing with x⊥. Neumann

boundary conditions ∂φ

∂x⊥

∣∣∣ = 0 are satisfied by the linear combination exp(i~p · ~x)(e|~p|x⊥ + e−|~p|x⊥),

which also is exponentially growing. So both of these boundary conditions are elliptic. In the case
of the Dirac operator, the most commonly studied boundary conditions are ΓDψ| = ±ψ (with
some choice of the sign). We leave it to the reader to verify that these are elliptic boundary
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conditions, by showing that a solution of the Dirac equation on the half-space that has plane wave
behavior along the boundary and satisfies either of these boundary conditions is exponentially
growing with increasing x⊥.

If L is self-adjoint in the absence of a boundary, then in the presence of a boundary, one
frequently wants to pick a boundary condition that is self-adjoint as well as elliptic, in other words
a boundary condition that ensures that L remains self-adjoint (as well as elliptic) even in the
presence of a boundary. This is a stronger condition than ellipticity alone. For example, in the case

of the Laplacian acting on a complex-valued field, the mixed boundary condition
(

∂φ

∂x⊥

− cφ
)∣∣∣ = 0

(which is sometimes called a Robin boundary condition) is elliptic for any constant c, but it is
only self-adjoint if c is real.6

If σx(p) is not hermitian, then solutions of σx(~p, p⊥) = 0 do not necessarily come in complex
conjugate pairs. Still, an elliptic boundary condition is one that selects in the space V (~p) of
plane wave solutions with given ~p a middle-dimensional subspace W (~p) with the property that
for sufficiently large |~p|, no solution in W (~p) is an exponentially decreasing function of x⊥. In
general, the operator L may not admit any local elliptic boundary condition. The most obvious
obstruction is that V (~p) might be odd-dimensional, and there also are further obstructions of
topological nature. In quantum field theory, the most important example with σx(p) not hermitian
is the chiral Dirac operator for even D; it does not admit any local elliptic boundary condition.

We note that the condition of ellipticity – W (~p) does not contain any exponentially decaying
solutions, for any nonzero real ~p – has the property that if it is true for any one boundary condition,
then it is true for any sufficiently nearby boundary condition. In this sense, ellipticity is an “open”
condition on boundary conditions.

2.2 Yang-Mills Theory On A Closed Manifold

Let A be a Yang-Mills gauge field with gauge group G and field strength F = dA + A ∧ A. The
usual action is7

I = −1

4

∫

X

dDx
√
gTrFµνF

µν (2.4)

and the field equations are
DµFµν = 0. (2.5)

For future reference, we recall the identity

Dµ(DνFµν) = 0, (2.6)

6With Robin boundary conditions, provided c < 0 , there are solutions exp(i~p · ~x − |~p|x⊥) with |~p| = −c that
decay exponentially away from the boundary. But for sufficiently large |~p|, there are no such solutions, so this
boundary condition is elliptic.

7Here g is the metric tensor of X . We consider A and F to be real and antihermitian, so the trace on the Lie
algebra is a negative-definite quadratic form. This accounts for the minus sign in eqn. (2.4).
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which reflects the fact that the Yang-Mills action is gauge-invariant even off-shell.

Now let A0 be a classical solution and set A = A0 + a. However, it is clumsy to write A0 all
the time, so henceforth we will refer to the underlying gauge field as Â, and a chosen classical
solution as A, and we will write the expansion as Â = A + a. To linear order in a, the classical
equations become

Dµ(Dµaν −Dνaµ) + [Fνλ, aλ] = 0 (2.7)

where Dµ and Fµν are the covariant derivative and field strength of the background solution A.
We can write this equation as La = 0 where

(La)ν = −DµD
µ
aν +DνDµa

µ − 2[Fνλ, a
λ]. (2.8)

The corresponding action, to quadratic order in a, is

I ′ = −1

2

∫

X

dDxTr
(
DµaνD

µ
a
ν − (Dµa

µ)2 + 2Fµν [a
µ, aν ]

)
. (2.9)

The operator L is not elliptic. Its leading symbol is the matrix-valued function σ(p)µν =
p2δµν − pµpν (tensored with the identity operator on the Lie algebra g of G), and this matrix
annihilates any vector that is a multiple of pν . This failure of ellipticity is an inevitable consequence
of the underlying gauge-invariance, which in terms of the linearization becomes

aµ → aµ −Dµε, (2.10)

for any g-valued gauge parameter ε. (We will abbreviate (2.10) as a → a − dAε.) The gauge-
invariance implies that aµ = −Dµε is a solution of La = 0 for any ε, so L has an infinite-dimensional
kernel and cannot possibly be elliptic.

To restore ellipticity, we need a suitable gauge condition. A very natural one is S = 0, where

S = Dµa
µ. (2.11)

When supplemented with the gauge condition S = 0, the equation La = 0 becomes L′
a = 0 where

(L′
a)µ = −DνD

ν
aµ − 2[Fµλ, a

λ]. (2.12)

The symbol of L′ is p2δµν , and this is invertible for nonzero real p, so L′ is elliptic. We note that

(L′
a)µ = (La)µ −DµS. (2.13)

Now let us discuss why S = 0 is a good gauge condition, first from the point of view of classical
partial differential equations and then in terms of quantum perturbation theory.

From the first point of view, we usually want to describe the solutions of the gauge-invariant
equation La = 0, modulo gauge transformations. The claim is that such equations are in natural
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correspondence with solutions of the gauge-fixed equation L′
a = 0. In one direction, if we are

given an a that satisfies La = 0, we look for a gauge-equivalent a′ = a− dAε with S(a′) = 0. The
equation S(a′) = 0 is equivalent to

Pε = −S(a), (2.14)

where P = −DµD
µ is the gauge-invariant Laplacian. Eqn. (2.14) will have a unique solution if the

operator P is invertible, and more generally if the right hand side is orthogonal to any zero-modes
of P . We observe that

−
∫

X

dDx
√
g
∑

µ

Tr (Dµε)
2 = −

∫

X

dDx
√
gTr (εPε) . (2.15)

The left hand side is strictly positive unless Dµε = 0, in which case it vanishes. But if ε is an
eigenfunction of P with zero or negative eigenvalue, then the right hand side is zero or negative.
This shows that P is positive-definite – and therefore invertible – except for possible zero modes
that must be covariantly constant. But S(a) = Dµa

µ is orthogonal to any covariantly constant
mode, since

∫
X
dDx

√
gTr εS(a) = −

∫
X
dDx

√
gTrDµεa

µ, which vanishes if Dµε = 0. The right
hand side of eqn. (2.14) is thus orthogonal to the kernel of P , so eqn. (2.14) always has a unique
solution for ε.

Thus, a solution of La = 0 is gauge-equivalent to a unique solution of the gauge-fixed equation
L′
a = 0. In the opposite direction, we would like to prove that any solution of L′

a = 0 actually
obeys La = 0. To show this, we first observe that the gauge-invariant operator L satisfies the
identity

Dµ((La)
µ) = 0. (2.16)

This is proved by linearizing the underlying identity (2.6). Comparing L′ and L, it follows that

Dµ((L
′
a)µ) = −DµD

µ(Dνa
ν) = PS(a). (2.17)

and therefore a solutions of L′
a = 0 satisfies PS(a) = 0. As we have just seen, the equation PS = 0

implies that S is covariantly constant, DµS(a) = 0. But in view of eqn. (2.13), L′
a = 0 = DµS(a)

implies that a satisfies the gauge-invariant equation La = 0. So it is equivalent to consider solutions
of La = 0 up to gauge transformation or to consider solutions of L′

a = 0.

For a fuller understanding, let us consider BRST quantization. In BRST quantization, we
introduce a ghost field c that represents a generator of gauge transformations, but with fermionic
statistics (and ghost number 1). The BRST transformations of a and c are

δaµ = −Dµc, δc =
1

2
[c, c]. (2.18)

We also introduce an antighost multiplet consisting of an antighost field c and an auxiliary field
B in the adjoint representation, with

δc = B, δB = 0. (2.19)

8



All this is consistent with δ2 = 0. The gauge-fixed action is obtained by adding δ
∫
X
dDx

√
gV , for

some convenient choice of V , to the gauge-invariant action (2.4). Taking V = Tr (1
2
cB − cDµa

µ),
we get

δ

∫

X

dDx
√
gV =

∫

X

dDx
√
g

(
1

2
B2 − BDµa

µ − cDµD
µc

)
. (2.20)

Upon integrating out the auxiliary field B, we get the gauge-fixing action

I ′′ =

∫

X

dDx
√
gTr

(
−1

2
(Dµa

µ)2 − cDµD
µc

)
. (2.21)

The gauge-fixed action Î = I ′ + I ′′ is

Î = −
∫

X

dDx
√
gTr

(
1

2
DµaνD

µ
a
ν + F µν [aµ, aν ] + cDµD

µc

)
. (2.22)

The kinetic operator for a is the gauge-fixed operator L′.

The fact that a BRST-invariant action can be written with L′ as the kinetic operator for
gauge fields does not imply that L′ is elliptic. Rather, a good BRST gauge-fixing – suitable for
perturbation theory – is one in which V is chosen, as we have done in this example, to ensure
that the resulting kinetic operators are elliptic. Since ellipticity is an open condition, this means
roughly that V must be sufficiently generic.

In the above example, when we integrate out B, we get B = S(a), and therefore the BRST
transformations become

δc = S(a). (2.23)

Of course, we do not have to integrate out B; we could develop a formalism with both a and
B present in the theory. For the purposes of the present paper, this would lead to a somewhat
more involved discussion, leading to the same conclusions. That is because a obeys a second order
classical differential equation, while the equations of motion involve only first derivatives of B;
thus we would be in the situation described in footnote 5 of section 2.1. To proceed in this way,
we would have to change the definition of the “leading” term in a differential equation by saying
that B has degree 1, just like a derivative ∂/∂x. To avoid these complications, we will consider the
theory with B integrated out – as is usually done in constructing Yang-Mills perturbation theory.
A similar remark applies later when we come to gravity.

2.3 Yang-Mills Theory on a Manifold With Boundary

Now let us suppose that X has a boundary M , and try to extend this analysis to make a BRST-
invariant and elliptic gauge-fixing in Yang-Mills theory in the presence of the boundary. We
assume that the gauge-fixed action is supposed to be as above in the bulk, and we will discuss
what we can do along the boundary.
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We will try to implement a very natural boundary condition, in which one specifies the re-
striction of the gauge field A to the boundary. We locally model X by xD ≥ 0; we denote the
coordinates as xi for i < D and we write x⊥ for xD. Likewise we denote the gauge field components
as Ai, i < D and A⊥ = AD. For a boundary condition, we specify the boundary values of Ai,
i < D but not of A⊥. In other words, we specify the gauge connection that would be used for
parallel transport within M . In terms of the field a that describes small fluctuations around a
classical solution, this means that ~a = (a1, a2, · · · , aD−1) will vanish on M , but the condition on
a⊥ = aD will be different.

If we want to impose a condition ~a| = 0, then in view of the gauge-invariance a → a− dAε, we
must constrain the generator ε of a gauge transformation to vanish along the boundary M . Since
the ghost field c is always the generator of a gauge transformation (with statistics reversed), it
will also have to vanish along the boundary. Thus c must obey Dirichlet boundary conditions:

c| = 0. (2.24)

Once we impose Dirichlet boundary conditions for c, we have to do the same for c. The reason
is not that we want to be able to interpret c as the complex conjugate of c, but that once we impose
Dirichlet boundary conditions for c, we will not be able to define a sensible Green’s function for the
c-c system if we do anything else for c. Recall first of all that if we do impose Dirichlet boundary
conditions on both c and c, then there is a standard Green’s function G(x, y) = 〈c(x)c(y)〉 that
obeys the differential equations ∆xG(x, y) = ∆yG(x, y) = δD(x, y) (where ∆x and ∆y are the
gauge-invariant Laplacians acting on the x or y variables) along with the Dirichlet boundary
conditions G(x, y)|x∈M = G(x, y)|y∈M = 0. But actually, just the equation ∆xG(x, y) = δD(x, y)
plus the Dirichlet boundary condition in the x variable G(x, y)|x∈M = 0 uniquely determines
G(x, y). The unique possibility is the standard Green’s function that corresponds to imposing
Dirichlet boundary conditions also on c:

c| = 0. (2.25)

We should not expect to be able to set aD to zero along M , because aD is not invariant
under gauge transformations whose generator ε vanishes on M . To make aD| invariant under
a → a− dAε, we would want to require D⊥ε| = 0. This would entail restricting the generator ε of
a gauge transformation to satisfy ε| = D⊥ε| = 0, so we would want c to satisfy D⊥c| = 0 as well
as c| = 0; but we cannot impose both Dirichlet and Neumann boundary conditions on a field that
obeys a second order wave equation.

We can easily deduce from eqn. (2.25) what boundary condition a⊥ must satisfy. Given that
c vanishes along M and given the BRST transformation law δc = S(a) (eqn. (2.23)), BRST
invariance requires

S(a)| = 0. (2.26)

If X is the half-space x⊥ ≥ 0 in R
D, then given our condition ~a| = 0, S(a)| reduces to D⊥a⊥| and

thus a⊥ satisfies a gauge-invariant version of Neumann boundary conditions:

D⊥a⊥| = 0. (2.27)
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In the general case of a curved manifold, S(a)| = 0 corresponds to a boundary condition on a⊥

that is similar locally to Neumann boundary conditions on a scalar field, plus a lower order term.
We will loosely refer to this as Neumann boundary conditions for a⊥.

The fact that the leading symbol of L′ is p2δµν means that it behaves at short distances as
a system of decoupled scalar Laplace equations for the components a1, a2, · · · , aD. Dirichlet and
Neumann boundary conditions on the scalar Laplace equation are elliptic. So the combination of
Dirichlet boundary conditions for ~a and Neumann for a⊥ comprises an elliptic boundary condition
for the operator L′, and thus we have found a BRST-invariant and elliptic gauge-fixing for Yang-
Mills theory on a manifold with boundary.

Now let us discuss how one might motivate this boundary condition from the point of view of
differential geometry, without mentioning the ghosts. In that framework, one may want to study
solutions of the gauge-invariant equation La = 0, with ~a| = 0, modulo gauge transformations
that are trivial along the boundary. One wishes to show that such solutions are in one-to-one
correspondence with solutions of the gauge-fixed equation L′

a = 0, with boundary conditions
~a| = S(a)| = 0. In one direction, given a solution of La = 0, we look as in section 2.2 for a gauge
transformation a → a − dAε that will set L′

a = 0. Given the relation between L′ and L (eqn.
(2.13)), this means that we want to set DµS(a) = 0. Since we also want to satisfy S(a)| = 0,
we actually need S(a) to vanish identically. So we have to find a gauge parameter ε such that
ε| = 0 and Pε = −S(a). Essentially the same argument as in section 2.2 shows that with Dirichlet
boundary conditions, P is invertible. So there is a unique solution of Pε = −S(a).

In the opposite direction, if we are given a solution of L′
a = 0 that also satisfies the boundary

condition S(a)| = 0, we want to show that actually S(a) vanishes identically, so that the gauge-
invariant equation La = 0 is satisfied. As before, the identity (2.17), together with L′

a = 0,
implies that PS(a) = 0, and this, together with the boundary condition S(a)| = 0, implies that
S(a) vanishes identically.

3 Elliptic Boundary Conditions In Gravity

In discussing elliptic gauge-fixing and elliptic boundary conditions in gravity, we will be brief on
points on which there is a very close parallel with what we have already described for Yang-Mills
theory.

11



3.1 General Relativity on A Closed Manifold

The action of classical General Relativity with a cosmological constant Λ is

I = − 1

κ2

∫

M

dDx
√
g (R− 2Λ) . (3.1)

We can of course add matter fields, but we do not do so explicitly. The field equations read

Rµν −
1

2
gµνR + Λgµν = 0, (3.2)

and are governed by a Bianchi identity

Dµ(Rµν −
1

2
gµνR + Λgµν) = 0. (3.3)

We expand around a background classical solution g0 with gµν = g0µν + hµν . However, again
it is clumsy to always write g0µν for the background field, so we will instead write ĝµν for the
full metric, and gµν for the background, so that the expansion reads ĝµν = gµν + hµν . Covariant
derivatives and curvatures will refer to the background metric, which is also used in raising and
lowering indices. It is convenient to define h = hµµ = gµνhµν .

The quadratic part of the action for h is, of course, an important input in semiclassical quan-
tization [6, 8]. The D-dimensional version of the formula, from for example eqn. (2.3) of [12],
is8

I ′ = − 1

κ2

∫

X

dDx
√
g

(
1

4
hµν(DλD

λ + 2Λ)hµν −
1

8
h(DλD

λ + 2Λ)h+
1

2
(Dνhµν −

1

2
∂µh)

2

+
1

2
hµλhνρRµνλρ +

1

2

(
hµλhνλ − hhµν

)
Rµν +

1

8
(h2 − 2hµνhµν)R

)
. (3.4)

The gauge-invariant linear wave equation satisfied by h is (Lh)µν = 0 where we set 2κ2δI ′/δhµν =
(Lh)µν . We will not write explicitly the rather unilluminating formula for L. Gauge-invariance
implies of course that the operator L is not elliptic, but it satisfies a Bianchi identity that descends
directly from the underlying Bianchi identity (3.3):

Dµ((Lh)µν) = 0. (3.5)

To restore ellipticity and carry out quantum perturbation theory, we need a gauge condition.
The form of the action suggests a convenient and widely used choice of gauge (variously known as
harmonic, de Donder, or Bianchi gauge), namely Tµ(h) = 0 where

Tµ(h) = Dνhµν −
1

2
∂µh. (3.6)

8In the absence of matter fields, the following could be simplified slightly using the equations of motion for the
background field to replace Rµν with a multiple of gµν . The reason that we do not do that is that we wish to make
statements that remain valid if matter fields are included. (Admittedly, we are following a hybrid logic, since we
do not add explicitly the matter contributions to the action or the equations of motion.) In eqn. (3.4), the terms
proportional to Λ are those that come from the Λ term in the original action (3.1).
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To decide if this is a good gauge condition, we have to ask if it can be implemented by an
infinitesimal coordinate transformation

δhµν = Dµεν +Dνεµ. (3.7)

We observe that
δTµ(h) = DνD

νεµ +Rµνε
ν . (3.8)

So to set Tµ(h) = 0, we need to solve

(Pε)µ = −Tµ(h), (3.9)

where the operator P is defined by

(Pε)µ = −DνD
νεµ −Rµνε

ν . (3.10)

We note that this operator is elliptic and thus has a discrete spectrum. If P is invertible, there
will be a unique solution ε of eqn. (3.9) and thus the gauge condition is good. The operator
P is invertible in pure gravity with Λ < 0. This makes Rµν negative-definite, and since the
Laplace-like operator −DµDµ is positive semi-definite (by the same argument as in eqn. (2.15)),
P is then strictly positive. Even if the cosmological constant is not negative or matter fields are
present, one can reasonably expect that in expanding around a generic classical solution, P will
have no zero-mode.9 However, if P does have a zero-mode, then the gauge fixing procedure needs
to be slightly modified to treat this mode correctly. Being elliptic, P will never have more than
finitely-many zero-modes on a compact manifold. It is technically inconvenient to have to slightly
modify the gauge-fixing condition, but as this only affects finitely many modes, it does not really
affect any questions of principle. Actually, on a manifold with nonempty boundary, which is our
main interest in this paper, this complication does not arise, in the following sense. It is shown
in Lemma 2.2 of [1] that, acting on vector fields that are required to vanish on the boundary, the
operator P is always invertible, regardless of Λ. (A key step in the proof is the fact that a Killing
vector field that vanishes along the boundary is identically zero.)

To implement the gauge condition Tµ = 0 in the BRST framework, we first add the ghosts,
which are a fermion field cµ that represents the generator of a diffeomorphism (that is, cµ transforms
as a vector field), with BRST variations

δhµν = Dµcν +Dνcµ, δcµ = cν∂νc
µ. (3.11)

One also needs an antighost multiplet consisting of the antighost field cµ and an auxiliary field
fµ, with

δcµ = fµ, δfµ = 0. (3.12)

A convenient gauge-fixing term is

1

κ2
δ

∫

X

dDx
√
g

(
−1

2
cµf

µ + cµTµ(h)

)
. (3.13)

9With positive cosmological constant, for X = S4, P has zero and negative eigenvalues that correspond to
Killing vectors and conformal Killing vectors [8].
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After integrating out the auxiliary field, this generates a correction to the gravitational action

I ′′ =
1

2κ2

∫

X

dDx
√
g Tµ(h)

2 =
1

2κ2

∫

X

dDx
√
g

(
Dνhµν −

1

2
∂µh

)2

. (3.14)

The gauge-fixed gravitational action is

I ′ + I ′′ = − 1

κ2

∫

X

dDx
√
g

(
1

4
hµν(DλD

λ + 2Λ)hµν −
1

8
h(DλD

λ + 2Λ)h+

+
1

2
hµνhρσRµνρσ +

1

2

(
hµλhνλ − hhµν

)
Rµν +

1

8
(h2 − 2hµνhµν)R

)
. (3.15)

The action for the ghosts is

Igh =
1

κ2

∫

X

dDx
√
g cPc =

1

κ2

∫

X

cµ
(
−gµνDλD

λ −Rµν

)
cν . (3.16)

The gauge-fixed linear kinetic operator L′ that governs metric fluctuations is defined by 2κ2δ(I ′+
I ′′)/δhµν = (L′h)µν From eqn. (3.15), we see that the leading symbol σx(p) of L′ is invertible,
but not positive-definite. (This lack of positivity was first pointed out and discussed in [7].) In
fact, σx(p) acts on the traceless part of hµν as a positive multiple of p2 (tensored with the identity
matrix on the µν indices) and on the trace h as a negative multiple of p2. Thus L′ is elliptic, even
though not positive-definite.

Actually, in the absence of matter fields, the traceless and trace parts of hµν decouple (as one
sees by using the classical equations of motion to replace the background Rµν with a multiple
of gµν) and can be treated separately in constructing propagators and determinants. In this
case, the eigenvalues of L′ are almost all positive on traceless modes and almost all negative on
trace modes. In the presence of matter fields, the traceless and trace modes do not decouple in
general, but ellipticity ensures that L′ still has a discrete spectrum. Large positive eigenvalues
correspond to wavefunctions that are almost traceless, and large negative eigenvalues correspond
to wavefunctions whose traceless part is very small.

Ellipticity guarantees that L′ has at most finitely many zero-modes. As usual, these modes
must be treated specially in constructing perturbation theory. Ellipticity guarantees that L′ always
has a parametrix, that is, a propagator suitable for perturbation theory.

To construct perturbation theory, in addition to a propagator and a renormalization proce-
dure, one requires a one-loop determinant, since the one-loop path integral formally includes a
factor detP/

√
detL′. Here as the operators in question are elliptic, ζ-function regularization can

be straightforwardly used to define the absolute values of the determinants, but the presence of
negative eigenvalues – infinitely many of them in the case of L′ – means that it is not straight-
forward to understand the phase of the one-loop path integral. This issue has been discussed in
several papers [7, 10], but its status is not entirely clear. We will not discuss these questions here
except to note that existing computations rely on the decoupling of the traceless and trace parts
of the metric that holds in pure gravity, so at a minimum some generalization is needed.
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From the form (3.14) of the gauge-fixing part of the gravitational action, one can work out an
explicit formula relating L′ and L:

(L′h)µν = (Lh)µν +DµTν(h) +DνTµ(h)− gµνDλT
λ(h). (3.17)

From this and the Bianchi identity (3.5), one finds that

Dµ((L′h)µν) = (PT (h))ν. (3.18)

Thus the equations of motion of the gauge-fixed theory imply

(PT (h))µ = 0. (3.19)

This statement remains valid when matter fields are included (assuming that the gauge-fixing
takes the form of eqn. (3.14)), since the Einstein equations with matter fields included still satisfy
a Bianchi identity, which reflects the underlying general covariance. (The proof of the general
Bianchi identity requires the equations of motion for the matter fields as well as the metric.)

From the point of view of BRST quantization, the procedure that we have described is sat-
isfactory if L′ and P have no zero-modes, as one may expect in expanding around a generic
classical solution. In general, the procedure needs to be slightly modified to treat properly a
finite-dimensional space of zero-modes.

Let us now discuss how would one motivate this procedure from the point of view of differential
geometry, without reference to quantization. From that point of view, one would like to compare
the solutions of the gauge-invariant equation Lh = 0, modulo the gauge equivalence (3.7), to the
solutions of the gauge-fixed equation L′h = 0. In one direction, we have already seen that if P is
invertible, then every solution of Lh = 0 can be uniquely put in a gauge with Tµ(h) = 0. Then
eqn. (3.17) shows that L′h = 0. In the opposite direction, if L′h = 0, then from eqn. (3.18), we
have (PT (h))µ = 0, which (if P is invertible) implies that Tµ(h) = 0. Then using eqn. (3.17)
again, we see that the gauge-invariant equation Lh = 0 is satisfied.

3.2 General Relativity on A Manifold With Boundary

We now consider General Relativity on a manifold X with boundary M . We start by analyzing
the most direct analog of the boundary condition for Yang-Mills theory that was discussed in
section 2.3.

In this boundary condition, we keep fixed the boundary metric of M and allow fluctuations
in the interior. Thus if X is locally defined by xD ≥ 0, while M is parametrized by10 xi, i =
1, · · · , D− 1, we specify the boundary values of gij. In terms of the metric perturbation hµν , this
means that part of the boundary condition will be

hij| = 0, i, j = 1, · · · , D − 1. (3.20)

10As before, we will write ~x and x⊥ for tangential coordinates x1, . . . , xD−1 and the normal coordinate xD.
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The boundary conditions on hi⊥ and h⊥⊥ are still to be specified.

To learn what the remaining boundary conditions will have to be, we first consider the gauge
symmetries δhµν = Dµεν + Dνεµ. If ε, restricted to M = ∂X , has a nonzero component in
the normal direction, then it does not really generate a symmetry of X , as it tries to move the
boundary of X normal to itself. Thus the diffeomorphism group of X is generated by vector fields
that are constrained by

ε⊥| = 0. (3.21)

In addition, if we wish to impose a boundary condition hij | = 0, we must restrict ourselves to
vector fields with

εi| = 0. (3.22)

Combining these two statements, we see that we should consider only diffeomorphisms generated
by vector fields that satisfy

εµ| = 0. (3.23)

In BRST quantization, this means that the ghost field cµ should satisfy Dirichlet boundary
conditions

cµ| = 0. (3.24)

Now let us assume that the gauge-fixing away from the boundary is carried out by the procedure
of section 3.1. For the same reason as in section 2.3, the antighost field cµ must likewise satisfy
Dirichlet boundary conditions:

cµ| = 0. (3.25)

On the other hand, after eliminating the auxiliary field, the BRST variation of cµ is

δcµ = T µ(h), (3.26)

which is the direct analog of eqn. (2.23) for Yang-Mills theory. Therefore, BRST invariance forces
us to impose

Tµ(h)| = 0, (3.27)

similarly to eqn. (2.26) in gauge theory.

Eqn. (3.27) is a boundary condition for h⊥⊥ and hi⊥, somewhat analogous to Neumann
boundary conditions. Together with eqn. (3.20), it gives the right number of conditions to make
a boundary condition for metric fluctuations. For brevity we will call this the Dirichlet boundary
condition. However [1,3], this boundary condition is not elliptic. We will first show this by a short
computation and then give a less computational explanation.

Since the considerations are local and only depend on the leading symbol of the linearized
Einstein equations and the leading behavior of the boundary condition at short distances, we can
take X to be a half-space R

D
+ in a flat Euclidean space R

D, say the half-space x⊥ ≥ 0. A general
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plane wave solution with nonzero momentum ~k along the boundary that decays exponentially for
large x⊥ takes the form

hµν = αµνe
i~k·~x−|~k|x⊥. (3.28)

To show that the boundary condition is not elliptic, we have to show that it is possible for a
solution of this kind with real nonzero ~k to satisfy the boundary conditions. (Since the boundary

conditions are invariant under scaling of ~k, if we can satisfy them for any nonzero ~k we can do so
with arbitrarily large |~k|.) Dirichlet boundary conditions hij| = 0 imply that we should set αij = 0
in eqn. (3.28). Let us write ~α for the (D − 1)-vector with components αi⊥, and β for α⊥⊥. A
short computation reveals that the equations T⊥⊥ = 0 and Ti⊥ = 0 become

i~k · ~α− 1

2
|~k|β = 0 (3.29)

and

−|~k|~α− i

2
~k β = 0. (3.30)

We can satisfy both of these equations with

~α = − i

2|~k|
~kβ, (3.31)

and therefore Dirichlet boundary conditions for gravity are not elliptic.

At first this may look like an unlucky accident, and one may wonder if using a different bulk
gauge condition would have avoided the problem. This is not the case, as is shown in several
ways in [1]. One argument makes use of the second order nature of the Hamiltonian constraint
equation of General Relativity. A second argument is as follows. We will describe a compact
X with boundary such that the linearized Einstein equations on X , without any gauge-fixing,
and with Dirichlet boundary conditions hij | = 0 (but no boundary condition placed on hi⊥ or
h⊥⊥), has infinitely many zero-modes, modulo gauge transformations. Any correctly gauge-fixed
version of the linearized Einstein equations on X would have the same infinite-dimensional kernel,
contradicting ellipticity.

We take X to be a product T ×I, where T is a torus with flat metric, parametrized by periodic
variables ~x = (x1, · · · , xD−1), and I is the unit interval 0 ≤ x⊥ ≤ 1. Now we pick a function
ε(~x) and perturb X so that its boundaries are ε(~x) ≤ x⊥ ≤ 1. Since the extrinsic curvature of
∂X vanishes, the boundary geometry of X is unchanged to first order in ε, and therefore these
perturbations satisfy hij | = 0. On the other hand, these perturbations cannot be eliminated by
a diffeomorphism. So with Dirichlet boundary conditions, the kernel of the linearized Einstein
equations on X , modulo its subspace induced by diffeomorphisms of X , is infinite-dimensional.
Even though this is a very special example, it is enough to show that linearized Einstein equations
with Dirichlet boundary conditions, and with any choice of gauge-fixing, cannot be elliptic.

It is instructive to see how to put the space of zero-modes that we found in this example in the
form of a change in the metric (g → g + h) rather than a change in the range of the coordinates.
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Since the perturbation preserves the flatness of X , it must take the form

hµν = ∂µvν + ∂νvµ (3.32)

for some vector field vµ(~x, x⊥). However, vµ will not vanish on the boundaries of X . Rather, we
take vµ to vanish at x⊥ = 1, but at x⊥ = 0, we impose

~v = 0, v⊥ = ε(~x). (3.33)

(In other words, vµ∂/∂xµ|x⊥=0 = ε(~x)∂/∂x⊥.) There is a unique vµ that satisfies these boundary
conditions and also satisfies

Pv = 0. (3.34)

This condition ensures that hµν , defined in eqn. (3.32), obeys Tµ(h) = 0. With such a choice of v,
the perturbations (3.32) are nontrivial zero-modes of the linearized Einstein equations on X in the
gauge Tµ(h) = 0. Of course, the connection between the two descriptions is that a diffeomorphism
generated by vµ, to first order, maps the interval 0 ≤ x⊥ ≤ 1 to ε(~x) ≤ x⊥ ≤ 1. In particular,
because v⊥ 6= 0 at x⊥ = 0, v does not generate a diffeomorphism of X .

We will discuss one last topic before moving on to the conformal boundary condition. Assuming
as above that the bulk gauge-fixing is carried out by adding gµνTµ(h)Tν(h) to the action, the
boundary condition Tµ(h)| = 0 has another virtue that we have not yet explained: it is needed to

make the gauge-fixed linearized Einstein operator L′ hermitian, in the following sense. Let 〈h, h̃〉
be the obvious inner product on the space of metric deformations,

〈h, h̃〉 =
∫

X

dDx
√
ggµνgµ

′ν′hµµ′ h̃νν′. (3.35)

Then L′ is hermitian in the sense that

〈h, L′h̃〉 = 〈L′h, h̃〉. (3.36)

When one tries to prove this by integration by parts, one runs into surface terms. However, the
surface terms cancel with the help of the boundary conditions that we have assumed.

It is not hard to prove this by hand, but a better explanation is as follows. First of all, the
gauge-invariant linearized Einstein operator L satisfies the same identity

〈h, Lh̃〉 = 〈Lh, h̃〉. (3.37)

The most natural way to prove this is to use the fact that either the left or the right hand side can
be interpreted as the quadratic part of the action, expanded around a chosen classical solution.
However, for this to be true, one must add a boundary term to the action. The boundary term is
chosen to ensure that, when one varies the action to derive the equations of motion, the boundary
terms in the variation of the action vanish, once the boundary conditions are imposed. Of course,
the boundary term that will make this work, if there is one, depends on what boundary condition
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one wants. With Dirichlet boundary conditions, the relevant boundary term is the Gibbons-
Hawking-York GHY term [5, 13]; with the conformal boundary condition, a slightly different
boundary term is appropriate [16], as we will explain in section 3.3. The variation of the Einstein-
Hilbert action

I = − 1

κ2

∫

M

dDx
√
g (R − 2Λ) (3.38)

under δgµν = hµν has the usual bulk term related to Einstein’s equations and also a boundary
term11

δbdryI = − 1

κ2

∫

∂M

dD−1x
√
g∂

(
−2δK−Kijhij

)
. (3.39)

Here Kij is the extrinsic curvature of the boundary and K = gijKij is its trace. δK is the variation
of K under δgµν = hµν . We do not need the explicit formula for δK, since this contribution to the
variation of the Einstein-Hilbert action is canceled by adding the GHY term

IGHY = − 2

κ2

∫

∂M

dD−1x
√
g∂ K. (3.40)

Dirichlet boundary conditions hij| = 0 ensure the vanishing of the remaining term Kijhij in δbdryI
and the absence of any contribution from varying

√
g∂ in IGHY. So with Dirichlet boundary

conditions, there is no boundary term in the variation of the combined action I + IGHY. This also
means that there is no boundary term in proving (3.37).

In gauge fixing, we added to the gravitational action another term

I ′′ =
1

2κ2

∫

X

dDx
√
g gµνTµ(h)Tν(h). (3.41)

When we vary this under δgµν = hµν , upon integrating by parts to derive the bulk equations of
motion, we generate additional surface terms. But because I ′′ is bilinear in Tµ(h), these new surface
terms are all proportional to Tµ(h) and so vanish if the boundary condition includes Tµ(h) = 0.
With this being so, the left and right hand sides of eqn. (3.36) are both equal to the gauge-fixed
quadratic action, so in particular they are equal.

3.3 A Boundary Condition That Works

Though the Dirichlet boundary condition is not elliptic, there is a simple elliptic boundary con-
dition for Einstein’s equations [1]. Instead of specifying the boundary metric, we specify only the
conformal structure of the boundary. Differently put, we specify the boundary metric ĝij | only up
to a Weyl transformation ĝij → eφĝij. We write g for the conformal structure of the boundary,
that is, for the equivalence class of the boundary metric, modulo a Weyl transformation.

11In the following, g∂ = g| is the induced metric of the boundary and so dD−1x
√
g∂ is the natural Riemannian

measure of the boundary.
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In terms of the expansion ĝµν = gµν + hµν , specifying only the conformal structure of the
boundary means that only the traceless part of the perturbation hij | of the boundary metric is
required to vanish, so that

hij| = gijγ (3.42)

for some function γ.

We assume that the bulk gauge-fixing is that of section 3.1 and therefore, as in section 3.2,
part of the boundary condition will be

Tµ(h)| = 0. (3.43)

We need one more boundary condition, to compensate for relaxing the constraint on the trace
of hij |. For this, we impose a constraint on the trace of the extrinsic curvature. We will write

Kij for the extrinsic curvature in the metric g, and K̂ij for the extrinsic curvature in the metric

ĝ = g + h. We also write K̂ = ĝijKij(ĝ) for the trace of the extrinsic curvature in the full metric
ĝ = g+ h, and similarly K = gijKij(g) for the trace of the extrinsic curvature computed using the
background metric g. Then we complete the boundary condition by requiring

K̂ = K. (3.44)

In other words, the condition is that the perturbation does not change the trace of the extrinsic
curvature. We call the combination of eqns. (3.42)-(3.44) the conformal boundary condition.

Explicitly, the linearization of eqn. (3.44), in coordinates in which the background metric
satisfies g⊥⊥ = 1, g⊥i = 0, is

D⊥h
i
i − 2Dih⊥i + 2hijKij = 0. (3.45)

The term 2hijKij , being of lower order, does not affect the discussion of ellipticity.

To show that the conformal boundary condition is elliptic, it suffices again to take X = R
D
+ and

to analyze solutions of the equation L′h = 0 that propagate like a plane wave along the boundary:

hµν = αµνe
i~k·~x−|~k|x⊥. (3.46)

We have to show that for any nonzero real ~k, a solution of this kind can satisfy the boundary
condition only if αµν = 0.

As a first step, we see that eqn. (3.42) implies that αij = δijγ for some γ. As before, we write ~α
for the (D− 1)-vector with components αi⊥, and β for α⊥⊥. In this geometry, eqn. (3.45) reduces
to

2i~k · ~α + |~k|(D − 1)γ = 0. (3.47)

The equations T0(h)| = 0 and Ti(h)| = 0 become

i~k · ~α− 1

2
|~k|β + |~k|D − 1

2
γ = 0 (3.48)
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and

−|~k|~α− i

2
~k β − i

2
~k(D − 3)γ = 0. (3.49)

For nonzero real ~k, these equations imply that ~α = β = γ = 0, so the conformal boundary
condition is elliptic.

The gauge-fixed linearized Einstein operator L′ with conformal boundary conditions is not just
elliptic but self-adjoint. This can be proved by modifying the discussion at the end of section 3.2.
With conformal boundary conditions, a different normalization is needed for the GHY boundary
term in the action [16]. The boundary variation δbdryI of the Einstein-Hilbert action is given
by eqn. (3.39) irrespective of the boundary conditions. However, with the conformal boundary
condition, δK = 0 (since the conformal boundary condition is defined by keeping K fixed) but we
no longer have hij | = 0; instead hij| = gijγ for some scalar function γ. This means that δbdryI
is now equal to (1/κ2)

∫
∂M

dD−1x
√
g∂ Kγ. To cancel this, for a conformal boundary we need a

boundary term ICB that is a multiple of the usual GHY term:

ICB =
1

D − 1
IGHY = − 2

D − 1

1

κ2

∫

∂M

dD−1x
√
g∂ K. (3.50)

The identity 〈h, Lh̃〉 = 〈Lh, h̃〉 now holds, just as before, because the left and right hand sides are
both equal to the quadratic action derived from I+ ICB. And likewise, after adding the usual bulk
gauge-fixing term to the action and imposing the boundary condition Tµ(h)| = 0, the gauge-fixed
operator L′ obeys the same identity.

Self-adjointness gives a natural identification between the kernel and cokernel of L′, which
in particular have the same dimension, generically zero. Self-adjointness also means that the
absolute value of the one-loop determinant can be straightforwardly defined using zeta-function
regularization. (As remarked in section 3.1, the phase of the determinant is more subtle.)

3.4 Expanding or Contracting Metrics

In General Relativity, the metric on an initial value surface and the extrinsic curvature are canoni-
cally conjugate variables. We seem to have learned that at least in Euclidean signature, it is better
to fix the conformal structure of the boundary and the trace of the extrinsic curvature, rather than
constraining all of the boundary metric. This suggests that in quantization, one should consider a
wavefunction Ψ̂(g,K) that depends on the conformal structure of a hypersurface and the trace of
the extrinsic curvature, rather than a wavefunction Ψ(g) that depends on the metric of the hyper-
surface. (See [13] for early ideas along these lines.) There is, however, a further important detail
that may change the picture, at least for many applications. Even though Dirichlet boundary
conditions are not elliptic, some of the important consequences of ellipticity do hold for Dirichlet
boundary conditions, for a fairly wide class of metrics.12

12See section 3 of [2] for the boundary condition that we are about to describe and its properties. For antecedents
of some of the ideas in a different context, see [4], pp. 187-93.
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Let us replace eqn. (3.42) with
hij | = Kijγ, (3.51)

with an unspecified function γ(~x), where again Kij is the extrinsic curvature of the background
metric. We leave eqns. (3.43) and (3.44) unchanged. In the special case that Kij is an everywhere
nonzero multiple of the background metric gij, this new boundary condition is just a different
way of writing the conformal boundary condition that we already studied in section 3.3, so in
particular it is elliptic. Lacking a better name, we will call what we get with eqn. (3.51) the
alternate boundary condition.

As was remarked at the end of section (2.1), ellipticity is an “open” condition, preserved by any
sufficiently small perturbation of a boundary condition. Since the alternate boundary condition
is elliptic if Kij is everywhere a nonzero multiple of gij, there must be an open set in the space of
symmetric second rank tensors on M such that the alternate boundary condition is elliptic if Kij

is everywhere in that open set.

To find this open set, we can proceed almost as before. We have to determine the large
momentum behavior of a solution of L′h = 0 that looks like a plane wave along the boundary.
For this, we can take the usual flat model with X = R

D
+ , ∂X = R

D−1, and treat the tensor Kij

that appears in the boundary condition (3.51) as a fixed constant symmetric tensor. Of course,
in order for Kij really to be the extrinsic curvature of the boundary, X and its boundary cannot
really be flat. But their curvature does not affect the high momentum behavior, which we can
calculate using the flat model.

Proceeding in this way, it is straightforward to compute that with the alternate boundary
condition, eqns. (3.48) and (3.49) are replaced by

i~k · ~α− 1

2
|~k|β +

1

2
|~k|γK = 0 (3.52)

−|~k|αi −
i

2
kiβ + iγ

(
kjKij −

1

2
kiK

)
= 0. (3.53)

Likewise eqn. (3.47) is replaced by

2i~k · ~α + |~k|γK = 0. (3.54)

Ellipticity is the statement that (at every point on M = ∂X) eqns. (3.52), (3.53), and (3.54) have

no common solutions with real nonzero ~k.

Comparing eqns. (3.52) and (3.54), we see that a solution must have β = 0, and once we know
this, we can eliminate ~α to find that a nonzero solution has

∑

i,j

kikjMij = 0, (3.55)

where Mij is the quadratic form
Mij = gijK−Kij. (3.56)
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The condition for eqn. (3.55) to have no nonzero real solution is simply that the quadratic form
Mij should be positive-definite or negative-definite. For this it is sufficient, though not necessary,
that the extrinsic curvature Kij of the background metric should be positive- or negative-definite.

Now let us suppose that the quadratic form M is positive- or negative-definite, so that the
alternate boundary condition is elliptic. What does this say about the linearized Einstein equations
with Dirichlet boundary conditions?

In what follows, we will write L′′ for the gauge-fixed linearized Einstein operator with alternate
boundary conditions and L′ for the same operator with Dirichlet boundary conditions. If L′′ is
elliptic, it has in particular a finite-dimensional cokernel. This means that, given a symmetric
tensor f on X , imposing finitely many linear constraints on f suffices to ensure that the gauge-
fixed equation

L′′h = f (3.57)

has a solution, with h obeying the alternate boundary conditions of eqns. (3.43), (3.44), and (3.51).
The h that satisfies these boundary conditions does not in general satisfy Dirichlet boundary
conditions, of course. According to eqn. (3.51), the Dirichlet boundary conditions are violated
because hij |, instead of vanishing, is instead

hij | = γKij (3.58)

for some function γ on M = ∂X . However, we can compensate for this by shifting

hµν → hµν +Dµvν +Dνvµ (3.59)

for a suitable vector field vµ. We require first of all that

Pv = 0, (3.60)

so that the shift (3.59) does not disturb the equation (3.57) or the gauge condition Tµ(h) = 0.
Second, we require that v satisfies the boundary conditions

vi| = 0, v⊥| = γ, (3.61)

analogously to what we did previously in eqn. (3.33). Invertibility of P on a manifold with
boundary, as proved in Lemma 2.2 of [1], means that such a v exists. (If this argument were not
available, we would say that ellipticity of P implies that v exists after possibly placing finitely
many additional linear constraints on γ. This would be enough for what follows.) Eqn. (3.61),
together with the fact that Kij is the normal derivative to the metric of M , means that the shift
(3.59) eliminates the right hand side of eqn. (3.58) and sets hij| = 0. Thus (as in Proposition 3.5
of [2]) ellipticity of L′′ implies that after imposing finitely many constraints on f , the equation
L′h = f can be satisfied with an h that obeys Dirichlet boundary conditions; in other words, it
implies that L′ has a finite-dimensional cokernel, as if it were elliptic.

Once we know that the cokernel of L′ is finite-dimensional, it follows immediately from eqn.
(3.36) that its kernel is also finite-dimensional. Suppose that L′h̃ = 0 for some h̃ that satisfies
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Dirichlet boundary conditions. This implies that we cannot solve eqn. (3.57) unless 〈f, h̃〉 = 0,
since if we can solve eqn. (3.57), then

〈f, h̃〉 = 〈L′h, h̃〉 = 〈h, L′h̃〉 = 0. (3.62)

Thus every element of the kernel of L′ gives a constraint on f , so the dimension of the kernel of
L′ can be no greater than the dimension of the cokernel, and in particular the kernel has finite
dimension if the cokernel does.

Actually, we can be more precise here. Let us think of the space of all metric perturbations as a
Hilbert spaceH with inner product 〈 , 〉. Once we know that the cokernel of L′ is finite-dimensional,
it follows13 that the image of L′ is a Hilbert subspace H′ ⊂ H and that the cokernel of L′, which
is H/H′, can be identified with the orthocomplement of H′. Thus, we can identify the cokernel

of L′ with the space of all metric perturbations h̃ obeying Dirichlet boundary conditions that are
orthogonal to L′h for any h that obeys Dirichlet boundary conditions. But this orthogonality
together with eqn. (3.36) gives

0 = 〈L′h, h̃〉 = 〈h, L′h̃〉. (3.63)

Since this is supposed to be true for all h that obey Dirichlet boundary conditions, it follows that
L′h̃ = 0. We can also read this backwards to show that if L′h̃ = 0, then h̃ is orthogonal to the
image of L′. Thus the kernel of L′ is the orthocomplement of H′ and so is isomorphic to the
cokernel of L′.

All this is as if L′ were elliptic when L′′ is elliptic. That is certainly not true, since the failure
of ellipticity of L′ is universal. But it seems plausible (though apparently not known) that when
L′′ is elliptic, L′ has the necessary properties for perturbation theory – notably the existence of a
suitable parametrix or propagator. It seems doubtful that L′ has reasonable properties in general,
without ellipticity of the alternate boundary condition. But little seems to be known about this.
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