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CONSTRUCTING SMOOTH AND FULLY FAITHFUL

TROPICALIZATIONS FOR MUMFORD CURVES

PHILIPP JELL

Abstract. The tropicalization of an algebraic variety X is a combinatorial shadow
of X, which is sensitive to a closed embedding of X into a toric variety. Given a good
embedding, the tropicalization can provide a lot of information about X. We construct
two types of these good embeddings for Mumford curves: fully faithful tropicalizations,
which are embeddings such that the tropicalization admits a continuous section to the
associated Berkovich space Xan of X, and smooth tropicalizations. We also show that
a smooth curve that admits a smooth tropicalization is necessarily a Mumford curve.
Our key tool is a variant of a lifting theorem for rational functions on metric graphs.

MSC: Primary: 14T05; Secondary: 14G22, 32P05

Keywords: Tropical geometry, smooth tropical curves, Mumford curves, extended
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1. Introduction

Let K be a field that is algebraically closed and complete with respect to a non-
archimedean non-trivial absolute value. Given a closed subvariety X of a toric variety
Y over K, one can associate a so-called tropical variety Trop(X) which is a polyhedral
complex. Note however, that Trop(X) is not an invariant of X, but depends on the
embedding into Y .

In good situations, Trop(X) can retain a lot of information about X. Let us mention
here work by Katz, Markwig and Markwig on the j-invariant of elliptic curves [KMM08,
KMM09] and work by Itenberg, Mikhalkin, Katzarkov and Zharkov on recovering Hodge
numbers in degenerations of complex projective varieties [IKMZ19].

In the latter work, a smoothness condition for tropical varieties in arbitrary codimen-
sion appears: a tropical variety is called smooth if it is locally isomorphic to the Bergman
fan of a matroid. (See Definition 2.6 for an equivalent definition for curves.) For tropical
hypersurfaces, this is equivalent to the associated subdivision of the Newton polytope
being a primitive triangulation, which is the definition of smoothness that is generally
used for tropical hypersurfaces [IKMZ19, Remark p. 24].

The definition in [IKMZ19] is motivated by complex analytic geometry. A complex
variety is smooth if it is locally isomorphic to open subsets of Cn in the analytic topology.
Bergman fans of matroids are the local models for linear spaces in tropical geometry,
thus it makes sense to call a tropical variety smooth if it is locally isomorphic to the
Bergman fan of a matroid.

This smoothness condition has been shown to imply many tropical analogues of clas-
sical theorems from complex and algebraic geometry, for example intersection theory,
Poincaré duality and a Lefschetz (1, 1)-theorem [Sha13, JSS19, JRS18].

The author was supported by the DFG Research Fellowship JE 856/1-1 and by the Institute Mittag-
Leffler and the “Vergstiftelsen”.
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In this paper, we investigate the question for which smooth projective curves there
exist closed embeddings ϕ into toric varieties such that Tropϕ(X) := Trop(ϕ(X)) is
smooth. The answer turns out to be Mumford curves (see Definition 2.11). Indeed,
we show that for these curves we can “repair” any given embedding by passing to a
refinement (see Definition 2.16 for a definition of refinement).

Theorem A (Theorem 4.10, Theorem 5.6). Let X be a smooth projective curve of
positive genus. Then the following are equivalent:

i) X is a Mumford curve.
ii) There exists a closed embedding ϕ : X → Y for a toric variety Y that meets the

dense torus such that Trop(ϕ(X)) is a smooth tropical curve.
iii) Given a closed embedding ϕ : X → Y of X into a toric variety Y that meets the

dense torus, there exists a refinement ϕ′ : X → Y ′ of ϕ such that Trop(ϕ′(X)) is
a smooth tropical curve.

Denote by Xan the Berkovich analytification of X [Ber90]. We give alternative charac-
terizations of Mumford curves in terms of Xan in Remark 2.12. Theorem A, specifically
the equivalence of i) and ii), may be viewed as an alternative characterization that is
purely tropical.

Payne showed in [Pay09, Theorem 4.2] that we have a homeomorphism

Xan = lim←−
ϕ : X→Y

Tropϕ(X).(1.1)

Theorem A shows that if X is a Mumford curve we can let the limit on the right hand
side as well run only over closed embeddings ϕ such that Tropϕ(X) is a smooth tropical
curve, meaning the smoothness on the left hand side is reflected on the right hand side.

Another often used property of tropicalizations is faithfulness. For curves this means
that given a finite skeleton Γ of Xan, one requires that ϕtrop := trop ◦ϕan is a homeo-
morphism from Γ onto its image, preserving the piecewise linear structure. Existence of
faithful tropicalizations was proved by Baker, Payne and Rabinoff for curves and gen-
eralized to higher dimension by Gubler, Rabinoff and Werner [BPR16, GRW16]. For
further work on faithful tropicalizations see for example [CM16, Man16, KY16, Wag17].

Baker, Payne and Rabinoff also introduced so-called completed extended skeleta for
curves. For a smooth projective curve X, these are metric subgraphs Σ of Xan, poten-
tially with edges of infinite length, that come with a canonical retraction τ : Xan → Σ.
Given a closed embedding ϕ : X → Y for Y a toric variety with dense torus T , there
exists an associated complete skeleton Σ(ϕ), which has the property that ϕtrop factors
through the retraction τ : Xan → Σ(ϕ) (see Definition 2.17). Denote by X◦ := ϕ−1(T ).
We call ϕtrop fully faithful if ϕtrop maps Σ(ϕ) homeomorphically onto its image and is
an isometry when restricted to Σ(ϕ) ∩ X◦,an. Note that this is much stronger than a
faithful tropicalization, since by definition the image of Σ(ϕ) is Tropϕ(X).

We prove the following fully faithful tropicalization result.

Theorem B (Theorem 4.6). Let X be a Mumford curve and ϕ : X → Y a closed em-
bedding into a toric variety Y that meets the dense torus. Then there exists a refinement
ϕ′ of ϕ that is fully faithful.

As a direct consequence of the fact that ϕ′ is fully faithful, we obtain a continuous
section s : Tropϕ′(X) → Xan of ϕ′

trop by composing the inverse of ϕ′
trop|Σ(ϕ′) with the

inclusion of Σ(ϕ′) into Xan (see Corollary 4.7). Such sections, though only defined on
subsets of Tropϕ(X), were also constructed in [BPR16, Theorem 5.24] and [GRW17,
Theorem 8.15].



SMOOTH AND FULLY FAITHFUL TROPICALIZATIONS FOR MUMFORD CURVES 3

For reader interested in effective bounds on the dimensions of the ambient toric vari-
eties, let us mention [GJ19], where Gunn and the author construct fully faithful tropi-
calizations in ambient dimension 3, and also give bounds on the ambient dimensions for
smooth tropicalizations.

We prove Theorem B as a first step to prove Theorem A, more precisely that i)
implies iii) therein. Our techniques to prove these results are based on the following
lifting theorem for rational functions on metric graphs, which is a variant of a theorem
by Baker and Rabinoff [BR15, Theorem 1.1]. The relevant notions are recalled in Section
2.5.

Theorem C (Theorem 3.2). Let X be a Mumford curve and Γ be a finite skeleton with
retraction τ . Let D ∈ Div(X) be a divisor of degree g and let B = p1+ · · ·+pg ∈ Div(Γ)
be a break divisor such that τ∗D − B is a principal divisor on Γ. Assume that B is
supported on two-valent points of Γ. Then there exist xi ∈ X(K) such that τ∗xi = pi
and such that D −

∑g
i=1 xi is a principal divisor on X.

Theorem C is of independent interest, since, given a skeleton of X, it enables one to
construct closed embeddings with nice tropicalizations. We treat an example of this in
Example 3.5 for a genus 1 Mumford curve (also called a Tate curve).

We give an idea of the proof of Theorem B, which is carried out in Section 4.2.
Given an edge e of Σ(ϕ), using Theorem C, we construct a rational function fe ∈
K(X)∗ in such a way that log |f | has slope 1 along e. Considering the embedding
ϕ′ := (ϕ, fe) : X → Y × P1, this ensures that ϕ′

trop maps e homeomorphically onto its
image and that the corresponding stretching factor equals 1 (see Definition 2.18 for the
definition of stretching factor). Using a good choice of D ∈ Div(X) and B ∈ Div(Γ),
Theorem C moreover allows us to construct fe in such a way that the same holds for
all edges of Σ(ϕ′) that are not contained in Σ(ϕ). Doing so for every edge of Σ(ϕ), we
obtain Theorem B.

In Section 4.3, we proceed similarly for smoothness and thus prove that i) implies iii)
in Theorem A.

In Section 5 we prove that, for a smooth projective curve X, the existence of a closed
embedding with a smooth tropicalization already implies that X is a Mumford curve.
The key result we use is a joint observation by Mikhalkin, Sturmfels and Ziegler [Mik08],
which states that a variety whose tropicalization is a tropical linear space is actually a
linear space (see Theorem 5.4). The version of the theorem we use was proved by Katz
and Payne [KP11] and works for trivially valued fields in any characteristic (see Theorem
5.4). We also show that if Tropϕ(X) is smooth then ϕtrop is necessarily fully faithful
(see Theorem 5.7).

Acknowledgements. The author was inspired to reconsider the questions in this paper
by a question asked by Hannah Markwig during an open problem session at the program
“Tropical geometry, amoebas and polytopes” at the Institute Mittag-Leffler. He would
like to thank Hannah Markwig for the encouragement and the Institute Mittag-Leffler
for the wonderful working conditions. He would also like to thank Matt Baker, Walter
Gubler, Yoav Len, Hannah Markwig, Sam Payne, Joe Rabinoff, Veronika Wanner and
Annette Werner for helpful discussions and comments. He would also like to thank the
anonymous referees for their precise reports and detailed comments.

Conventions. Throughout, K will be an algebraically closed field that is complete with
respect to a non-archimedean non-trivial absolute value | . |K . We denote the value group

by Λ := log |K×|K , the valuation ring by K◦ and the residue field by K̃. A variety over K
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is a separated reduced irreducible scheme of finite type and a curve is a one-dimensional
variety. X will be a smooth projective curve over K. We will denote finite skeleta of X
by Γ and completed extended skeleta in the sense of [BPR13] by Σ. We will generally
denote toric varieties by Y and their dense tori by T .

2. Preliminaries

2.1. Tropical toric varieties and tropical curves. Let N be a free abelian group of
rank n, M := HomZ(N,Z) its dual, NR := N ⊗ R and ∆ a rational pointed fan in NR.
We write T := R ∪ {−∞}.

For σ ∈ ∆ we define the monoid Sσ := {ϕ ∈ M | ϕ(v) ≥ 0 for all v ∈ σ} and write
N(σ) := NR/〈σ〉R, where 〈σ〉R denotes the real vector space spanned by σ. We write

N∆ =
∐

σ∈∆

N(σ).

We endow N∆ with a topology in the following way:
For σ ∈ ∆ write Nσ =

∐

τ≺σ

N(τ). This is naturally identified with HomMonoids(Sσ,T).

We give Nσ the subspace topology of TSσ . For τ ≺ σ, the space Hom(Sτ ,T) is naturally
identified with the open subspace of HomMonoids(Sσ,T) of maps that map τ⊥ ∩M to R.
We define the topology ofN∆ to be the one obtained by gluing along these identifications.

Definition 2.1. We call the space N∆ a tropical toric variety.

The space N∆ is sometimes called the canonical compactification of NR with respect
to ∆. Note that N∆ contains NR as a dense open subset.

Example 2.2. Let N = Zn with basis x1, . . . , xn and ∆ be the complete fan whose
rays are spanned by −x1, . . . ,−xn and x0 :=

∑

xi. For any d-rays there is a face σ of
dimension d that contains exactly these rays. Then N(σ) is an n−d-dimensional vector
space. The topology is such that N∆ is homeomorphic to an n-simplex, where N(σ) is
identified with the relative interior of a n−d-dimensional simplex in the boundary. For
example, NR corresponds to the vertex at the origin in ∆ and forms the interior of N∆

when we view N∆ as a simplex.
However, we will heavily use the structure of NR as a vector space, so we generally

view N∆ as a compactification of NR by strata that are infinitely far away.

Definition 2.3. Let C be a one dimensional Λ-rational polyhedral complex in NR. For
an edge e (i.e. a one-dimensional polyhedron) of C we denote by L(e) = {λ(u1 − u2) |
u1, u2 ∈ e, λ ∈ R} the linear space of e. Since X is Λ-rational, L(e) contains a canonical
lattice which we denote by Z(e).

For a vertex v of e we denote by wv,e the unique generator of Z(e) that points in e
away from v.

We call C weighted if every edge is equipped with a positive integral weight m(e) and
balanced if for every vertex v of C we have

∑

e : v≺e

m(e)wv,e = 0.

The local cone at v is the one-dimensional fan whose rays are spanned by the ww,e and
given weight m(e) for v ≺ e. This is also sometimes referred to as the star of the vertex
v (see for example [MS]).
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Definition 2.4. A tropical curve in NR is a one dimensional Λ-rational polyhedral
complex equipped with weights on its edges that satisfies the balancing condition, up to
the equivalence relation generated by subdivision of edges preserving the weights.

A tropical curve X in a tropical toric variety N∆ is the closure in N∆ of a tropical
curve X◦ in NR.

X \X◦ is a finite set, whose points we consider as vertices of X and call the infinite
vertices. The edges of X are the closures of the edges of X◦.

A Λ-metric graph (which we will often just call a metric graph) is, roughly speaking,
a finite graph in which every edge e has a positive length le ∈ Λ ∪ {∞}. We allow loop
edges, meaning edges whose endpoints agree and half open edges, i.e. edges which have
only one endpoint. If le ∈ Λ>0, we view e as an interval of length e. Half open edges
are identified with R≥0. Leaf edges are the only edges that are allowed to have infinite
length and are identified with [0,∞] with the topology of a closed interval. For a more
precise account on metric graphs, we refer the reader to [ABBR15, Section 2.1].

By an edge of a metric graph Γ we mean an edge in some graph model G of Γ. For
an edge e of Γ we denote by e̊ the relative interior of e, meaning e with its endpoints
removed. For two points x, y ∈ e̊ we denote by de(x, y) their distance in e̊. (Note that
this might not be the distance in Γ, as there might be a shorter path that leaves e̊.)

We call a metric graph finite if all its edges have finite length.

Example 2.5. A tropical curve in NR has a canonical structure as a metric graph where
the length of an edge is given by the lattice length, meaning the length of the primitive
vector wv,e equals 1.

A tropical curve X in a tropical toric variety N∆ is not necessarily a metric graph
since two infinite rays might meet at infinity, creating a vertex at infinity which does not
have valence 1. However, X is a metric graph if every point in X \X◦ has exactly one
adjacent edge.

Definition 2.6. An edge in a tropical curve is smooth if its weight is 1. A finite vertex
v is smooth if 〈wv,e | v ≺ e〉Z is a saturated lattice of rank val(v)− 1 in N , where val(v)
is the number of edges adjacent to v. An infinite vertex is smooth if it has one adjacent
edge. A vertex that is not smooth is called singular. A tropical curve is smooth if all its
edges and vertices are smooth.

Remark 2.7. Following [IKMZ19] a tropical variety is smooth if it is locally isomorphic
to the Bergman fan of a matroid.

A one-dimensional weighted fan in Rn is the Bergman fan of a matroid if and only
if it is isomorphic to the fan whose rays are spanned by x1, . . . , xn and −

∑n
i=1 xi and

all weights are 1. Thus Definition 2.6 agrees with the one in [IKMZ19] for the case of
curves.

Example 2.8. Consider the tropical curves in Figure 1. Each of them depicts a vertex
in a tropical curve in R2 with lattice N = Z2. In the leftmost picture, the outgoing
directions are (−1, 0), (0,−1) and (1, 1), which span Z2, thus v1 is a smooth vertex. In
the picture in the middle, the span of the primitive vectors is again Z2, but there are 4
vertices adjacent to v2, thus v2 is not smooth. In the picture on the right, the outgoing
directions are (2,−1), (−1, 2) and (−1,−1). The span of these vectors is {(x, y) ∈ Z2 |
x − y is divisible by 3}. This has rank 2, but is not saturated in Z2, thus v3 is not a
smooth vertex.
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v1
v2

v3

Figure 1. The types of vertices in tropical curves in R2. The vertex on
the left is smooth, the other two vertices are not smooth.

2.2. Berkovich curves and their extended skeleta. Let X be a variety over K. The
associated Berkovich space [Ber90] is

Xan := {x = (px, | . |x) | px ∈ X, | . |x is an absolute value on k(px) extending | . |K}

with the topology such that the canonical forgetful map Xan → X is continuous and
for all open subsets U of X and f ∈ O(U)× the map Uan → R, (px, | . |x) 7→ |f(px)|x is
continuous. We will often write |f(x)| := |f(px)|x. If X = Spec(A) is an affine variety
then

Xan = {| . | multiplicative seminorm on A extending | . |K}

with the topology such that for all f ∈ A the map Xan → R; | . | 7→ |f | is continuous.
For morphism ϕ : X → Y of K-varieties we obtain a morphism ϕan : Xan → Y an.

Now let X be a curve over K. For x ∈ Xan we denote by H (x) the completion

of k(px) with respect to | . |x and by H̃ (x) its residue field. Following Berkovich and
Thuillier [Ber90, Thu05] we say x is of type I if px ∈ X(K) and of type II if px is the

generic point of X and trdeg[H̃ (x) : K̃] = 1. If x is of type I, then | . |x = | . |K , thus
the forgetful map Xan → X induces a bijection from the set of type I points of Xan onto
X(K). We will thus identify X(K) with the subset of Xan that consists of type I points.

If x is of type II, then we denote by Cx the smooth projective K̃-curve with function

field H̃ (x) and by g(x) its genus, which we call the genus of x.
We now recall the notion of completed skeleta of Xan, which is due to Baker, Payne

and Rabinoff [BPR13].

Definition 2.9. We consider A1 = SpecK[T ]. For −∞ ≤ s < r ∈ R denote

B(r) = {x ∈ A1,an | log |T |x < r} and A(r, s) = {x ∈ A1,an | s < log |T |x < r}.

We call B(r) an open disc of logarithmic radius r and A(r, s) a generalized open annulus
of logarithmic radii s and r. We call A(r, s) an annulus with logarithmic radii s and r if
s ∈ R and a punctured disc of radius r if s = −∞. We call r − s ∈ R ∪∞ the length of
A(r,s).

We denote by ρB(t) the element of B(t) defined by
∣

∣

∑

aiT
i
∣

∣

ρB(t)
= maxi |ai|t

i and call

the set

Σ(A(r, s)) =
{

ρB(t) | s < log t < r
}

the skeleton of A(r, s). There is a canonical retraction τ : A(r, s) → Σ(A(r, s)) which is
a strong deformation retraction.

Definition 2.10. Let X be a smooth projective curve over K. A completed semistable
vertex set V of X is a finite subset of Xan consisting of type I and II points such that
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Xan \ V is isomorphic to a disjoint union of finitely many generalized open annuli and
infinitely many open discs.

For a completed semistable vertex set V ofXan there is a canonical associated subspace
Σ(V ) of Xan, called the completed skeleton Σ(V ), which is a metric graph. There is a
canonical retraction τV : Xan → Σ(V ), such that Σ(V ) is a strong deformation retract
of Xan. As the name suggests, the vertex set of ΣV is V . The edges are the skeleta of
the generalized open annuli that are connected components of Xan \ V . The length of
such an edge is the length of the corresponding annulus.

If X is projective and V is a completed semistable vertex set that only consists of type
II points, we call V a semistable vertex set and Σ(V ) a finite skeleton of X. A finite
skeleton is a finite metric graph and we will often denote it by Γ.

Let V be a completed semistable vertex set of X. Then the set of type II points in V
forms a semistable vertex set for X. We call the associated finite skeleton the finite part
of Σ(V ) and denote it by Σ(V )fin.

Definition 2.11. A smooth projective curve of genus g > 0 is called Mumford curve if
for some semistable vertex set V the skeleton Γ(V ) has first Betti number equal to g.

Remark 2.12. Note that since Γ(V ) is a deformation retract of Xan, the first Betti
number of Γ(V ) is independent of V . Thus we might replace “some” by “every” in
Definition 2.11. Furthermore X is a Mumford curve if and only if g(x) = 0 for all
type II points x in Xan. Another equivalent definition of Mumford curve is that any
point x ∈ Xan has a neighborhood that is isomorphic to an open subset of P1,an [JW18,
Proposition 2.26 & Theorem 2.28].

2.3. Tropicalization of curves. Let Y be a toric variety with dense torus T . Let N
be the cocharacter lattice of T , NR := N ⊗ R and ∆ the fan in NR associated to Y .

Definition 2.13. The tropicalization of Y is

Trop(Y ) := N∆.

There is a canonical tropicalization map trop: Y an → Trop(Y ), which is a continuous
proper map of topological spaces [Pay09, Section 3].

We assume that the reader is familiar with tropicalizations of closed subvarieties of
algebraic tori [MS15, Gub13]. Here we consider tropicalizations of closed subvarieties of
toric varieties, which may be seen as a compactification of the latter. We quickly sketch
the relation: Given a closed embedding ϕ : X → Y of a smooth projective curve X into a
toric variety Y that meets the dense torus T , denote by X◦ := ϕ−1(T ). Then Tropϕ(X

◦)
is a dense open subset of Tropϕ(X) and we obtain the latter from the former by putting
points at the end of the unbounded edges.

Example 2.14. If Y = Gn
m is a torus of dimension n with fixed coordinates, then

∆ is only the origin in Rn and we have Trop(Y ) = Rn. The restriction of the map
trop: Gn,an

m → Rn to Gn
m(K) = (K∗)n is the usual tropicalization map X(K)→ Rn;x 7→

(log |x1|K , . . . , log |xn|K).
If Y = P1, then Example 2.2 shows that Trop(P1) is homeomorphic to a closed interval.

Since it contains a one-dimensional vector space as a dense open subset, a good point of
view is Trop(P1) = [−∞,∞] with the topology of a closed interval.

The map trop: P1,an → Trop(P1) is then given by (p, | . |x) 7→ log |z(p)|x, where z is
the coordinate function on P1.

Remark 2.15. For two toric varieties Y1 and Y2, we have Trop(Y1 × Y2) = Trop(Y1)×
Trop(Y2). This holds because the fan of Y1 × Y2 is the product of the fans of Y1 and Y2.
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Let X be a curve over K. For a closed embedding ϕ : X → Y we denote ϕtrop :=
trop ◦ϕan and Tropϕ(X) := ϕtrop(X

an) the associated tropicalization of X. One can
define canonical weights on Tropϕ(X) that make it into a tropical curve in Trop(Y ) in
the sense of Definition 2.4 (see for example [Gub13]). We will define these weights in
Definition 2.18.

Definition 2.16. If Y ′ is another toric variety, ϕ′ : X → Y ′ is another closed embedding
and π : Y ′ → Y is a morphism of toric varieties, there exists a canonical map Trop(Y ′)→
Trop(Y ), which is linear on the dense subset NR and maps Tropϕ′(X) onto Tropϕ(X).
We call ϕ′ a refinement of ϕ.

Note that refinements yield the inverse system in Payne’s result that the inverse limit
of all tropicalizations is homeomorphic to Xan [Pay09, Theorem 4.2].

2.4. Factorization skeleta. Let ϕ : X → Y be a closed embedding of a smooth projec-
tive curveX into a toric variety Y that meets the dense torus T . Denote byX◦ := ϕ−1(T )
the preimage of the dense torus.

Definition 2.17. Let Σ(ϕ) be the set of points in Xan that do not have an open neigh-
borhood that is isomorphic to an open disc and contained in (X◦)an. We call Σ(ϕ) the
completed skeleton associated to ϕ.

The set Σ(ϕ) is indeed a completed skeleton for X [BPR13, Theorem 4.22]. We denote
by τϕ : X

an → Σ(ϕ) the retraction.
Baker, Payne and Rabinoff show that we have a commutative diagram

Xan
ϕtrop

//

τϕ
""❊

❊
❊
❊
❊
❊
❊
❊
❊

Tropϕ(X)

Σ(ϕ)

ϕtrop|Σ(ϕ)

99sssssssss

(2.1)

and that ϕtrop|Σ(ϕ) is linear on each edge of Σ(ϕ) [BPR16, Lemma 5.3 & Proposition 5.4
(1)].

We can subdivide Tropϕ(X) and Σ(ϕ) in such a way that each edge of Σ(ϕ) is either
contracted to a point or mapped homeomorphically to an edge of Tropϕ(X) [BPR16,
Lemma 5.4. (2)]. Let e be an edge in Tropϕ(X). Let e1, . . . , ek be the edges of Σ(ϕ)
mapping homeomorphically to e. For each i, we fix xi 6= yi ∈ e̊i.

Definition 2.18. We call

m(ei) =
de(ϕtrop(xi), ϕtrop(yi))

dei(xi, yi)
and m(e) =

k
∑

i=1

m(ei)

the stretching factor of ϕtrop|ei and the weight of e, respectively.

The definition of weight agrees with the usual one (see for example [Gub13, Definition
3.14]) by [BPR16, Corollary 5.9].

Proposition 2.19. Let ϕ : X → Y be a closed embedding of X into a toric variety that
meets the dense torus T and Σ(ϕ) the associated skeleton. Denote by X◦ := ϕ−1(T ).
Then the following are equivalent:

i) ϕtrop maps Σ(ϕ) homeomorphically onto its image and is an isometry when re-
stricted to Σ(ϕ) ∩X◦,an.

ii) The map ϕtrop|Σ(ϕ) : Σ(ϕ)→ Tropϕ(X) is injective and all weights on Tropϕ(X)
are 1.
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Proof. Assume that ii) holds. The map ϕtrop|Σ(ϕ) is surjective, thus bijective. Since it is
a bijective map between compact Hausdorff spaces, it is a homeomorphism. Hence both
i) and ii) imply that ϕtrop|Σ(ϕ) is a homeomorphism onto its image.

Thus it remains to show that if ϕtrop|Σ(ϕ) is a homeomorphism it is an isometry when
restricted to Σ(ϕ) ∩ X◦,an if and only if all weights on Tropϕ(X) are all equal to one.
This follows from Definition 2.18. �

Definition 2.20. We say that ϕtrop is fully faithful if the equivalent conditions of Propo-
sition 2.19 hold.

The notion of fully faithful tropicalization is stronger then the notion of faithful tropi-
calization introduced by Baker, Payne and Rabinoff [BPR16]. It is also slightly stronger
then the notion of totally faithful tropicalization introduced by Cheung, Fantini, Park
and Ulirsch [CFPU16] (see also [CDMY16]). The difference is that a totally faithful trop-
icalization only needs to be an isometry when restricted to Σ(ϕ) ∩X◦,an. Note however
that the authors of [CFPU16] mainly work in the situation of tropical compactifications
and in this case the notions of totally faithful and fully faithful agree.

2.5. Rational functions and divisors on metric graphs. Let Γ be a finite Λ-metric
graph. A point x ∈ Γ is called Λ-rational if its distance from some, or equivalently every,
vertex is in Λ. A rational function on Γ is a piecewise linear function F : Γ → R with
integer slopes all of whose points of non-linearity are Λ-rational. A divisor on Γ is a finite
formal linear combination of Λ-rational points. Its degree is the sum of the coefficients.
We denote by Div(Γ) the group of divisors. For a rational function F its divisor is

div(F ) :=
∑

λixi where λi :=
∑

e : xi≺e

deF (xi)

and deF (xi) is the outgoing slope of F along the edge e at xi. We call div(F ) a principal
divisor on Γ. We denote by Prin(Γ) the group of principal divisors on Γ.

Let X be a smooth projective curve and Γ a finite skeleton with retraction τ . Let f be
in K(X)∗. Then F := log |f(x)|

∣

∣

Γ
is a rational function on Γ and τ∗(div(f)) = div(F )

[BPR13, Theorem 5.15] (see also [Thu05, Proposition 3.3.15] for the same result phrased
in a slightly different language).

Definition 2.21. We say that edges e1, . . . , eg form the complement of a spanning tree
of Γ if there exists a graph model G for Γ with set of edges E such that ei ∈ E and
the subgraph of G spanned by the edges E \ {e1, . . . , eg} is connected, contractible and
contains all vertices of G.

Note that in this definition, g is necessarily the first Betti number of Γ.
The notion of break divisor was introduced by Mikhalkin, and Zharkov [MZ08]. They

observed that any degree g divisor on a metric graph has a unique break divisor in its
rational equivalence class (see Theorem 2.23). Break divisors were also studied in detail
by An, Baker, Kuperberg, and Shokrieh, who also study discrete versions [ABKS14].

Definition 2.22. Let Γ be a metric graph and g = dimR H1(Γ,R) its first Betti number.
A break divisor is a degree g effective divisor B = p1 + · · · + pg such that there exist
edges e1, . . . , eg that form the complement of a spanning tree of Γ such that pi ∈ ei.

Theorem 2.23 (Mikhalkin - Zharkov). Let D be a degree g divisor on Γ. Then there
exists a unique break divisor B on Γ such that D −B ∈ Prin(Γ).

Break divisors will play an important role in Theorem 3.2, which we will use to prove
our main theorems, as well as to construct tropicalizations in honeycomb form for elliptic
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p1 p2 p3 p4
e

Figure 2. An edge e with four pillar points p1, p2, p3 and p4 and a piece-
wise linear function with divisor p1 − p2 − p3 + p4.

curves (see Example 3.5). In our applications we will deal with break divisors that are
supported on two-valent points of Γ. If B is such a break divisor then Γ \ supp(B) is
connected and contractible.

We will see in Example 3.6 that it is really necessary to restrict to break divisors that
are supported on two-valent points in Theorem 3.2.

3. Lifting theorem

In this section X is a smooth projective Mumford curve of genus g over K. We fix a
semistable vertex set V with corresponding finite skeleton Γ and retraction τ . We denote
by J0(X) := {[D] ∈ Pic(X) | τ∗D ∈ Prin(Γ)}.

Proposition 3.1. Let B = p1+ . . .+pg be a break divisor on Γ that is supported on two-
valent points and write Ri = τ−1(pi)∩X(K). Then for all Y = (y1, . . . , yg) ∈ R1×· · ·×Rg

the map

ϕY : R1 × . . . ×Rg → J0(X)

(x1, . . . , xg) 7→

g
∑

i=1

[xi − yi]

is a surjection.

Proof. We consider [BR15, Proof of Theorem 1.1]. Baker and Rabinoff work in the same
setup, but for them X is any curve, not necessarily a Mumford curve. Thus in their
situation both the set of Y they allow and the domain of ϕY is (R1 × . . . × Rb) × C

∗.

Here b is the first Betti number of the skeleton of X and C∗ =
∏

x∈Xan;g(x)>0Cx(K̃)g(x).

An element Y ∈ (R1 × . . .×Rb)×C
∗ is denoted by (Y1,Y2) for Y1 ∈ R1 × . . .×Rb and

Y2 ∈ C
∗. They show that ϕ(Y1,Y2) is surjective when Y2 is generic. If X is a Mumford

curve, then b = g and C∗ is just a one point set. Thus Y2 is automatically generic and
our proposition follows. �

Theorem 3.2. Let D ∈ Div(X) of degree g and B = p1 + · · · + pg ∈ Div(Γ) a break
divisor such that τ∗D − B is a principal divisor on Γ. Assume that B is supported on
two-valent points of Γ. Then there exist xi ∈ X(K) such that τ∗xi = pi and such that
D −

∑g
i=1 xi is a principal divisor on X.

Proof. Let yi ∈ X(K) such that τ∗yi = pi. We have [D −
∑g

i=1 yi] ∈ J0(X). Thus by
Proposition 3.1 there exist xi ∈ τ

−1(pi)∩X(K) such that [D −
∑g

i=1 yi] = [
∑g

i=1(xi − yi)].
In other words [D −

∑g
i=1 xi] = 0 which means that D −

∑g
i=1 xi is a principal divisor

on X. �

Definition 3.3. Let e be an edge of Γ. Four points p1, p2, p3, p4 ∈ e̊ are called pillar
points in e if they are Λ-rational, de(p1, p2) = de(p3, p4) and for i = 2, 3 we have [pi−1, pi]∩
[pi, pi+1] = pi. (See Figure 2.)
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Figure 2 shows the graph of a piecewise linear function whose divisor is p1−p2−p3+p4.
In particular that divisor is principal.

Corollary 3.4. Let D ∈ Div0(X) such that τ∗D is a principal divisor on Γ. Let
e1, . . . , eg be edges that form the complement of a spanning tree of Γ. Fixing pillar points
pi,1, pi,2, pi,3, pi,4 in e̊i there exist xij ∈ X(K) such that τ(xij) = pij and f ∈ K(X)∗ such
that div(f) = D +

∑g
i=1(xi,1 + xi,4)−

∑g
i=1(xi,2 + xi,3).

Proof. The divisor
∑g

i=1(pi,1 + pi,4) −
∑g

i=1(pi,2 + pi,3) is principal on Γ, thus so is
τ∗D +

∑g
i=1(pi,1 + pi,4) −

∑g
i=1(pi,2 + pi,3). Thus, for j = 1, 3, 4, fixing xij such that

τ∗xij = pij and writing D′ = D+
∑g

i=1(xi,1+xi,4)−
∑g

i=1 xi,3 and B = p1,2+ · · ·+ pg,2,
we find that τ∗D

′ − B is a principal divisor on Γ. Since B is a break divisor supported
on two-valent points, applying Theorem 3.2 to D′ and B we get the result. �

Example 3.5 (Tate curves). Chan and Sturmfels use theta functions to produce nice
tropicalizations of elliptic curves [CS13] (see also [BPR16, Theorem 6.2]). In this ex-
ample we show how Theorem 3.2 can be used to construct such nice tropicalizations
combinatorially.

Let E be an elliptic curve with bad reduction. We will use Theorem 3.2 to construct
a closed embedding ϕ : E → P2 whose tropicalization looks like the right hand side of
Figure 3, which Chan and Sturmfels call symmetric honeycomb form.

The minimal skeleton Γmin is a circle. We pick three points q1, q2, q3 ∈ Γmin that are
equidistant from each other. Our skeleton Γ is obtained from Γmin by adding edges of
length d(qi, qj)/2 at each of the qi, denoting their endpoints by pi. We subdivide each
edge [qi, qj ] at its midpoint and label our new vertices as on the left hand side of Figure
3. The solid part of the figure is now our skeleton Γ.

We pick points x1,1 6= x1,2, x2,1 6= x2,2, x3,1 6= x3,2 and x6 ∈ E(K) such that τ(xi,j) =
pi and τ(x6) = p6.

Let D1 = −x1,1+x2,1−x2,2+x3,1−x6. Then τ∗D1 = −p1+ p3− p6 and τ∗D1 + p4 =
div(F1) for a rational function F1 on Γ.

Now applying Theorem 3.2 to −D1 and p4 we obtain a function f1 ∈ K(E)∗ and
x4 ∈ E(K) such that τ(x4) = p4 and div(f1) = D1 + x4. We normalize f1 such that
F1 = log |f1|

∣

∣

Γ
.

Similarly let D2 = −x1,1 + x1,2 − x2,2 + x3,2 − x6 then τ∗D2 = −p2 + p3 − p6 and
τ∗D2 + p5 = div(F2), for a rational function F2 on Γ. We obtain a function f2 ∈ K(E)∗

and x5 ∈ E(K) such that τ(x5) = p5 and div(f2) = D2 + x5.
Let ϕ be the morphism associated to the rational map [f1 : f2 : 1] : E → P2. By

construction, the graph on the left hand side of Figure 3, including the dashed lines, which
are infinite edges, is the associated completed skeleton Σ(ϕ). We write Gi = log |fi|

∣

∣

Σ(ϕ)
.

Note that Gi|Γ = Fi. Further, ϕtrop|Σ(ϕ) = (G1, G2). Thus Tropϕ(E) = (G1, G2)(Σ(ϕ))
is the tropical curve on the right hand side of Figure 3.

The functions f1, f2, 1 are linearly independent over K, since f1 is not constant on
the zeros of f2. Thus by the Riemann-Roch theorem, they form a basis of L(D) where
D = x1,1 + x2,2 + x6. Since D is very ample by [Har77, Corollary IV.3.2(b)], this shows
that ϕ is a closed embedding.

Example 3.6. In the same example, we can also see that Theorem 3.2 does not hold if
we do not require B to be supported on two-valent points. Let D = p1. Then the unique
break divisor that is linearly equivalent to D is B = q1. However we cannot find x and
y such that τ(x) = p1 and τ(y) = q1 such that x− y is principal, since no difference of
two distinct points is principal on an elliptic curve.
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q1

q2

q3

p1

p2

p3

p4

p5

p6 x1,1

x1,2

x2,2

x2,1

x3,2

x3,1 x5

x4

x6

Figure 3. The skeleton and tropicalization of a Tate curve.

4. Fully faithful and smooth tropicalizations

4.1. Describing tropicalizations using extended skeleta. Let X be smooth projec-
tive curve of genus g > 0. Let V be a minimal semistable vertex set of X with associated
finite skeleton Γ and retraction τ .

Definition 4.1. Let Σ be a completed skeleton of X with retraction τΣ, f ∈ K(X)∗

and write div(f) =
∑

±xi. Then f is said to be faithful with respect to Σ if we have
τΣ(xi) 6= τΣ(xj) for all i 6= j.

Note that this implies that f has only simple poles and zeros.

Construction 4.2. Let ϕ : X → Y be a closed embedding of X into a toric variety Y
that meets the dense torus. Let Σ(ϕ) be the completed skeleton associated to ϕ. Let
f ∈ K(X)∗ be faithful with respect to Σ(ϕ). Consider the induced closed embedding
ϕ′ = (ϕ, f) : X → Y × P1.

We obtain the associated skeleton Σ(ϕ′) for ϕ′ by adding infinite rays [xi, τϕ(xi)] for
all xi ∈ supp(div(f)). We denote by τϕ′ the associated retraction.

We have the following diagram

Xan
τϕ′

//

τϕ
''◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆

Σ(ϕ′)
ϕ′

trop
//

��

Tropϕ′(X)

��

// Trop(Y )× Trop(P1)

π1

��
Σ(ϕ)

ϕtrop
// Tropϕ(X) // Trop(Y ).

The map on the left contracts the edges [xi, τϕ(xi)] to τϕ(xi). The map π1 on the right
is forgetting the last coordinate.

Thus we obtain Tropϕ′(X) from Tropϕ(X) in two steps:

i) Take the graph of log |f | restricted to Σ(ϕ).
ii) Add the images of the edges ei = [xi, τ(xi)]. These are infinite rays from

(ϕtrop(xi), log |f(xi)|) to (ϕtrop(xi),±∞) where the sign of ∞ is the opposite
of the sign of xi in div(f).

Lemma 4.3. In the situation of Construction 4.2, every edge e in Σ(ϕ′) that is not an
edge of Σ(ϕ) is infinite and satisfies m(e) = 1.
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vw ew′

v′

e1

pe1,1 p
e
1,2 pe1,3 p

e
1,4

Γ

Figure 4. Situation in Construction 4.4. The dashed lines are infinite
edges and solid lines are finite edges.

vew′

v′

e1

pe1,1 p
e
1,2 pe1,3 p

e
1,4

Γ

Figure 5. Situation in Construction 4.5. The dashed lines are infinite
edges and solid lines are finite edges.

Proof. The edge e has to be infinite since we only added infinite rays to Σ(ϕ) in Con-
struction 4.2. Since f has only simple poles and zeros, the slope of log |f | along e is equal
to one, thus the corresponding expansion factor equals one. �

4.2. Fully faithful tropicalization. Throughout this section, X is a Mumford curve
and ϕ : X → Y a closed embedding of X into a toric variety that meets the dense
torus. In this section, we prove Theorem B from the introduction, showing that ϕ has a
refinement that is fully faithful.

We fix a minimal semistable vertex set V and denote by Γ the corresponding finite
skeleton of X with retraction τ . For our completed skeleton Σ(ϕ) associated to ϕ we
denote the retraction by τϕ and the finite part by Σ(ϕ)fin.

We will now construct for an edge e a function fe ∈ K(X)∗ such that the slope of
log |fe| is equal to 1 along e and such that fe is faithful with respect to Σ(ϕ).

Construction 4.4. Let e be a finite edge of Σ(ϕ) that is not in Γ. We label the endpoints
v and w in such a way that w and Γ lie in different connected components of Σ(ϕ) \ v
(see Figure 4). Let v′, w′ ∈ X(K) be such that τϕ(v

′) = v and τϕ(w
′) = w. We fix edges

e1, . . . , eg that form the complement of a spanning tree of Σ(ϕ) and pillar points peij in

ei. Applying Corollary 3.4 to Σ(ϕ)fin and D′ = v′ −w′ we obtain fe ∈ K(X)∗ such that
div(fe) = v′ −w′ +

∑

±xeij. By construction fe is faithful with respect to Σ(ϕ) and the

slope of log |fe| along e is 1. Replacing fe by a−1 · fe where a ∈ K such that |fe(v)| = |a|
we may assume log |fe(v)| = 0.

Construction 4.5. Let e be an infinite edge of Σ(ϕ) with finite vertex v and infinite
vertex w′. Let v′ be a point in X(K) such that τϕ(v

′) = v (see Figure 5). We fix edges
e1, . . . , eg that form the complement of a spanning tree of Σ(ϕ)fin and pillar points peij
in ei. Applying Corollary 3.4 to Σ(ϕ)fin and D = v′ − w′ we obtain fe ∈ K(X)∗ that
is faithful with respect to Σ(ϕ) and such that log |fe| has slope 1 along e. We again
normalize such that log |fe(v)| = 0.
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Theorem 4.6. Let X be a Mumford curve. Let ϕ : X → Y be a closed embedding
of X into a toric variety that meets the dense torus. Then there exists a refinement
ϕ′ : X → Y ′ for ϕ that is fully faithful.

Proof. Recall that we fixed a finite skeleton of Γ of X. By [BPR16, Theorem 1.1] we may
assume, after possibly replacing ϕ by a refinement, that the map ϕtrop|Γ is an isometry
onto its image.

Let E be the set of edges of Σ(ϕ) that are not in Γ. The strategy of proof will
be as follows: For each edge e ∈ E, we apply Construction 4.4 (if e is a finite edge)
or Construction 4.5 (if e is an infinite edge). We make sure that the pillar points we
choose to apply these constructions do not get in the way of each other (condition iii)
below) and do not interfere with e after tropicalization (condition ii) below). This yield
a rational function fe for each e ∈ E. We then check that the corresponding embedding
(ϕ, (fe)e∈E) : X → Y × (P1)|E| is fully faithful.

For each i = 1, . . . , g, j = 1, . . . , 4 and e ∈ E we pick peij ∈ Γ such that

i) for all e ∈ E there are edges eei , i = 1, . . . , g, that form the complement of a
spanning tree of Σ(ϕ) and pei,1, . . . , p

e
i,4 are pillar points in eei ;

ii) ϕtrop([p
e
i,1, p

e
i,4]) ∩ ϕtrop(e) = ∅ for all i = 1, . . . , g;

iii) [pei,1, p
e
i,4] ∩ [pe

′

i′,1, p
e′

i′,4] = ∅ for (e, i) 6= (e′, i′).

Note that a choice of peij that satisfies ii) is possible since ϕtrop(e) is a line segment, thus
cannot cover a full cycle of Γ.

Now for all finite (resp. infinite) edges e ∈ E we apply Construction 4.4 (resp. Con-
struction 4.5) and obtain functions fe ∈ K(X)∗.

We consider the closed embedding

ϕ′ := (ϕ, (fe)e∈E) : X → Y × (P1)|E|.

Following Construction 4.2, the completed skeleton Σ(ϕ′) associated to ϕ′ is obtained
from Σ(ϕ) by attaching an infinite edge eeij at each peij and by attaching for each e ∈ E
infinite edges to its finite endpoints. If e = [v,w], we denote these edges by eev and eew
respectively. We claim that the map

ϕ′
trop : Σ(ϕ

′)→ Trop(Y )× Trop(P1)E

is injective. We denote Fe := log |fe|
∣

∣

Σ(ϕ′)
. By construction, ϕ′

trop is injective when

restricted to an edge, since ϕtrop|Γ is injective and Fe is injective when restricted to e
and eeij for e ∈ E.

To show global injectivity, let us set up some notation. Recall that for each edge
e ∈ E we denote by ve the endpoint of e such that Γ and e̊ lie in different connected
components of Γ \ v and by we the other endpoint. Furthermore, fe was normalized in
such a way that Fe(ve) = 0. Recall that Γ is a deformation retract of Σ(ϕ′). Thus, we
may define a partial order on E by declaring e ≤ e′ if “e is closer to Γ then e′”, meaning
that e̊ and e̊′ lie in the same connected component of Σ(ϕ′) \ ve.

The idea of the proof of injectivity is that for a point z ∈ Σ(ϕ′) \ Γ we can detect in
which edge e ∈ E it is contained simply by looking at the set of functions Fe satisfying
Fe(z) 6= 0. We then do a case by case analysis of the situation.

Now assume ϕ′
trop(z1) = ϕ′

trop(z2) for z1, z2 ∈ Σ(ϕ′). This means that ϕtrop(z1) =
ϕtrop(z2) and Fe(z1) = Fe(z2) for all e ∈ E.
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pei,1
pei,2 pei,3

pei,4

eei,1

eei,2 eei,3

eei,4

Figure 6. The graph of log |fe| on e
e
i and the adjacent edges eeij in Σ(ϕ′).

Note that we may assume z1 /∈ Γ, since if both z1 and z2 are in Γ, then we are done
since ϕtrop is already injective on Γ. Denote

E′ := {e ∈ E | Fe(z1) 6= 0} = {e ∈ E | Fe(z2) 6= 0}.

Since Fe(ve) = 0 and div(Fe) = ve−we+
∑g

i=1(p
e
i,1−p

e
i,2−p

e
i,3+p

e
i,4) we have Fe(ve) = 0,

Fe(we) > 0, Fe(p
e
i,1) = Fe(p

e
i,4) = 0 and Fe is constant on the connected components of

Σ(ϕ′) \ (e ∪ [pei,1, p
e
i,4]) (see Figure 6). Thus

supp(Fe) =
⋃

e′≥e

e′ ∪

g
⋃

i=1

[pei1, p
e
i4].(4.1)

We deduce that E′ is closed under ≤ and non-empty since z1 /∈ Γ.
If |E′| = 1, say E′ = {e}, then

z1 ∈ e ∪
⋃

ij

eeij and z2 ∈ e ∪
⋃

ij

eeij ∪
⋃

i

[pei,1, p
e
i,4].(4.2)

In the case z1 ∈ e, we have ϕtrop(z2) = ϕtrop(z1) ∈ ϕtrop(e) which forces z2 ∈ e by ii)
above and (4.2). Since Fe|e is injective, it follows that z1 = z2.

In the case z1 ∈ e
e
ij , we have ϕtrop(z2) = ϕtrop(z1) = peij , thus z2 ∈ e

e
ij and because

Fe|eeij is injective we have z1 = z2.

If |E′| > 1, then there exists e ∈ E such that E′ = {e′ ∈ E | e′ ≤ e} by iii) above and
(4.1). For the same reason |E′| > 1 implies z1, z2 ∈ e and consequently z1 = z2. Thus
ϕ′
trop|Σ(ϕ′) is injective.
The stretching factor for all edges of Γ is 1 since ϕ|e is an isometry onto its image.

For all e ∈ E, the stretching factors are equal to 1 since the slope of fe along e is 1. For
all eeij the stretching factor is equal to 1 by Lemma 4.3. Since ϕ′

trop|Σ(ϕ′) in injective this

means all weights are equal to 1. Thus ϕ′
trop represents Σ(ϕ′) faithfully. �

Corollary 4.7. Let ϕ : X → Y be a closed embedding of X into a toric variety Y
that meets the dense torus. Then there exists a refinement ϕ′ of ϕ and a section
ψϕ′ : Tropϕ′(X)→ Xan for ϕ′

trop.

Proof. By Theorem 4.6 we can choose ϕ′ such that ϕ′
trop is fully faithful. Thus ϕ′

trop|Σ(ϕ′)

is a homeomorphism and we define ψϕ′ as the composition of the inclusion of Σ(ϕ′) into
Xan with (ϕ′

trop|Σ(ϕ′))
−1. �

4.3. Smooth tropicalization. Throughout this section, we will work in the following
situation: X is a Mumford curve over K and ϕ : X → Y a closed embedding that meets
the dense torus such that ϕtrop is fully faithful. We denote by Σ(ϕ) the associated
complete skeleton and by τϕ the retraction.
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Lemma 4.8. Let f ∈ K(X)∗ that is faithful with respect to Σ(ϕ). Then ϕ′ = (ϕ, f) : X →
Y × P1 is fully faithful. Further, all vertices in Σ(ϕ′) that map to singular vertices in
Tropϕ′(X) are contained in Σ(ϕ) and map to singular vertices in Tropϕ(X).

Proof. All edges of Σ(ϕ′) that are not edges of Σ(ϕ) have expansion factor equal to 1
by Lemma 4.3. Since f is faithful all these edges have different images under τϕ. Since
ϕtrop is fully faithful, they have different images under ϕ′

trop. Consequently ϕ′
trop|Σ(ϕ′) is

injective. Thus ϕ′
trop is fully faithful.

Let v be a vertex of Σ(ϕ′). Then v is a vertex in Σ(ϕ) (after potential subdivision)
or infinite. Since ϕ′

trop is fully faithfully, the infinite vertices of Tropϕ′(X) have only one
adjacent vertex and are thus smooth. Thus we have to show that if ϕtrop(v) is a smooth
finite vertex of Tropϕ(X), then ϕ′

trop(v) is a smooth vertex of Tropϕ′(X).
Let e0, . . . , en be the adjacent edges of v and write wi := wv,ei for the primitive

integral vector pointing from ϕtrop(v) into ϕtrop(ei). We denote F = log |f |
∣

∣

Σ(ϕ′)
and

L(F ) = F − F (v).
If v is not in div(F ), then F is locally around ϕtrop(v) the restriction to Tropϕ(X) of

an affine function on NR. The vertex v still has n+1 adjacent edges e′0, . . . , e
′
n in Σ(ϕ′)

and the primitive vectors are w′
0 = (w0, L(F )(e0)), . . . , w

′
n = (wn, L(F )(en)). Since F

has integer slopes and is the restriction of an affine function and the wi span a saturated
lattice of rank n, so do the w′

i, which shows that ϕtrop(v) is a smooth vertex of Tropϕ′(X).
If v ∈ div(F ), since f is faithful with respect to Σ(ϕ), v has n + 2 adjacent edges

e′0, . . . , e
′
n, e

′
n+1 in Σ(ϕ′) and the primitive vectors are

w′
0 = (w0, L(F )(e0)), . . . , w

′
n = (wn, L(F )(en)), w

′
n+1 = (0,±1).

Since the wi span a saturated lattice of rank n, the w′
i span a saturated lattice of rank

n+ 1, which shows that ϕ′
trop(v) is a smooth vertex of Tropϕ′(X). �

For a vertex v of Σ(ϕ) and two adjacent edges e0 and e1, we now construct a function
fe1 inK(X)∗ that we will use to construct a tropicalization that is smooth at v. This may
be viewed as generalization to any ambient dimension and any vertex of the constructions
done for special vertices and ambient dimension 2 by Cueto and Markwig [CM16, Section
3]

Construction 4.9. Let v be a vertex of Σ(ϕ) and let e0 and e1 be adjacent edges. Let
Fe1 be a piecewise linear function such that Fe1(v) = 0, de1Fe1(v) = 1, de0Fe1(v) = −1,
deFe1 = 0 for all other adjacent edges, supp(Fe1) ⊂ e1 ∪ e0, and such that div(Fe1) =
∑

±pi for distinct points pi (see Figure 7). For each i fix xi ∈ X(K) such that τ∗xi = pi
and writeD =

∑

±xi. Fixing pillar points pjk outside of supp(F ) and applying Corollary
3.4 we obtain a function fe1 ∈ K(X)∗ that is faithful with respect to Σ(ϕ) and such that
the outgoing slope at v of log |fe1 | equals 1 along e1 and −1 along e0.

Theorem 4.10. Let ϕ : X → Y be an embedding of X into a toric variety Y that meets
the dense torus. Then there exists a refinement ϕ′ : X → Y ′ for a toric variety Y ′ such
that Tropϕ′(X) is a smooth tropical curve.

Proof. By Theorem 4.6, after replacing ϕ by a refinement, we may assume that ϕtrop is
fully faithful.

Let v be a vertex of Σ(ϕ) such that ϕtrop(v) is a singular vertex of Tropϕ(X). Let
e0, . . . , en be the adjacent edges. For k = 1, . . . , n we pick functions Fei : Σ(ϕ) → R

as in Construction 4.9. For each k = 1, . . . , n and i = 1, . . . , g we pick pillar points
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e0 e1v

Figure 7. The graph of Fe1 along the edges e0 and e1 in Construction
4.9, with the dashed line being the zero level.

pki,1, p
k
i,2, p

k
i,3, p

k
i,4 in such a way that

[pki,1, p
k
i,4] ∩ supp(Fk) = ∅ for all i, k and

[pki,1, p
k
i,4] ∩ [pk

′

i′,1, p
k′

i′,4] = ∅ for (k, i) 6= (k′, i′).

Applying now Construction 4.9, we obtain functions fei ∈ K(X). We consider the closed
embedding ϕ′ := (ϕ, (fek)k=1,...,n) : X → (P1)n and its tropicalization

ϕ′
trop : X

an → Trop(Y )× Trop(P1)n.

Applying Lemma 4.3 n times, we see that ϕ′
trop is fully faithful. By construction v still

has n + 1 adjacent edges e′0, . . . , e
′
n in Σ(ϕ′) and log |fei | has slope 1 along e′i, slope −1

along e′0, and is constant on the other edges. This means that projecting a neighborhood
of ϕ′

trop(v) in Tropϕ′(X) ⊂ Trop(Y ) × Trop(P1)n to the second factor, the image is
isomorphic to the one-dimensional fan in Rn whose rays are spanned by the coordinate
vectors x1, . . . , xn and their negative sum x0 = −

∑n
i=1 xi. Further the primitive vector

wv,e′i
is mapped to xi. Thus the wv,e′i

span a saturated lattice of rank n, which means

that v is smooth in Tropϕ′(X).
Since v is singular in Tropϕ(X) but not in Tropϕ′(X), by inductively applying Lemma

4.8, we see that Tropϕ′(X) has fewer singular points than Tropϕ(X).
Thus inductively we can construct ϕ′ such that Tropϕ′(X) is smooth. �

5. Only Mumford curves admit smooth tropicalizations

Let X be a smooth projective curve. In this section we show that the existence of
a closed embedding ϕ : X → Y such that Tropϕ(X) is smooth already implies that X
is a Mumford curve. Since we will not change the embedding in this section, we will
identify X with its image and simply treat X as a closed subcurve of Y . We denote the
completed skeleton associated to the inclusion of X into Y by Σ.

We denote by K◦ the valuation ring of K and by K̃ its residue field. Further we
denote by T the dense torus of Y , by N its cocharacter lattice and NΛ = N ⊗ Λ ⊂ NR.

We will use the notion of affinoid domains in Xan and their formal models. For an
introduction to these notions we refer the reader to [BPR16, Section 3].

Definition 5.1. Let w ∈ NΛ ∩ Trop(X). Then Xw := trop−1(w) is an affinoid domain
in Xan. The point w determines a formal model Xw for Xw.

The initial degeneration is the special fiber inw(X) := Xw
s := Xw ⊗K◦K̃.

Remark 5.2. Assume that inw(X) is reduced. By [BPR16, Proposition 3.13] we have
that Xw is the canonical model of Xw. Then we have a canonical reduction map
red : Xw → inw(X) [Ber90, Section 2.4]. Let C be an irreducible component of inw(X)
with generic point η. Then there is a unique point xw ∈ X

w such that red(xw) = η and
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that point satisfies that Cxw is birational to C [Ber90, Proposition 2.4.4]. If z is a smooth
closed point of inw(X) then red−1(z) is isomorphic to an open disc [BL85, Proposition
2.2].

In particular, if inw(X) is smooth and rational, then all type II points in Xw have
genus 0.

We will use the following Proposition. Since we will apply it in the case of a trivially
valued field, we allow the absolute value of the field to be trivial.

Proposition 5.3. Let T be an algebraic torus over a non-archimedean field, whose ab-
solute value may be trivial. Let T ′ be a subtorus and let U be a closed subvariety of T .
If Trop(U) ⊂ Trop(T ′) then a translate of U that has the same tropicalization as U is
contained in T ′.

Proof. We consider the quotient torus T/T ′. Denote by U the image of U in the quotient
torus T/T ′. Then the tropicalization of U in Trop(T/T ′) = Trop(T )/Trop(T ′) is a point
by construction, meaning that U is contained in a translate t · T ′ of T ′, where all entries
of T have absolute value 1. Thus t−1 · U is a translate of U that is contained in T ′ and
has the same tropicalization as U . �

In the following, we view K̃ as a non-archimedean field, carrying the trivial absolute
value.

Theorem 5.4. Let T be an algebraic torus over K̃. Let U ⊂ T be a closed curve. If
Trop(U) is smooth then U is smooth and rational.

Proof. In the case where Trop(U) spans Trop(T ), it follows from [KP11, Proposition
4.2] that the closure of U in Pn is a one-dimensional linear space. Thus U is a smooth
rational curve. We reduce to this case: Let V be the vector subspace of Trop(T ) that
is spanned by Trop(U). Since V is a rational subspace, there exists a subtorus T ′ of T
such that Trop(T ′) = V . Now replacing U by the translate from Proposition 5.3 and
applying Katz’s and Payne’s result to U and T ′ proves the theorem. �

Corollary 5.5. If Trop(X) is smooth, then inw(X) is a smooth rational curve for all
w ∈ Trop(X) ∩NΛ.

Proof. Let w ∈ Trop(X)∩NΛ. Then inw(X) is a closed subvariety of a torus TK̃ over K̃.
Denote by Trop(inw(X)) its tropicalization. Then the local cone at w in Trop(X) equals
Trop(inw(X)) by [Gub13, 10.15]. Thus inw(X) is a smooth rational curve by Theorem
5.4. �

Theorem 5.6. If Trop(X) is smooth, then X is a Mumford curve.

Proof. Let w ∈ Trop(X) ∩NΛ. By Corollary 5.5, inw(X) is smooth and rational. Thus
all type II points in Xw have genus 0 by Remark 5.2. Since all type two points map to
NΛ under the tropicalization map, all type II points in Xan have genus zero which shows
that X is a Mumford curve by Remark 2.12 �

Theorem 5.7. If Trop(X) is smooth, then the tropicalization map is fully faithful.

Proof. By Corollary 5.5, all initial degenerations are smooth and rational. For all w ∈
NΛ ∩ Trop(X), by Remark 5.2, there is a unique point xw ∈ Xw that satisfies that
red(xw) is the generic point of inw(X). Furthermore, every point in Xw \ {xw} has
a neighborhood isomorphic to an open disc, thus is not contained in Σ. We conclude
that every point w ∈ NΛ ∩ Trop(X) has xw as its unique preimage under trop |Σ. Since
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trop |Σ is continuous and linear on each edge, this implies that trop |Σ : Σ → Trop(X)
is bijective. Since all weights are 1, this shows that the tropicalization map is fully
faithful. �

Note that when X comes by base change from a family of Riemann surfaces over
the punctured disc, Theorems 5.6 and 5.7 are consequences of [IKMZ19, Corollary 2].
The relation between Hodge and Betti numbers in tropical geometry is different than in
complex geometry. The (0, 1)-tropical Hodge number of Trop(X) is equal to the first
Betti number of Trop(X). Using this and [IKMZ19, Corollary 2] one finds that the first
Betti number of Trop(X) is equal to g, which, since Trop(X) is smooth, implies that
trop |Σ is injective, hence bijective.
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