
ar
X

iv
:1

80
5.

11
65

7v
1 

 [
m

at
h.

N
T

] 
 2

6 
M

ay
 2

01
8

ON THE DISTRIBUTION OF PRIMES IN THE ALTERNATING SUMS OF

CONCECUTIVE PRIMES

ROMEO MEŠTROVIĆ

ABSTRACT. Quite recently, in [8] the authoor of this paper considered the distribution

of primes in the sequence (Sn) whose nth term is defined as Sn =
∑2n

k=1 pk, where

pk is the kth prime. Some heuristic arguments and the numerical evidence lead to the

conjecture that the primes are distributed among sequence (Sn) in the same way that

they are distributed among positive integers. More precisely, Conjecture 3.3 in [8] as-

serts that πn ∼ n

logn
as n → ∞, where πn denotes the number of primes in the set

{S1, S2, . . . , Sn}. Motivated by this, here we consider the distribution of primes in

aletrnating sums of first 2n primes, i.e., in the sequences (An) and (Tn) defined by

An :=
∑2n

i=1(−1)ipi and Tn := An − 2 =
∑2n

i=2(−1)ipi (n = 1, 2, . . .).
Heuristic arguments and computational results suggest the conjecture that (Conjec-

ture 2.5)

π(Ak)(An) ∼ π(Tk)(Tn) ∼
2n

logn
as n → ∞,

where π(Ak)(An) (respectively, π(Tk)(Tn)) denotes the number of primes in the set

{A1, A2, . . . , An} (respectively, {T1, T2, . . . , Tn}). Under Conjecture 2.5 and Pillai’s

conjecture, we establish two results concerning the expressions for the kth prime in the

sequences (An) and (Tn). Furthermore, we propose some other related conjectures and

we deduce some their consequences.

1. INTRODUCTION, MOTIVATION AND PRELIMINARIES

Motivated by the notion of generalized prime system or g-prime system) G introduced

by A. Beurling in [2] which generalizes the notion of primes and positive integers, in [8,

Section 1] it was considered a system described as follows.

Let P := {p1, p2, p3, . . .} be the set of all primes 2 = p1 < p2 < p3 < · · · and let N
be an increasing integer sequence (ak)

∞
k=1.

Let (P,N := (ak)
∞
k=1) be a pair defined above. Then we define its counting function

[8, p. 3] N(ak)(x) x ∈ [1,∞)) as

N(ak)(x) = #{i : i ∈ N and ai ≤ x}.
Furthermore, the prime counting function for (P,N ) is the function x 7→ π(ak)(x) de-

fined on [1,∞) as

(1) π(ak)(x) = #{q : q ∈ P and q = ai for some i with ai ≤ x}.
Some heuristic and computational results show that for many “natural pairs” (P,N :=
(ak)

∞
k=1) the associated counting function N(ak)(x) satisfies certain asymptotic growth

as x → ∞ (see [8, Section 2]). Notice that for each positive integer n we define [8, the

equality (2) with G = P]

(2) π(ak)(an) = #{q : q ∈ P and q = ai for some i with 1 ≤ i ≤ n}.
2010 Mathematics Subject Classification. Primary 11A41, Secondary 11A25.
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Accordingly, we give the following definition [8, Definition 1.1].

Definition 1.1. Let Ω be a set of all nonnegative continuous real functions defined on

[1,+∞) and let (ak)
∞
k=1 := (ak) be an increasing sequence of positive integers. We

say that (ak) satisfies ω-Restricted Prime Number Theorem if there exists the function

ω(ak) = ω ∈ Ω such that the function n 7→ π(ak)(an) defined by (2) is asymptotically

equivalent to ω(n) as n → ∞.

In particular, if ω(x) ∼ x/ log x as x → ∞, then we say that a sequence (ak) satisfies

the Restricted Prime Number Theorem (RPNT).

Notice that by the Prime Number Theorem,

lim
x→∞

π(x)
x

log x

= 1,

where π(x) is the prime counting function, i.e., π(x) denotes the number of primes less

than x. For history, see [1] and [7, p. 21].

Motivated by our recent paper [8] concerning the distribution of primes in the se-

quence (Sn) with Sn =
∑2n

i=1 pi (n = 1, 2, . . .), computations (Table 1), Pillai’s conjec-

ture (Conjecture 2.5) and some heuristic arguments, in the following section we propose

the conjecture (Conjecture 2.5) on the distribution of primes in the sequences (An) and

(An − 2) with An =
∑2n

i=1(−1)ipi. Namely, Conjecture 2.2 asserts that the number of

primes in in the set {A1, A2, . . . , An} is ∼ 2n
logn

as n → ∞. Under Pillai’s conjecture and

Conjecture 2.5, we deduce two consequences concerning the asymptotic expressions for

the kth prime in the sequences (An) and (An − 2). Some related conjectures and their

corollaries are also presented. Finally, by using computational results up to n = 5 · 108,
we propose some conjectures on the estimates of differences An − pn.

2. THE DISTRIBUTION OF PRIMES IN ALTERNATING SUMS (An) AND (An − 2) WITH

An :=
∑2n

i=1(−1)ipi

In this section we consider the distribution of primes in alternating sums of consecu-

tive primes; namely, in the sequences (An) and (Tn) respectively defined by

An =

2n
∑

i=1

(−1)ipi, n = 1, 2, . . . ,

and

Tn =

2n
∑

i=2

(−1)ipi, n = 1, 2, . . . .

Notice that Tn = An − 2 (n = 1, 2, . . .) and here we present conjectures and related

results based on computational results concerning the sequence (An). Notice that com-

putational results and heuristic arguments related to the sequence (Tn) suggest the same

conjectures and their consequences as these for the sequence (An).
For computational investigations of distribution of primes presented in Table 1, we

proceed similarly as in [8, Section 6], where the analogous study is considered for the

sequence (Sn) with Sn =
∑2n

i=1 pi (n = 1, 2, . . .).

Remark 2.1. Note that (An) is the sequence consisting of terms of Sloane’s sequence

A008347 [12] (firstly introduced by N.J.A. Sloane and J.H. Conway) with even indices

defined as an =
∑n−1

i=0 (−1)ipn−i (a0 = 0, 2, 1, 4, 3, 8, 5, . . .); namely, An = a2n for
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all n = 1, 2, . . .. Notice also that the “complement” (with respect to N) of Sloane’s

sequence A008347 is the sequence A226913 (6, 9, 10, 11, 14, 15, 17, . . .). Furthermore,

the sequence (An) is also closely related to Sloane’s sequence A131694-numbers n such

that bn :=
∑n

i=1(−1)ipi is a prime (1, 4, 6, 8, 10, 12, 18, . . .).
Recall also that Sloane’s sequence A066033 is defined as an = 2+

∑n
i=2(−1)ipi with

a1 = 2 (2, 5, 0, 7,−4, 9,−8, 11,−12, 17, . . .); the sequence A136288 defined as primes

which are the absolute value of the alternating sum and the difference of the first n
primes (2, 3, 5, 7, 13, 19, 29, 53, 61, . . .) (cf. the sequences A163057-an alternating sum

from the nth odd number up to the nth odd prime (2, 4, 6, 9, 11, 14, 16, . . .), and the

related sequences A163058-primes in A163057 (2, 11, 19, 23, . . .). Notice also that the

sequences A264834, A242188, A240860, A233809, A226743, A131196 and A131197

are closely related to the sequence A008347.

In 1982 D.A. Goldston [6] has proved assuming the Riemann Hypothesis that

∑

pi<x

pi−pi−1≥d

(pi − pi−1) = O

(

x log x

d

)

uniformly for d ≥ 2, which for d = 2 putting x = p2n and p2n ∼ 2n logn immediately

yields

An :=
2n
∑

i=1

(pi − pi−1) = O(n log2 n).

Assuming the Riemann Hypothesis, as a consequence of a conjecture posed in 2011 by

M. Wolf [13, Conjecture 1], Wolf [13, the asymptotic relation (41) of Section 4] noticed

that
∑

pi<x

pi−pi−1≥d

(pi − pi−1) ∼ x+
d(d− 1)

2
· x

log2 x
+O

(

1

log3 x

)

which for x so large that log x > d is indeed smaller than the above upper bound of

Goldston. In particular, for d = 2, k = p2n and p2n ∼ 2n logn the previous estimate

gives

An :=

2n
∑

i=1

(pi − pi−1) ∼ p2n ∼ 2n logn.

However, a computation shows that the above asymptotic relation is probably false, i.e.,

it is probably true with n log n instead of 2n log n (i.e., with pn instead of p2n) on the right

hand side. This is in fact the following conjecture due to Pillai [10, p. 84, Conjecture

34] (also cf. [12, Comments of Joseph L.Pe in Sloane’s sequence A008347]).

Conjecture 2.2. If k ∈ N, then

(3)
∣

∣

∑

i≤k

(−1)i−1pi
∣

∣ ∼ pk
2

as k → ∞.

Corollary 2.3. Under Pillai’s Conjecture 2.2 we have

(4) An ∼ Tn ∼ n log n as n → ∞.

More precisely,

(5) An ∼ Tn ∼ n log n+ n log logn− n + o(n) as n → ∞.
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Proof. Taking k = 2n and the well known asymptotic relation p2n ∼ 2n log 2n ∼
2n logn into (3) (see, e.g., [9]), we immediately obtain (4).

Furthermore, by Cipolla’s formula [3] for the approximation to the kth prime,

pk = k log k + k log log k − k + o(k).

Taking the above expression with k = 2n into (3), we immediately obtain (5). �

Remark 2.4. Since

An = p2n − (p2n−1 − p2n−2)− · · · − (p3 − p2)− p1,

we see that An < p2n for all n = 1, 2, . . ..
Using the asymptotic relation (4) and the fact that An is an odd integer for all n ∈ N,

some heuristic arguments together with the Prime Number Theorem suggest that the

“probability” of An being a prime is 2/ logn. Consequently, there are ∼ 2n/ logn
primes that belong to the set {A1, A2, . . . , An} (of course, the same assertion holds for

the sequence (Tn)). This together with computational results given in Table 1 leads to

the following conjecture.

Conjecture 2.5. Let (An) and (Tn) be the sequences for which An =
∑2n

i=1(−1)ipi and

Tn = An − 2 =
∑2n

i=2(−1)ipi. Then in accordance to the notion of Definition 1.1,

(6) ω(An)(x) = ω(Tn)(x) ∼
2x

log x
as x → ∞,

or equivalently,

π(Ak)(An) = #{p : p is a prime and p = Ai for some i with 1 ≤ i ≤ n}

∼ 2n

log n
as n → ∞(7)

and

π(Tk)(Tn) = #{p : p is a prime and p = Ti for some i with 1 ≤ i ≤ n}

∼ 2n

log n
as n → ∞.

(8)

Notice that in all our results of this section (Theorem 2.8 and Corollaries) we assume

the truth of Conjectures 2.2 and 2.5.

Observe that |∑n
i=1(−1)ipi| is equal to An/2 for even n, while |∑n

i=1(−1)ipi| is even

for odd n. This fact shows that Conjecture 2.5 is equivalent with the following one.

Conjecture 2.5.’ Let (an) be the sequence defined as an = |∑n
i=1(−1)ipi|. Then

(9) ω(an)(x) =
x

log x
.

In other words, the sequence (an) satisfies the Restricted Prime Number Theorem.

As a direct application of Conjectures 2.2 and 2.5, we obtain the following An (Tn)-

analogue of Corollary 3.6 in [8] concerning the sequence (Sn) with Sn =
∑2n

i=1 pi.

Corollary 2.6 (The asymptotic expression for the kth prime in the sequences (An) and

(Tn)). Let rk (k = 1, 2, . . .) be the kth prime in the sequence (An) ( or (Tn) ). Then

(10) rk ∼ k log2 k

2
as k → ∞.
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Proof. If a pair (k,m) satisfies rk = Am, then by (6) of Conjecture 2.5, 2m ∼ k logm
as k → ∞, and hence, logm ∼ log k as k → ∞. The previous two asymptotic relations

immediately give

(11) m logm ∼ k log2 k

2
as k → ∞.

Since by (4) of Corollary 2.3, rk ∼ m logm as k → ∞, substituting this into (11), we

immediately obtain (10). �

Notice that the Prime Number Theorem and Corollary 2.3 immediately yield the fol-

lowing result.

Corollary 2.7. Under Conjecture 2.2 there holds

(12) π(An) ∼ π(Tn) ∼ n as n → ∞.

where π(x) is the prime counting function.

Furthermore, we have the following An-analogue of Theorem 4.4 of [8] concerning

the sequence (Sn) with Sn =
∑2n

i=1 pi.

Theorem 2.8 (The asymptotic expression for the kth prime in the sequence (An)). Let

rk be the kth prime in the sequence (An) (k = 2, 3, . . .). Then under Conjectures 2.2

and 2.5, there exists a positive sequence (Rk) such that limk→∞Rk = 1 and

(13) rk =
1

2
R3

kk log k(log k + log log k + 2 logRk).

Proof of Theorem 2.8 is based on the following result.

Lemma 2.9. Let rk = Am be the kth prime in the sequence (An). Then under Conjec-

tures 2.2 and 2.5,

(14) rk ∼ m
√
2m logm√
k log k

as k → ∞.

Proof of Lemma 2.9. From the proof of Corollary 2.6 we see that 2m ∼ k log k and

rk ∼ m logm as k → ∞. The previous two asymptotic relations immediately imply

(14). �

Proof of Theorem 2.8. Proof of Theorem 2.8 is based on Lemma 2.9. Since this proof is

completely similar to those of Theorem 4.4 of [8], it can be omitted. �

Computational results (see seventh column in Table 1) suggest the following conjec-

ture (cf. Conjecture 4.6 of [8]).

Conjecture 2.10. For each pair (k,m) with k ≥ 1 and rk = Am we have

(15) ⌊k log k⌋ + 1 ≤ 2m,

or equivalently,

(16) rk ≥ A⌊(k+1)/2⌋.

Consequently, we can obtain the following two corollaries (cf. Corollaries 4.7, 4.8

and their proofs from [8]).
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Corollary 2.11. If the inequality (15) of Conjecture 2.10 is true, then for each k ≥ 1
there holds

(17) rk >
k

2
log k(log k + log log k).

Corollary 2.12. If the inequality (15) of Conjecture 2.10 is true, then Rk > 1 for each

k ≥ 1, where (Rk) is the sequence defined by (13) in Theorem 2.8.

Remark 2.13. As observed above, An = a2n for all n = 1, 2, . . ., where (an) is Sloane’s

sequence A008347 [12] defined as an =
∑n−1

i=0 (−1)ipn−i. Z.-W. Sun [12, Conjectures

(i)–(iv) in Comments of Sloane’s sequence A008347] proposed certain conjectures in-

volving the sequence A008347. In particular, Sun conjectured that for each n > 9,

(18) an+1 < (an−1)
(1+2/(n+2)).

The conjecture has been verified by Sun for n up to 108. Notice that (18) with 2n − 1
instead of n can be written as

An < (An−1)
(1+2/(2n+1)), n = 6, 7, . . . .

Sun also conjectured that (an) contains infinitely many Sophie Germain primes (given as

Sloane’s sequence A005384 in [12]), and that there are infinitely many positive integers

n such that an − 1 and an + 1 are twin primes.

Table 1 obtained via Mathematica 9 presents our computational results concern-

ing the number of “alternating prime sums” rk (under Conjecture 2.5) and related ex-

pression (the equality (13) of Theorem 2.8). The value k in the second column of Table

1 presents the number of primes in set An := {A1, A2, . . . , An}, where n is a corre-

sponding value given in the first column of this table. Hence, under notations of Section

1 and Conjecture 2.5,

k := π(Ak)(An) = #{p : p is a prime and p = Ai for some i with 1 ≤ i ≤ n}.
The appropriate value of the greatest prime rk in An is given in the third column, while

after the value of rk in the bracket it is written the value n − m, where m is the index

such that qk = Am. In the fourth column we present the corresponding values of Rk

obtained as solutions of the equation (13) in Theorem 2.8. The fifth column of Table

1 presents the values R
(u)
k := An/(n logn) which are upper bounds of Rk. Notice that

weakly but for computational purposes more suitable upper bounds of Rk than R
(u)
k , are

given as R
(u′)
k := Ak/(k log k).

The values of seventh column suggest that Conjecture 2.2 is probably true, but we

believe that the values of these column are close to 1 for large values n ≫ 5 ·108. Notice

also that the values in the last column of Table 1 suggest the truth of Lemma 2.9 and

Conjecture 2.14.

For example, from Table 1 we see that r33 = A96 = 563, r15234 = A9992 = 1379813,

r129447 = A999994 = 16230881 and r9833766 = A99999972 = 2111199529.
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Table 1. Distribution of primes in the sequence (An) in the range 1 ≤ n ≤ 5 · 108

n k rk with (n−m) Rk R
(u)
k

:=
An

n logn

An − pn

n log logn

k logm

2m

rk
√
k log k

m
√
2m logm

10 6 29(1) 1.24290 1.43317 0.47960 0.73241 1.03381

102 33 563(4) 1.23573 1.29637 0.36670 0.78450 1.00799

103 254 8807(1) 1.23573 1.27523 0.46051 0.87804 0.95632

104 1982 113557(4) 1.15094 1.23334 0.39931 0.91307 0.92720

105 15234 1379813(8) 1.15567 1.19862 0.32845 0.87700 1.02665

106 129447 16230881(6) 1.13701 1.17484 0.28379 0.89412 1.02546

107 1116732 186806173(11) 1.12667 1.15899 0.26554 0.89998 1.02000

2 · 107 2144771 388274699(4) 1.12395 1.11113 0.26022 0.90141 1.02100

5 · 107 5097220 1019145103(2) 1.12042 1.10839 0.25525 0.90361 1.02016

7 · 107 7007444 1451570059(19) 1.12926 1.10742 0.25307 0.90416 1.01966

108 9822766 2111199529(28) 1.11807 1.14610 0.25099 0.90471 1.01916

108 + 5 · 107 14431395 3230666071(2) 1.11662 1.14404 0.24854 0.90563 1.01877

2 · 108 18966586 4368109771(8) 1.11561 1.14266 0.24721 0.90631 1.01858

3 · 108 27883839 6680071639(1) 1.11427 1.14076 0.24538 0.90712 1.01823

4 · 108 36664392 9027893009(0) 1.11332 1.13948 0.24436 0.90776 1.01807

5 · 108 45345672 11401770283(28) 1.11126 1.13846 0.24322 0.90828 1.01791

In view of the data of the last column in Table 1, we propose the following two con-

jectures (cf. Conjecture 4.9 of [8] concerning the kth prime in the sequence (Sn) with

Sn =
∑2n

i=1 pi).

Conjecture 2.14. For every k ≥ 15234 with rk = Am there holds

rk >
m
√
2m logm√
k log k

.

Furthermore, heuristic arguments, some computational results and Conjecture 2.5 lead

to the following its two generalizations (cf. [8, Conjectures 3.9 and 3.18]).

Conjecture 2.15. For any fixed nonnegative integer d the sequence (A
(d)
n )∞n=1 defined as

A(d)
n = 2d+ An = 2d+

2n
∑

i=1

(−1)ipi, n = 1, 2, . . .

satisfies the Restricted Prime Number Theorem. In other words, as n → ∞,

π(2d+Ak)(2d+ An) := #{p : p is a prime and p = 2d+ Si

for some i with 1 ≤ i ≤ n} ∼ 2n

log n
.

(19)

Notice that For d = −1, Conjecture 2.15 is in fact the part of Conjecture 2.5 concern-

ing the sequence (Tn) with Tn = An − 2 (n = 1, 2, . . .).

Conjecture 2.16. For any fixed positive integer k, let (A
(k)
n ) := (A

(k)
n )∞n=1 be the se-

quence whose nth term is defined as

A(k)
n =

2n+1
∑

i=1

(−1)i−1pi+k, n = 1, 2, . . . .

Then the sequence (A
(k)
n ) satisfies the Restricted Prime Number Theorem.

Suppose that a and d are relatively prime positive integers. Then Dirichlet’s theorem

[4] asserts that that there are infinitely many primes of the form kd+a with k ∈ N∪{0}.

Dirichlet’s theorem, Conjecture 2.5 and some computational results lead to the following

conjecture.
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Conjecture 2.17 (Dirichlet’s theorem for the sequences An and Tn). Suppose that a and

d are relatively prime positive integers. Then in the sequence An (Tn) there are infinitely

many primes of the form kd+ a with k ∈ N ∪ {0}.

Finally, sixth column of Table 1 suggests the following conjecture.

Conjecture 2.18. For each n ≥ 50,

(20) An − pn >
n log logn

5
,

and for each n ≥ 108 + 5 · 107,

(21) An − pn <
n log logn

4
.

Notice that the inequalitiy pn < n logn + n log log n with n ≥ 6 (see [5] and [11,

(3.13) of Corollary, p.69]) together with some additional computations immediately

yields the consequence of the first part of Conjecture 2.18 given as follows.

Corollary 2.19. Under the inequality (20) of the first part of Conjecture 2.18, we have

(22)
An

pn
− 1 >

log log n

5 logn
for each n ≥ 50.

Similarly, the inequalitiy pn > n logn with n ≥ 1 (see, e.g., [11, (3.12) of Corollary,

p.69]) immediately yields the consequence of the second part of Conjecture 2.18 given

as follows.

Corollary 2.20. Under the inequality (21) of the second part of Conjecture 2.18, we

have

(23)
An

pn
− 1 <

log logn

4 logn
for each n ≥ 108 + 5 · 107.

Remark 2.21. From (22) and (23) it follows that for every n ≥ 108 + 5 · 107 there exists

a real number Cn with 1/5 < Cn < 1/4 such that

(24) An − pn = Cnn log log n.

Observe that the equality (24) is a refined version of “even case” of Pillai’s conjecture

(i.e., Conjecture 2.2 for even positive integers k such that k ≥ 2(108 + 5 · 107)).
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