
Hyperelliptic Curves over Small Finite Fields
and GPU Accelerators
Martin Raum1

Abstract: We present a hardware-accelerated computation of Hasse-Weil invariants of all hyperelliptic

curves of given genus over a fixed finite field. Our main motivation is the determination of traces of

Frobenius on cohomology corresponding moduli stacks à la Bergström-Faber-van-der-Geer. This pa-

per also constitutes a case study of the performance of lookup table based Zech arithmetic on Graphics

Processing Units (GPUs). GPUs are by now ubiquitous in numerics, to an extend that their develop-

ment itself is propelled by scientific computing. Algebraic computing has profited very little from the

advancement of hardware design. We suggest that specific computations can be benificially adjusted

to GPUs with comparatively little effort.
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IN a series of papers Bergström, Faber, and van der Geer showed how to obtain traces of
Frobenius on cohomology of local systems on moduli stacks of curves and of abelian va-

rietes of genus 2 and 3 from (weighted) multiplicities of Hasse-Weil invariants on the moduli
stack of genus 2 and 3 curves over finite fields [Ber09; BFG08; BFG14; BG08; FG04a; FG04b].
From their computations emerged presumable motivic pieces in the cohomology of M3,n

that are not associated with automorphic forms for Sp3. Instead, a series of subsequent com-
putations by Chenevier, Renard, Lannes, Taïbi, and Mégarbané [CL18; CR15; Még16; Taï17]
suggests that they do match automorphic forms for SO7 and SO9. However, it remains un-
explained why. More experimental data might give inspiration towards a resolution of this
mystery.

Counts of Hasse-Weil invariants of hyperelliptic curves over finite fields Fq constitute the
computational heart of Bergström’s, Faber’s, and van der Geer’s findings. The first motivation
for the present work is to extend the range of previous data in genus 2 and 3 and to include
the case of genus 4. We make this possible by a more detailed understanding of how finite
field arithmetics performs on hardware accelerators. As a result, we can provide data2 for odd
prime powers q , if q < 300 and g = 2, if q < 50 and g = 3, and if q < 15 and g = 4. Data that we
generated shall eventually be incorporated into a database of Siegel modular forms [BFG17]
in the cases of g = 2 and g = 3. The high point of our computation is the case of g = 4, which
bears the potential to detect new motivic pieces in the cohomology of moduli H4,n of marked
hyperelliptic curves by means of [Ber09]. To compute traces on cohomology of M3,n , we will
have to also consider plane curves of degree 4 [Ber08]; cohomology of M4,n requires even
further considerations [Tom05]. Both cases will be pursued separately in a sequel.

The author was partially supported by Vetenskapsrådet Grant 2015-04139.
2This computation was partially performed using resources of the Chalmers Centre for Computational Sci-

ence and Engineering C3SE.
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By work of Harvey, Hasse-Weil invariants can be computed in asymptotically polynomial
time [Har14; HS14; HS16], and a more than excellent implementation of the resulting algo-
rithm is available in Sutherland’s smalljac. Harvey’s algorithm, however, requires a certain
precomputation that must be performed for each curve. As a result, it is not pracitical for
the small finite fields over which our hyperelliptic curves are defined. The naive determina-
tion of Hasse-Weil invariants by evaluation of a Weierstraß model at all points turns out to be
superior. Performance can then be improved by tweaking arithmetics of finite fields.

This connects to our second motivation for this paper: We explore the potential towards
hardware accelerated arithmetics in finite fields. We provide an implementation of our cen-
tral Algorithm 1 for both CPUs and GPUs in order to compare them. It is based on lookup
tables for Zech logarithms. On our test system we are able to verify a speedup by a factor of 17
in the relevant parameter range when using GPUs; and 37 for larger primes. Beyond that
we improve by several orders of magnitude on the performance of the previously employed
computer program.

In our discussion of performance, we evaluate the impact of two issues: Random memory
access patterns arising from lookup tables and branch divergence arising from a dichotomy in
our data types. While the latter does not influence performance severely, the former sets the
limits of our approach. In light of the rapid improvements of memory and cache that is built
into scientific GPUs, this is good news as it suggests that the relative performance advantage
of our approach against mere CPU-focused implementations might further increase in the
close future.

Finite fields are crucial for many constructions in theoretical mathematics. While, for ex-
ample, algebraic geometry over finite fields features them intrinsically, they appear as aux-
iliary objects in multi-modular algorithms. Characteristics of finite fields that appear in the
context of theoretical mathematics are rather different from those arising in elliptic curve
cryptography or in RSA crypto-systems. In particular, their sizes are moderate, as opposed to
excessively large fields in cryptography that aim at making the computation of discrete log-
arithms virtually impossible. The medium range of field size that make appearance in our
computation has apparently not yet been addressed in the context of co-processors. In this
paper, we close this gap. Given that revised programming standards like OpenMP 4.5 make
the utilization of hardware accelerators easier than ever before, we expect that our work might
be instrumental to a broader adoption within, for example, the overlap of computational
mathematics with number theory and various flavors of geometry.

Acknowledgement The author is grateful to Jonas Bergström for helpful discussions and his
comments on an early version of this manuscript.

1 Counts of hyperelliptic curves and Hasse-Weil invariants
We summarise the information on hyperelliptic curves that we need to formulate Algo-

rithm 1. Compare [Ber09] for a similar discussion. We throughout fix a power q of an odd
prime p and a genus g ∈Z≥2.
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1.1 Hasse-Weil invariants of hyperelliptic curves Fix a finite field Fq with q elements. A
smooth and proper algebraic curve C of genus g is called hyperelliptic if it admits a morphism
to P1 of degree 2. Since q is odd, there is a defining equation

C : Y 2 = f (X ) =
2g+2∑
n=0

cn X n

for a polynomial f (X ) of degree 2g+1 or 2g+2. After homogenizing f , this yields a description
of C as a subset of the weighted projective space P(1, g +1,1) including possible points (1 : y :
0) at infinity. If f is square-free then C is smooth. For convenience, we set f (∞) := c2g+2.

Given a square-free polynomial f (X ) over Fq with associated hyperelliptic curve C f and a
finite field E⊇ Fq , we have

#C f (E) = r 0( f ,E)+2r�( f ,E)+ (
1+χE( f (∞))

)
,

where

r 0( f ,E) := #
{

x ∈ E : f (x) = 0
}
,

r�( f ,E) := #
{

x ∈ E : f (x) is a square in E
}
,

and χE is the quadratic character associated with E. We write

a( f ,E) = 1+#E−#C f (E) (1.1)

for the Hasse-Weil invariants of C f .
From the decomposition of #C f (E) into r 0( f ,E) and r�( f ,E), it becomes clear that

#C f (E)+#C f −(E) = 2+#E for f −(X ) = f (−X ).

We call f − the quadratic twist of f , following the established terminology for the associated
curves C f and C f − = (C f )−.

Let Pgg (Fq ) be the set of square-free polynomials of degree 2g + 1 and 2g + 2 with coeffi-
cients in Fq . We write Λ(d) for the set of integer partitions of d ∈ Z≥0. Given f ∈ Pgg (Fq ) of
degree 2g + 2, we let λ( f ) = deg f1 + ·· · +deg fl be the integer partition associated with the
factorization f (X ) =∏l

i=1 fi into irreducible polynomials over Fq If deg f = 2g +1, we let λ( f )
be that partition amended by an additional summand 1.

The goal of this paper is to compute for fixed g and q the following map:

Ng ,q : Zg
≥0 ×Λ(2g +2) −→Z≥0,(
(a1, . . . , ag ),λ

)−→ #
{

f ∈ Pgg (Fq ) : ∀1 ≤ e ≤ g : a( f ,Fqe ) = ae , λ( f ) =λ
}
.

(1.2)

Bergström describes how to extract from its values the traces of Frobenius on cohomology of
the moduli stack of marked hyperelliptic curves [Ber09].
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1.2 Affine reduction of hyperelliptic curves There is an action of GL2(Fq )×F×q on Pgg (Fq )
that preserves #C f (E):

(
f
∣∣((a b

c d

)
,e

))
(X ) := (c X +d)2g+2 f

(aX +b

c X +d

)/
e2.

Its orbits are in general hard to determine, but the action of G(Fq ) = Aff1(Fq )×F×q is transpar-
ent. Here

Aff1(Fq ) := {(
a b
0 1

) ∈ GL2(Fq )
}

is the group of affine transformations. We next discuss a reduction theory for this action. To
this end, fix sets of representatives Ri of F×q /F× i

q , i ∈Z≥0.
Fix d ∈ {2g +1,2g +2} and let Pd (Fq ) be the set of square-free polynomials of degree d with

coefficients in Fq . Recall that q is a power of a prime p. We consider the cases p -d and p |d
separately. Suppose that p -d and consider a polynomial f (X ) ∈ Pd (Fq ). Replacing X by X −
cd−1/dcd , we see that every orbit of G(Fq )� Pd (Fq ) contains at least one representative f (X ) =∑

cn X n such that cd−1 = 0. This reduction corresponds the action of (
(

1 b
0 1

)
,1) ∈ G(Fq ).

Set

i := inf
{
0 ≤ i ′ < d : ci ′ 6= 0

}
, j := inf

{
0 ≤ j ′ < i : c j ′ 6= 0

}
.

If j 6= −∞, using the action of (
(

a 0
0 1

)
,1) ∈ G(Fq ), we may replace X by aX and thus achieve that

c j /ci ∈ Ri− j . We have i 6= −∞, since f is square-free and d ≥ 5. After employing the action of
(
(

1 0
0 1

)
,e) ∈ G(Fq ), we may therefore assume that ci ∈ R2. This shows that if p -d , then Pd (Fq )

equals G(Fq )P̃d (Fq ) where P̃d (Fq ) is the intersection of Pd (Fq ) with{
cd X d + c0X 0 : cd ∈ F×q ,c0 ∈ R2

}
∪ ⋃

1≤i≤d−2
0≤ j<i

{
cd X d + ci X i + c j X j +·· ·+c0X 0 :

cd ∈ F×q ,ci ∈ R2,c j ∈ ci Ri− j , c j−1, . . . ,c0 ∈ Fq

}
.

We shall refer to the elements of P̃d (Fq ) as reduced. The number of polynomials Pd (Fq ) with
reduction f (X ) = ∑

ci X i will be called the multiplicity of f and is denoted by mult( f ). It
clearly only depends on the support of the coefficients. Specifically, we have

mult(cd X d + c0X 0,Fq ) =
#Fq #F×q

#R2
= q(q −1)

2
,

mult(cd X d + ci X i + c j X j +·· ·+c0X 0,Fq ) =
#Fq (#F×q )2

2#Ri− j
= q(q −1)2

2gcd(q −1, i − j )
.

Now consider the case p |d and let f ∈ Pd (Fq ). If cd−1 6= 0, then we can replace X by X−cd−2/
(d −1)cd−1 to ensure that cd−2 = 0. The remaining reduction process is the same as before,
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so that we may choose as a set of reduced polynomials P̃d (Fq ) the square-free ones in the
following set: {

cd X d + cd−1X d−1 + c0X 0 : cd ∈ F×q ,cd−1 ∈ Fq ,c0 ∈ R2
}

∪ ⋃
1≤i≤d−3

0≤ j<i

{
cd X d + cd−1X d−1 + ci X i + c j X j +·· ·+c0X 0 :

cd ∈ F×q ,cd−1 ∈ Fq ,ci ∈ R2,c j ∈ ci Ri− j , c j−1, . . . ,c0 ∈ Fq

}
.

The corresponding numbers of elements in Pd (Fq ) with prescribed reduction are

mult(cd X d + cd−1X d−1,Fq ) = q ,

mult(cd X d + cd−1X d−1 + c0X 0,Fq ) = q(q −1)

2
,

mult(cd X d + cd−1X d−1 + ci X i + c j X j +·· ·+c0X 0,Fq ) = q(q −1)2

2gcd(q −1, i − j )
.

1.3 Quadratic twists We have already noted that Hasse-Weil invariants of quadratic twists
can be computed from one another. Since Pd (Fq ) consists of polynomials with at least one
coefficient that varies in R2 = F×q /F×2

q , we can easily make use of this observation by replacing

P̃d (Fq ) with P̃′
d (Fq ): the intersection of Pd (Fq ) with the following sets:{

cd X d +X 0 : cd ∈ F×q
}

∪ ⋃
1≤i≤d−2

0≤ j<i

{
cd X d +X i + c j X j +·· ·+c0X 0 :

cd ∈ F×q ,c j ∈ ci Ri− j , c j−1, . . . ,c0 ∈ Fq

}

if p -d , and otherwise{
cd X d + cd−1X d−1 +X 0 : cd ∈ F×q ,cd−1 ∈ Fq

}
∪ ⋃

1≤i≤d−3
0≤ j<i

{
cd X d + cd−1X d−1 +X i + c j X j +·· ·+c0X 0 :

cd ∈ F×q ,cd−1 ∈ Fq ,c j ∈ ci Ri− j , c j−1, . . . ,c0 ∈ Fq

}
.

1.4 The algorithm We suggest Algorithm 1 to compute Ng ,q . It is structured with an eye to
our map-reduce based implementation. Our intention is to perform line 7–14 on a GPU. We
elaborate on details in Section 3.

2 Arithmetics of finite fields
Line 8 of Algorithm 1 requires us to evaluate a polynomials over finite field. To efficiently

do so, we have employed Zech based arithmetics on GPU-accelerators. In this section, we
revisit the concept of Zech logarithms and some of the state-of-the-art implementations of
finite field arithmetic.
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Algorithm 1: Counting hyperelliptic curves

Data: odd prime power q , genus g ≥ 1
Result: curve counts Nq,g

1 Ng ,d (•,•) ← 0;
2 for d ∈ {2g +1,2g +2} do
3 for cd X d +·· ·+c0X 0 ∈ P̃′

d (Fq ) do
4 r 0

1≤•≤g ← 0;

5 r�1≤•≤g ← 0;

6 for 1 ≤ e ≤ g do
7 for x ∈ Fqe do
8 f ←∑d

i=0 ci xi ;
9 if f = 0 then

10 r 0
e ← r 0

e +1;
11 else if f ∈ F2

qe then

12 r�e ← r�e +2;
13 end
14 end
15 end
16 for 1 ≤ e ≤ g do
17 compute ae ← ae (

∑
ci X i ) from r 0

e and r�e ;
18 end
19 compute λ←λ(

∑
ci X i ) from r 0• if possible; otherwise by factoring;

20 m ← multq (
∑

ci X i );
21 increment Ng ,d ((a1, . . . , ag ), λ) by m;
22 increment Ng ,d ((1+q −a1, . . . ,1+q g −ag ), λ) by m;
23 end
24 end

2.1 Finite fields of prime order and machine integers We start by finite fields Fp of prime
order whose elements can be straightforwardly represented by machine integers provided
that p is not too large. Any a ∈ Fp has a unique preimage 0 ≤ ã < p under the projection Z�
Fp . Such a representation of a as an integer is called normalized. On modern architectures
this requires p < 232 or p < 264, i.e.

p ≤ 4294967291 or p ≤ 18446744073709551557

Addition and subtraction To accommodate addition, it is common to assume that 2p < 232

or 2p < p64. In this way, addition can be performed by three instructions: (1) Addition ã + b̃,
(2) Comparison ã + b̃ ≥ p. (3) Subtraction ã + b̃ −p if normalization is necessary.

If 4p < 232 or 4p < 264 this can be tuned by switching the order of comparison and subtrac-
tion. Further improvements are possibly by delaying normalization. Addition in finite fields
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implemented in this way can be freely assumed to be fast.
Subtraction can be handle by a similar scheme and turns out to be slightly faster than ad-

dition, as it does not require normalization.

Multiplication Multiplication in finite fields gives rise to two challenges. First, multiplica-
tion of normalized representatives in general exceeds the capacity of 32- and 64-bit integers.
This is not too serious an issue, since efficient representation in a pair of CPU registers is pos-
sible. Second, reduction modulo p cannot be substituted by a bare comparison as in the case
of addition. Since the computation of integer remainders is costly, this has major bifurcations
on how multiplication is implemented. Based on precomputed inverses one can significantly
lower the impact, but nonetheless multiplication consumes a multitude of instruction-cycles.

The situation is generally worse on GPUs, which are even less optimized for the computa-
tion of integer remainders than CPUs.

2.2 General finite fields and machine integers Elements of Fq , q = pe cannot be repre-
sented naively by integers if e > 1, but Fq can be represented as a quotient of a polynomial
ring with indeterminate T :

Fq = Fp [T ]
/

Rq (T )Fp [T ]

for a suitable polynomial Rq (T ) of degree e. Finding a good choice of Rq (T ) is not straightfor-
ward, but we will not be concerned with this problem. In order to optimize multiplication, it
is desirable to employ Rq (T ) most of whose coefficients vanish.

In analogy with the case of Fp , we can represent elements of Fq by polynomials

c0 + c1T 1 +·· ·ce−1T e−1, 0 ≤ ci ≤ p −1.

Addition and subtraction thus reduce to the corresponding operation on e elements of Fp .
This is compatible with bit-packing, that increases memory efficiency and thus performance.

Multiplication requires us to take the product of polynomials and subsequently reduce
them. Needless to say, both are inherently slow operations.

2.3 Finite fields and Zech representations The group of units F×q = Fq \ {0} in Fq is a cyclic
group, i.e. there is a generator gq ∈ Fq such that every element b ∈ F×q can be represented as

b = g k
q for some 0 ≤ k ≤ q −2. This observation is at the foundation of Zech representations

for finite fields: Nonzero elements are encoded as exponents k for one fixed choice of gq .
As for multiplication the Zech representation allows for a straightforward reduction to ad-

dition modulo q −1, except in the case of multiplication by zero:

g k
q · g l

q = g k+l
q and g k

q ·0 = 0.

Addition in Zech representations is reduced to one multiplication (hence, to one addition
modulo q −1) and the computation of so-called Zech logarithms:

g k
q + g l

q = g k
q · (1+ g k−l

q ) and g k
q +0 = g k

q ·1 = g k
q · g 0

q . (2.1)
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Given gq and 0 ≤ k ≤ q −2 the Zech logarithm of k is the unique 0 ≤ m(k) ≤ q −2 such that

g m(k)
q = 1+ g k

q ,

provided that the right hand side is nonzero in Fq .
It should be clear that Zech logarithms are expensive to determine, as they manifest discrete

logarithms. For this reason, Zech logarithms are typically precomputed and are exclusively
employed for small q . Lookup tables are of size O (q), improving on O (q2) for lookup tables of
multiplication in more traditional representations of elements of Fq .

2.4 Implementations of arithmetic in finite field It seems impossible to exhaustively dis-
cuss available implementations of finite field arithmetic. We restrict our discussion to CPU-
based libraries FLINT [FLINT], NTL [NTL], and FFLAS [FFLAS], GPU-based studies in [GIT09;
LMA12; MP10; TYS14], and [DSC14] for a discussion of implementations on FPGAs.

FLINT is a library for number theory written in C. It provides three implementations of fi-
nite fields, based on data types fq, fq_nmod, and fq_zech. The first two represent elements
of Fq = Fp [T ]/Rq (T ) as polynomials in T with coefficients in Fp . In the first case, coefficients
are stored in an arbitrary precision format, while the second one makes the assumption that
p be small enough to fit them into machine size integers. Addition and multiplication is re-
alized by arithmetic of polynomials over Z with subsequent reduction modulo p and Rq (T ),
if necessary. The third implementation available in FLINT is based on Zech representations,
and relies on precomputed Zech logarithms.

NTL is a library for number theory written in C++. It provides types ZZ_pEX and ZZ_pEX
serving the same purpose as fq and fq_nmod in FLINT. Representations are essentially the
same, but use of different algorithms and implementations impacts runtime performance,
which Victor Shoup summarized in a recent note3. Most notatbly, NTL supports thread par-
allelism for some of the computations, e.g. for computing in Fq as opposed to Fp .

FFLAS resulted from an effort to utilize floating point arithmetic for the purpose of com-
puting in finite fields Fp of prime size. Bounds on rounding errors allow to execute several
arithmetic operations in a row without correcting the numeric representation of correspond-
ing integers. The library is implemented in C++ and uses extensive templating to provide
flexibility concerning the represenations; The Givaro library provides alternative, more clas-
sical representations of finite field elements.

One of the early evaluations of GPU-based prime field arithmetic is contained in [GIT09].
The authors focused on primes p of 200 to 600 bits, targeting elliptic curve cryptography.
They could realize a speedup of about 2.6, after addressing problems of how to keep integers
of corresponding size in the GPU registers.

Little later [MP10] investigated the case of polynomial multiplication over prime fields on
GPUs. While they argue that computations over general finite fields can be reduced to the
prime field case, one can also view their contribution as applicable to general finite fields
when using a representation in terms of polynomials. The authors summarize that they
achieved speedups of about 30.

3http://www.shoup.net/ntl/benchmarks.pdf
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Continuing in some sense the efforts of [GIT09], multiplication from a more hardware-
centered perspective was investigated in [LMA12]. Tying individual GPU threads more closely
to each other, they arrived at speedups between 27.7 and 71.4 as a result.

Work in [TYS14] is most closely related to the present paper. The authors considered the
evaluation of quadratic, multivariate polynomials over fields Fq with q = 2e . However, their
choice of e = 32 is prohibitively large for lookup tables and Zech representations.

Recall that the standard implementation of multiplication in finite fields mostly suffers
from the slow determination of integer remainders. A custom design on FPGAs can miti-
gate this problem. A concrete description of circuits reflecting standard algorithms was given
in [DSC14].

3 Implementation
We have provided an implementation HyCu4 of Algorithm 1 in C++ and OpenCL. In this

section we describe some of its details. It should be noted that HyCu dates back to 2016, a
time prior to the release and adoption in standard compilers of OpenMP 4.5. The perspec-
tive that features of OpenMP 4.5 facilitate enormously the use of techniques described here,
contributed to the author’s motivation to disseminate the experiences he has made.

3.1 Data types Recall that we have fixed a prime power q . We use the same encoding of
finite field elements in the CPU and GPU code. We assume throughout that 2q does not
exceed machine word size. As in Section 2.3, we can fix a generator gq of Fq . In practice, this
choice is implicitly made via the finite field interface of FLINT. We encode elements b ∈ Fq by

b 7−→
{

q −1, if b = 0;

k, if b 6= 0 and b = g k
q .

(3.1)

3.2 Arithmetic via lookup tables Recall from Section 2.3 that Zech based arithmetic re-
quires the computation of remainders modulo q−1 and of Zech logarithms. We provide both
via lookup tables exp_red_table and incr_table, respectively. The encoding in (3.1) re-
quires one special case. Specifically, we tabulate in an array incr_table the following func-
tion:

k 7−→
{

q −1, if 1+ak
q = 0;

m(k), if 1+ak
q = am(k)

q ;
for 0 ≤ k ≤ q −2. (3.2)

Multiplication of numbers a and b can be implemented in a straightforward way as

i f ( a == prime_power_pred | | b == prime_power_pred )
c = prime_power_pred ;

else
c = exp_red_table [ a + b ] ;

4https://github.com/martinra/hycu
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Here prime_power_pred stores q − 1. Notice that we face one possible branch divergence,
when running this on a GPU. Section 4 contains a brief discussion.

Addition is realized along the lines of

i f ( a == prime_power_pred ) c = b ;
else i f ( b == prime_power_pred ) c = a ;
else i f ( a > b ) {

tmp = incr_table [ a − b ] ;
c = tmp == prime_power_pred ? prime_power_pred :

exp_red_table [tmp + b ] ;
} else {

tmp = incr_table [b − a ] ;
c = tmp == prime_power_pred ? prime_power_pred :

exp_red_table [tmp + a ] ;
}

In light of (2.1) it is natural to ask whether tabulating m(k) for 2−q ≤ k ≤ q −2 (as opposed
to 0 ≤ k ≤ q −2) could speedup addition by saving one comparison and thus avoiding further
branch divergence. We have experimented with such a change and to our own surprise could
not detect any speedup.

3.3 Array parallelization and queuing of polynomials Our implementation is naturally di-
vided into CPU and GPU hosted code. The amount of GPU specific code is relatively small.
The loops in lines 2, 3, and 6 of Algorithm 1 are run on the CPU. We do not discuss them
further. The computation of r 0

e and r�e in lines 7–14 is carried out on a GPU via OpenCL. The
computation is done via a map-reduce algorithm. Write r 0

e (x) and r�e (x) for the contributions
of x to r 0

e and r�e in lines 10 and 12. Then we perform the following transformations:[
x : x ∈ F×qe

]
 

[(
r 0

e (x),r�e (x)
)

: x ∈ F×qe

]
 

(
r 0

e = ∑
x∈F×

qe

r 0
e (x), r�e = ∑

x∈F×
qe

r�e (x)
)
. (3.3)

The first transformation is array parallelized on the GPU. Its output is stored in two ar-
rays corresponding to r 0(x) and r�(x), whose indices correspond to x via the representation
in (3.1). For our later discussion of performance, it is important to record that the associated
OpenCL kernel exclusively uses global arrays.

evaluate (
global const int * r e s t r i c t poly_coeffs_exp ,
const int prime_power_pred ,
global const int * r e s t r i c t exp_red_table ,
global const int * r e s t r i c t incr_table ,
global int * r e s t r i c t nmbs_unramified ,
global int * r e s t r i c t nmbs_ramified
)

The value of x is obtained as an array index
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int x = get_global_id ( 0 ) ;

In particular, we exploit the fact that our encoding of x ∈ F×q allows for a natural enumera-
tion via array indices between 0 and q − 2. We exclude the case x = 0 from the GPU-based
computation to avoid one possible branch divergence in the computation.

The second transformation in (3.3) is based on the GPU reduction implementation from a
2010 white paper5. In the range of p that we are interested in, reduction consumes signifi-
cantly less time than evaluation. We therefore confine ourselves to a remark that naive GPU
based reduction can be sped up significantly by carrying out the last few reduction steps on
the CPU.

4 Performance
HyCu contains the GPU based implementation of Nd ,q from (1.2) and a CPU based al-

ternative. To evaluate and compare performance, however, we use the Hasse-Weil invari-
ants (1.1) of a single curve. They are also available in smalljac6, which is optimized for the
case of large q , and therefore give a better impression of performance relative to alternative
approaches. Our test system features one NVidia Tesla K80 as a GPU and two Intel Xeon E5-
2683 as CPUs. We will use only one core of the latter.

Table 1 contains minimal runtimes for the computation of a( f ,E) over various finite fields
for a single curve defined over Z. We give the time needed to compute the lookup tables from
Section 3.2 in the second column. They are used in both the CPU and the GPU implementa-
tion, which are detailed in the third through fifth column. Timings for our GPU implementa-
tion are split into runtimes for the evaluation and the reduction step described in Section 3.3.
The next to last column of Table 1 displays runtimes for a naive implementation based on
FLINT’s Zech representations of finite field elements. The final column provides timings for
smalljac.

Outline Runtime of the evaluation kernel contains an apparent outliner at p = 1511. How-
ever, we could consistently reproduce the measurement on our test system, and record it for
completeness. Beyond that, we could observe a similar runtime for p = 1499 and p = 1493,
while performance was as expected for p = 1489. Given that we heavily rely on lookup ta-
bles, this degraded performance can be most likely explained by cache associativity. We also
observe that GPU runtime drops twice at p = 401 and p = 2003. Again, due to our predom-
inant use of lookup tables, we assume this is connected to cache hierarchy, but could not
completely explain our observation.

Comparison with smalljac We see that for a single curve precomputation of Zech logarithms
dominates the runtime. In the intended setting however, that contribution must be divided
by #P̃d (Fq ) ≈ qd−2. Already in the case of q = 101, this reduces the average contribution of

5http://developer.amd.com/resources/articles-whitepapers/opencl-optimization-case-
study-simple-reductions/

6http://math.mit.edu/~drew/smalljac_v4.1.3.tar
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tables CPU GPU naive Zech smalljac

p = q eval reduce

101 4.70 0.63 0.36 0.10 3.04 43
211 23.8 4.47 1.47 0.15 15.9 43
307 54.9 12.1 3.11 0.22 30.9 43
401 99.2 22.2 0.95 0.35 54.0 43
503 167 36.3 1.25 0.83 87.7 43

1009 892 148 2.93 6.49 348 44
1511 2545 349 394 19.7 778 44
2003 5093 789 11.5 36.1 1462 44
3001 13474 3669 15.4 82.6 5091 44

Table 1: Counting points over Fp2 of Y 2 = 12X 6 +13X 5 +10X 4 +11X 3 +16X 2 +12X +17, run-

time in milliseconds

precomputing Zech logarithms to 45 picoseconds per curve. Smalljac, on the other hand, for
small p is dominated by precomputations which have to be performed for each curve, and
therefore do not average out. In the range p ≤ 500 that is of greatest interest to us, we obtain
an acceleration by a factor of about 17 when comparing our CPU and GPU based implemen-
tations. This factor increases to 37 at p = 3001, but at this point smalljac (on a single CPU
thread) already outperforms our GPU implementation by a factor of more than 2. One might
argue that smalljac was optimized in detail, while this is very much not the case for HyCu.
One nevertheless has to keep in mind the asymptotically better runtime of smalljac.

Branch divergence In all GPU based implementations branch divergence is a possibly worry.
Representation (3.1) suggests that branch divergence could also negatively impact the per-
formance of our implementation. Every addition in the sum

∑
ci xi , x ∈ Fqe can yield such a

branch divergence if either ci = 0 or the partial sum
∑

i ′<i ci ′x
i ′ vanishes. Since we iterate over

all polynomials in P̃d (Fq ), for a heuristic estimate, it is reasonable to assume that these cases
occur with probability 1/qe each. As a result, we expect that no more than a proportion of
2d/qe additions yields branch divergence. Branch divergence is therefore neglectable.

Cache behavior More seriously, our significant use of lookup table brings up concerns about
caching behavior and memory access times. Memory characteristics of GPUs are less well
understood than those for CPUs. An attempt to acquire systematic knowledge was pursued
in [And+14]. Our benchmarks were carried out on a Tesla K80, for which (configurable) L1 cache
is maximal 112KB. This, for example, explains the performance drop between p = 101 and p =
211. Using 16-bit tables instead of 32-bit tables could then improve performance up p = 181
if g = 2. Bit packing would possibly extend this range further.
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