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Abstract

Statistical average of the axial current is evaluated on the basis of the covariant Wigner function.
In the resulting formula, chemical potential p, angular velocity €2 and acceleration a enter in
combination p+ (2+ia)/2. The limiting cases of zero mass and zero temperature are investigated
in detail. In the zero-mass limit, the axial current is described by a smooth function only at
temperatures higher than the Unruh temperature. At zero temperature, the axial current, as a
function of the angular velocity and chemical potential, vanishes in a two-dimensional plane region.

PACS numbers: 12.38.Mh, 11.30.Rd

*Electronic address: prokhorov@theor.jinr.ru
TElectronic address: [teryaev@theor.jinr.ru
tElectronic address: vzakharov@itep.ru


http://arxiv.org/abs/1805.12029v2
mailto:prokhorov@theor.jinr.ru
mailto:teryaev@theor.jinr.ru
mailto:vzakharov@itep.ru

I. INTRODUCTION

Recently many remarkable effects related to the properties of relativistic fluids have been
discovered at theoretical level. The nature of these effects, on one hand, is associated with
fundamental properties of matter, and, on the other hand, they are expected to be observable
experimentally. Two best known examples of this kind are the Chiral Magnetic (CME)
and the Chiral Vortical Effect (CVE) manifested in electromagnetic and axial currents,
respectively. For detailed discussion of the effects we refer the reader to the rich existing
literature, see in particular [1-14].

In [11, 15] the mean value of the axial current was calculated on the basis of the ansatz
for the covariant Wigner function proposed in [16]. The resulting formula reduces to the
standard formula for the CVE in the approximation linear in vorticity.

Moreover, as is emphasized in [15], the entire series of expansion in the thermal vorticity
can be summed up. The result contains information on corrections to the standard CVE.
Some of these higher order terms have been derived earlier within other approaches |1, 2].
Here we demonstrate that the formula obtained can be greatly simplified and reduced to a
form in which the angular velocity and acceleration enter as a real and imaginary chemical
potentials, respectively. Moreover, in the zero-mass limit at temperatures below the Unruh
temperature, additional terms appear in the axial current, resulting in a jumplike behavior
of the current, as a function of the temperature. According to [17] for linearly accelerated
systems, the Unruh temperature is the lowest possible temperature. Our observation on
existence of discontinuities in the behavior of the axial current at temperatures below the
Unruh temperature supports this conclusion. Note that existence of a boundary temperature
proportional to the Unruh temperature was also derived in [18] starting from the condition
of positivity of energy density.

Evaluation of the axial current might have important phenomenological implications.
Indeed, the appearance of a significant baryon polarization in heavy ion collisions can be
one of most important experimental signatures of the CVE. In particular, papers in Refs.
[19-22], relate the polarization of baryons to an anomalous axial charge of quarks. On
the other hand, the polarization effects can be investigated within the framework of the
relativistic hydrodynamics of baryons [23-25], based on the Wigner function introduced in
[16], from which the CVE can also be derived. Note that the carriers of the axial charge
differ in the two approaches. This situation served as a motivation for us to study the
effects in the axial current [15, 16], connected with a finite mass of particles. An interesting
phenomenon, which we find in this case, is the existence of a planar two-dimensional domain
in the coordinates €2, u, where the axial current vanishes. Qualitatively, such a picture is
associated with the above-mentioned observation that the angular velocity plays the role of
a new chemical potential.

The system of units h = c =k =1 is used.

II. ANALYSIS OF THE EFFECTS OF MOTION OF THE MEDIUM ON THE
BASIS OF THE WIGNER FUNCTION

As is known, kinetic properties of a medium can be derived from the quantum field
theory using the Wigner function, see, e.g., [26]. In the Ref. |[16] an ansatz for the Wigner
function was proposed to describe media with fermionic constituents in the state of a local
thermodynamic equilibrium. Moreover, it was checked that the ansatz reproduces correctly



some known limiting cases. Based on this ansatz, the effects associated with thermal vorticity
were investigated in various physical quantities [11, [15, 16, [18]. In particular, in [11, [15],
the axial current was first calculated, while an exact formula within the framework of this
formalism was obtained in [15].

The Wigner function in [16] is expressed in terms of the distribution function X(z,p),
which has the form of a modified Fermi-Dirac distribution

X(z,p) = (exp[ﬁup” — (] exp [— %wWZ’“’} + I>_1, (2.1)

where ( = %, @, is the thermal vorticity tensor, and $,, = [y,,7,]. Mean values of
various physical quantities can be found by integrating the trace of the operator of the
quantity considered with the function X (z,p) over the momentum space. Thus, for the
axial current we have the following formula |16]
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where (-) denotes statistical averaging with normal ordering, X describes the contribution
of antiparticles and differs from (2.I)) in sign of ¢ and w. The matrix traces in (2.2)) were
exactly found in [15] in formula (4.3)
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where "7 is the tensor dual to w”?, while g, and g, are scalar quantities that depend on
acceleration a* = u”0,u* and vorticity w, = %ewagu”aauﬁ
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Substituting (23)) into (2.2]), we obtain
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which is another form of Eq. (4.6) from [15]. Here np(E) = (e#/7 +1)~" is the Fermi-Dirac
distribution, a* = v’d,u" and w, = %ewagu’@auﬁ are the four-acceleration and vorticity,
respectively.

It is useful to consider a particular case by going into the comoving reference system and
assuming that €2 || a, that is, the acceleration directed along the rotation axis. Then g, = ,



go = a, where €2 and a are the moduli of three dimensional angular velocity and acceleration
in the comoving frame, and (23] leads to
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where e = % is the unit vector in the direction of the angular velocity.

Eq. (236) demonstrates that 2 and a come in a certain combination with the chemical
potential. Thus, the effect of rotation and acceleration reduces to a modification of the
chemical potential and introduction of a kind of an imaginary chemical potential. This
conclusion is worthy of further discussion.

In the limiting case of massless fermions, m = 0, the integrals in (2.5) can be found
analytically and expressed in terms of polylogarithms in the same way as was done in [15].
Using the following property of the polylogarithms [27]
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where |- | is the integer part. Note that in [15] particular case |%+%| < 1 was considered

under which formula (2.7) leads to the Eq. (4.9) from [15], which means that resulting
formula Eq. (4.11) from [15] corresponds to the case T' > 2. Due to contributions from
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the formula (28) has discontinuities. For 7' > Ty the formula (Z8) takes the form of Eq.
(4.11) from [15], derived in approximation 7" > Ty,

2

, 1 a? — w? U 1
(ij> = (6 [Tz + i ] + %%M + ﬁ(wa) a, . (2.10)

It is interesting to note that in the case of €2||a or € = 0 the condition 7" > Ty results

in T' > 5=, that is, the temperature is to be greater than the Unruh temperature Ty = -.
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The appearance of the Unruh temperature in Eq. (28] is a direct consequence of the
fact that in (23) and (2.6) the acceleration enters as an imaginary chemical potential. If
both acceleration and angular velocity are nonzero and directed arbitrarily, the boundary
temperature is generalized to Ty — Ty (€, a, ), where 0 is the angle between a and 2 in
the comoving reference system.

According to [17], the Unruh temperature is the minimum temperature that an acceler-
ated medium can have. Apparently, this fact is the reason why the behavior of the axial
current in (2.8) changes qualitatively at 7" < Ty. A similar result on the existence of a
boundary temperature proportional to the Unruh temperature on the basis of the same
Wigner function [16] was recently obtained in [18] by considering the energy-momentum
tensor and the condition of positivity of the energy density. We note, however, that in |[1§]
the boundary temperature is twice that of the Unruh temperature, which may be due to the
fact that in [18] the Boltzmann limit was investigated .

Note that (2.I0) in the first order in w* leads to the standard formula for CVE [11, [15],
while (_%)Wu is consistent with the results of [1, 2] (see also [28] for recent progress in
the geometric approach, developed in [1]).

III. EFFECTS OF FINITE MASS

There exist various approaches to calculating the polarization of baryons in heavy ion
collisions. In particular, in the [19-22] the axial charge of quarks, acquired by them due to
the CVE, is considered, and this charge is associated with the polarization of baryons. On
the other hand, in [23-25], the polarization is calculated on the basis of the Wigner function
for a medium consisting of baryons, assuming equilibrium of the spin degrees of freedom.

Note that the CVE, which is essential for calculating the polarization in |[19-22], arises in
the approach of Refs. [23-25] as well. However, in [19-22], quarks are considered as carriers
of the axial charge, while in [23-25] they are baryons, that is, particles with different masses.
In view of this, it is useful to consider the effects of a finite mass in an axial current.

The most characteristic features in the behavior of the axial current arise at 7' = 0. For
simplicity, we also assume that a, = 0. Going into the comoving reference frame, we obtain
go = 0 and gy = Q in (24). The integrals in (2:6) can be evaluated analytically, and we get
a simple formula

(%) = #{G(M + % —m)[(u+ %)2 _ w2
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where 6 is the Heaviside function. From (B.) it follows, in particular, that for Q < 2(m—|pul)
the axial current is zero. This is in accord with the absence of chemical-potential effect if
w1 is smaller than the corresponding physical masses. Moreover, we find out that in case

1 We are grateful to W. Florkowski, E. Speranza for pointing out the possibility of such an explanation.



of a rotating medium, this is true for the ”effective” chemical potential incorporating the
angular velocity.

The behavior of js = |js|, see Eq. 1)), as a function of 2 and p is shown in Figlll For
Q> m and p > m the axial current asymptotically tends to its value at zero mass (2.10),

Js(m =0) = ( szjz + %)Q, as it should be. In general, due to the effects associated with

the mass, j5 in the massive case is always smaller than in the massless limit, as can be seen
from Figl

FIG. 1: Axial current (3.I)), as a function of the chemical potential and angular velocity at zero
temperature. The value of |j5| is normalized to its value (2.I0]) at zero mass.

IV. DISCUSSION

Eq. (2.6) exhibits some features which are challenging to explain theoretically. Let us
start with the “imaginary acceleration”, ia. Originally, see ﬂﬁ] and references therein, the
acceleration a enters the density operator p as a real number. Namely, in absence of rotation:

p = (1/2) exp(—f[/To-i-af(z/To) , (4.1)

where H is Hamiltonian and K, is the generator of a Lorentz boost along the z axis.
Note that Inp is a Hermitian operator for real a. In this sense the Eq. (4] looks as a
straightforward generalization of the standard equilibrium density operator.

However, when applied to spinors in irreducible representations the boost operators result
in a complex number, see, e.g., ﬂﬁ] Indeed, the angular momentum J and boost generator
K are combining to

N=J+ik, N' = J—ik, (4.2)
where the eigenvalues N # 0, NT = 0 for left-handed spinors and Nt # 0, N = 0 for the
right-handed spinors.



This leads to the different signs of acceleration of left and right fermions and could be
called ”chiral gravity”. Axial current is a natural probe of such a solution.

In this sense, the density matrix (€1l does not correspond to a genuine equilibrium if we
stick to its interpretation in terms of flat space. This is of no surprise, of course. Indeed, it
is well known, for example, that in presence of an external gravitational field the ordinary
conservation of a current, d,7% = 0, is becoming a covariant conservation, V,J% = 0. Re-
interpreted in terms of the flat space the covariant conservation becomes a non-conservation,
O0aJ® ~ O(a). Similarly, the expression for the divergence of the axial current obtained above
gives 0,7% # 0 even in the limit of exact chiral symmetry if a # 0.

Note also that appearance of two signs of 7a may indicate the emergence of dissipating
and unstable states which might also tunnel to each other.

Turn now to the “modified chemical potential”, 1+ €2/2 emerging in Eq. (2.6]). Note that
the possibility of considering the angular velocity as a chemical potential has already been
noticed in the literature, see Ref. [1]. What we would like to emphasize here is that the
coefficient 1/2 in front of {2 can be interpreted as a consequence of the equivalence principle
according to which spin and angular momentum precess with the same angular velocity [30].
In other words, the spin precession (for Dirac fermions) is twice slower than in the case of
magnetic field. This factor of 1/2, in turn, destroys the balance producing a zero mode
in the electromagnetic case. There is no zero mode in the gravitomagnetic field and, as a
result, the axial anomaly in gravitational field is proportional to the curvature rather than
connection.

All these remarks can be considered as independent checks of Eq. (2.6) and support its
validity.

V. CONCLUSIONS

Basing on the ansatz for the Wigner function proposed in [16], we obtained simple for-
mulas for the axial current in the general case of massive fermions, see Egs. (23] and (2.6).
In these formulas, the angular velocity and acceleration enter the Fermi-Dirac distribution
in combination with the chemical potential. The zero-mass limit (2.8)), (2.10), which is
consistent in the linear approximation with the standard formula for the CVE, was stud-
ied. It is shown that in case that the acceleration and rotation are directed along the same
axis, at a temperature lower than the Unruh temperature, the axial current has a series of
discontinuities. In more general case of an arbitrary mutual orientation of the acceleration
and angular velocity, the temperature (2.9) appears as a boundary, instead of the Unruh
temperature.

Dependence of the axial current on the mass of constituents implied by Eq. (2.5) was
investigated. In the limit 7" = a, = 0, ([2.5) reduces to (3.1I), and the axial current, as
a function of the angular velocity and chemical potential, vanishes in the two-dimensional
region 2 < 2(m — |u|), as is shown in Figll

One can see, that the Wigner-function approach in the zero-mass limit reproduces, after
the integration over momenta, the anomaly induced contribution to the axial current, es-
tablishing the relation between different approaches to polarization. One can even say, that
the thermodynamical approach contains the ”hidden anomaly”.
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