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ABSTRACT. A quadrature rule of a measure µ on the real line represents a convex com-
bination of finitely many evaluations at points, called nodes, that agrees with integration
against µ for all polynomials up to some fixed degree. In this paper, we present a bivariate
polynomial whose roots parametrize the nodes of minimal quadrature rules for measures
on the real line. We give two symmetric determinantal formulas for this polynomial, which
translate the problem of finding the nodes to solving a generalized eigenvalue problem.

1. INTRODUCTION

Given a (positive Borel) measure µ on R, a classical problem in numerical analysis is
to approximate the integral with respect to µ of a suitably well-behaved function f . One
approach is via so called quadrature rules. These approximate the integral by a weighted
sum of function values at specified points. One classical construction for quadrature rules
designed to approximate the integral of continuous functions consists of demanding an
exact evaluation of the integral for all polynomials of degree ≤ D. If the moments of µ
exist and are finite, then this amounts to finding a measure supported on finitely-many
points whose moments agree with those of µ up to degree D.

We use t as a formal variable on the real line and and write R[t]≤D for the vector space
of real polynomials of degree at most D. For k ∈N0, we denote the kth moment of µ, if it
exists and is finite, by

mk =
∫

tk dµ.

Definition 1. Suppose D is a positive integer and µ is a measure on R whose moments
up to degree D exist and are finite. For x ∈ R∪ {∞}, define the linear function

evx : R[t]≤D → R

as follows. For f = ∑D
k=0 fktk ∈ R[t]≤D with f0, . . . , fD ∈ R,

evx( f ) = f (x) for x ∈ R and ev∞( f ) = fD.

We sometimes write evD
∞ for ev∞ to emphasize its dependence on D. A quadrature rule

of degree D for µ is a finite set N ⊂ R∪ {∞} together with a function w : N → R>0 with∫
f dµ = ∑

x∈N
w(x) evx( f ) for all f ∈ R[t]≤D.

We call N the nodes of the quadrature rule.
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Remark 2. In Definition 1 we allow nodes at infinity. This is not desirable for application
in numerical analysis, since one cannot generally evaluate functions at these nodes. How-
ever, compactifying the real line by adding ∞ makes certain arguments easier. Although
our statements are phrased with this more general notion of quadrature, our main result
presented below actually provides a tool to explicitly distinguish the cases of quadrature
rules with all nodes real from the case where one of the nodes is ∞. Furthermore, it is
a classical theorem that quadrature rules for µ with no nodes at infinity exist for every
degree D provided the moments of µ exist and are finite up to the same degree (see e.g.
[La1, Theorem 5.8], [La2, Theorem 5.9], [Sch, Theorem 1.24]).

We say the measure µ is non-degenerate in degree d if its moments mk are finite up
to degree k = 2d and for every nonzero, nonnegative polynomial f ∈ R[t]≤2d we have∫

f dµ > 0. Since in one variable any nonnegative polynomial f is sum of squares of
polynomials, this is equivalent to demanding that

∫
p2 dµ > 0, for every 0 6= p ∈ R[t]≤d.

This property can be checked quite conveniently in the following way.

Definition 3. Consider the quadratic form p ∈ R[t] 7→
∫

p2dµ and restrict it to R[t]≤d.
With respect to the monomial basis 1, t, . . . , td for R[t]≤d, this quadratic form is repre-
sented by the (d + 1)× (d + 1) Hankel matrix with (i, j)th entry mi+j−2:

Md =



m0 m1 m2 . . . md

m1 m2 . . .
md+1

m2 . . . . . . ...
... . . .

m2d−1
md md+1 . . . m2d−1 m2d


.

With this notation, a measure possessing finite moments up to degree 2d is non-degenerate
in degree d if and only if det(Md) 6= 0.

From the point of view of numerical analysis it is desirable to have a quadrature rule
that is exact up to a certain degree and requires the fewest number of evaluations possible.
Such a quadrature rule is called a Gaussian quadrature rule for µ.

It is known that when D = 2d + 1 is odd and µ is non-degenerate in degree d, there is a
unique quadrature rule for µ with d + 1 nodes, and none with fewer nodes [Sch, Cor. 9.8].
The nodes can be found as follows. Let M′d denote the (d + 1)× (d + 1) matrix represent-
ing the quadratic form p 7→

∫
t · p2dµ with respect to the monomial basis 1, t, . . . , td of

R[t]≤d, meaning that (M′d)i,j equals mi+j−1. Then the d + 1 nodes of the unique Gaussian
quadrature rule for µ in degree 2d + 1 are the d + 1 roots of the univariate polynomial
det(xMd − M′d), see e.g. [Sze, form. 2.2.9, p. 27]. Since Md and M′d are real symmetric
matrices and Md is positive definite, this writes the problem of finding these d + 1 nodes
as a generalized eigenvalue problem.

In this paper we focus on the case when D = 2d is even. In this case, there is a one-
parameter family of quadrature rules for µ with d+ 1 nodes (see e.g. [Sch, Thm 9.7]). Here
we reprove this fact by constructing a polynomial F ∈ R[x, y] with degree d in each of x
and y and the property that for every y ∈ R, the d roots of F(x, y) ∈ R[x]≤d are the other
d nodes (among them possibly ∞) of this unique quadrature rule with y as a node.
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Furthermore, we give symmetric determinantal representations of F, which again trans-
lates the problem of finding nodes of a quadrature rule into finding the generalized eigen-
values of a real symmetric matrix, i.e. solving det(xA− B) = 0 where A, B are real sym-
metric matrices and A is positive semidefinite (see e.g. [BDDRV, Chapter 4]). While the
literature on Gaussian quadrature rules is vast, to our knowledge these formulas are new.

To construct F and its determinantal representations, we consider three quadratic forms
on R[t]≤d−1, namely those taking p ∈ R[t]≤d−1 to

∫
p2dµ,

∫
t · p2dµ, and

∫
t2 · p2dµ, re-

spectively. We call Md−1, M′d−1 and M′′d−1 the matrices representing these quadratic forms
with respect to the basis 1, t, . . . , td−1. That is, define the d× d matrices

(1) Md−1 = (mi+j−2)1≤i,j≤d, M′d−1 = (mi+j−1)1≤i,j≤d, and M′′d−1 = (mi+j)1≤i,j≤d.

Theorem 4. Let µ be a measure on R that is non-degenerate in degree d ≥ 1. There is
a unique (up to scaling) polynomial F ∈ R[x, y] of degree 2d with the property that for
x, y ∈ R, F(x, y) = 0 if and only if there is a Gaussian quadrature rule for µ of degree 2d
with nodes x = r1, y = r2, r3, . . . , rd+1 in R∪ {∞}. This polynomial has the following two
determinantal representations:

(a) the determinant of the d× d matrix with bilinear entries in x, y,

F = det(xyMd−1 − (x + y)M′d−1 + M′′d−1),

(b) the determinant of the (2d + 1)× (2d + 1) matrix with linear entries in x, y,

(x− y) · F = c · det

det Md−1
det Md

(x− y) eT
d eT

d
ed xMd−1 −M′d−1 0
ed 0 −yMd−1 + M′d−1


where ed = (0, . . . , 0, 1)T ∈ Rd and c = (−1)d det(Md)/ det(Md−1)

2.

Moreover, for all x ∈ R, with det(xMd−1 −M′d−1) 6= 0, all nodes are on the real line, i.e.,
the associated quadrature rule has no nodes at infinity.

We prove the two parts of this theorem in Sections 2 and 3. The implications for finding
quadrature rules as generalized eigenvalues are made explicit in Remarks 6 and 13. In
Section 4, we discuss possible generalizations of this result.
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2. BILINEAR DETERMINANTAL REPRESENTATION

In this section, we prove Theorem 4(a). The proof relies heavily on understanding a
particular symmetric bilinear form Bx,y on R[t]≤d−1. For x, y ∈ R and p, q ∈ R[t]≤d−1, let

Bx,y(p, q) =
∫
(x− t)(y− t)pq dµ = xy

∫
pq dµ− (x + y)

∫
t · pq dµ +

∫
t2 · pq dµ.

Note that the symmetric matrix xyMd−1 − (x + y)M′d−1 + M′′d−1 represents Bx,y with re-
spect to the basis 1, t, t2, . . . , td−1. Define F ∈ R[x, y] to be the polynomial

F = det(xyMd−1 − (x + y)M′d−1 + M′′d−1).

We will show that F satisfies the requirements of Theorem 4.

Proof of Theorem 4(a). Suppose that there exists a quadrature rule for µ of degree 2d with
nodes r1, r2, . . . , rd+1 in R∪ {∞}, meaning that there exist w1, . . . , wd+1 ∈ R>0 so that

(2)
∫

f dµ =
d+1

∑
i=1

wi evri( f ) for all f ∈ R[t]≤2d.

Note that because µ is non-degenerate in degree d, the nodes r1, . . . , rd+1 are necessarily
distinct, so that after reindexing we may assume that r1, . . . , rd ∈ R.

We claim that F(r1, r2) = 0. To see this, let q be the unique (up to scaling) nonzero
polynomial with deg(q) ≤ d− 1 and evri(q) = 0 for each i = 3, . . . , d + 1. If each ri ∈ R,
then we can take q to be (t− r3) . . . (t− rd+1) ∈ R[t]≤d−1. If rd+1 = ∞, then we can take
q = (t− r3) . . . (t− rd). For any p ∈ R[t]≤d−1, it follows that

Br1,r2(p, q) =
∫
(r1 − t)(r2 − t)pq dµ = 0.

The last equality follows from (2) and the fact that deg(p) ≤ d − 1. Therefore q is an
element of the right kernel of Br1,r2 . Since Br1,r2 drops rank, the determinant F(r1, r2) of
the representing matrix equals zero.

Conversely, suppose that for x, y ∈ R, F(x, y) = 0. Then the kernel of Bx,y contains a
polynomial q ∈ R[t]≤d−1. For all p ∈ R[t]≤d−1,∫

(t− x)(t− y)pq dµ = 0.

First, we argue that x, y, and the roots of q are real and pairwise distinct and that the
degree of q is d− 2 or d− 1. If not, there would exist a non-zero polynomial p ∈ R[t]≤d−1
for which f = (t− x)(t− y)pq is nonnegative on R. Since

∫
f dµ = 0, this contradicts the

assumption that µ is non-degenerate in degree d.
Let r1 = x, r2 = y and denote the roots of q by r3, . . . , rd+1, where we take rd+1 = ∞ if

deg(q) = d− 2. Consider the conic hull of the d + 1 points evr1 , . . . , evrd+1 in R[t]∗≤2d. This
is a (d + 1)-dimensional simplicial convex cone in the (2d + 1)-dimensional vectorspace
R[t]∗≤2d. Therefore this cone is defined by d linear equalities and d + 1 linear inequalities,
which we will now identify by inspection. For each i = 1, . . . , d + 1, let fi be the unique
(up to scaling) nonzero polynomial of degree ≤ d for which evrj( fi) = 0 for each j 6= i.
For example, fd+1 = ∏d

i=1(t − ri). Note that the polynomials (t − r1)(t − r2)q · tk for
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0 ≤ k ≤ d− 1 and f 2
i for 1 ≤ i ≤ d + 1 are linearly independent in R[t]≤2d. It therefore

follows that the conic hull of evr1 , . . . , evrd+1 is the set of L ∈ R[t]∗≤2d satisfying

L((t− r1)(t− r2)pq) = 0 for all p ∈ R[t]≤d−1 and L( f 2
i ) ≥ 0 for i = 1, . . . d + 1.

The linear function Lµ ∈ R[t]≤2d given by Lµ( f ) =
∫

f dµ belongs to this convex cone.
Hence there are nonnegative weights w1, . . . , wd+1 for which Lµ( f ) = ∑d+1

i=1 wi evri( f ).
Since µ is non-degenerate in degree d, each of these weights must be positive. �

Remark 5. Let M = M(x, y) = xyMd−1− (x+ y)M′d−1 + M′′d−1. We remark that for every
x ∈ R, the matrix M(x, x) is positive definite. To see this, note that M(x, x) represents the
quadratic form on R[t]≤d−1 given by p 7→

∫
p2(t− x)2dµ with respect to the monomial

basis. Since µ is non-degenerate in degree d, this is positive for any 0 6= p ∈ R[t]≤d−1.

Remark 6. For fixed y ∈ R, this allows us to find the roots of F(x, y) ∈ R[x] as the
generalized eigenvalues of a d× d real symmetric matrix. If y is larger than all of the roots
of det(yMd−1−M′d−1), then yMd−1−M′d−1 is positive definite, meaning that M(x, y) has
the form xA− B where A is a positive definite matrix. We can find the roots in x as the
following generalized eigenvalue problem:

{x : F(x, y) = 0} = {x : det(x(yMd−1 −M′d−1)− (yM′d−1 −M′′d−1)) = 0}.

If yMd−1 − M′d−1 is not positive definite, this formula still holds, but may not be as nu-
merically stable. We can instead make a change of variables x = x̃ + y, which gives

M(x, y) = M(x̃ + y, y) = (x̃ + y)yMd−1 − (x̃ + 2y)M′d−1 + M′′d−1

= x̃(yMd−1 −M′d−1) + M(y, y).

In particular, this has the form x̃A + B where B is positive definite. Suppose λ is a root of
det(λB− A). Then x̃ = −1/λ is a solution to det(x̃A + B) = 0. Therefore

{x : F(x, y) = 0} = {y− 1/λ : det(λM(y, y)− yMd−1 + M′d−1) = 0}.

Note that this even works when λ = 0 if we take y− 1/λ to be ∞.

Corollary 7. Let µ be a measure on R that is non-degenerate in degree d ≥ 1. For y ∈ R

there is a unique quadrature rule for µ of degree 2d with d + 1 nodes, one of which is y.

Proof. Let y ∈ R. The polynomial F(x, y) = det(M(x, y)) ∈ R[x] has degree at most d.
Since the matrix pencil {M(x, y) : x ∈ R} contains a positive definite matrix M(y, y),
the roots of F(x, y) = 0 must all be real. In particular the existence of one real root x
implies, by Theorem 4, the existence of a quadrature rule of degree 2d of µ whose d + 1
nodes include y. Moreover the other d nodes x, r3, . . . , rd+1 are necessarily the d roots of
F(x, y) = 0. As in the proof of Theorem 4, the conic hull of evx, evy, evr3 , . . . , evrd+1 is a
simplicial cone containing Lµ, meaning that there is a unique representation of Lµ as a
nonnegative combination of them. �

Example 8 (Normal Distribution, d = 3). Let µ be the normal Gaussian distribution on R

with mean 0 and variance 1. Its moments are given by m2i+1 = 0 and m2i = (2i− 1)!! for
i ∈ N0. For example, the first seven moments of this measure are m1 = m3 = m5 = 0,
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FIGURE 1. The sextic curve given by F = 0, the line y = 1, and signs of
eigenvalues of the 3× 3 matrix polynomial M from Example 8.

m0 = m2 = 1, m4 = 3, and m6 = 15. For d = 3, the polynomial F given by Theorem 4 is
the determinant of the 3× 3 matrix polynomial

M =

 xy + 1 −(x + y) xy + 3
−(x + y) xy + 3 −3(x + y)

xy + 3 −3(x + y) 3xy + 15

 .

For fixed y ∈ R, the polynomial F(x, y) ∈ R[x] has three real roots, r1, r2, r3 ∈ R ∪ {∞},
which, together with y, form the nodes of a quadrature rule for µ of degree 6. The matrix
M(x, y) has the form xA + B for some real symmetric matrices A and B (depending on y).
The roots of F(x, y) are the roots of det(xA + B).

Moreover, by making a change of coordinates we can make A positive definite. For
example, for y = 1, we set x = 1/λ + 1 to get

λ ·M(1/λ + 1, 1) =

 2λ + 1 −2λ− 1 4λ + 1
−2λ− 1 4λ + 1 −6λ− 3
4λ + 1 −6λ− 3 18λ + 3

 ,

which has the form λA− B, where A = M(1, 1) is positive definite. Solving the genera-
zlied eigenvalue problem det(λA− B) = 0 gives λ ≈ −0.66,−0.32, 0.60. The solutions
to F(x, 1) = 0 are then x = 1 + 1/λ ≈ −2.15,−0.52, 2.67. Thus there is a quadrature rule
for µ of degree 6 with nodes consisting of 1 and these three roots. The curve given by
F(x, y) = 0 along with the line y = 1 are shown in Figure 1.

For y ∈ {0,±
√

3}, the polynomial F(x, y) ∈ R[x] becomes quadratic with two real roots
{0,±

√
3}\{y}. From this we conclude that there is a quadrature rule of degree 6 for µ

with the four nodes 0,±
√

3, ∞.
For y >

√
3, the matrix coefficient of x in M(x, y) is positive definite. In this case,

M(x, y) already has the form xA− B where A is positive definite, so no change of coordi-
nates is required to translate this into a generalized eigenvalue problem. �
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3. LINEAR DETERMINANTAL REPRESENTATION

In this section we prove Theorem 4(b). As in Section 2, we construct a bilinear form
depending on x, y ∈ R and construct a non-zero kernel of it for those pairs x, y that can
be extended to d + 1 nodes of a quadrature rule for µ of degree 2d.

For x, y ∈ R, we define a bilinear form Bx,y on R⊕R[t]≤d−1⊕R[t]≤d−1
∼= R2d+1. Given

p = (p0, p1, p2) and q = (q0, q1, q2) in R⊕R[t]≤d−1 ⊕R[t]≤d−1, define

Bx,y(p, q) =
∫

p1q1(x− t) + p2q2(t− y)dµ

+ evd−1
∞ (q0(p1 + p2) + p0(q1 + q2)) +

p0q0 det(Md−1)

det(Md)
(x− y).

Choosing the basis 1, t, . . . , td−1 for both copies of R[t]≤d−1 represents this symmetric bi-
linear form as the (2d + 1)× (2d + 1) matrix given in Theorem 4(b). That is, if ~f denotes
the coefficients of f ∈ R[t]≤d−1 so that f = ~f · (1, t, . . . , td−1), then

Bx,y(p, q) =

p0
~p1
~p2

T
det Md−1

det Md
(x− y) eT

d eT
d

ed xMd−1 −M′d−1 0
ed 0 −yMd−1 + M′d−1


q0
~q1
~q2

 ,

where Md−1 and M′d−1 are the d× d matrices defined in (1).
In order to construct a non-zero element in the kernel of Bx,y, we need to build up some

basic facts. The first concerns quadrature rules for µ whose nodes include ∞. As this
polynomial will be used heavily in the text below, denote

F∞ = det(xMd−1 −M′d−1).

Lemma 9. The polynomial F∞ has d real roots s1, . . . , sd ∈ R and there exist weights
w1, . . . , wd ∈ R>0 for which

(3)
∫

f dµ = w∞ ev2d
∞ ( f ) +

d

∑
i=1

wi evsi( f ) for all f ∈ R[t]≤2d,

where w∞ = det(Md)/ det(Md−1).

Proof. Since Md−1 is positive definite, F∞ has d real roots s1, . . . , sd ∈ R, up to multiplicity.
For any root s, the matrix sMd−1 −M′d−1 has rank < d, meaning that the polynomial

F(x, s) = det(x(sMd−1 −M′d−1)− (sM′d−1 −M′′d−1))

has degree ≤ d− 1 in x. For any r ∈ R with F(r, s) = 0, there is a quadrature rule for µ
of degree 2d with d + 1 nodes containing s, r, and ∞. Then the unique quadrature rule
of degree 2d with d + 1 nodes containing r also contains the node ∞. This implies that
F(x, r) has degree ≤ d− 1 and F∞(r) = 0, meaning that r ∈ {s1, . . . , sd}. Therefore there
is a quadrature rule of degree 2d for µ with nodes s1, . . . , sd, ∞. In particular, there exist
w1, . . . , wd, w∞ ∈ R>0 for which (3) holds.

Then w∞ is the largest λ for which the quadratic form p 7→
∫

p2dµ− λ ev∞(p2) is non-
negative on R[t]≤d. This is the largest λ for which the matrix Md − λed+1eT

d+1 is positive
semidefinite. We find this by solving the equation det(Md − λed+1eT

d+1) = 0, which gives
λ = w∞ = det(Md)/ det(Md−1). �
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Lemma 10. Let w∞, s1, . . . , sd ∈ R be as given by Lemma 9. If y ∈ R with F∞(y) 6= 0, then
there is a quadrature rule for µ of degree 2d with nodes y, r1, . . . , rd ∈ R. Let

qy =
d

∏
i=1

(t− si)−
d

∏
j=1

(t− rj) ∈ R[t]≤d−1.

Then for all p ∈ R[t]≤d−1,∫
p · qy · (t− y) dµ = w∞ evd−1

∞ (p).

Proof. By Corollary 7, there is a quadrature rule for µ of degree 2d with nodes y, r1, . . . , rd
in R ∪ {∞}. Since F∞(y) 6= 0 the univariate polynomial F(x, y) ∈ R[x] has degree d and
by the uniqueness of the quadrature rule, r1, . . . , rd are its roots. In particular, rj ∈ R.
Then for p ∈ R[t]≤d−1, we have that∫

p · qy · (t− y) dµ =
∫

p ·
d

∏
i=1

(t− si) · (t− y) dµ−
∫

p ·
d

∏
j=1

(t− rj) · (t− y) dµ

=
∫

p ·
d

∏
i=1

(t− si) · (t− y) dµ

= w∞ ev2d
∞

(
p ·

d

∏
i=1

(t− si) · (t− y)

)
= w∞ evd−1

∞ (p).

The first equality comes from the fact that there is a quadrature rule for µ of degree 2d
with nodes y, r1, . . . , rd. The second follows from the equality in Lemma 9. �

We now make a special choice of q and use Lemma 10 to greatly simplify Bx,y(p, q).

Lemma 11. Suppose x, y ∈ R satisfy F∞(x) 6= 0 and F∞(y) 6= 0. Take w∞ ∈ R and
qx, qy ∈ R[t]≤d−1 as given by Lemmas 9 and 10 and fix q = (w∞, qx,−qy). Then for any
p = (p0, p1, p2) ∈ R⊕R[t]≤d−1 ⊕R[t]≤d−1,

Bx,y(p, q) = p0 · ev∞(qx − qy) + p0 · (x− y).

Proof. Let q = (w∞, qx,−qy) and suppose p = (p0, p1, p2) ∈ R⊕R[t]≤d−1 ⊕R[t]≤d−1. By
Lemma 9, w∞ equals det(Md)/ det(Md−1). Then, by definition,

Bx,y(p, q) =
∫

p1qx(x− t)− p2qy(t− y)dµ + ev∞(w∞(p1 + p2) + p0(qx− qy)) + p0(x− y).

Using the properties of qx, qy given in Lemma 10, this simplifies to

Bx,y(p, q) = −w∞ ev∞(p1)− w∞ ev∞(p2) + ev∞(w∞(p1 + p2) + p0(qx − qy)) + p0(x− y)
= ev∞(p0(qx − qy)) + p0(x− y),

as claimed. �

Lemma 12. Let H ∈ R[x, y] be a non-zero polynomial with the property that for every
y ∈ R the polynomial H(x, y) ∈ R[x] has distinct, real zeros. Then every polynomial
vanishing on the real variety of H must be a polynomial multiple of H.
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Proof. Let H = H1 · · ·Hr where each Hi is irreducible in C[x, y]. By our assumption on
distinct zeros, the Hi are pairwise coprime. Moreover, each factor Hi belongs to R[x, y]. If
not, then since H ∈ R[x, y], both Hi and its complex conjugate Hi appear as factors of H
and have the same real roots along the line y = y for y ∈ R, contradicting the distinctness
of these roots. Thus it suffices to show that a polynomial vanishing on the real variety of
H must be a polynomial multiple of each Hi. Since each Hi satisfies our assumption as
well, we can assume without loss of generality that H is irreducible itself.

The real variety of H contains infinitely many points so its Zariski closure in C2 is at
least one dimensional. By irreducibility of H, its real variety Zariski-dense in its complex
variety. Now the claim follows from Hilbert’s Nullstellensatz. �

Now we are ready to prove Theorem 4(b).

Proof of Theorem 4(b). Let F be the polynomial given by Theorem 4(a). Then F has de-
gree 2d in x and y, with top degree part det(Md−1)xdyd, which is non-zero by the non-
degenerateness of µ. Then (x − y)F has degree 2d + 1 with top degree part equal to
det(Md−1)(x− y)xdyd. Also, for every y ∈ R, the polynomial (x− y)F(x, y) ∈ R[x] has
distinct, real roots. Lemma 12 then implies that any polynomial G ∈ R[x, y] vanishing on
the real variety of (x− y)F must be a polynomial multiple of it.

We further claim that the points (x, y) in VR((x− y)F) with F∞(x) 6= 0 and F∞(y) 6= 0
are Zariski-dense in VR((x − y)F). That is, any polynomial G ∈ R[x, y] vanishing on
VR((x− y)F)\VR(F∞(x)F∞(y)) also vanishes on VR((x− y)F) and is therefore a multiple
of (x− y)F. It suffices to show that (x− y)F has no factors in common with F∞(x)F∞(y).
The factors of F∞(x)F∞(y) are given by Lemma 9. Suppose for the sake of contradiction
that (x− si) divides (x− y)F for some i = 1, . . . , d. It must be that (x− si) divides F. This
implies that F(si, si) equals zero, which contradicts the observation in Remark 5 that the
matrix M(si, si) is positive definite and F(si, si) = det(M(si, si)) > 0.

Let G denote the determinant of the (2d + 1)× (2d + 1) matrix representing the bilin-
ear form Bx,y. We will show that (x− y)F = c · G where c = (−1)d det(Md)/ det(Md−1)

2.
Note that c · G is also a polynomial of degree 2d + 1. Inspection shows that its top de-
gree part is det(Md−1)(x− y)xdyd. Thus by the above argument, it suffices to show that
G(x, y) = 0 for all (x, y) ∈ VR((x− y)F) with F∞(x)F∞(y) 6= 0.

Now take x, y ∈ R with (x− y)F(x, y) = 0 and F∞(x)F∞(y) 6= 0. Let qx, qy ∈ R[t]≤d−1
be the polynomials given by Lemma 10 and let q = (w∞, qx,−qy). We claim that q is in
the kernel of Bx,y. To see this, let p = (p0, p1, p2) ∈ R⊕R[t]≤d−1 ⊕R[t]≤d−1. Then

Bx,y(p, q) = p0 · ev∞(qx − qy) + p0 · (x− y),

by Lemma 11. If x = y, this is clearly zero. Otherwise F(x, y) = 0 and by Theorem 4(a)
there exists r3, . . . , rd+1 ∈ R ∪ {∞} and a quadrature rule of degree 2d for µ with nodes
x, y, r3, . . . , rd+1. Since F∞(x) 6= 0, each ri ∈ R. Then

qx =
d

∏
i=1

(t− si)− (t− y)
d+1

∏
j=3

(t− rj) and qy =
d

∏
i=1

(t− si)− (t− x)
d+1

∏
j=3

(t− rj).
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Expanding and looking at the coefficient of td−1 reveals that

ev∞(qx) = −
d

∑
i=1

si + y +
d+1

∑
j=3

rj and ev∞(qy) = −
d

∑
i=1

si + x +
d+1

∑
j=3

rj.

In particular, ev∞(qx − qy) = y− x, giving Bx,y(p, q) = 0. Since the bilinear form Bx,y has
a non-zero kernel, the determinant, G(x, y), of its representing matrix is zero. �

Remark 13. Again this translates the problem of finding the roots of F(x, y) for fixed
y ∈ R into a generalized eigenvalue problem. Consider the (2d+ 1)× (2d+ 1) symmetric
matrix polynomial

M = M(x, y) =

det Md−1
det Md

(x− y) eT
d eT

d
ed xMd−1 −M′d−1 0
ed 0 −yMd−1 + M′d−1

 .

Since Md−1 is positive definite and det(Md−1)/ det(Md) is positive, the coefficient of x
inM is positive semidefinite of rank d + 1. In particular, for fixed y ∈ R, we can solve
F(x, y) = 0 by solving 0 = det(M(x, y)) = det(xA− B), where A is positive semidefinite.

Example 14 (Normal Distribution, d = 3). Consider again d = 3 and the normal distribu-
tion given in Example 8. We calculate that det(M3) = 12 and det(M2) = 2. The degree 6
polynomial F given by Theorem 4 satisfies (x− y)F = −3 det(M) where

M =



x−y
6 0 0 1 0 0 1
0 x −1 x 0 0 0
0 −1 x −3 0 0 0
1 x −3 3x 0 0 0
0 0 0 0 −y 1 −y
0 0 0 0 1 −y 3
1 0 0 0 −y 3 −3y


.

ThenM(x, 1) has the form xA− B where A is a positive semidefinite matrix of rank four.
The determinant det(M(x, 1)) has four roots, x ≈ −2.15,−0.52, 1, 2.67, which are the
nodes of a quadrature rule for µ of degree 6. The curve det(M) = 0 along with the line
y = 1 are shown in Figure 2. �

Remark 15. Note that the matrix M(x,−y) has the form xA + yB + C where the ma-
trices A, B are positive semidefinite. For any a1, a2 ∈ R>0 and b1, b2 ∈ R, the matrix
coefficient of t inM(a1t+ b1,−a2t+ b2) is positive definite, implying that the polynomial
F(a1t+ b1,−a2t+ b2) ∈ R[t] is real-rooted. One can see this in Figures 1 and 2, as any line
with negative slope intersects the curve V(F) in six real points. It also shows the polyno-
mial F(x,−y) is real stable [Wag, Prop. 2.4]. The Helton-Vinnikov theorem [HV, Thm. 2.2]
then implies that not only (x− y) · F has a (2d + 1)× (2d + 1) linear determinantal rep-
resentation like in the Theorem 4(b) but also F itself has a determinantal representation
F = det(xA + yB + C), where A, B, C are 2d× 2d real symmetric matrices and A and −B
are positive semidefinite. However it is unclear if there exists such a representation for
which the entries of A, B, C are easily calculated from the moments mk of µ, as withM.
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FIGURE 2. The curve given by det(M) = 0 and signs of eigenvalues of the
7× 7 matrixM from Example 14.

4. UNIVARIATE QUADRATURE RULES WITH MORE NODES

It is natural to try to generalize the above discussion to situations where more nodes
of a quadrature rule are prescribed. Finding a quadrature rule means specifying an even
number of real parameters since each node comes with a weight. We will now consider
the following minimal problem:

Problem 16. For integers n, ` ≥ 1, we are given n + 2`+ 1 moments m0, . . . , mn+2` of a
(positive Borel) measure µ on the real line that is non-degenerate in degree n + 2` and
n− 1 real numbers x1, . . . , xn−1. Does there exist a quadrature rule for µ of degree n + 2`
with n + ` nodes including x1, . . . , xn−1?

Specifying the quadrature rule requires 2(`+ 1) + n − 1 = n + 2`+ 1 parameters, as
we have two parameters for each of `+ 1 unspecified nodes and one parameter for the
weight of each of the n− 1 specified nodes. Therefore the number of parameters that we
have to choose is exactly equal to the number of moments that we need to match.

For n = 1, the problem is solved by the well-known Gaussian quadrature. The case
n = 2 is the main focus of this paper, and it is classically known that such a measure
exists. Unfortunately, for n = 3 this can fail even if the measure is non-degenerate in
every degree. To see this, we need some preparation.

For each integer 0 ≤ k ≤ n, consider the quadratic form p 7→
∫

tk · p2 dµ on R[t]≤`,
which, with respect to the basis 1, t, . . . , t`, is represented by the (`+ 1)× (`+ 1) matrix

M(k)
` = (mi+j+k−2)1≤i,j≤`+1.

Notice that the highest moment of µ needed to specify these matrices is mn+2`, achieved
by i = j = `+ 1 and k = n.
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For k ∈ N0, we denote by ek(x1, . . . , xn) ∈ R[x1, . . . , xn] the k-th elementary symmetric
polynomial in x1, . . . , xn, for which the following polynomial identity in R[t] holds:

n

∏
i=1

(t− xi) =
n

∑
k=0

(−1)kek(x1, . . . , xn)tn−k.

Proposition 17. Let µ be a measure on R that is non-degenerate in degree n + 2` ≥ 1 for
some n, ` ∈ N0 and let x1, . . . , xn ∈ R be distinct. If there is a quadrature rule for µ of
degree n + 2` with nodes r1 = x1, . . . , rn = xn, rn+1, . . . , rn+` ∈ R∪ {∞} then

det

(
n

∑
k=0

(−1)kek(x1, . . . , xn)M(n−k)
`

)
= 0.

Proof. For X = {x1, . . . , xn} ⊂ R, consider the bilinear form BX on R[t]≤` given by

BX(p, q) =
∫ n

∏
k=1

(t− xk) · p · q dµ =
n

∑
k=0

(−1)kek(x1, . . . , xn) ·
∫

tn−k · p · q dµ.

With respect to the basis 1, t, . . . , t`, this is represented by the matrix

(4)
n

∑
k=0

(−1)kek(x1, . . . , xn)M(n−k)
` .

Suppose that r1 = x1, . . . , rn = xn, rn+1, . . . , rn+` ∈ R∪ {∞} are the nodes of a quadrature
rule of degree n + 2` for µ. As in the proof of Theorem 4(a), let q be the unique (up to
scaling) nonzero polynomial in R[t]≤` for which evri(q) = 0 for each i = n + 1, . . . , n + `.
Then for every p ∈ R[t]≤`,

BX(p, q) =
∫ n

∏
k=1

(t− xk) · p · q dµ = 0.

Therefore the bilinear form BX has a nonzero kernel and the determinant of its represent-
ing matrix (4) is zero. �

Unfortunately, the converse of Proposition 17 does not hold for n > 2.

Example 18. Consider the measure given by the exponential distribution on R, whose
k-th moment is mk = k! for every k ∈ N0. Let n = 3, ` = 3 so that n + 2` = 9. Then in
Problem 16, we want to build a quadrature rule for µ of degree 9 with at most n + ` = 6
nodes including n− 1 = 2 specified nodes x1, x2 ∈ R. However for x1 = 1

3 and x2 = 11,
the determinant of the 4× 4 matrix in Proposition 17 equals (up to a positive constant)

137503x4
3 − 1695024x3

3 + 11282760x2
3 − 41197920x3 + 46998216 ∈ R[x3],

which has complex roots x3 ≈ 1.87, 5.20, 2.63± i 5.31, only two of which are real. Since µ
is non-degenerate in every degree, any quadrature rule for µ in degree 9 has at≥ 5 nodes.
However, by Proposition 17 there are only two possibilities for the remaining ≥ 3 nodes.
Therefore there is no quadrature rule for µ of degree 9 with ≤ 6 nodes including x1 = 1

3
and x2 = 11.
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