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A NOTE ON THE GROTHENDIECK GROUP OF AN

ABELIAN VARIETY

SHAHRAM BIGLARI

Abstract. We reformulate a conjecture of Beauville on algebraic cycles
on an abelian variety in terms of certain compatibility and vanishings
of some naturally defined filtrations on the Grothendieck group of the
abelian variety.

1. Introduction

In [3], Beauville defines for any abelian variety A over an algebraically
cosed field k of characteristic zero, the subgroup CHp

s (A) of the Chow group
CHp(A)⊗Q for any codimension p ≥ 0 and s ∈ Z to consist of elements x
such that

n∗A(x) = n2p−sx

for all n ∈ Z where nA is the endomorphism a 7→ na on A. He has made
the following:

Conjecture 1.1 (Beauville).− If s < 0, then CHp
s (A) = 0.

The original approach to study the conjecture has used the Fourier-Mukai
transform. Here we follow a slightly different approach and give a new for-
mulation of the conjecture.

The idea is to use the Grothendieck ring K0(A) of the variety A as the
basic setting for questions regarding cycles. By Riemann-Roch there is a
homomorphism

K0(A) → CH•(A)⊗Q

which is an isomorphism up to torsion. Using K0 instead of CH• and the
clearer algebraic relations between its elements found through the λ−ring
structure, makes K0 a better setting for us to study questions related to the
conjecture above.

The theory of Riemann-Roch starts with introducing the notion of a nat-
ural (Grothendieck) λ−ring structure on the ring K0(A) that is defined

Key words and phrases. Grothendieck ring, abelian variety, K0−cycle, Fourier-Mukai
transform, Beauville decomposition.
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through the usual tensor product of complexes of bundles and the corre-
sponding symmetric or alternating quotient bundles. Using the Pontryagin
product instead, it is possible to define a λ−ring structure (with Adams
operations denoted by ψn

⋆ ) on the ring K0(A) equipped with the Pontryagin
product x⊗ y 7→ x ⋆ y. Through a Chern theory this gives the Chow theory
CH•(A), i.e. the Chow group graded by integers determined by both p, s (as
before the statement of the conjecture above). We then use the machinery of
Fourier-Mukai transform to show that certain careful change in the Adams
operations ψn

⋆ give a collection of maps ψn
π satisfying the usual conditions

of Adams operations. We thus define a certain λ−ring structure on the ring
K0(A) ⊗Q with its usual product. As apposed to the usual λ−ring struc-
ture this new structure, naturally, sees the abelian structure of the variety
A; for example if L is a line bundle on A and n ≥ 1, then ψn(L) = Ln

whereas ψn
π(L) = L for L anti-symmetric and ψn

π(L) = Ln for L symmetric.
This new λ−ring structure and through an standard construction gives a
filtration

K0(A)⊗Q = Fil0π ⊇ Fil1π ⊇ · · · ⊇ Filg+1
π = 0.

We call this the Pontryagin filtration. We can give the following:

Conjecture 1.2.− Filqπ ⊆ Filqγ for all q ≥ 0.

This is, in our opinion, a natural reformulation of the conjecture. This
paper is organized as follows.

After fixing some notations, we give an exposition on Fourier-Mukai trans-
form on K0. Immediately after this definition we consider the family of en-
domorphismsm∗

A of K0(A) for m ∈ Z. We prove this result: the sub-algebra
of endomorphisms of K0(A) generated by all m∗

A is as an abelian group free
on m∗

A for m = 0, 1, . . . , 2g = 2dim(A). We also give the universal relations
between m∗

A in an explicit formula. Next we consider the group K0(A) with
its Pontryagin product and λ⋆−structure. This is shown to behave naturally
and admit a Chern character theory. Finally we define the Pontryagin fil-
tration on K0(A) (with its usual ring structure) and state the reformulation
above.

In a last section, we show that it is also possible to define a certain “com-
position” of the two λ−ring structures above (a general notion of composi-
tions of λ−ring structures is completely absent from the literature despite
being such a natural notion in the category of λ−rings). This leads to a
rather complicated λ−ring structure Γ. A second reformulation of Beauville
conjecture is given in the form of a vanishing conjecture of higher filtrations
of this composition structure. If this reformulated conjecture is true, it
will furthermore show that each group CHp

s (A) is, according to a Riemann-
Roch theorem, exactly an associated graded piece of certain filtration on
K0(A)⊗Q.
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The methods in this note will be used in future to establish certain formu-
las in the Grothendieck group of the Jacobian of a smooth projective curve
using the language of λ−rings.

Acknowledgment. I would like to thank Prof. A. Beauville for carefully
reading an earlier version of this paper and finding a gap in it.

In what follows the base field k is assumed to be algebraically closed and
of characteristic zero.

2. Notations and preliminaries

The theory of Grothendieck group of schemes is presented in [SGA 6,
Exp. IV, §2]: for a noetherian (separated) scheme X let K ′

0(X) be the
Grothendieck group of the derived category of (cohomologically) bounded
complexes of OX−modules with coherent cohomology modules. This is an
abelian group and can also be defined as the (näıve) Grothendieck group
of the abelian category of coherent modules. For smooth schemes S this
is also the same as the Grothendieck group K0(S) of the exact category
of locally free coherent OS−modules. These constructions are functorial.
More precisely, S 7→ K0(S) defines a contravariant functor from schemes to
commutative rings and for smooth schemes K ′

0 defines a covariant functor
for proper morphisms.

We shall also use the projection formula in various settings. The formula
is given in [SGA 6, Exp. IV, 2.11-12].

Recall the definition of coniveau (or topological) filtration on K ′
0(X): for

each j ≥ 0, the subgroup Filjtop ⊆ K ′
0(X) is defined to be generated by

classes of coherenet modules having a support of codimention ≥ j. Note
that by definition

Filitop = 0 for all i > dim(X).

The filtration is functorial in a suitable sense and in cases we deal with. This
and other results are explained in [SGA 6, Exp. X]. We denote by gr•topK0(S)
(or gr•K0(S)) the graded group associated to the filtration above.

There is a λ−ring structure on K0(S) defined by λn(x) = cl(Altn(E))
where x = cl(E) for a locally free coherent sheaf E on S. The rank function
ǫ(x) = rk(E) gives an augmentation. There is therefore defined the gamma
(or Grothendieck) filtration Filnγ on the ring K0(S); Fil

0
γ = K0(S), Fil

1
γ =

ker(ǫ) and Filnγ is the subgroup generated by all products

γi(x) · γi(x) · . . . · γk(z)
with i+ j + · · ·+ k ≥ n and x, y, . . . , z ∈ Fil1γ . The associated graded group
is denoted by gr•γK0(S). The group K ′

0(S) becomes a filtered module over
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the filtered ring K0(S). There is a natural map

ρ : gr•γK0(S) → gr•topK0(S)

which is an isomorphism over the rational numbers.

3. The Fourier-Mukai theory on K0

Let A → Spec(k) be an abelian variety of dimension g over Spec(k).

Denote by 0A the identity of A as a group over k. Let Â be the dual
abelian variety of A and P the Poincaré line bundle on A×k Â; the unique
(up to isomorphism) line bundle on A ×k Â whose inverse image along the

morphisms Â → A × Â (given by x̂ 7→ 0A × x̂) is trivial and for all (closed

points) α ∈ Â the restriction Pα of P to A×α is represented by α under the

natural isomorphism Â ≃ Pic0(A) (see [6, II, 8.]). Let p be the K0−class of
P . This defines the so-called Fourier-Mukai transform

Fp : K0(A) → K0(Â), x 7→ pr
Â∗

(pr∗A(x) · p).

Similarly the Poincaré line bundle P̂ on B × B̂ where B = Â defines a
morphism Fq : K0(Â) → K0(A) = K0(B̂) where q = cl(P̂ ). More generally

for any element in u ∈ K0(A× Â) the same formula above (with p replaced
by u) defines a homomorphism of abelian groups;

K0(A× Â) → HomZ(K0(A),K0(Â)), u 7→ u∗ = Fu

that is compatible with compositions of K0−correspondences. For each
integer m let the endomorphism (mA)

∗ (resp. (mA)∗) of K0(A) be the K0

(resp. K ′
0) of the morphism mA : A→ A given by x 7→ mx. Note that

0∗A(x) = rk(x), (0A)∗(x) = χ(x)[0A]

for all x ∈ K0(A). The result [5, 2.2] shows that Fq ◦ Fp is exactly the
homomorphism (−1)g(−1A)

∗ by showing that the K0−correspondence q ◦ p
in K0(A× Â) is represented by the complex

(the graph of −1A : A→ A)∗(OA)[−g]

in the derived category Db
coh(A× Â). We may generalize this:

Proposition 3.1.− For any integers n,m, we have

Fqm ◦ Fpn = (−1)g(−mA)
∗ ◦ (nA)∗

Proof. We note that with notations as above, there is an isomorphism
P⊗n ≃ (nA×id

Â
)∗P and similarly (id

Â
×mA)

∗P̂ ≃ P̂⊗m. TakingK0−classes
of these and using the usual arguments (i.e. the projection formula and
the base change), it follows from the compatibility of the Fourier-Mukai
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transforms with the compositions of correspondences that

Fqm ◦ Fpn(a) = F(id
Â
×mA)∗q ◦ F(nA×id

Â
)∗p(a)

= m∗
A ◦ Fq ◦ Fp ◦ nA∗(a)

= (−1)gm∗
A ◦ (−1A)

∗ ◦ (nA)∗(a)
= (−1)g(−mA)

∗ ◦ (nA)∗(a).

The result follows. �

We recall the statement of Grothendieck-Riemann-Roch in this setting.
Using the same principle as above and denoting by p the class of the Poincaré
bundle in gr•γK0(A× Â), as above there is a homomorphism

F gr
p : : gr•γK0(A)⊗Q → gr•γK0(Â)⊗Q.

Let us denote the map K0(A) → gr•γK0(A)⊗Q appearing in the Riemann-
Roch theorem of Grothendieck by ch = chA (the correct notation is ch ◦ c̃).
For example if L is a line bundle on A and x = cl(L), then the Chern class
cj(x) = 0 for all j > 1, c1(x) = x− 1 (mod Fil2) and

ch(x) = exp(c1(x)) = 1 + c1(x) +
1

2!
c1(x)2 + · · · .

Theorem 3.2.− The diagram

K0(A)

chA

��

Fp
// K0(Â)

ch
Â

��

gr•γK0(A)⊗Q
F

gr
p

// gr•γK0(Â)⊗Q

is commutative. Moreover F gr
p is an isomorphism with inverse (−1)gF gr

q−1 .

Proof. This follows from Grothendieck-Riemann-Roch for abelian varieties
(where the relative Todd class of a homomorphism of abelian varieties is
trivial). �

The above can be used to prove the following:

Proposition 3.3.− The subalgebra of endomorphisms of K0(A) generated
by (mA)∗ for m ∈ Z is as an abelian group freely generated by (mA)∗ for
m = 0, 1, . . . , 2g.
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Proof. First note that 1 − p ∈ Fil1γ . Using 3.1 and the equation p =∑2g
k=0(1− p−1)k in K0(A× Â) we find that

id = (−1)gFq−1 ◦ Fp

= (−1)g
2g∑

k=0

Fq−1 ◦ F(1−p−1)k

= (−1)g
2g∑

k=0

k∑

m=0

(−1)m
(
k

m

)
Fq−1 ◦ Fp−m

=

2g∑

m=0

(−1)m
(
2g + 1

m+ 1

)
(−mA)∗.

Next we show that if k is an integer with k > 2g or k < 0, then the
endomorphism (kA)∗ of K0(A) is a Z−linear combination of (mA)∗ for m =
0, 1, . . . , 2g. Let k > 2g. Since (1 − p)k = 0, it follows from the same
argument as above that a sum of (jA)∗ for j = 0, 1, . . . , k vanishes. The
assertion for k > 2g follows from this by induction. To prove the assertion
for k < 0, we need only to consider the case k = −1. This case follows
by applying (−1)∗ to the first equation in this proof. Now we show that
(mA)∗ for m = 0, 1, . . . , 2g are Z−linearly independent. Assume otherwise:
i.e. there is a relation

Λ :=

2g∑

m=0

λm(mA)∗ = 0

as endomorphisms of K0(A) with λm ∈ Z. Since each (mA)∗ preserves the
gamma filtration (up to torsion), by 3.2 the same relation as Λ holds for
(mA)∗’s as endomorphisms of gr•γK0(A)⊗Q ≃ CH•(A)⊗Q. Therefore we
need only to show that

Λ: gr•γK0(A)⊗Q → gr•γK0(A)⊗Q

is zero if and only if λm = 0 for all m ≤ 2g. By [3, Prop. 4], we know that

for all 0 ≤ j ≤ g and g−j ≤ i ≤ g there is an element 0 6= x ∈ grjγK0(A)⊗Q

with (mA)∗(x) = mg−j+ix for all m ∈ Z. The equation Λ(x) = 0 implies
that

∑
λmm

g−j+i = 0. Using this for all values of i, j as above, we conclude
that ∑

λmm
k = 0, for all 0 ≤ k ≤ 2g.

Note that the (2g + 1)× (2g + 1)−matrix X with the entry mk in position
(m,k) where 0 ≤ m,k ≤ 2g is invertible. It follows that λm = 0 for all m.
This completes the proof. �

Remark 3.4. The universal relation between the endomorphism (mA)∗ is
given by the formula in the proof of 3.3 expressing (−1A)∗ in terms of (mA)∗
for m = 0, 1, . . . , 2g. Also note that for m 6= 0, the homomorphism (mA)∗
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is an automorphism on K0(A) ⊗Q. There are many other classes of auto-
morphisms of K0(A)⊗Q (see below 5.6).

Remark 3.5. Almost the same proof as in 3.3 shows that a similar state-
ment for the sub-algebra generated by m∗

A for m ∈ Z holds.

4. Pontryagin λ⋆−structure

We shall introduce a filtration on K := K0(A) induced from a natural
λ−ring structure on K0(A) arising from the Pontryagin product.

Let π : A → Spec(k) be an abelian variety of dimension g over a field k.
The Pontryagin product on K0(A) is defined as follows;

⋆ : K ′
0(A)⊗K ′

0(A) → K ′
0(A), x⊗ y 7→ m∗(pr

∗
1(x) · pr∗2(y))

where m : A×k A→ A is the multiplication morphism (which is projective)
and the projections are from A ×k A. The unit of A as a group scheme is
denoted by eA : Spec(k) → A. This is a closed immersion.

Lemma 4.1.− The Pontryagin product endows K0(A) with the structure
of a commutative associative ring with unit e := eA,∗(1S) =: [0A].

Proof. We only show that [0A] is the unit element; for this let x ∈ K0(A)
and note that

x ⋆ 0A = m∗(pr
∗
1(x) · pr∗2([0A]))

= m∗(pr
∗
1(x) · (id × e)∗(1)) by base change

= m∗ ◦ (id × e)∗
(
(id × e)∗ ◦ pr∗1(x) · 1

)
by projection formula

= x.

Similarly it follows that 0A is a right unit. �

Remark 4.2. Let f : A → B be a homomorphism of abelian varieties over
Spec(k). It is not difficult to show that

f∗(x ⋆ y) = f∗(x) ⋆ f∗(y).

Moreover f∗(0A) = 0B . In other words, f∗ is a ring homomorphism with
respect to the Pontryagin product.

Using the rank function ǫ := rkA : K0(A) → Z, the ring K0(A) (with
the usual product) becomes an augmented Z−algebra. Similarly, the ring
K⋆ = (K0(A), ⋆) is also an augmented Z−algebra: let χ = χA : K0(A) → Z

be the Euler-Poincaré characteristic, i.e. χA(x) = π∗(x) and note that:

Lemma 4.3.− For any x, y ∈ K0(A) we have

χA(x ⋆ y) = χA(x) · χA(y).
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Proof. This follows from 4.2 and the fact that on Z = K0(Spec(k)) the
Pontryagin product agrees with the usual product. �

Let n ≥ 0 and x ∈ K0(A). Define

λn⋆ (x) = F−1
p ◦ λn

Â
◦ Fp(x).

These define a λ−ring structure on (K0(A), ⋆) which we call the Pontryagin
λ⋆−structure.

Remark 4.4. It is possible to define this structure using the Pontryagin
product on the level of derived category of coherent modules on A. For our
purpose here we have chosen the above equivalent definition.

Theorem 4.5.− The Fourier-Mukai transform Fp : (K0(A), ⋆) → K0(Â) is
an isomorphism of Z−augmented λ−rings.

Proof. The homomorphism Fp is by 3.1 an isomorphism of abelian groups.
Moreover Fp commutes with the augmentations; i.e.

χA(x) = rk
Â
(Fpx)

which follows from the definitions and usual arguments (i.e. using base
change and projection formula). Finally let x, y ∈ K0(A). It follows from
the usual arguments that

FK(x ⋆ y) = pr3,∗
(
pr∗1(x) · pr∗2(y) · (m× id

Â
)∗p

)

where the projections are from A ×k A ×k Â. Note that by the theorem of
the cube ([6, II, §6]) there is an isomorphism

(m× id
Â
)∗(P ) ≃ pr∗13(P )⊗ pr∗23(P )

where P is the Poincaré bundle on A×k Â. From this it follows that Fp(x ⋆
y) = Fp(x) · Fp(y). Therefore Fp is an isomorphism of augmented algebras.
Compatibility of Fp with the λ−ring structures is evident. �

As usual define the power series

λ⋆(x) = λ⋆(x, t) =
∑

n≧0

λn⋆ (x)t
n.

From this the γ−ring structure of K⋆ is constructed; i.e. as series

γ∗(x) := λ⋆(x, t/1 − t).

Finally the corresponding filtration is denoted by Fil•⋆. Note that Fil
0
⋆ = K⋆,

Fil1⋆ = ker(χ) =: I and in general Filq⋆ is the subgroup generated by elements
of the form

γi⋆(x) ⋆ γ
j
⋆(y) ⋆ · · · ⋆ γk⋆ (z)

with i, j, . . . , k ≥ 0, i+ j + · · ·+ k ≥ q and x, y, . . . , z ∈ Fil1⋆. It follows from
the definition that

Filn+1
⋆ ⊆ Filn⋆ .
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We consider this filtration on K⋆ = (K, ⋆) or on the additive group of K =
K0(A). We call this the (Pontryagin) ⋆−filtration. Denote the associated
quotient groups of this filtration by

grn⋆K := Filn⋆/Fil
n+1
⋆ .

Corollary 4.6.− Filn⋆ = 0 for all n ≥ g + 1.

Proof. By 4.5 we know that FpFil
n
⋆ ⊆ Filnγ . Since Fp is an isomorphism

and
Filnγ ⊆ Filntop

we conclude that Filn⋆ = 0 for n > dim(A) = g. �

Remark 4.7. Also note that by definition I⋆n ⊆ Filn⋆ .

Corollary 4.8.− (mA)∗ ◦ γn⋆ = γn⋆ ◦ (mA)∗ for any m ∈ Z and n ≥ 0.

Proof. Note that (m
Â
)∗ is a λ−morphism of K̂. The result follows from 4.5.

�

Using 4.5 we obtain a well-defined homomorphism

grFp : gr
•
⋆A→ gr•γÂ

which is graded of degree 0. From the general theory of λ−rings and the
Chern character in [SGA 6, Exp. V] we know that there is a theory of
Chern charcters ch⋆ : K⋆ → gr•⋆K⊗Q and for which there is a commutative
diagram of isomorphisms of Q−algebras:

K⋆ ⊗Q
Fp

//

ch⋆

��

K̂ ⊗Q

ch
��

gr•⋆K ⊗Q
grFp

// gr•γK̂ ⊗Q.

We may reformulate this relationship between the two Chern character: let

ρK : = F gr
p

−1 ◦ grFp : gr
•
⋆K ⊗Q → gr•γK ⊗Q

Using the functoriality of the Chern character, the diagram above and the
Grothendieck-Riemann-Roch we obtain that the diagram

K0(A) ⊗Q

ch⋆

��

ch

))❙❙
❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

❙

gr•⋆K ⊗Q
ρK

// gr•γK ⊗Q

of vector spaces and linear maps is commutative. Moreover for any x, y ∈
gr•⋆K we have

ρK(x ⋆ y) = ρK(x) ⋆ ρK(y)
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where Pontryagin product on gr•γK ⊗Q is (well-)defined similar to the case
of the Grothendieck ring. We also have:

Corollary 4.9.− For any x, y ∈ K, we have ch(x ⋆ y) = ch(x) ⋆ ch(y).

By definition ρK([0A]) = [0A]. Putting these together, we conclude that
ρK is a Q−algebra (non-graded) isomorphism.

5. Comparison of two Gamma filtrations

We let ψn
⋆ for n ≥ 1 be the Adams operations corresponding to the Pon-

tryagin λ⋆−structure on K⋆ = (K0(A), ⋆). Similarly ψn for n ≥ 1 denote the
Adams operations on K corresponding to the usual (Grothendieck) λ−ring
structure.

We denote by K(n) ⊆ K0(A)⊗Q the eigenspace of ψα’s corresponding to

the eigenvalue αn and K
(n)
⋆ =: K(n) that of ψ

α
⋆ on K⋆ ⊗Q. Therefore

FpK(n) = K
(n)

Â
=: K̂(n).

Lemma 5.1.− FpK
(n) = K̂(n) for any integer n ≥ 0.

Proof. This is equivalent to Fq ◦ FpK
(n) = FqK̂(n). That is if K(n) =

FqK̂(n) which is the equation appearing just before the assertion applied for

Â. �

Proposition 5.2.− There is a direct sum decomposition

K0(A)⊗Q = K(0) ⊕K(1) ⊕ · · · ⊕K(g).

Proof. It is not difficult to see that x ∈ K(q) if and only if

ch(x) ∈ grqγK ⊗Q.

Since the Chern character is an isomorphism, the result follows. �

Remark 5.3. Similarly, it follows from the results on ch⋆ that K0(A) ⊗Q

is a direct sum of K(q)’s.

Lemma 5.4.− For integers m,n ≥ 0 and an element x ∈ K(n), the follow-
ing assertions are equivalent:

(1) x ∈ K(n) ∩K(m),

(2) k∗A(x) = kg+n−mx for any integr k ∈ Z.

Proof. This can be proved using the same arguments as those in the proof
of [3, Prop. 1]. Details are left to the reader. �
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Lemma 5.5.− For any integer q ≥ 0, there is a direct sum decomposition

K(q) = Kq
0 ⊕Kq

1 ⊕ · · · ⊕Kq
g

where Kq
j := K(j) ∩K(q) for j ≥ 0.

Proof. Let xj ∈ Kq
j for j = 0, 1, . . . , g be a family of elements of K with∑

xj = 0. Applying ψn
⋆ to this we obtain

∑
njxj = 0. As this holds for

all n ≥ 1, we obtain xj = 0 for all j. Now let x ∈ K(q). Set y = Fp(x).
Using 5.2 we may write

y = y0 + y1 + · · ·+ yg, yj ∈ K̂(j).

Set xj = F−1
p (yj). Therefore xj ∈ K(j) and x =

∑
xj . Also note that by (a

variant of) 5.4 it follows that xj ∈ K(q). The result follows. �

For a fixed integer n ≥ 1, consider the abelian group homomorphism

ψn
⋆ : K0(A)⊗Q → K0(A)⊗Q.

Proposition 5.6.− The map

πn⋆ := ψn
⋆ ⊗ n−gid : K0(A)⊗Q → K0(A) ⊗Q

is a morphism of Q−augmented λ−rings.

Proof. It is clear that πn⋆ is an endomorphism of the additive group of
K0(A) ⊗ Q. We show that πn⋆ is a λ−morphism. For this we proceed as
follows. We shall remove Q from the notations and work exclusively with
rational coefficients. Therefore K will denote K0(A) ⊗Q. The eigenspace
decompositions of the Adams operations on K⋆ gives the decomposition

K⋆ = K
(0)
⋆ ⊕K

(1)
⋆ ⊕ · · · ⊕K

(g)
⋆

where x ∈ K
(q)
⋆ if and only if ψn

⋆ (x) = nqx for n ≥ 1. Also note that
πn⋆ (1) = 1. Therefore to show that n−gψn

⋆ is a ring homomorphism, it is

enough to note that for x ∈ K
(α)
⋆ and y ∈ K

(β)
⋆ , using 4.9, we have

x · y ∈ K
(α)
⋆ ·K(β)

⋆ ⊆ K
(α+β−g)
⋆ .

Next we show that n−gψn
⋆ commutes with each λα or equivalently with each

ψα. But the equality ψn
⋆ ◦ψα = ψα ◦ψn

⋆ holds on each K(r)∩K(s) and hence
on K. Finally we show that for each x ∈ K we have

ǫ(n−gψn
⋆ (x)) = ǫ(x).

This is linear in x. Let x ∈ K(q) for an integer 0 ≤ q ≤ g. It follows that

ǫ(n−gψn
⋆ (x)) = nq−gǫ(x). Now we may write x = x0 + x1 + · · · + xg with

xj ∈ K(j). Then ǫ(x) = ǫ(x0). Therefor ǫ(x) = 0 unless q = g. The result
follows. �
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Remark 5.7. Note that ψn
⋆ ⊗ idQ being an Adams operation is an isomor-

phism.

Let n ≥ 1. Define ψn
π(x) = ng−qx for x ∈ K(q) and extend this by

linearity for all x ∈ K (note that ψn
π is the inverse of πn⋆ ). These are easily

seen to define a λ−ring structure π on K = K0(A)⊗Q for which the Adams
operations are given by ψn

π . Let ǫπ be the projection map K → K(g). Note
that K(g) is a Q−subalgebra of K and ǫπ is a Q−algebra homomorphism.
Considering K(g) with its canonical binomial λ−ring structure, the map ǫπ
makes K a K(g)-augmented λ−ring whose λ, γ operations are denoted by

λiπ, γ
i
π.

Let x ∈ K(q) with q < g. Using the definition of λπ (and γπ) in terms of
the Adams operations ψn

π , i.e.

λπ(x, t) = exp(
∑

n≥1

(−1)n−1

n
ψn
π(x)t

n)

and the equation γπ(x, t) = λπ(x, t/1 − t), it follows that for all i ≥ 1 we
have the equation

(1) γiπ(x) = a(i; g − q, 1)x+ a(i; g − q, 2)x2 + · · ·+ a(i; g − q, g)xg

where a(i; g− q,m) are universally defined rational numbers depending only
on i, g − q,m. Note that xi = 0 if iq − (i− 1)g < 0.

Example 5.8. It is easy to see that

a(i; g − q, 1) = (−1)i−1(i− 1)!

{
g − q
i

}
.

where the last number given in braces is a Stirling number of the second
kind. The other values of a(i; g− q,m) may be considered as higher variants
of these numbers.

Using the gamma structure γπ and the augmentation ǫπ, we can as usual
(cf. 4.5f.) define a filtration of K by subgroups denoted by Filnπ. Note that
Fil1π = ker(ǫπ) and the filtration is in fact K(g) = gr0πK0(A) ⊗Q−linear. We
may call this filtration the Pontryagin filtration on K0(A)⊗Q.

Lemma 5.9.− Filnπ = 0 for n > g.

Proof. We first show that if x ∈ K(q) with 0 ≤ q < g, then we have
γnπ (x) = 0 for all n ≥ g + 1. The equation (1) is valid in any λ−ring

(for appropriate x). Let z ∈ K(g−q) with zi 6= 0 for all i(g − q) ≤ g; a

suitable power of K(1)−component (i.e. in the decomposition 5.2) of any
symmetric line bundle works. Since γn(z) = 0 for all n > g, it follows from
the uniqueness of the decomposition 5.2 that a(n; g − q, i) = 0 for all i, n
with i(g − q) ≤ g and n > g. Next we show that Filnπ = 0 for n > g2. For
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this let 0 6= ζ ∈ Filnπ. It follows that there are x, y, . . . , z in ker(ǫπ) and
integers i, j, . . . , k ≥ 0 with i+ j + · · ·+ k ≥ n and

ζ ′ = γiπ(x) · γjπ(y) . . . γkπ(z) 6= 0.

We may assume that x, y, . . . , z are homogeneous for π, i.e. x ∈ Kq(x) for

some 0 ≤ q(x) < g and similarly for y, . . . , z. Since Filg+1
γ = 0, Fil1π ⊆ Fil1γ

and n > g2, it follows that at least one of i, j, . . . , k, say i, is ≥ g + 1.
Therefore ζ ′ = 0 from the first step. This contradicts the assumption and
hence Filnπ = 0 for n > g2. Finally we show that Filnπ = 0 for n > g. For
this note that by the second step and the eigenspace decomposition of K
with respect to ψn

π ’s (from the general theory of Chern character of λ−rings
with discrete γ−filtration) we see that if Filqπ 6= 0 for some q > g, then there
is an element x 6= 0 with ψn

π(x) = nqx for all n ≥ 1. But this contradicts
the decomposition 5.5 (or equivalently 5.2 applied to K⋆). The lemma is
proved. �

Conjecture 5.10.− Filqπ ⊆ Filqγ for all 0 ≤ q ≤ g.

Remark 5.11. The conjecture above holds true for q = 0, 1, g − 1, g. For
q = 0 there is nothing to prove. For q = 1 note that if x ∈ ker(ǫπ), then
xg = 0 and in particular ǫ(x) = x0 = x0g = 0. Now let q = g. If x ∈ Filgπ,

then x = x0 = xg0 and hence x ∈ Filgγ . Similarly if x ∈ Filg−1
π , then

x = x0 + x1 = xg0 + xg1 + xg−1
1 and hence x ∈ Filg−1

γ .

Lemma 5.12.− Let x ∈ Kp
q with g − q > 0 and p > 0. The following

assertions are equivalent:

(1) p ≥ g − q,
(2) γiπ(x) ∈ Filiγ for all i ≥ 0,

(3) γg−q
π (x) ∈ Filg−q

γ ,

(4) γp+1
π (x) ∈ Filp+1

γ .

Proof. Let us first show (1) =⇒ (2): Fix i ≥ 1. The coefficients of xm

in (1) is zero unless m(g − q) ≥ i in which case xm belongs to Filmp
γ ⊆ Filiγ .

For (2) =⇒ (3) there is nothing to prove. To show (3) =⇒ (1) note that the

coefficient of x in γg−q
π (x) is non-zero and (3) implies that x ∈ Filg−q

γ and
hence p ≥ g − q. For (2) =⇒ (4) there is also nothing to prove. Finally we

show (4) =⇒ (1): if p < g−q, then the coefficient of x in γp+1
π (x) is non-zero

and by (4) we conclude that x ∈ Filp+1
γ . This implies that p ≥ p + 1. The

lemma is proved. �

Remark 5.13. The conjecture (Fp) of Beauville in [2, §5] states that

FpK
(p) ⊆ K̂(g−p) ⊕ K̂(g−p+1) ⊕ · · · ⊕ K̂(g).
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This is equivalent to the conjecture 5.10 (for Â). For example assume that

5.10 holds and let x ∈ K(p). By 5.1 we know y = Fp(x) ∈ K̂p. Using 5.5 we
write

y = y0 + y1 + · · ·+ yg, yq ∈ K̂q
p ⊆ Filg−p

π .

Therefore by 5.10 we have yq ∈ Filg−p
γ . Hence yq 6= 0 implies that q ≥ g− p.

6. The example of line bundles

In this section we consider elements of Pic(A); i.e. line bundles on A and
do some explicit computations of the notions related to λ−ring structures
introduced above when applied to line bundles.

Let L be a line bundle on the fixed abelian variety A → Spec(k). We
denote the K0−class of L by the same letter L. The computation related to
the usual λ−ring structure on K0(A) is classical. We only mention that for
any n > 0 we have

ψn(L) = Ln.

On the other hand similar to 5.6, it can be shown that the maps πn(x) =
n−gψn(x) are morphisms of the λ−ring K⋆ = (K0(A) ⊗ Q, ⋆) and hence
comutes with augmentation; it follows that for any line bundle L and integer
n > 0 we have

χ(Ln) = ngχ(L).

as both are equal to ngχ(πn(L)). We may also compute the Euler-Poincaré
characteristic explicitly. For this let

L = 1 + l1 + l2 + · · ·+ lg, lj ∈ K(j).

be the decomposition of L given by 5.2. Since chγ (in 3.2) is an isomorphism
of algebras over Q and chγ(L) = exp(c1(L)) it follows that chγ(l1) = c1(L)

and lj = j!−1lj1 ∈ K(j). An explicit formula for l1 in K0(A) ⊗ Q may be
given as:

l1 = log(L) =
∑

n≥1

(−1)n−1

n
(L− 1)n.

Now we consider two cases:

(1) If L is anti-symmetric, then n∗A(L) = Ln for all n ∈ Z and hence from
the formula exp(l1) = L we obtain l1 ∈ K1

g . It follows from 4.5 that

in general χ(x)[0A] = xg0 for any x ∈ K0(A) ⊗Q, and in particular
χ(L) = 0. And

ψn
⋆ (L) = ngL.

(2) If L is symmetric, then lj ∈ Kj
g−j. In particular we obtain a

Riemann-Roch theorem

χ(L)[0A] =
1

g!
lg1 =

1

g!
(L− 1)g ∈ Kg

0 .



A NOTE ON THE GROTHENDIECK GROUP OF AN ABELIAN VARIETY 15

And since πn⋆ is by 5.6 a ring homomorphism we conclude that

ψn
⋆ (L) = ngπn(L)

= ng exp(πn(l1))

= ng exp(n−1l1)

=: ng
n
√
L.

In particular and as expected the Pontryagin λ⋆−structure (cf. before 4.5)
does see the difference btween symmetric and anti-symmetric line bundles
but the usual λ−ring structure does not.

7. Composition of two λ−ring structures

Now we consider certain composition of the usual (Grothendieck) λ−ring
structure with the Pontryagin λ⋆−structure on K = K0(A)⊗Q. This shall
give another equivalent form of Beauville’s Conjecture.

Keeping the notations of the previous section, define for each n ≥ 1 and
x ∈ K:

Ψn(x) = n−gψn
⋆ ◦ ψn(x)

for x ∈ K. It follows from 5.6 that Ψn’s are Q−algebra homomorphism
on K0(A) ⊗ Q and have the properties: Ψn ◦ Ψm = Ψnm, and Ψ1 = id.
Therefore by [SGA 6, Exp. V, Prop. 7.5], there is a λ−ring structure Λ on
K0(A)⊗Q whose corresponding Adams operations are Ψn.

Example 7.1. Let L be a line bundle on A. It follows that for each n ≥ 1
we have Ψn(L) = Ln if L ∈ Pic0(A) and Ψn(L) = L if L is symmetric.

For each −g ≤ j ≤ g define the sub-space K[j] ⊆ K0(A) ⊗ Q to be
generated by Kp

q with p+ q− g = j. By 5.5 and 5.2, the space K is a direct
sum of K[j]’s. The subspace K[0] is in fact a Q−subalgebra. Let

ǫΓ : K0(A)⊗Q → K[0]

be the natural projection map. The ring K[0] has the induced structure of
a binomial λ−ring1;

λβ(x, t) = exp(x ln(1 + t)).

Conjecture 7.2.− K[i] ·K[−j] = 0 for all i, j > 0.

Remark 7.3. The conjecture above is implied by the conjecture (Fp) of
Beauville in [2] which can be stated as K[−j] = 0 for all j > 0. On the
other hand (the first part of) the conjecture of Bloch [4, 0.2] can be stated
as Kr

g ·Ks
n = 0 for all n ≥ 0, r ≥ n + 1 and s ≥ 0. This is implied by 7.2;

1Comared to the definition in [SGA 6, Exp. V, 2.7], it seems better to define a binomial
ring to be any Z−algebra with a λ−ring structure for which the Adams operations are all
the identity maps. Over the rationals these are of course equivalent.
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first note that Kr
g ⊆ K[r] and Ks

n ⊆ K[s+n− g]. Now if s+ r− g > 0, then

Kr
g ·Ks

n ⊆ Kr+s
n = 0 by definition. Otherwise s+ n− g < s+ r− g ≤ 0 and

hence Kr
g ·Ks

n = 0 by 7.2.

From now on and unless otherwise stated we assume that the conjec-
ture 7.2 holds.

Note that the algebra K0(A)⊗Q becomes a K[0]−augmented λ−ring:

Lemma 7.4.− The map ǫΓ : K0(A) ⊗ Q → K[0] is a λ−morphism of
K[0]−algebras.

Proof. Since K[j] ·K[−j] = 0 for all j > 0, it follows that ǫΓ is a homomor-
phism of K[0]−algebras. Next we need to show that for any x ∈ K0(A)⊗Q

and i ≥ 0, we have
ǫΓΛ

i(x) = λiβ(ǫΓ(x)).

This follows from the fact that ǫΓ is a Q−algebra homomorphism and ǫΓ ◦
Ψn = ǫΓ. �

Example 7.5. Let L be a symmetric line bundle on A. It follows from 7.1
that (the K0−class of) L belongs to K[0].

Let FilrΓ be the corresponding gamma filtration, e.g. Fil0Γ = K0(A) ⊗Q

and Fil1Γ = ker(ǫΓ). Let

grrΓK0(A)⊗Q := FilrΓ/Fil
r+1
Γ

be the corresponding quotient K[0]−modules. For any x ∈ K0(A)⊗Q and
i ≥ 1, denote by ciΓ(x) ∈ griΓK0(A)⊗Q the i−th Chern class of x. The
Chern ring

ChΓ(K0(A)⊗Q) := K[0]× (1 +
∏

r>0

grrΓK0(A)⊗Q)

is defined and is aK[0]−augmented λ−ring. There is a well-defined complete
Chern class morphism

c̃Γ : K0(A)⊗Q → ChΓ(K0(A)⊗Q), x 7→ (ǫΓ(x), 1 + c1Γ(x) + c2Γ(x) + . . . )

By [SGA 6, Exp. V, 6.8] this is a λ−morphism of K[0]−augmented λ−rings.

Lemma 7.6.− Fil1Γ ⊆ Fil1γ .

Proof. This is clear. �

Let x ∈ K0(A) ⊗ Q. Using the decompositions 5.2 and 5.5, we may
uniquely write

x = x[−g] + · · · + x[0] + x[1] + . . .

where x[j] ∈ K[j] for all −g ≤ j ≤ g. Let r ≥ 0 and note that:
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Lemma 7.7.− K[j] ⊆ FilrΓ if j < 0 or j ≥ r.

Proof. This is left to the reader. �

Proposition 7.8.− ker(c̃Γ) = Filg+1
Γ .

Proof. Let us first show that

ker(c̃Γ) =
⋂

r≥0

FilrΓ.

This is easy (and generally true): if c̃Γ(x) = 0, then ǫΓ(x) = 0 and ci(x) = 0
for all i ≥ 1. For i = 1, this gives x ∈ Fil2Γ. Using an induction on i and the
result [SGA 6, Exp. V, Prop. 6.9], it follows that x ∈ FiliΓ for all i ≥ 0. Next
we show that for each 0 ≤ r ≤ g we have FilrΓ 6= Filr+1

Γ . To see this assume

r ≥ 1. Using the powers of elements of Pic0(A), we know that Kr
g 6= 0 for

all 1 ≤ r ≤ g and note that Kr
g ⊆ K[r] ⊆ FilrΓ. Let 0 6= x ∈ Kr

g ∩ Filr+1
Γ .

Therefore we can write

x =
∑

aΓi(x) · Γj(y) · . . . · Γk(z)

where a ∈ K[0], i + j + · · · + k ≥ r + 1 and x, y, . . . , z ∈ Fil1Γ. Using the
decompositions 5.3 and 5.5, we may assume that a, x, y, . . . , z are homo-
geneous, i.e. each one is an element of some Kp

q . The uniqueness of the
decompositions and the property

Ka
b ·Kα

β ⊆ Ka+α
b+β−g

imply that we may assume that all x, y, . . . , z belong to Kg and a ∈ Q. In
this case Γi(x) = γi(x) and similarly for other values of i and x. Therefore
x ∈ Filr+1

γ . This can not happen because chγ(x) 6= 0. Finally we show that

Filg+1
Γ = Filg+2

Γ = . . . . For this let x ∈ FilrΓ \ Filr+1
Γ for some r > 0. By

the first part of the proof and the fact from 7.7 that K[−j] ⊆ ker(c̃Γ) for all
j > 0, it follows that 0 6= x[j] ∈ FilrΓ \ Filr+1

Γ for some j > 0. Using the fact

that Ψn(x[j]) = njx for all n ≥ 1 and Ψn(x[j]) − nrx[j] ∈ Filr+1
Γ (by the

general properties and definitions of any γ−filtration), it follows that j = r,
i.e. r ≤ g. The result follows. �

Conjecture 7.9.− Filg+1
Γ = 0.

Remark 7.10. This conjecture is equivalent to the conjecture (Fp) of Beauville
(cf. 5.13). To see this note that 7.9 implies that the complete Chern class c̃Γ
is injective. Note that if 0 6= x ∈ Kp

q with p, g − q > 0, then x ∈ K[j] with
j = p + q − g and hence for j < 0 we would have x ∈ ker(c̃Γ). Therefore
p + q − g ≥ 0. On the other hand the conjecture of Beauville implies that
K[−j] = 0 for all j > 0. Therefore every 0 6= x ∈ K0(A)⊗Q may be written
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as
x = x[0] + x[1] + · · · + x[g]

where x[j] ∈ K[j] for all 0 ≤ j ≤ g. Using (the proof of) the result 7.8 we
conclude that x 6∈ ker(c̃Γ).

Example 7.11. Let x ∈ K[−1]. It follows that c̃Γ(x) = 0 and x ∈ FilrΓ for
all r ≥ 0. We may write

Λt(x) = exp
(
x

∫
ln(1 + t)

t
dt
)

understood as formal identities in the ring of power series in K0(A) ⊗ Q.
Similarly we may write

Γt(x) = exp
(
xt+

3x

2!
t2 +

11x

3!
t3 +

50x

4!
t4 +

274x

5!
t5 + . . .

)

where the numbers in the numerators of the coefficients are certain Stirling
numbers.1
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Chow d’une variété abélienne, Algebraic geometry (Tokyo/Kyoto, 1982), Lecture Notes
in Math., vol. 1016, Springer, Berlin, 1983, pp. 238–260.

[3] , Sur l’anneau de Chow d’une variété abélienne, Math. Ann. 273 (1986), no. 4,
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