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1 Introduction

String theory on the backgrounds AdS3 × S3 × T4 and AdS3 × S3 × K3 plays an

important rôle in the AdS3/CFT2-correspondence. The two backgrounds arise as a

near-horizon limit of the D1-D5 system on T4 and K3, and are conjectured to be dual

to the symmetric orbifold CFT of T4 and K3, respectively [1, 2]. The AdS3/CFT2-

correspondence is particularly rich, since AdS3 can be supported by a mixture of

NS-NS and R-R flux. Combined with its accessibility, it constitutes an attractive

setting to explore the fundamental aspects of holography and string theory.

While in the full string theory the fluxes are quantised, this is not so in a pertur-

bative worldsheet description. Indeed, if g denotes the string coupling constant, the

worldsheet description holds in the limit g → 0. The number of R-R quanta must

be of order g−1 to have a visible effect on the background geometry. Thus the R-R

flux is essentially continuous and appears as a modulus in the worldsheet theory, as

well as in the dual CFT.

For pure NS-NS flux, the worldsheet theory admits a description in terms of an

N = 1 supersymmetric WZW-model [3–9] in the RNS-formalism, which is completely

solvable. In particular, the string spectrum on AdS3 × S3 ×M4, whereM4 = T
4 or

K3, is known exactly. This is in sharp contrast with the situation with mixed flux.

The worldsheet theory with mixed flux was worked out in [10, 11] in a Green-Schwarz-

like formalism. This formulation is also called hybrid formalism and is reviewed in

the beginning of Section 6.

For the case with mixed flux, an integrability description of the theory exists [12–

18] in the decompactification limit [19], in which the worldsheet becomes a plane.

This paper establishes a direct link between integrability computations and world-

sheet computations.

The hybrid formalism features a principal chiral model on a supergroup with a

WZW-term. In the case of AdS3 × S3 ×M4, this is a sigma-model on PSU(1, 1|2).
This principal chiral model admits two parameters: the normalisation of the kinetic

term, and the coefficient of the WZW-term. In string theory, the normalisation of the

kinetic term is related to the total flux, whereas the WZW-term is related to the NS-

NS flux and its coefficient is therefore quantised. For the precise relation, see (6.1).

In [20, 21], the pure NS-NS flux case was treated from a supergroup perspective. On

a general group, only the theory with equal normalisations of the kinetic and the

WZW-term is conformal. On supergroups with vanishing dual Coxeter number the

theory is conformal for all values of the parameters. However, the chiral algebra of

the theory becomes dramatically smaller away from the WZW-point. In particular,

the theory is not rational and representation theory of the chiral algebra does not

impose strong enough constraints to determine the spectrum of the theory.

To make progress in the computation of the spectrum of the CFT on such su-

pergroups, we follow a different route initiated in [22, 23]. The model still has a
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global PSU(1, 1|2)× PSU(1, 1|2)-symmetry, and one can work out the OPE’s of the

conserved currents exactly, thanks to a non-renormalisation theorem [24, 25]. The

currents are non-holomorphic, which complicates certain arguments. One finds that

the OPE’s of the currents close up to an additional field, which will be described in

detail below. This algebra generates the spectrum of the CFT, in the same way as

the affine Kač-Moody algebra does for a WZW-model. However, several states of

the spectrum mix under the action of L0, and therefore L0 needs to be diagonalised

in order to obtain the conformal weights.

In this paper we solve the theory completely in a BMN-like limit, which fully

reproduces the plane-wave spectrum of string theory on AdS3× S3×M4. This con-

stitutes a direct contact between the worldsheet theory and the string spectrum on

a background with R-R flux. The corresponding analysis in the pure NS-NS back-

ground was first carried out in [26]. We repeat the analysis also for the background

AdS3 × S3 × S3 × S1, which supports the large N = (4, 4) algebra and has received

some interest recently. The relevant supergroup is in this case D(2, 1;α). We derive

the full plane-wave spectrum on this background and, in particular, the masses of

the fields in the GS-formalism agree with [27–29].

This paper is organized as follows. In Section 2, we present classical solutions of

the sigma model on supergroups, and compute their energy. We subsequently start

in Section 3 with a quantum treatment of the model by employing the existence of a

non-holomorphic current algebra. We define representations of this current algebra in

Section 4, and discuss its spectral flow symmetry. The algebra considerably simplifies

in the limit of large charges, which is discussed in Section 5. This will confirm and

generalise the result obtained via classical solutions in Section 3, by including the

relevant quantum corrections. We apply these results to string theory in Section 6

and derive the BMN-formula. We discuss our findings in Section 7.

2 Semiclassical analysis

In this section we perform a semiclassical analysis of the worldsheet sigma-model that

will be our focus throughout the paper. We will do this by finding the worldsheet

conformal weight of some classical solutions, and interpreting them semiclassically.

2.1 Classical action and conserved currents

We consider the two-parameter sigma model on a (super)group G

S[g] = − 1

4πf 2

∫

d2z Tr
(

∂gg−1 ∂̄gg−1
)

+ k SWZ[g] , (2.1)

with g ∈ G, and where SWZ[g] denotes the Wess-Zumino term. The points kf 2 = ±1
on parameter space correspond to the usual WZW-model. At these points (2.1)
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possesses a local G × G symmetry, while at k = 0 we recover the principal chiral

model [24].

Away from the WZW-point, the model still has a global G×G symmetry, which

gives rise to two local conserved currents.1 Let us focus on the symmetry by left-

multiplication, with associated current j(z, z̄).2 This current has the following com-

ponents in complex coordinates:

jz = −
1 + kf 2

2f 2
∂gg−1 , jz = −

1− kf 2

2f 2
∂gg−1 , (2.2)

and the equations of motion of (2.1) are equivalent to the conservation law

∂̄jz + ∂jz̄ = 0 . (2.3)

At the WZW-point kf 2 = 1, jz̄ ≡ 0, and conservation implies the holomorphicity

of the jz component. However, we stress that in general jz is neither holomorphic

nor anti-holomorphic. We will henceforth write jz(z) but it is understood that no

quantity is assumed to be purely holomorphic or anti-holomorphic. The associated

Noether charges are given by the integral of the time component of the currents over

a constant time slice

Q ≡
∮

|z|=R

dz

z
jt(z) =

∮

|z|=R

dz

(

jz(z) +
z̄

z
jz̄(z)

)

. (2.4)

Note that, in contrast with the usual techniques in CFT, the integration contour

cannot be deformed since the currents are not holomorphic. The conservation of the

current ensures the independence of the charge on the radius R, so we will fix R ≡ 1

from here on. The action (2.1) has conformal symmetry for any values of k and f 2

since the energy-momentum tensor is holomorphic:

T (z) =
2f 2

(1 + kf 2)2
Tr (jz(z)jz(z)) =

2f 2

(1− kf 2)2
Tr (j̄z(z)j̄z(z)) , (2.5)

where the second equality follows from the existing conjugacy relation between the

components of the left and right currents. Throughout this paper Ln will denote the

modes of the expansion of the energy-momentum tensor, as usual. If the dual Coxeter

number of G vanishes (as for PSU(1, 1|2)), several non-renormalisation theorems on

two- and three-point functions ensure that this symmetry is preserved at the quantum

level [10, 23–25].

1 There is another deformation of the WZW-model which preserves conformal symmetry and

gives rise to a current algebra, see [30]. However, it only preserves the diagonal global G symmetry.
2 The right-multiplication can be treated similarly, and in fact the components of its associated

current j̄(z, z̄) are conjugate to those of j(z, z̄). In particular, they will give rise to the same

energy-momentum tensor.
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2.2 Ground state solutions

The classical ground state solution is given by

g(z, z̄) = exp
(

−kf 2 log(zz̄) (ν · t)
)

, (2.6)

where ti is an element of the Cartan subalgebra of g, the Lie algebra of G, and

i = 1, . . . , rank(g). Furthermore exp denotes the Lie algebra exponential. We use

here the inner product ν · t ≡ νiκijt
j , where κij is an invariant form on the Lie

algebra. It can easily be shown that this solution indeed satisfies the equations

of motion. The conserved charges are given by Q = Q̄ = kνiκijt
j , so that νi is

interpreted semiclassically as νi = ℓi0/k, where Qi = Q̄i = ℓi0 are the charges of the

ground state solution. Finally, the energy-momentum tensor is

T (z) =
f 2(ℓ0 · ℓ0)

2z2
, (2.7)

and similarly for T̄ (z̄). In Section 6 we will find the quantum correction to this result.

2.3 Excited solutions

Consider now the following excited solution:

g(z, z̄) = exp

(

1√
k

(

µ zαz̄βta − µ∗ z−αz̄−βt−a
)

)

exp
(

−kf 2 log(zz̄) (ν · t)
)

, (2.8)

where ta is a step operator or a Cartan-element of g, and µ is a coefficient to be fixed.

Furthermore, t−a denotes the step operator associated with the opposite root. This

has to be included to ensure the reality of the solution. Single-valuedness requires

β − α = n, with n an integer. Finally, the equations of motion (2.3) are obeyed

provided that3

α =
1

2

(

−n− (a · ν) kf 2 +
√

n2 − 2(a · ν)nk2f 4 + (a · ν)2k2f 4
)

, (2.9)

where ai denotes αi if a is a root, and 0 if a is a Cartan-index. Plugging (2.8) into (2.4)

and using (2.2), the charges associated with these excited solutions can be explicitly

computed. The expressions for these charges in terms of µ, ν, n are quite involved,

so we will not reproduce them here. Instead, we will use the parametrisation

Q = ℓ0 · t+Nn(a · t) , Q̄ = ℓ0 · t , (2.10)

which allows us to trade νi for ℓi0 and µ for Nn. The plane-wave limit may now

be obtained by considering n,Nn ≪ k, ℓi0, f−2. In this limit the zero-mode of the

3For this solution we have chosen a specific branch of the square-root, by assuming that n ≥ 2ν.

The other branch can be obtained from the first by considering n ≤ 2ν.
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energy-momentum tensor (2.5) becomes

L0 =
f 2(ℓ0 · ℓ0)

2
+
Nn

2

(

n+ (a · ℓ0)f 2 +
√

n2 − 2(a · ℓ0)nkf 4 + (a · ℓ0)2f 4
)

+O
(

k−1
)

.

(2.11)

This expression is to be compared with (5.12), which will be obtained from the full

quantum treatment developed in the following sections. In Section 6 these results

will be applied to string theory, and the full BMN formula of [31] will be obtained.

This preliminary result shows that worldsheet methods based on (2.1) may give us

access to the plane-wave spectrum with mixed flux.

Semiclassically, the parametrisation (2.10) suggests that this state is obtained

from the groundstate of charge ℓ0 by the application of Nn generators of the left

symmetry, with mode number n. This interpretation is reinforced by the observation

that, to all orders in k−1,

L0 − L̄0 = nNn , (2.12)

which is indeed quantised in the quantum theory.

Finally, we stress that this is an exact classical solution and is hence expected

to yield the correct conformal weight in the classical limit. The classical limit is

given by k, ℓi0, f−2 → ∞, with all their ratios fixed, and for any n and Nn. In

particular, this is a much more powerful limit than the plane-wave limit, and even

the decompactification limit [19]. However, we are so far limited in our computations,

in that we have only managed to find a single-excitation solution.4

3 Review of the current algebra

In this section we review the current algebra introduced in [22] and further analysed

in [23, 32], which will be the main tool of this work. In particular, its applications

to string theory via the hybrid formalism [10] will be described in Section 6.

3.1 Conformal current algebra

A non-chiral current algebra in two-dimensions compatible with conformal symmetry

was first formulated in [22] in all generality. This algebra was constructed at the level

of OPE’s by requiring their consistency with locality, and Lorentz and parity-time

reversal symmetries. The non-linear sigma models of the kind (2.1) were then seen to

consistently realise the constructed general OPE structure, by computing the current-

current correlators and the OPE’s of the models in conformal perturbation theory.

This result holds for sigma models based on Lie supergroups whose superalgebra

has vanishing Killing form, such as PSU(1, 1|2) (see Appendix A for a review of the

relevant properties of Lie superalgebras). For those, a non-renormalization theorem

[24] allows one to do the computation to all orders in perturbation theory.

4In particular our solution will not be level-matched in string theory.
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The OPE’s between the components of the currents were found to be as follows:

jaz (z)j
b
z(w) ∼

(1 + kf 2)2κab

4f 2(z − w)2
+

i

4
fab

c

(

(3− kf 2)(1 + kf 2)

z − w
jcz(w)

+
(1− kf 2)2(z̄ − w̄)

(z − w)2
jcz̄(w)

)

, (3.1)

jaz̄ (z)j
b
z̄(w) ∼

(1− kf 2)2κab

4f 2(z̄ − w̄)2
+

i

4
fab

c

(

(3 + kf 2)(1− kf 2)

z̄ − w̄
jcz̄(w)

+
(1− kf 2)2(z − w)

(z̄ − w̄)2
jcz(w)

)

, (3.2)

jaz (z)j
b
z̄(w) ∼ (1− kf 2)2fab

c

(

jcz(w)

(z̄ − w̄)
+

jcz̄(w)

(z − w)

)

, (3.3)

where ∼ denotes equality up to regular and contact terms. A regular term is by

definition less divergent than a pole, in particular there are logarithmic corrections

to these OPE’s. Their explicit form can be found in [23]. Here κab and fab
c are

the components of the invariant tensor and the structure constants of g, respectively

(see Appendix A). Notice that at the WZW-point this current algebra reduces to a

Kač-Moody algebra.

3.2 Energy-momentum tensor

The holomorphic energy-momentum tensor is as usual the regularisation of its clas-

sical counterpart:

T (z) =
2f 2

(1 + kf 2)2
κab(j

a
z j

b
z)(z) =

2f 2

(1− kf 2)2
κāb̄(j̄

ā
z j̄

b̄
z)(z) , (3.4)

It was shown in [23] that this energy-momentum tensor is indeed holomorphic. In

fact,

W (s)(z) = da1···as(j
a1
z · · · jasz )(z) (3.5)

is holomorphic for every Casimir da1···ast
a1 · · · tas of g. These fields generate the full

chiral algebra of the CFT.5 This chiral algebra is much too small to constrain the

spectrum of the CFT and is hence not very useful for our purpose. In particular, the

CFT is not rational.

Despite the fact that jz(z) and jz̄(z) are not holomorphic nor anti-holomorphic,

their OPE’s with T (z) are those of primary fields of dimension one and zero, respec-

5The algebra psu(1, 1|2) possesses one further Casimir of order 6 for which the result applies, so

the chiral algebra of this theory is a W(2, 6)-algebra. For an explicit construction of this algebra,

see [33].
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tively:

T (z)jaz (w) ∼
jaz (w)

(z − w)2
+

∂jaz (w)

z − w
,

T (z)jaz̄ (w) ∼
∂jaz̄ (w)

z − w
,

(3.6)

possibly with logarithmic corrections. We take this as an indication that it is useful

to think of the currents and their OPE’s as the spectrum-generating algebra, even

away from the WZW-point. We will see in Section 5 that this is true in a BMN-like

limit.

3.3 Conserved charges and the mode algebra

As usual in quantum field theory, the symmetry algebra must be realised on the

Hilbert space of the theory through a set of conserved charges.6 These charges were

introduced in (2.4), and their bracket [Qa, Qb] may now be computed. Here and in the

following it is implicit that if both a and b are fermionic indices the bracket [Qa, Qb]

is to be understood as an anti-commutator. Moreover, for the sake of simplicity

we suppress possible signs arising from the fermionic nature of the supercurrents.

Nevertheless, our final results hold for bosonic as well as for fermionic currents. The

computation is subtle since we cannot rely on usual CFT techniques like contour

deformation. However the commutator can be written as

[Qa, Qb] = lim
ǫ↓0

(

∮

|z|=R+ǫ

dz

∮

|z|=R

dw −
∮

|z|=R−ǫ

dz

∮

|z|=R

dw

)

×
(

jaz (z) +
z̄

z
jaz̄ (z)

)(

jaz (w) +
w̄

w
jaz̄ (w)

)

. (3.7)

Inserting the OPE’s (3.1)–(3.3) and performing the integrals we indeed obtain

[Qa, Qb] = ifab
cQ

c . (3.8)

This is a very good consistency check on the construction. Similarly, one can compute

the commutators of Qa with the modes of the energy-momentum tensor Ln and

L̄n. Holomorphicity of T (z) simplifies the computation considerably, and yields the

expected result

[Ln, Q
a] = [L̄n, Q

a] = 0 , (3.9)

i.e. the internal and conformal symmetries commute. In particular, this shows that

the charge is indeed conserved, since it commutes with the Hamiltonian L0 + L̄0.

6The symmetry could also be anomalous, but we will see shortly that this is not the case.
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Motivated by this construction, we now define a convenient set of operators

(of which the conserved charges above form a subset) which allows us to build the

spectrum of our model. In analogy with the usual chiral currents in CFT we define7

Xa
n ≡

∮

|z|=R

dz

R
znjaz (z) , Y a

n ≡
∮

|z|=R

dz

R
zn−1z̄ jaz̄ (z) , (3.10)

and analogously for the right-current j̄(z), which give rise to operators X̄a
n, Ȳ

a
n . As

before, the commutation relations of these quantities can be worked out. It is quite

convenient to define the combinations

Qa
n = Xa

n + Y a
n , P a

n = 2kf 2

(

Xa
n

1 + kf 2
− Y a

n

1− kf 2

)

,

Q̄ā
n = X̄ ā

n + Ȳ ā
n , P̄ ā

n = −2kf 2

(

X̄ ā
n

1− kf 2
− Ȳ ā

n

1 + kf 2

)

,

(3.11)

for which we find the commutation relations

[Qa
m, Q

b
n] = kmκabδm+n,0 + ifab

cQ
c
m+n , [Qa

m, P̄
b̄
n] = kmAab̄

m+n ,

[Qa
m, P

b
n] = kmκabδm+n,0 + ifab

cP
c
m+n , [Q̄ā

m, A
bb̄
n ] = if āb̄

c̄A
bc̄
m+n ,

[Q̄ā
m, Q̄

b̄
n] = −kmκabδm+n,0 + if āb̄

c̄Q
c̄
m+n , [Qa

m, A
bb̄
n ] = ifab

cA
cb̄
m+n ,

[Q̄ā
m, P̄

b̄
n] = −kmκāb̄δm+n,0 + if āb̄

c̄ P̄
c̄
m+n , [Q̄b̄

m, P
a
n ] = −kmAab̄

m+n ,

(3.12)

with all other commutators vanishing, and in particular [P a
m, P

b
n] = 0. The barred and

unbarred modes constitute two non-commuting non-semisimple super-Kač-Moody

algebras at level k and −k.8 A rescaled version of this algebra appears already

in [22]. The non-commutativity of these algebras is of course related to the non-

holomorphicity of the currents, and it is encoded in the bi-adjoint field

Aaā = STr
(

g−1tag tā
)

, (3.13)

where ta, tā are the generators of each of the two copies of g in the adjoint represen-

tation. It has conformal weight zero, since the Casimir of the adjoint representation

of g vanishes.

Since P a
n commutes with itself, its scaling is arbitrary.9 Therefore the only mean-

ingful parameter which appears and which is subject to possible unitarity restrictions

7In contrast with the usual conventions in CFT, all operators are defined via contour z-integrals.

The contour relation z = R2z̄−1 will lead to some unusual signs in our modes. On the other hand,

in line with usual QFT results, no physical implication stems from the actual value of R.
8The negative sign of one of the levels is immaterial: it is simply a consequence of our unusual

conventions for barred modes.
9Note that P = −kTr

(

g−1∂φg
)

, where φ is the compact direction on the worldsheet. It is then

natural that P commutes with itself, since it contains no time derivatives.
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is k. At the WZW-point, the Y a
n become null fields and Qa

n reduce to the modes of

the chiral currents of the WZW model.10 Finally, note that the conserved charges

constructed above are simply the zero-modes Qa
0.

It is important to notice that not all the modes of the mode algebra are inde-

pendent, i.e. this mode algebra does not act faithfully on the Hilbert space. The

relations between the different modes can be found in [23], and their precise form is

mostly irrelevant for our results.

3.4 The Virasoro modes

Since T (z) is holomorphic, the computation of the commutation relations of the

Virasoro modes with the current modes can be simplified by contour-deformation

techniques, and by ignoring non-singular terms in the OPE’s. Alternatively, we can

use (2.5) and (3.10) to first write

Ln =
2f 2

(1 + kf 2)2
κab

(

XaXb
)

n
=

2f 2

(1− kf 2)2
κāb̄

(

X̄ āX̄ b̄
)

n
. (3.14)

and then take commutators of normal-ordered products as usual. The two methods

yield the same result, namely the following commutation relations:

[Lm, Q
a
n] = −

1 + kf 2

2
nQa

n+m −
1− k2f 4

4kf 2
nP a

m+n ,

[Lm, P
a
n ] = −kf 2nQa

n+m −
1− kf 2

2
nP a

n+m − if 2fa
bc

(

QbP c
)

n+m
,

[Lm, Q̄
ā
n] = −

1− kf 2

2
nQ̄ā

n+m +
1− k2f 4

4kf 2
nP̄ ā

m+n ,

[Lm, P̄
ā
n ] = kf 2nQ̄ā

n+m −
1 + kf 2

2
nP̄ ā

n+m − if 2f ā
b̄c̄

(

Q̄b̄P̄ c̄
)

n+m
.

(3.15)

These results can be derived from both expressions for the Virasoro modes in (3.14).

Note that the result above is independent of the normal-ordering scheme we use,

since fa
bcQ

b
mP

c
n = fa

bcP
c
mQ

b
m because of the vanishing of the dual Coxeter number.

It is important to notice that, due to the appearance of normal-ordered operators

in (3.15), the Virasoro tensor does not act diagonally. Therefore the spectrum-

generating currents are not (combinations of) quasi-primary fields, which hinders

the computation of the conformal weights of the states on the Hilbert space. In

Section 5 a BMN-like limit which simplifies this issue will be presented.

10Analogously, at the WZW-point X̄a
n become null and Q̄a

n reduce to modes of the anti-chiral

currents.
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4 Representations

After having established that an extension of the affine Lie superalgebra gk⊕g−k (see

(3.12) for the complete commutation relations) naturally acts on the Hilbert space

of the theory, we go on and study possible representations of this algebra.

There is immediately a severe problem arising, which hinders us from solving

the complete theory. At the WZW-point, the representation theory of the algebra

gk ⊕ g−k is very-well understood, see [34] for the case of psu(1, 1|2). In particular

the modes Qa
m define lowest weight representations on the Hilbert space,11 while the

modes Q̄ā
m define highest weight representations. Since the algebra depends only on

k, this should not change when going away from the WZW-point. When adding

the modes P a
m and P̄ ā

m, it is natural to assume that they define the same kind of

representations, since they form an affine algebra together with the modes Qa
m and

Q̄ā
m. This however implies, by virtue of the commutation relations (3.12), that the

modes Aaā
m define neither highest nor lowest weight representations on the Hilbert

space. This fact prevents us from computing conformal weights of excitations with

both barred and unbarred oscillators. We will explain in the next section how to

circumvent this problem in a BMN-like limit.

4.1 Affine primaries

Similarly to [22, 23] and analogously with the WZW-point, we define an affine pri-

mary state |Φ〉 transforming in the representation R0 as follows:

Qa
m|Φ〉 = 0 , m > 0 , Qa

0|Φ〉 = taR0
|Φ〉 , P a

m|Φ〉 = 0 , m ≥ 0

Q̄ā
m|Φ〉 = 0 , m < 0 , Q̄ā

0|Φ〉 = tāR0
|Φ〉 , P̄ ā

m, |Φ〉 = 0 , m ≤ 0 ,
(4.1)

where taR0
are the generators of g in the representation R0. As we have mentioned,

we cannot impose a highest or lowest weight condition on Aaā
m . These conditions are

consistent with the Jacobi identity.

One might also be worried with the fact that the anti-holomorphic Virasoro

modes L̄n can be expressed in terms of the unbarred oscillators, similarly to (3.14).

Our definition of affine primary states implies that the anti-holormophic Virasoro

modes act in the opposite way than usual. Thus, it seems as if the spectrum is

unbounded from below. However, due to the various identifications among the modes,

several other states are removed from the spectrum. In particular negative energy

states are consistently removed from the physical spectrum.

We note in particular that the conformal weight of the ground state is now very

easy to compute:

L0|Φ〉 =
2f 2

(1 + kf 2)2
(XaXa)0|Φ〉 =

1

2
f 2 taR0

taR0
|Φ〉 = 1

2
f 2C(R0)|Φ〉 . (4.2)

11This is of course not quite true for spectrally flowed representations, but for the sake of this

argument, we restrict to the unflowed sector.
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Thus, the conformal weight of an affine primary is given by

h(|Φ〉) = 1
2
f 2C(R0) , (4.3)

where C(R0) denotes the quadratic Casimir of g in R0. This matches with [23, 24],

and is the quantum analogue of (2.7).

4.2 Spectral flow

We can also define so-called spectrally flowed representations of the mode algebra.

For this, we introduce the following notation for Lie (super)algebras. Cartan-indices

will be denoted by latin letters i, j, . . . , while roots will be denoted by greek letters

α, β, . . . . Hence Qi
0 denote the Cartan-generators of g, while Qα

0 denote the step

operators. We assume for ease of presentation that g is simply-laced (this is in

particular true for psu(1, 1|2)), but the same analysis goes also through in the non

simply-laced case. To match the usual conventions for su(2) and psu(1, 1|2) (see

Appendix A), all roots are assumed to have length 1. The commutation relations of

the Qa
m with themselves take the following form in this basis [35]:

[Qi
m, Q

j
n] = κijkmδn+m,0 , (4.4)

[Qi
m, Q

α
n] = αiQα

m+n , (4.5)

[Qα
m, Q

β
n] =















kmδm+n,0 + κijα
iQj

m+n , α + β = 0 ,

Nα,βQ
α+β
m+n , α + β is a root ,

0 , otherwise ,

(4.6)

where κij = 1
2
δij , and we used καβ = δα+β,0. Here Nα,β are constants whose precise

values do not play a rôle in the following. Similarly, all other commutation relations

of (3.12) can be written in this form. The action of the spectral flow on the modes

is as follows:

Q̂i
m = Qi

m + 1
2
kwiδm,0 , P̂ i

m = P i
m + 1

2
kwiδm,0 − 1

2
kκı̄̄w̄

ı̄Ai̄
m ,

Q̂α
m = Qα

m+α·w/2 , P̂ α
m = P α

m+α·w/2 − 1
2
kκı̄̄w̄

ı̄Aα̄
m+α·w/2 ,

ˆ̄Qı̄
m = Q̄ı̄

m − 1
2
kw̄ı̄δm,0 , ˆ̄P ı̄

m = P̄ ı̄
m − 1

2
kw̄ı̄δm,0 +

1
2
kκijw

iAj̄
m ,

ˆ̄Qᾱ
m = Q̄ᾱ

m+ᾱ·w̄/2 , ˆ̄P ᾱ
m = P̄ ᾱ

m+ᾱ·w̄/2 +
1
2
kκijw

iAjᾱ
m+ᾱ·w̄/2 ,

Âaā
m = Aaā

m+a·w/2+ā·w̄/2 ,

(4.7)

where wi, w̄ı̄ are the spectral flow parameters. Here, α · w = κijα
iwj is the inner

product on the root space. We also used the notation a ·w, which equals α ·w if a is

a root index and zero if a is a Cartan-index. One can check that this indeed leaves

the algebra (3.12) invariant. Note that the modes Aaā
m play a crucial rôle in defining

this automorphism.

– 12 –



One can in particular investigate the effect of this automorphism on the energy-

momentum tensor. For this, we observe that the spectral-flow symmetry in terms of

the Xa
m reads as follows:

L̂n = Ln +
1

2
κijw

iXj
n +

1

2
κı̄̄w̄

ı̄X̄ ̄
n + κijw

iwj (1 + kf 2)2

32f 2
δn,0

+ κı̄̄w̄
ı̄w̄̄ (1− kf 2)

32f 2
δn,0 − κijκı̄̄w

iw̄ı̄1− k2f 4

16f 2
Aj̄

n . (4.8)

One may check that this indeed still satisfies the Virasoro algebra. The appearance

of Xj
n and X̄ ̄

n in a symmetric way is a very satisfying feature of this spectral flow

symmetry. Unfortunately, also the modes Aj̄
n appear, which makes it generally hard

to compute the effect of this spectral flow on states. Note also that these expressions

reduce to the ones of [4, 34] at the WZW-point.

Similarly to the simplification in the representation theory, the spectral flow

simplifies considerably when flowing only with the unbarred algebra, i.e. w̄ = 0.

Then the field Aj̄
n disappears and the effect becomes computable. However, the

physical spectrum seems to rather require w = w̄ [34], so it is not clear whether it

makes sense to look at states which are only partially spectrally flowed. This deserves

a better understanding.

5 The large charge limit

In this section we will consider a limit where all charges are sent to infinity. Since

for affine algebras the charges are at most of the same order as their level k, we

also require k →∞ at the same rate. Finally, we require that kf 2 remains constant

in the limit. In its applications to string theory (see Section 6), this will precisely

correspond to the BMN-limit [31]. In this limit, the theory simplifies drastically, as

we will see below.

5.1 The contraction of the mode algebra

Let us consider the effect of this limit on the mode algebra (3.12). The eigenvalues of

the Cartan-generators Qi
0 are of order O

(

k
)

, since we assumed that all charges are of

this order. The step-operators Qα
0 are of order O

(

k
1

2

)

(since their commutator gives

back the Cartan-generators). From (4.1) we know that P i
0|Φ〉 = 0, and so P i

0 is not

large even though it is a Cartan-generator. The modes Qa
m and P a

m form 6= 0 are then

of order O
(

k
1

2

)

in this limit, since their commutator gives the Cartan-generators and

central terms. Hence, the Cartan-generators Qi
0 are of order O

(

k
)

, while all other

oscillators are of order O
(

k
1

2

)

. Keeping only the leading terms gives the following

– 13 –



contraction of the mode algebra (3.12)

[Qa
m, Q

b
n] =

(

mkκab + ifab
iQ

i
0

)

δm+n,0 ,

[Qa
m, P

b
n] = mkκabδm+n,0 ,

[P a
m, P

b
n] = 0 ,

(5.1)

and similarly for the barred oscillators. Furthermore note that the Cartan zero-

modes Qi
0 become central extensions of this almost-abelian algebra. Likewise, the

field Aaā appears solely as a central extension. Since the Qi
0 are central, we may

replace them with their eigenvalues ℓi in the given representation.

Let us now look into the action of the modes Aaā
m in this limit. In [23] it was found

that these modes are not all independent. In fact, we have the following relation:

mAaā
m =

i

k
fa

bc (P
cAbā)m = − i

k
f ā

b̄c̄ (P̄
c̄Aab̄)m , (5.2)

From this relation we conclude that any non-zero mode is of order O
(

k− 1

2

)

, whereas

Aaā
0 is of order O(1), see (3.13). Therefore all non-zero modes are subleading in this

limit. Evaluating (3.13) on the classical ground state (2.6) yields Aīı = κīı. It is then

natural to assume

Aı̄ı
0 |Φ〉 = κı̄ı|Φ〉 . (5.3)

In particular, this is consistent with all commutation relations, as well as with all

the identifications between the modes.

5.2 The spectrum-generating algebra

We now look at the commutation relations of Lm with Qa
n and P a

n , which follow from

taking the appropriate limit of (3.15). Indeed, the commutator of Lm with Qa
n does

not change, while the commutator of Lm with P a
n becomes

[Lm, P
a
n ] = −kf 2nQa

m+n − 1
2
(1− kf 2)nP a

m+n − if 2fa
ic ℓ

iP c
m+n

= −kf 2nQa
m+n − 1

2
(1− kf 2)nP a

m+n + f 2κija
jℓiP a

m+n . (5.4)

In the second line, aj denotes αj if a is a root and 0 if a is a Cartan-index. Note that

the coefficients of all three terms in (5.4) are of the same order O(1). Thus we see

that in this limit Lm only mixes Qa
n and P a

n , so we can simply find the eigenvectors.

For n 6= 0, they are given by:

Ja
±,n ≡ Qa

n +
−f 2(a · ℓ+ kn)±

√

n2 + 2(a · ℓ)kf 4n+ (a · ℓ)2f 4

2kf 2n
P a
n . (5.5)

where a · ℓ ≡ κija
jℓi. Their commutation relations with Lm are given by

[Lm, J
a
±,n] =

1

2

(

(a · ℓ)f 2 − n∓
√

n2 + 2(a · ℓ)kf 4n+ (a · ℓ)2f 4
)

Ja
±,m+n . (5.6)
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We can similarly diagonalize the barred modes and compute commutators with L̄m.

The other relevant commutation relations are given by

[Lm, J̄
ā
±,n] =

1

2

(

(ā · ℓ̄)f 2 − n∓
√

n2 − 2(ā · ℓ̄)kf 4n+ (ā · ℓ̄)2f 4
)

J̄ ā
±,m+n , (5.7)

Moreover, [Lm − L̄m, J
a
±,n] = −nJa

±,n and similarly for the barred oscillators. This

was expected, since Lm − L̄m measures the spin of the state which should be an

integer.

We thus seem to obtain four oscillators Ja
±,n, J̄

a
±,n generating the CFT spectrum

in this limit, but in fact only two are independent. Indeed, knowing the two cur-

rents jz and jz̄, for example, is enough to completely determine (up to an isometry

transformation) the classical solution g(z, z̄) using (2.2). The quantum version of

this statement is the relation [23]

Q̄a
m = −κab(Q

aAbā)m + κab(P
aAbā)m

P̄ a
m = κab(P

aAbā)m ,
(5.8)

between the modes introduced in (3.11). This relation allows us to express the

actions of Q̄a
m, P̄ a

m on an affine primary, for example, in terms of the actions of

Qa
m and P a

m.
12 More concretely, the semiclassical solutions suggests that we should

identify the following two states up to a phase:

Ja
ǫ,n|ℓi, ℓ̄i + āi〉 ←→ J̄ ā

ǫ,n|ℓi + ai, ℓ̄i〉 , (5.9)

with (a · ℓ) = −(ā · ℓ̄). Here |ℓi, ℓ̄i + āi〉 and |ℓi + ai, ℓ̄i〉 are affine primary states with

charges (ℓi, ℓ̄i+ āi) and (ℓi+ai, ℓ̄i), respectively. These two affine primary states can

be obtained from each other by the action of the zero-modes. It is easy to see that

the charges of the states (5.9) are the same, as well as their conformal dimension.

Thus, we can now generate the spectrum by considering solely the states

|Ψ〉 ≡
∞
∏

n=1

Nn
∏

in=1

J
ain
−,−n

∞
∏

n̄=1

N̄n̄
∏

ı̄n̄=1

J̄
āı̄n̄
−,n̄|Φ〉 . (5.10)

The conformal weight of these states follows from (5.6) and (5.7):

h(|Ψ〉) = h(|Φ〉) + 1

2

∞
∑

n=1

Nn
∑

in=1

(

(ain · ℓ)f 2 + n+
√

n2 − 2(ain · ℓ)kf 4n+ (ain · ℓ)2f 4
)

+
1

2

∞
∑

n̄=1

N̄n̄
∑

ı̄n̄=1

(

(āı̄n̄ · ℓ̄)f 2 + n̄+
√

n̄2 − 2(āı̄n̄ · ℓ̄)kf 4n̄+ (āı̄n̄ · ℓ̄)2f 4
)

. (5.11)

12Note that the action of Aaā
m can be likewise, in principle, expressed in terms of the modes Qa

m

and P a
m. For our purposes it is enough to notice that the number of oscillators is reduced from four

to two.
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In later applications, we will always take the left- and right-moving representations

of |Φ〉 to coincide, i.e. we will consider the diagonal modular invariant. Let us now

restrict to this case, where ℓ = ℓ̄. Then we use the notation n̄ = −n for n < 0 to

write the formula in a compact way as follows:

h(|Ψ〉) = 1

2
f 2C(R0)

+
1

2

∞
∑

n=−∞
n6=0

Nn
∑

in=1

(

(ain · ℓ)f 2 + n+
√

n2 − 2(ain · ℓ)kf 4|n|+ (ain · ℓ)2f 4
)

, (5.12)

where we also inserted the conformal weight of the affine primary (4.3). This is the

main result of this section.

The spin s = h− h̄ of the state is given by

s(|Ψ〉) = h(|Ψ〉)− h̄(|Ψ〉) =
∞
∑

n=−∞

nNn . (5.13)

In particular, it is integer, which is a consistency check of our analysis. One may also

check that this formula reduces to the correct conformal weight at the WZW-point

kf 2 = 1.

5.3 Characters

We can work out the characters of the representation we just found. Since k is large,

the Verma-module does not contain any null-vectors. We can directly read from

(5.12) the character of such a representation:

χ(τ, τ̄) = |χ0|2
∞
∏

n=−∞
n6=0

∏

a

(

1− |q|(a·ℓ)f2+
√

n2−2(a·ℓ)kf4|n|+(a·ℓ)2f4

q
n

2 q̄−
n

2

)−|a|

. (5.14)

Here a runs over the complete Lie superalgebra and |a| = 1 if the index is bosonic

and |a| = −1 if it is fermionic. Also, χ0 denotes the character of the zero-mode

algebra of the representation R0. We have not included chemical potentials in the

formula, their inclusion is straightforward.

6 Applications to string theory

In this section, we will apply the formalism we constructed in the previous sections

to string theory on the backgrounds AdS3 × S3 ×T
4 and AdS3 × S3 × S3 × S1.13 For

this, our starting point is the hybrid formalism for AdS3× S3×T4 [10], in which the

sigma-model on the supergroup PSU(1, 1|2) features prominently.

13A similar treatment applies to AdS3 × S3 ×K3.
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6.1 Review of the hybrid formalism

Since the hybrid formalism is rather involved, we will only review the most important

features for the case AdS3 × S3 × T
4. We need the following three ingredients:

1. A sigma-model on the supergroup PSU(1, 1|2), eq. (2.1).

2. A topologically twisted c = 6 N = 4 CFT. In our case, this is the topologically

twisted CFT on T4.

3. Two additional ghost fields ρ and σ. They couple in general to the other fields

in the theory.

From the fields of the theory, one can define a twisted N = 4 superconformal algebra.

Physical states are identified with the double cohomology of this twisted N = 4

superconformal algebra with unit R-charge.

As discussed in Section 3, the sigma-model on the supergroup PSU(1, 1|2) is a

CFT and possesses two parameters k and f 2. As seen in the previous sections, k

appears as the level of an su(2)-current algebra and is hence quantised as usual in

WZW models. In string theory, this is interpreted as the number of NS5-branes

creating the background geometry, and therefore also their total charge QNS
5 ≡ k.

On the other hand, f−1 describes the radius of AdS3 and S3, which we denote by

RAdS. The relation with the D5-brane charge QRR
5 can be found for large radii using

supergravity, and reads [10, 24, 36, 37]:

1

f 2
=

R2
AdS

α′
=

√

(

QNS
5

)2
+ g2

(

QRR
5

)2
. (6.1)

Here g is the ten-dimensional string coupling constant. As already mentioned in the

introduction, this explains why f−2 is not quantised in the worldsheet description:

Since we are treating the string perturbatively, g is small and hence QRR
5 has to be

of order g−1 to have a visible effect on f−2. Thus, it is effectively continuous in the

worldsheet theory. In a full non-perturbative description of string theory, also f−2

would become quantised. Note that (6.1) gives the physical reason for the parameter

range

− 1 ≤ kf 2 ≤ 1 . (6.2)

Negative values of kf 2 correspond to anti-branes, we will not consider them in the

following.

The FS1- and D1-brane charges enter as follows in the hybrid formalism. Super-

symmetry imposes that the ratios Q5/Q1 agree for NS- and R-R-fields:

QNS
5

QNS
1

=
QRR

5

QRR
1

. (6.3)
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Finally, QRR
1 determines the volume of the compactification manifold T4 as

v = f 2gQRR
1 , (6.4)

but it does not enter directly in the PSU(1, 1|2)-sigma model.

6.2 The BMN limit

The plane-wave or Berenstein-Maldacena-Nastase (BMN) limit [31] is the following

limiting case of the theory:

j, ℓ, k, f−2 →∞ , (6.5)

with all their ratios remaining constant in the limit. Here, j and ℓ are the eigenvalues

of the Cartan-generators of sl(2,R) and su(2), respectively. Also, the BMN limit is

near-BPS, meaning that j − ℓ is kept finite in the limit.

The complete action for the worldsheet theory reads

S = f−2
(

S0 + S1) + kSWZ + Sghost , (6.6)

where f−2S0 + kSWZ is the action of the PSU(1, 1|2)-sigma model as in eq. (2.1).

Furthermore, S1 are ghost couplings [10, eq. (8.39)]. These ghost couplings are

bilinear in the fermionic currents, and the ghosts which appear are at worst of order

O(1). As discussed in Subsection 5.1, the fermionic currents scale in the BMN limit

as O
(

k
1

2

)

. Therefore S1 is of order O
(

k). On the other hand, S0 is bilinear in the

bosonic currents, which can be of order O(k). Hence S0 is of order O(k2). Thus, the

ghost couplings are very much suppressed in the BMN limit and can be neglected.

This was to be expected, since the ghost couplings vanish in flat space and the BMN

limit is an almost-flat space approximation.

Berenstein, Maldacena and Nastase derived in [31] a formula for the string spec-

trum in this limit:

∆− L =

∞
∑

n=−∞

Nn

√

1± 2nk

L
+

n2

L2f 4
+

1

Lf 2

(

LT4

0 + L̄T4

0

)

+O
(

k−1
)

. (6.7)

Here, LT4

0 is the conformal weight coming from the torus excitations, L = ℓ + ℓ̄ is

the total su(2)-spin from both left- and right-movers, and ∆ = j + ̄ is the scaling

dimension of the dual CFT. Since ∆ and L are both large, but their difference is

finite, this is a near-BPS limit. The summation goes over the different worldsheet

oscillators, where n < 0 refers to right-movers and n > 0 to left-movers. Also, Nn is

the occupation number of the respective mode. Level-matching translates into
∞
∑

n=−∞

nNn = L̄T4

0 − LT4

0 , (6.8)

in this language. Notice that while the RHS of (6.7) contains L, we could have also

written ∆ since these quantities differ only by subleading terms. We also assume

that only finitely many occupation numbers Nn are non-zero.
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6.3 Reproducing the BMN formula of AdS3×S3×T4 from the worldsheet

We are finally in the position to reproduce (6.7) from the worldsheet. For this, we

note that the BMN limit coincides on the worldsheet precisely with the large charge

limit we considered in Section 5. So we may start with (5.12), which we derived in

the last section. Requiring the state to be level-matched, i.e. (6.8) to be satisfied,

(5.12) simplifies to

h(|Ψ〉) = 1

2
f 2C(R0) + LT4

0

+
1

2

∞
∑

n=−∞
n6=0

Nn
∑

in=1

(

(ain· ℓ)f 2 + n +
√

n2 − 2(ain· ℓ)kf 4|n|+ (ain· ℓ)2f 4
)

,

=
1

2
f 2C(R0) +

1

2

(

LT4

0 + L̄T4

0

)

+
1

2

∞
∑

n=−∞
n6=0

Nn
∑

in=1

(

(ain· ℓ)f 2 +
√

n2 − 2(ain· ℓ)kf 4|n|+ (ain· ℓ)2f 4
)

. (6.9)

We included a possible conformal weight from the torus. For the case of psu(1, 1|2),
the Casimir equals (A.5):

C(R0) = −2j0(j0 − 1) + 2ℓ0(ℓ0 + 1) , (6.10)

where j0 and ℓ0 denote the sl(2,R)-spin and the su(2)-spin of the ground state |Φ〉,
respectively. Note that the generic charges ℓi of Section 5 correspond now to j0 and

ℓ0. Furthermore, notice that solving the mass-shell condition h(|Ψ〉) = 0 will imply

that j0 = ℓ0 + O(1). To this order, we may therefore replace j0 everywhere by ℓ0,

except in (6.10). Thus we have a · ℓ = aℓ0, where a takes the following values for the

generators of psu(1, 1|2):

J3 : 0 , J± : ∓ 2 , K3 : 0 , K± : ± 2 , S±±α : 0 , S±∓α : ∓ 2 . (6.11)

For the complete commutation relations of the affine algebra psu(1, 1|2)k in this basis,

see Appendix A.2. With all this in mind, we now solve (6.9) for j0 and expand the

result in orders of the characteristic scale k to obtain:

j0 = ℓ0 + 1 +
1

4

∞
∑

n=−∞
n6=0

Nn
∑

in=1

(

ain +

√

a2in −
2aink|n|

ℓ0
+

n2

ℓ20f
4

)

+
1

4ℓ0f 2

(

LT4

0 + L̄T4

0

)

+O
(

k−1
)

. (6.12)

The summand 1 comes from the fact that j0 and ℓ0 measure the sl(2,R) and su(2)-

spin of the highest weight state. As one can see from the structure of a typical
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multiplet of psu(1, 1|2) (see A.6), the state with the lowest j − ℓ is not the highest

weight state and it has precisely j − ℓ lowered by one.14

Finally, we have to take into account the contribution of the oscillators to the

sl(2,R) and su(2)-spins. We notice that a measures precisely the difference of

sl(2,R)-spin with su(2)-spin of every oscillator:

a = 2× (su(2)-spin)− 2× (sl(2,R)-spin) . (6.13)

Combining these observations, we find

j − ℓ = j0 − ℓ0 − 1− 1

2

∞
∑

n=1

Nn
∑

in=1

ain , ̄− ℓ̄ = j0 − ℓ0 − 1− 1

2

−1
∑

n=−∞

Nn
∑

in=1

ain , (6.14)

where j, ℓ denote the sl(2,R) and su(2) spins of the state |Ψ〉, respectively. Defining

∆ = j + ̄ and L = ℓ+ ℓ̄, and combining all the ingredients, we finally obtain

∆− L = 2j0 − 2ℓ0 − 2− 1

2

∞
∑

n=−∞
n6=0

Nn
∑

in=1

ain

=

∞
∑

n=−∞
n6=0

Nn
∑

in=1

√

a2in
4
− aink|n|

2ℓ0
+

n2

4ℓ20f
4
+

1

2ℓ0f 2

(

LT4

0 + L̄T4

0

)

+O
(

k−1
)

=
∞
∑

n=−∞
n6=0

Nn
∑

in=1

√

a2in
4
− aink|n|

L
+

n2

L2f 4
+

1

Lf 2

(

LT4

0 + L̄T4

0

)

+O
(

k−1
)

. (6.15)

Finally, we impose the remaining physical state conditions which have the effect of

removing all oscillators with ain = 0. This can be most easily seen by comparing the

pure NS-NS case with the partition function derived in [5, 38]. The cohomological

argument was given in [21]. Therefore the physical oscillators are the ones with

ain = ±2, and thus the physical spectrum reads

∆− L =

∞
∑

n=−∞
n6=0

Nn

√

1± 2kn

L
+

n2

L2f 4
+

1

Lf 2

(

LT4

0 + L̄T4

0

)

+O
(

k−1
)

, (6.16)

which matches the BMN formula (6.7). This concludes the derivation of the BMN

formula from the worldsheet.

One can furthermore confirm that the analysis holds also true in the spectrally

flowed sectors. For this, we choose w ≡ wsl(2,R) = −w̄sl(2,R) = wsu(2) = −w̄su(2).15

14In fact there are four such states.
15The sign for the barred spectral flow parameters seem peculiar, but this is again related to our

mode conventions for the barred modes.
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We spectrally flow the ground state on top of which we build the spectrum, e.g. the

state in the psu(1, 1|2)-multiplet with quantum numbers (j0 − 1, ℓ0). From (4.8), we

conclude that on this state

L̂0|Φ〉 = f 2(−ĵ0(ĵ0 − 1) + ℓ̂0(ℓ̂0 + 1))|Φ〉 = 1
2
f 2C
(

R̂0

)

|Φ〉 , (6.17)

where ĵ0 = j0 +
kw
2

and ℓ̂0 = ℓ0 +
kw
2

are the spectrally flowed spins of the ground

state, see eq. (4.7). After this, we can apply hatted oscillators on this spectrally

flowed ground state to generate a state in this new representation. Since the spectral

flow is an automorphism of the spectrum-generating algebra, the derivation is from

hereon exactly the same as before, except that everything is replaced by spectrally

flowed quantities. We obtain precisely (6.15), except that all quantities are now

spectrally flowed. So we conclude that (6.15) continues to hold true in the spectrally

flowed sectors.

6.4 The case of AdS3×S3×S3×S1

We can similarly treat the background AdS3 × S3 × S3 × S1, which has recently

attracted considerable attention [29, 39–44].

Currently there exists no hybrid formalism à la Berkovits, Vafa and Witten for

this background. Nevertheless we expect that in the BMN limit, in analogy with

AdS3×S3×T4, the theory can be described by a sigma model on D(2, 1;α) together

with the theory on S1 and free ghosts. The bosonic part of the Lie supergroup

D(2, 1;α) is AdS3×S3×S3, with the parameter α giving the ratio of the radii of the

two spheres (for more details, see Appendix A.3). Representations are now labelled

by the three spins (j0, ℓ
+
0 , ℓ

−
0 ). The Casimir of such a representation is given by

C(j0, ℓ+0 , ℓ−0 ) = −2j0(j0 − 1) + 2 cos2 ϕ ℓ+0 (ℓ
+
0 + 1) + 2 sin2 ϕ ℓ−0 (ℓ

− + 1) , (6.18)

where we introduced the angle 0 ≤ ϕ ≤ π
2
such that α = cot2 ϕ.16 In the limit we

are taking, we set

ℓ+0 =
cosω

cosϕ
ℓ0 , ℓ−0 =

sinω

sinϕ
ℓ0 , (6.19)

where 0 ≤ ω ≤ π
2
is another angle parametrizing the ratio of the spins as these are

taken to infinity. Then as before we have j0 = ℓ0 + O(1), and hence again a · ℓ can

be replaced with aℓ0, where a takes the following values for the different elements of

the superalgebra d(2, 1;α):

K(+)± : ± 2 cos(ϕ) cos(ω) , K(−)± : ± 2 sin(ϕ) sin(ω) , J± : ∓ 2 ,

S±±± : ∓ 2 sin2
(ϕ− ω

2

)

, S±∓± : ∓ 2 cos2
(ϕ+ ω

2

)

,

S±±∓ : ∓ 2 sin2
(ϕ+ ω

2

)

, S±∓∓ : ∓ 2 cos2
(ϕ− ω

2

)

.

(6.20)

16We thank Andrea Dei for bringing this parametrization to our attention.
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All three Cartan-generators J3 and K(±)3 have a = 0. Solving the mass-shell condi-

tion for j0 as in (6.12) yields

j0 = ℓ0 + cos2
(ϕ− ω

2

)

+
1

4

∞
∑

n=−∞
n6=0

Nn
∑

in=1

(

ain +

√

a2in −
2aink|n|

ℓ0
+

n2

ℓ20f
4

)

+
1

4ℓ0f 2

(

LS1

0 + L̄S1

0

)

+O
(

k−1
)

, (6.21)

where we again used the mass-shell condition to simplify the result. We recognize

that in this case, a measures

a = 2 cos(ϕ) cos(ω)× (su(2)+-spin)

+ 2 sin(ϕ) sin(ω)× (su(2)−-spin)− 2× (sl(2,R)-spin) . (6.22)

Defining ℓ = cos(ϕ) cos(ω)ℓ+ + sin(ϕ) sin(ω)ℓ− and L = ℓ + ℓ̄, ∆ = j + ̄, the same

steps as before yield the final result

∆− L = − sin2
(ϕ− ω

2

)

+
∞
∑

n=−∞
n6=0

Nn
∑

in=1

√

a2in
4
− aink|n|

L
+

n2

L2f 4

+
1

Lf 2

(

LS1

0 + L̄S1

0

)

+O
(

k−1
)

, (6.23)

which formally coincides with (6.15), except for the constant squared sine. As before,

in order to choose the state in a typical d(2, 1;α) multiplet with smallest ∆ − L, a

constant term 1 was included in the relations between j − ℓ and j0 − ℓ0.

Notice that the BPS condition for d(2, 1;α) takes the form (A.9)

∆BPS = cos2(ϕ)L+ + sin2(ϕ)L− = cos(ϕ− ω)L , (6.24)

and so

∆−∆BPS = (2L− 1) sin2
(ϕ− ω

2

)

+
∞
∑

n=−∞
n6=0

Nn
∑

in=1

√

a2in
4
− aink|n|

L
+

n2

L2f 4

+
1

Lf 2

(

LS1

0 + L̄S1

0

)

+O
(

k−1
)

. (6.25)

In particular, since all terms on the right-hand side are positive,17 we see that this

is only a near-BPS expansion if ϕ = ω, i.e. L+ = L−. Hence, all BPS states on the

background AdS3×S3×S3×S1 have (in the large k limit) ℓ+ = ℓ−. This was recently

shown in [41, 42, 44], our calculation confirms the result again. The squared sine of

(6.23) then vanishes for near-BPS states.

17Since L≫ 1, 2L− 1 is also positive.
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7 Discussion

In this paper we considered string theory on AdS3-backgrounds by employing the

hybrid formalism of Berkovits, Vafa and Witten [10]. This lead us to a study of

sigma-models on Lie supergroups. We first found exact classical solutions of the

model, which were suggestive of the BMN-formula when interpreted semiclassically.

Starting from Section 3, we turned to a systematic study of the quantum mechanical

sigma-model. In a BMN-like limit, where all charges become large and only finitely

many excitations are considered, a complete solution to the model was found. We

subsequently applied our findings to string theory on the backgrounds AdS3×S3×M4

withM4 = T4, K3 and S3×S1 via the hybrid formalism, where it allowed us to derive

the complete plane-wave spectrum.

Our results provide a direct link between Green-Schwarz-like computations and

worldsheet methods to determine the spectrum. The tools developed in this paper

seem much more powerful than necessary to derive the plane-wave spectrum. We

can in principle derive the exact conformal weights of arbitrary one-sided excitations

(i.e. constructed using only unbarred modes), at least level by level. With the help

of this, we can confirm some well-known conjectures explicitly, such as the fact that

long strings disappear from the string spectrum away from the WZW-point. We can

also retrieve the missing chiral primaries in the spacetime BPS spectrum [38, 45, 46].

We will report on this elsewhere [47].

We have presented in Section 2 an exact one-excitation solution of the classical

theory. One can hope to extend this result to multi-particle excitations by employing

integrability methods [48–50]. In particular, the presented solution corresponds to a

one-cut solution of the spectral curve. In principle, the spectral curve can be used to

extend the result to multi-cut solutions. This would provide a way to compute the

spectrum of string theory beyond the plane-wave limit.

We expect that the analysis can be extended to other backgrounds like AdS5×S5,

AdS4×CP3 and AdS2×S2×T6, where similar supergroup actions exist [51–55]. They

feature the supergroups PSU(2, 2|4), OSP(6|2, 2) and PSU(1, 1|2), which all have

vanishing dual Coxeter numbers. However, the backgrounds require us to consider

cosets of these supergroups, so one should effectively consider a coset of the current

algebra considered in this paper. We expect that this can be worked out, but have

not tried to do so.

We also hope that these considerations can be used to shed light on the emergence

of a higher spin symmetry in the dual CFT. The backgrounds AdS3 × S3 ×M4 are

conjectured to lie on the same moduli space as the symmetric product orbifold ofM4

[1, 42, 56].18 However, it is not clear where the symmetric product orbifold points

are located in moduli space. The symmetric product orbifold features a higher spin

symmetry [57–59], whose emergence has so far not been completely elucidated from

18In the case ofM4 = S3 × S1, this is only true for an integer ratio of the two D5-brane charges.
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a string theory point of view [60] (see [43, 61, 62] for recent observations concerning

the emergence of this higher spin symmetry in pure NS-NS background for k = 1).

We have so far not observed any additional massless fields in the spectrum.

The dispersion relation obtained using integrability methods [14], in the decom-

pactification limit, contains a term which is linear in the mode number and a squared

sine term. In [63] the comparison with the giant magnon solution suggested a tran-

scendental analytic structure of the string spectrum. On the other hand, our confor-

mal weights arise through diagonalisation, so the current algebra approach we have

presented can only produce an algebraic structure for the spectrum. In particular,

we cannot reproduce the giant magnon solution. We believe this is not a contradic-

tion: the giant magnon solution is not physical, since it is not level-matched, and

likewise we can so far only compute non level-matched conformal weights, as men-

tioned above. So there is no a priori reasons for the two formulas to agree. It would

be very interesting to establish a connection between the two approaches.
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A Properties of Lie superalgebras

A.1 Root system and classification

In this paper, basic classical Lie superalgebras with vanishing dual Coxeter number

play an important rôle. These are completely classified by Kač [64] and are [65–67]:

psl(n|n) , osp(2n+ 2|2n) and d(2, 1;α) , (A.1)

where n ≥ 1 is any integer and α > 1.19 These algebras are called basic because

they possess an invariant bilinear form, which we need to construct the action, and

hence also the Virasoro tensor. For simple superalgebras a Cartan subalgebra h can

be chosen. For basic Lie superalgebras h agrees with the Cartan subalgebra of the

19We have the isomorphism osp(4|2) ∼= d(2, 1;α = 1) and d(2, 1;α) ∼= d(2, 1;α−1) for α ∈ R.
Since we want to choose a real form, we also restrict to α ∈ R. We also have an isomorphism

d(2, 1;α → ∞) ∼= psu(1, 1|2) ⋊ su(2), where su(2) acts as an outer automorphism on psu(1, 1|2).
This will discussed further in Appendix A.3.
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bosonic subalgebra, and is thus unique up to conjugation. Hence a root system can

be defined.

It is well-known (and explained in the Section 3) that the principal model with

WZW-term on a supergroup is a CFT if the respective dual Coxeter number vanishes.

The dual Coxeter number is half of the Casimir of the adjoint representation, so in

particular the quadratic Casimir of the adjoint representation vanishes for the above

Lie superalgebras.

A.2 The (affine) Lie superalgebra psu(1, 1|2)

The algebra psu(1, 1|2) plays an important rôle when applying our formalism to

string theory, so we recall here the relevant commutation relations. We display

here the commutation relations for the affine algebra psu(1, 1|2)k. The commutation

relations for the global algebra follow by looking at the zero-modes only. We use a

spinor notation for the algebra. In particular, the indices α, β, γ denote spinor indices

and take values {±}. The bosonic subalgebra of psu(1, 1|2)k consists of sl(2,R)k ⊕
su(2)k ∼= su(2)−k ⊕ su(2)k, whose modes we denote by Ja

m and Ka
m, respectively.

The fermionic generators are denoted Sαβγ
n . They satisfy the commutation relations

[20, 34]:20

[J3
m, J

3
n] = −1

2
kmδm+n,0 , [K3

m, K
3
n] =

1
2
kmδm+n,0 ,

[J3
m, J

±
n ] = ±J±

m+n , [K3
m, K

±
n ] = ±K±

m+n ,

[J+
m, J

−
n ] = −kmδm+n,0 + 2J3

m+n , [K+
m, K

−
n ] = kmδm+n,0 + 2K3

m+n ,

[Ja
m, S

αβγ
n ] = 1

2
(σa)αµS

µβγ
m+n , [Ka

m, S
αβγ
n ] = 1

2
(σa)βνS

ανγ
m+n ,

{Sαβγ
m , Sµνρ

n } = kmǫαµǫβνǫγρδm+n,0 − ǫβνǫγρ(σa)
αµJa

m+n + ǫαµǫγρ(σa)
βνKa

m+n .

(A.2)

Here a ∈ {±, 3} denote adjoint indices of su(2) or sl(2,R). The two Cartan genera-

tors are chosen to be J3
0 and K3

0 , and we denote their eigenvalues throughout the text

as j and ℓ, respectively. Furthermore, there is a unique (up to rescaling) invariant

form on psu(1, 1|2), which can be read off from the central terms:

κ(J3, J3) = −1
2
, κ(J±, J∓) = −1 , κ(K3, K3) = 1

2
, κ(K±, K∓) = 1 ,

κ(Sαβγ, Sµνρ) = ǫαµǫβνǫγρ , κ(Sαβγ , Ja) = 0 , κ(Sαβγ , Ka) = 0 .
(A.3)

The representations we will consider for string theory applications are lowest

weight for the sl(2,R)-oscillators, and half-infinite.21 For su(2), they are finite di-

20Note that these conventions differ from the ones usually employed in the RNS formalism for

sl(2,R), see e.g. [61].
21Also so-called spectrally flowed representations occur. For non-vanishing R-R-flux, they cannot

be described on the level of the algebra psu(1, 1|2)k alone.
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mensional. Hence they are characterized by

J3
0 |j, ℓ〉 = j|j, ℓ〉 , K3

0 |j, ℓ〉 = ℓ|j, ℓ〉 ,
J−
0 |j, ℓ〉 = 0 , K+

0 |j, ℓ〉 = 0 ,

Ja
m|j, ℓ〉 = 0 , m > 0 , Ka

m|j, ℓ〉 = 0 , m > 0 .

(A.4)

Requiring that the zero-mode representation has no negative-norm states imposes

ℓ ∈ 1
2
Z≥0, j is continuous. The Casimir of such a representation reads

C(j, ℓ) = −2j(j − 1) + 2ℓ(ℓ+ 1) . (A.5)

A representation |j, ℓ〉 is atypical if the BPS bound j ≥ ℓ + 1 is saturated, and

it is otherwise typical. A typical representation |j, ℓ〉 consists of the following 16

sl(2,R)⊕ su(2)-multiplets:

4(j, ℓ) , (j ± 1, ℓ) , (j, ℓ± 1) , 2(j ± 1
2
, ℓ± 1

2
) . (A.6)

A.3 The (affine) Lie superalgebra d(2, 1;α)

The (affine) Lie superalgebra d(2, 1;α) is used to describe string theory on the back-

ground AdS3 × S3 × S3 × S1, so we review it here and fix our conventions. The

non-vanishing commutation relations for the affine algebra take the form

[J3
m, J

3
n] = −1

2
kmδm+n,0 , [K(±)3

m , K(±)3
n ] = 1

2
k±mδm+n,0 ,

[J3
m, J

±
n ] = ±J±

m+n , [K(±)3
m , K(±)±

n ] = ±K(±)±
m+n ,

[J+
m, J

−
n ] = −kmδm+n,0 + 2J3

m+n , [K(±)+
m , K(±)−

n ] = k±mδm+n,0 + 2K
(±)3
m+n ,

[Ja
m, S

αβγ
n ] = 1

2
(σa)αµS

µβγ
m+n , [K(+)a

m , Sαβγ
n ] = 1

2
(σa)βνS

ανγ
m+n ,

[K(−)a
m , Sαβγ

n ] = 1
2
(σa)γρS

αβρ
m+n

{Sαβγ
m , Sµνρ

n } = kmǫαµǫβνǫγρδm+n,0 − ǫβνǫγρ(σa)
αµJa

m+n + γǫαµǫγρ(σa)
βνK

(+)a
m+n

+ (1− γ)ǫαµǫβν(σa)
γρK

(−)a
m+n .

(A.7)

Again, α, β, . . . are spinor indices and take values in {±}. As before, a is an adjoint

index and takes values in {±, 3}. It is raised an lowered by the standard su(2)-

invariant form. Finally, γ, k+ and k− are related to α and k by

γ =
α

1 + α
, k+ =

(α + 1)k

α
, k− = (α+ 1)k . (A.8)

We note that k+, k− ∈ Z≥0, so the affine algebra imposes furthermore α ∈ Q≥0∪{∞}.
In the limit α → ∞, γ = 1 and the modes K

(−)a
m decouple from the rest of

the algebra. After decoupling, the algebra becomes again psu(1, 1|2)k.22 There is a

22Physically, this corresponds to the fact that when decompactifying one of the three-spheres, the

geometry of the background becomes AdS3×S3×R3×S1, which is locally isometric to AdS3×S3×T4

and hence has psu(1, 1|2) as a symmetry algebra.
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unique (up to rescaling) invariant form, which can be read off from the central terms

in the commutation relations.

We will consider representations which are half-infinite in the sl(2,R), and finite-

dimensional in the two su(2)’s. Hence they are again characterized by (A.4), where

the conditions on the K-modes apply to both K
(+)a
m and K

(−)a
m . A representation is

consequently parametrized by the three spins |j, ℓ+, ℓ−〉. A representation |j, ℓ+, ℓ−〉
is atypical if the BPS bound

j ≥ γℓ+ + (1− γ)ℓ− , (A.9)

is saturated, and it is otherwise typical. A typical multiplet consists of the following

16 sl(2,R)⊕ su(2)⊕ su(2)-representations:

2(j, ℓ+, ℓ−) , (j ± 1, ℓ+, ℓ−) , (j, ℓ+ ± 1, ℓ−) ,

(j, ℓ+, ℓ− ± 1) , (j ± 1
2
, ℓ+ ± 1

2
, ℓ− ± 1

2
) . (A.10)

Its quadratic Casimir reads

C(j, ℓ+, ℓ−) = −2j(j − 1) + 2γℓ+(ℓ+ + 1) + 2(1− γ)ℓ−(ℓ− + 1) . (A.11)

In the main text, we shall find it useful to parametrize γ by the angle ϕ through

γ = cos2 ϕ.
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[12] A. Babichenko, B. Stefański, Jr. and K. Zarembo, Integrability and the AdS3/CFT2

correspondence, JHEP 03 (2010) 058 [0912.1723].

[13] R. Borsato, O. Ohlsson Sax and A. Sfondrini, A dynamic su(1|1)2 S-matrix for

AdS3/CFT2, JHEP 04 (2013) 113 [1211.5119].

[14] B. Hoare, A. Stepanchuk and A. A. Tseytlin, Giant magnon solution and dispersion

relation in string theory in AdS3 × S3 × T
4 with mixed flux,

Nucl. Phys. B879 (2014) 318 [1311.1794].

[15] T. Lloyd, O. Ohlsson Sax, A. Sfondrini and B. Stefański, Jr., The complete
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